Final Exam.
Wednesday, December 13.
3 hours.

You are allowed to use your textbook, but no other kind of documentation.
Calculators, mobile phones and other electronic devices are prohibited.

NAME \qquad

SIGNATURE

1. (20 points)

Define a function $f:[0,+\infty) \rightarrow \mathbb{R}$ by setting $f(x)=\sin (\sqrt{x})$. Show that f is continuous on $[0,+\infty)$ and differentiable on $(0,+\infty)$. Is f differentiable at 0 ?
2. (30 points)

Let $0<\alpha<1$.
(a) Show that for all $x>0$ one has

$$
\frac{\alpha}{(x+1)^{1-\alpha}} \leq(x+1)^{\alpha}-x^{\alpha} \leq \frac{\alpha}{x^{1-\alpha}} .
$$

(b) Define a sequence $\left(u_{n}\right)$ by the formula $u_{n}=\sum_{k=1}^{n} \frac{1}{k^{\alpha}}=1+\frac{1}{2^{\alpha}}+\ldots \frac{1}{n^{\alpha}}$.

Use the inequalities above (applied to $\alpha^{\prime}=1-\alpha$) to prove that for all $n \in \mathbb{N}$ one has

$$
(1-\alpha)\left(u_{n}-1\right) \leq n^{1-\alpha}-1 \leq(1-\alpha) u_{n-1} \leq(1-\alpha) u_{n}
$$

Prove that $\left(u_{n}\right)$ is not convergent but $\left(n^{\alpha-1} u_{n}\right)$ is, and compute $\lim \left(n^{\alpha-1} u_{n}\right)$.
3. (30 points)

Let f be continuous on $[0,+\infty)$; for all $x>0$, set $g(x)=\frac{1}{x} \int_{0}^{x} f(t) d t$.
(a) Show that g is continuous on $(0,+\infty)$, and that g has a limit at 0 ; compute this limit.
(b) Show that g is differentiable on $(0,+\infty)$ and that for all $x>0$ one has

$$
g^{\prime}(x)=\frac{f(x)-g(x)}{x}
$$

4. (30 points)

Pick two real numbers a, b such that $a<b$ and let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. We want to show that

$$
\sup \{f(x): x \in(a, b)\}=\sup \{f(x): x \in[a, b]\}
$$

(a) Explain why $\sup \{f(x): x \in(a, b)\}$ and $\sup \{f(x): x \in[a, b]\}$ exist.
(b) Show that $\sup \{f(x): x \in(a, b)\} \leq \sup \{f(x): x \in[a, b]\}$.
(c) Assume $f(a)=\sup \{f(x): x \in[a, b]\}$. Show that one also has $f(a)=\sup \{f(x): x \in(a, b)\}$. Can you prove a similar result when $f(b)=\sup \{f(x): x \in[a, b]\}$?
(d) Prove the equality $\sup \{f(x): x \in(a, b)\}=\sup \{f(x): x \in[a, b]\}$.
5. (30 points)

Let $0<\lambda<1$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(\lambda x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
(a) Prove that $f(0)=0$.
(b) Assume that f is differentiable at 0 . Show that there exists $a \in \mathbb{R}$ such that $f(x)=a x$ for all $x \in \mathbb{R}$.

Hint. What can you say of the sequence $\left(\frac{f\left(\lambda^{n} x\right)}{\lambda^{n} x}\right)$? Show that $a=f^{\prime}(0)$ works .
(c) Is the result above still true if one no longer assumes that f is differentiable at 0 ?
6. (30 points)

Let $f:[0,1] \rightarrow[0,1]$ be an increasing function (not necessarily continuous). Show that there exists $x \in[0,1]$ such that $f(x)=x$.
Hint. Consider the set $E=\{x \in[0,1]: f(x)>x\}$; show that one can assume that $0 \in E$. Show that $x=\sup (E)$ works.
7. (30 points)

Recall that if X is a set, one denotes by $\mathcal{P}(X)$ the set whose elements are the subsets of X; in other words, $\mathcal{P}(X)=\{A: A \subset X\}$. Let now X, Y be sets and $f: X \rightarrow Y$ be a function.
(a) Define a function $\hat{f}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ by setting $\hat{f}(A)=f(A)$ for all $A \subset X$.

Show that \hat{f} is injective if, and only if, f is injective.
(b) Similarly, define a function $\tilde{f}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ by setting $\tilde{f}(B)=f^{-1}(B)$ for all $B \subset Y$. Compute $\tilde{f}(\emptyset)$.

Show that \tilde{f} is injective if, and only if, f is surjective.
Note. To solve this exercise, you need to remember the following principle : to show that two subsets A, B of a set X are equal, one has to prove that $A \subset B$ and $B \subset A$; in other words, one must show that for all $x \in X$ $x \in A \Rightarrow x \in B$, and $x \in B \Rightarrow x \in A$.

