UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Math 444

Fall 2006 Group E13

Final Exam : Answer Key

You are allowed to use your textbook, but no other kind of documentation. Calculators, mobile phones and other electronic devices are prohibited.

NAME _____

SIGNATURE _____

Define a function $f: [0, +\infty) \to \mathbb{R}$ by setting $f(x) = \sin(\sqrt{x})$. Show that f is continuous on $[0, +\infty)$ and differentiable on $(0, +\infty)$; give a formula for f'(x) for all x > 0. Is f differentiable at 0?

(You may use without demonstration the fact that the function $x \mapsto \sin(x)$ is differentiable on \mathbb{R} and that $\sin'(x) = \cos(x)$, and the fact that $x \mapsto \sqrt{x}$ is differentiable on $(0, +\infty)$ and $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$)

Answer. The function $g: x \mapsto \sin(x)$ is continuous on \mathbb{R} , and the function $h \mapsto \sqrt{x}$ is continuous on \mathbb{R}^+ . Hence $f = g \circ h$ is continuous on \mathbb{R}^+ , since it is a obtained by composition of two continuous functions.

Similarly, the Chain Rule ensures that f is differentiable on $(0, +\infty)$, and $f'(x) = \frac{1}{2\sqrt{x}}\cos(\sqrt{x})$.

To see whether f is differentiable at 0, the simplest thing is to go back to the definition; one has f(0) = 0, so $\frac{f(x)-f(0)}{x-0} = \frac{f(x)}{x} = \frac{\sin(\sqrt{x})}{x}$. Since we know that $\lim_{x\to 0} \frac{\sin(x)}{x} = \cos(0) = 1$, we see that $\frac{f(x)}{x}$ is not bounded in the neighborhood of 0 (it is the product of a function with limit 1 and a function which is not bounded). Hence $\frac{f(x)-f(0)}{x-0}$ doens't have a limit at 0, and this shows that f is not differentiable at 0.

(30 points)
Let 0 < α < 1.
(a) Show that for all x > 0 one has

$$\frac{\alpha}{(x+1)^{1-\alpha}} \le (x+1)^{\alpha} - x^{\alpha} \le \frac{\alpha}{n^{1-\alpha}} \ .$$

(b) Define a sequence (u_n) by the formula

$$u_n = \sum_{k=1}^n \frac{1}{k^\alpha} \; .$$

Use the inequality above (applied to $\alpha' = 1 - \alpha$) to show that this sequence is not convergent.

Answer. (a) The Mean Value Theorem, applied to the function $x \mapsto x^{\alpha}$ (which is differentiable on $(0, +\infty)$) on the interval [x, x + 1], yields that there exists $c \in (x, x + 1)$ such that

$$(x+1)^{\alpha} - x^{\alpha} = \frac{\alpha}{c^{1-\alpha}}$$

Since $0 < \alpha < 1$ one has $1 - \alpha > 0$ and the fact that x < c < x + 1 yields

$$\frac{1}{(x+1)^{1-\alpha}} < \frac{1}{c^{1-\alpha}} < \frac{1}{x^{1-\alpha}} \; .$$

This gives us

$$\frac{\alpha}{(x+1)^{1-\alpha}} \ge (x+1)^{\alpha} - x^{\alpha} \ge \frac{\alpha}{n^{1-\alpha}}$$

(b) The inequality above (applied to $\alpha' = 1 - \alpha$, which is such that $0 < \alpha' < 1$) gives in particular that for all $k \ge 1$ one has $(k+1)^{1-\alpha} - k^{1-\alpha} \le \frac{1-\alpha}{k^{\alpha}}$. Summing these inequalities for $k = 1, \ldots, n$ we get

$$\sum_{k=1}^{n} (k+1)^{1-\alpha} - k^{1-\alpha} \le \sum_{k=1}^{n} \frac{1-\alpha}{k^{\alpha}} \, .$$

Given the cancellations, this is equivalent to

$$(n+1)^{1-\alpha} - 1 \le (1-\alpha)u_n$$
.

Given that the sequence $(n+1)^{1-\alpha} - 1$ is not bounded above, and that $1-\alpha > 0$, this shows that (u_n) is not bounded above, hence it isn't convergent.

Let f be continuous on $[0, +\infty)$; for all x > 0, set $g(x) = \frac{1}{x} \int_0^x f(t) dt$.

(a) Show that g is continuous on $(0, +\infty)$, and that g has a limit at 0; give the value of this limit.

(b) Show that g is differentiable on $(0, +\infty)$ and that for all x > 0 one has

$$g'(x) = \frac{f(x) - g(x)}{x} \; .$$

Answer. (a) By the fundamental theorem of integration we know, since f is continuous on $[0, +\infty)$, that the function $x \mapsto F(x) = \int_0^x f(t)dt$ is differentiable on $[0, +\infty)$; hence it is continuous on $[0, +\infty)$. So on $(0, +\infty)$ g is the product of two continuous functions, which shows that it is continuous on this interval. Also, with our notations one has $g(x) = \frac{F(x)}{x}$. Since F(0) = 0, and F is differentiable at 0, we know that $\lim_{x\to 0} \frac{F(x)}{x}$ exists and is equal to F'(0) = f(0). This is equivalent to saying $\lim_{x\to 0} g(x) = f(0)$.

(b) The product of two differentiable functions is a differentiable function, so (since F is differentiable, F'(x) = f(x) and $g(x) = \frac{1}{x} \cdot F(x)$) we see that g is differentiable on $(0, +\infty)$ and

$$g'(x) = -\frac{1}{x^2}F(x) + \frac{1}{x}F'(x) = -\frac{g(x)}{x} + \frac{f(x)}{x} = \frac{f(x) - g(x)}{x}$$
.

Pick two real numbers a, b such that a < b and let $f: [a, b] \to \mathbb{R}$ be continuous. We want to show that

$$\sup\{f(x) \colon x \in (a,b)\} = \sup\{f(x) \colon x \in [a,b]\}.$$

(a) Explain why sup{ $f(x): x \in (a, b)$ } and sup{ $f(x): x \in [a, b]$ } exist.

(b) Show that $\sup\{f(x): x \in (a, b)\} \le \sup\{f(x): x \in [a, b]\}.$

(c) Assume $f(a) = \sup\{f(x): x \in [a, b]\}$. Show that one also has $f(a) = \sup\{f(x): x \in (a, b)\}$ (look at the sequence $(a + \frac{1}{n})$). Can you prove a similar result when $f(b) = \sup\{f(x): x \in [a, b]\}$?

(d) Prove the equality $\sup\{f(x) \colon x \in (a,b)\} = \sup\{f(x) \colon x \in [a,b]\}.$

Answer. (a) Since f is a continuous function on the closed bounded interval [a, b], the Boundedness Theorem ensures that there exists m, M such that $m \leq f(x) \leq M$ for all $x \in [a, b]$. This shows that the set $\{f(x) : x \in [a, b]\}$ is bounded, so it has a supremum (because of the completeness property of the real numbers). Since $\{f(x) : x \in (a, b)\}$ is a subset of $\{f(x) : x \in [a, b]\}$ and the latter set is bounded, we see that $\sup\{f(x) : x \in (a, b)\}$ exists too.

(b) For any $x \in (a, b)$ one has $f(x) \leq \sup\{f(x) : x \in [a, b]\}$, so $\sup\{f(x) : x \in [a, b]\}$ is an upper bound of $\{f(x) : x \in (a, b)\}$. By definition of a supremum (least upper bound), this implies that $\sup\{f(x) : x \in [a, b]\} \leq \sup\{f(x) : x \in [a, b]\}$.

(c) There exists N such that $a_n = a + \frac{1}{n} \leq b$ for all $n \geq N$. Thus we can consider the sequence $(f(a_n))_{n\geq N}$; since f is continuous at a, this sequence converges to f(a). Since one has $f(a_n) \leq \sup\{f(x) : x \in (a,b)\}$, we also have $\lim f(a_n) = f(a) \leq \sup\{f(x) : x \in (a,b)\}$. Thus if $f(a) = \sup\{f(x) : x \in [a,b]\}$ then we get $\sup\{f(x) : x \in [a,b]\} \leq \sup\{f(x) : x \in (a,b)\}$, and the result of question (b) ensures that in factsup $\{f(x) : x \in [a,b]\}$ = $\sup\{f(x) : x \in (a,b)\}$ in that case.

Considering the sequence $b_n = b - \frac{1}{n}$, we obtain in the same way that if $f(b) = \sup\{f(x) : x \in [a, b]\}$ then $\sup\{f(x) : x \in [a, b]\} = \sup\{f(x) : x \in (a, b)\}$.

(d) If the sup for f on [a, b] is obtained at either a or b then the result of question (c) shows that $\sup\{f(x): x \in [a, b]\} = \sup\{f(x): x \in (a, b)\}$. There must be a sup for the continuous function f on [a, b], and actually it is a maximum; so if we are not in the case above then there exists $c \in (a, b)$ such that $f(c) = \sup\{f(x): x \in [a, b]\}$. By definition, one has $f(c) \le \sup\{f(x): x \in (a, b)\}$, so we again obtain

$$\sup\{f(x)\colon x\in[a,b]\}\leq \sup\{f(x)\colon x\in(a,b)\}$$

Since the maximum for f must be attained at either a, b, or some $c \in (a, b)$, the reasoning above shows that if f is continuous on a closed bounded interval [a, b] then

$$\sup\{f(x): x \in [a,b]\} = \sup\{f(x): x \in (a,b)\}.$$

5. (30 points)

- Let $0 < \lambda < 1$ and $f \colon \mathbb{R} \to \mathbb{R}$ be such that $f(\lambda x) = \lambda f(x)$ for all $x \in \mathbb{R}$.
- (a) Prove that f(0) = 0.

(b) Assume that f is differentiable at 0. Show that there exists $a \in \mathbb{R}$ such that f(x) = ax for all $x \in \mathbb{R}$.

Hint. What can you say of the sequence $\frac{f(\lambda^n x)}{\lambda^n x}$? show that a = f'(0) works). (c) Is the result above still true if one no longer assumes that f is differentiable at 0?

Answer. (a) One has $f(0) = \lambda f(0)$ and $\lambda \neq 1$, so one must have f(0) = 0.

(b) Notice that one has, for all $x \neq 0$, that the assumption on f is the same as $\frac{f(\lambda x)}{\lambda x} = \frac{f(x)}{x}$. An easy

induction yields that, for all $x \neq 0$ and all $n \in \mathbb{N}$, one has $\frac{f(\lambda^n x)}{\lambda^n x} = \frac{f(x)}{x}$. Now, notice that since $0 < \lambda < 1$ the sequence $(\lambda^n x)$ converges to 0. Since f is differentiable at 0 and f(0) = 0, one has $\lim_{y\to 0} \frac{f(y)}{y} = f'(0)$ by definition of a derivative. But then we get that $\lim_{n\to +\infty} \frac{f(\lambda^n x)}{\lambda^n x} = f'(0)$. Since on

the other hand we proved that under the assumptions on f this sequence is constant, equal to $\frac{f(x)}{x}$, this shows that $\frac{f(x)}{x} = f'(0)$ for all $x \in \mathbb{R}$ different from 0. This gives us f(x) = xf'(0) for all $x \in \mathbb{R}$.

(c) Set f(x) = 0 for all $x \in \mathbb{Q}$, f(x) = x for all $x \in \mathbb{R} \setminus \mathbb{Q}$. Then one has that $f(\frac{x}{2}) = \frac{f(x)}{2}$ for all $x \in \mathbb{R}$, yet there doesn't exist any real number a such that $f(x) = a \cdot x$ for all $x \in \mathbb{R}$. Indeed, if $x \in \mathbb{Q} \setminus \{0\}$ this would right $x \in \mathbb{R} \setminus \mathbb{Q} \setminus \{0\}$ the formula of $x \in \mathbb{R} \setminus \mathbb{Q} \setminus \{0\}$ the formula of $x \in \mathbb{R}$. yield a = 0, and if $x \in \mathbb{R} \setminus \mathbb{Q}$ this would yield a = 1.

Let $f: [0,1] \to [0,1]$ be an increasing function (not necessarily continuous). Show that there exists $x \in [0,1]$ such that f(x) = x.

Hint. Consider the set $E = \{x \in [0,1]: f(x) > x\}$; show that one can assume that $0 \in E$. Show that $x = \sup(E)$ works.

Answer. If f(0) = 0 there is nothing to prove, so we may assume that f(0) > 0, and this gives

$$0 \in E = \{x \in [0,1]: f(x) > x\}$$
.

Thus we may assume that E is nonempty. Since E is bounded (it is a subset of [0,1]), it has a supremum S, which is larger than 0 (because $0 \in E$) and smaller than 1 (because 1 is an upper bound for E). For any $\varepsilon > 0$ there exists $x \in E$ such that $S - \varepsilon < x < S$. Since f is increasing, $f(S) \ge f(x) > x > S - \varepsilon$, so $f(S) > S - \varepsilon$ for all $\varepsilon > 0$. This yields $f(S) \ge S$. If f(S) = S we are done; assume that it is not true and f(S) > S. Then pick $a \in [0,1]$ such that S < a < f(S). Since f is increasing one has $f(a) \ge f(S) > a$, so

 $a \in E$, which is impossible because S is the supremum of E. Hence f(S) = S, and we are done.

Recall that if X is a set, one denotes by $\mathcal{P}(X)$ the set whose elements are the subsets of X; in other words, $\mathcal{P}(X) = \{A \colon A \subset X\}$. Let now X, Y be sets and $f \colon X \to Y$ be a function.

(a) Define a function $\hat{f}: \mathcal{P}(X) \to \mathcal{P}(Y)$ by setting $\hat{f}(A) = f(A)$ for all $A \subset X$. Show that \hat{f} is injective if, and only if, f is injective.

(b) Similarly, define a function $\tilde{f}: \mathcal{P}(Y) \to \mathcal{P}(X)$ by setting $\tilde{f}(B) = f^{-1}(B)$ for all $B \subset Y$. Compute $\tilde{f}(\emptyset)$; show that \tilde{f} is injective if, and only if, f is surjective.

Answer. (a) Assume that \hat{f} is injective, and let $x, y \in X$ be such that f(x) = f(y). Then $\hat{f}(\{x\}) = \{f(x)\} = \hat{f}(\{y\})$, so since \hat{f} is injective we obtain $\{x\} = \{y\}$, in other words x = y. Thus if \hat{f} is injective then f is injective and $A, B \subset X$ are such that f(A) = f(B). Then pick $a \in A$. One has $f(a) \in f(A) = f(B)$, so there exists $b \in B$ such that f(b) = f(a). Since f is injective, this is only possible if b = a, hence $a \in B$. Thus $A \subset B$; similarly, one sees that if $B \subset A$. This shows that A = B; hence if f is injective too.

We have just proved that f is injective if, and only if, \hat{f} is injective.

(b) This one is perhaps a bit more complicated. Assume that \tilde{f} is injective; one has $\tilde{f}(\emptyset) = \emptyset$, so for all $y \in Y$ one has $\tilde{f}(\{y\}) \neq \emptyset$. This exactly means that for all $y \in Y$ $f^{-1}(\{y\}) = \{x \in X : f(x) = y\}$ is nonempty, in other words that f is surjective.

Conversely, assume that f is surjective, and $A, B \subset Y$ are such that $\tilde{f}(A) = \tilde{f}(B)$. Then pick $a \in A$; since f is surjective, there exists x such that f(x) = a. By definition, $x \in f^{-1}(A)$, and since $f^{-1}(A) = f^{-1}(B)$ we also have $x \in f^{-1}(B)$, which means that $f(x) = a \in B$. This is true for all $a \in A$, so $A \subset B$. Since A, B play symmetric roles here, one obtains similarly that $B \subset A$. Hence A = B, hence \tilde{f} is injective. This shows that is f is surjective then \tilde{f} is injective.

We have thus proved that \tilde{f} is injective if, and only if, f is surjective.