Midterm I Correction.

1.(15 points)

Compute the gradient $\nabla f(x, y, z)$ of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $f(x, y, z)=\cos (x y z)$. Use this to compute the directional derivative of f at the point $\left(1, \pi, \frac{1}{2}\right)$ in the direction of $u=(3,0,-4)$.

Correction. By definition, $\nabla f(x, y, z)=\left(\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right)$. Here, this yields $\nabla f(x, y, z)=$ $(-y z \sin (x y z),-x z \sin (x y z),-x y \sin (x y z))$. In particular, we have $\nabla f\left(1, \pi, \frac{1}{2}\right)=\left(-\frac{\pi}{2},-\frac{1}{2},-\pi\right)$. Hence the directional derivative of f at $\left(1, \pi, \frac{1}{2}\right)$ in the direction u is

$$
\nabla_{u} f(x, y, z)=\nabla f(x, y, z) \cdot \frac{u}{\|u\|}=\left(-\frac{\pi}{2},-\frac{1}{2},-\pi\right) \cdot\left(\frac{3}{5}, 0,-\frac{4}{5}\right)=-\frac{3 \pi}{10}+\frac{4 \pi}{5}=\frac{\pi}{2}
$$

2.(15 points)

Suppose $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a differentiable function, such that $g(1,-1,2)=(1,5)$ and $J g(1,-1,2)=\left(\begin{array}{ccc}1 & -1 & 0 \\ 4 & 0 & 2\end{array}\right)$ (where $\operatorname{Jg}(x, y, z)$ is the Jacobian matrix of g at the point (x, y, z).)
Let then $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function defined by $f(x, y)=\left(x y, 3 x^{2}-2 y+3\right)$. Find the Jacobian matrix of $f \circ g$ at the point $(1,-1,2)$
Correction. The chain rule tells us that $J(f \circ g)(1,-1,2)=J f(g(1,-1,2)) J g(1,-1,2)$. Since we are given the value of $J g(1,-1,2)$, we have to compute $J f(g(1,-1,2))=J f(1,5)$. By definition of a Jacobian matrix, we have $J f(x, y)=\left(\begin{array}{cc}y & x \\ 6 x & -2\end{array}\right)$, so $J f(1,5)=\left(\begin{array}{cc}5 & 1 \\ 6 & -2\end{array}\right)$. The only thing remaining is to compute the product of the two matrices, which yields

$$
J(f \circ g)(1,-1,2)=\left(\begin{array}{cc}
5 & 1 \\
6 & -2
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
4 & 0 & 2
\end{array}\right)=\left(\begin{array}{ccc}
9 & -5 & 2 \\
-2 & -6 & -4
\end{array}\right)
$$

3.(25 points)

Consider the function $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by

$$
F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(x_{2} y_{2}-x_{1} \cos \left(y_{1}\right), x_{2} \sin \left(y_{1}\right)+x_{1} y_{2}-1\right)
$$

Does the equation $F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ define implicitly y_{1}, y_{2} as continuously differentiable functions of x_{1}, x_{2} near $\left(1,1, \frac{\pi}{2}, \frac{\pi}{4}\right)$? If so, compute $\frac{\partial y_{1}}{\partial x_{1}}(1,1)$ and $\frac{\partial y_{1}}{\partial x_{2}}(1,1)$, and use this to compute the equation of the tangent plane to the surface of equation $y_{1}=y_{1}\left(x_{1}, x_{2}\right)$ at the point $\left(x_{1}, x_{2}, y_{1}\right)=\left(1,1, \frac{\pi}{2}\right)$ (See it as an equation in the three-dimensional space where the variables are x_{1}, x_{2}, y_{1} and $y_{1}\left(x_{1}, x_{2}\right)$ is the function induced by applying the Implicit Function Theorem at the point $\left(1,1, \frac{\pi}{2}, \frac{\pi}{4}\right)$).
What about the same questions for the equation $F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=(5,1)$ near the point $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(0,2, \frac{\pi}{2}, \frac{5}{2}\right)$?

Correction. Since we want to apply the Implicit Function Theorem, we first need to compute the Jacobian matrix of F, which is

$$
J F(x, y, z)=\left(\begin{array}{cccc}
-\cos \left(y_{1}\right) & y_{2} & x_{1} \sin \left(y_{1}\right) & x_{2} \\
y_{2} & \sin \left(y_{1}\right) & x_{2} \cos y_{1} & x_{1}
\end{array}\right)
$$

For (y_{1}, y_{2}) to be implicitly defined by F as functions of $\left(x_{1}, x_{2}\right)$ near some point $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, it is a necessary and sufficient condition that the matrix $\left(\begin{array}{ll}x_{1} \sin \left(y_{1}\right) & x_{2} \\ x_{2} \cos \left(y_{1}\right) & x_{1}\end{array}\right)$ be invertible, i.e that its determinant $x_{1}^{2} \sin \left(y_{1}\right)-x_{2}^{2} \cos \left(y_{1}\right)$ be different from 0 .
At the point $\left(1,1, \frac{\pi}{2}, \frac{\pi}{4}\right)$, the determinant is $1 \neq 0$, so $\left(y_{1}, y_{2}\right)$ are defined implicitly as functions of $\left(x_{1}, x_{2}\right)$ near that point.
To compute the derivative that we are asked for, we use implicit differentiation to obtain

$$
\left\{\begin{array}{l}
y_{2} d x_{2}+x_{2} d y_{2}-\cos \left(y_{1}\right) d x_{1}+x_{1} \sin \left(y_{1}\right) d y_{1}=0 \tag{1}\\
\sin \left(y_{1}\right) d x_{2}+x_{2} \cos \left(y_{1}\right) d y_{1}+y_{2} d x_{1}+x_{1} d y_{2}=0
\end{array}\right.
$$

Taking $x_{1}(1)-x_{2}(2)$ yields that

$$
\left(x_{1} y_{2}-x_{2} \sin \left(y_{1}\right)\right) d x_{2}-\left(\cos \left(y_{1}\right) x_{1}+y_{2} x_{2}\right) d x_{1}+\left(x_{1}^{2} \sin \left(y_{1}\right)-x_{2}^{2} \cos \left(y_{1}\right)\right) d y_{1}=0
$$

so that $d y_{1}=\frac{1}{x_{1}^{2} \sin \left(y_{1}\right)-x_{2}^{2} \cos \left(y_{1}\right)}\left(\left(\cos \left(y_{1}\right) x_{1}+y_{2} x_{2}\right) d x_{1}-\left(x_{1} y_{2}-x_{2} \sin \left(y_{1}\right)\right) d x_{2}\right)$.
At the point $\left(1,1, \frac{\pi}{2}, \frac{\pi}{4}\right)$ this becomes $d y_{1}=\frac{\pi}{4} d x_{1}-\left(\frac{\pi}{4}-1\right) d x_{2}$.
Thus, we finally obtain $\frac{\partial y_{1}}{\partial x_{1}}(1,1)=\frac{\pi}{4}$, and $\frac{\partial y_{1}}{\partial x_{2}}(1,1)=1-\frac{\pi}{4}$.
To obtain the equation of the tangent plane to the surface of equation $y_{1}=y_{1}\left(x_{1}, x_{2}\right)$ at the point $\left(1,1, \frac{\pi}{2}\right)$, one simply writes it as $\left(x_{1}-1, x_{2}-1, y_{1}-\frac{\pi}{2}\right) \cdot\left(\frac{\pi}{4}, 1-\frac{\pi}{4},-1\right)=0$, which yields $\frac{\pi}{4} x_{1}+\left(1-\frac{\pi}{4}\right) x_{2}-y_{1}=1-\frac{\pi}{2}$.
At the point $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(0,2, \frac{\pi}{2}, \frac{5}{2}\right)$ the determinant that appears when one wants to check the hypothesis of the Implicit Function Theorem is 0 , so $\left(y_{1}, y_{2}\right)$ are not defined as implicit functions of $\left(x_{1}, x_{2}\right)$ near that point.

