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1. ( 20 points)
Define a function f : [0,+∞) → R by setting f(x) = sin(

√
x). Show that f is continuous on [0,+∞) and

differentiable on (0,+∞) ; give a formula for f ′(x) for all x > 0. Is f differentiable at 0 ?
(You may use without demonstration the fact that the function x 7→ sin(x) is differentiable on R and that
sin′(x) = cos(x), and the fact that x 7→

√
x is differentiable on (0,+∞) and (

√
x)′ = 1

2
√

x
)

Answer. The function g : x 7→ sin(x) is continuous on R, and the function h 7→
√

x is continuous on R+.
Hence f = g ◦ h is continuous on R+, since it is a obained by composition of two continuous functions.
Similarly, the Chain Rule ensures that f is differentiable on (0,+∞), and f ′(x) = 1

2
√

x
cos(

√
x).

To see whether f is differentiable at 0, the simplest thing is to go back to the definition ; one has f(0) = 0, so
f(x)−f(0)

x−0 = f(x)
x = sin(

√
x)

x . Since we know that limx→0
sin(x)

x = cos(0) = 1, we see that f(x)
x is not bounded

in the neighborhood of 0 (it is the product of a function with limit 1 and a function which is not bounded).
Hence f(x)−f(0)

x−0 doens’t have a limit at 0, and this shows that f is not differentiable at 0.



2. (30 points)
Let 0 < α < 1.
(a) Show that for all x > 0 one has

α

(x + 1)1−α
≤ (x + 1)α − xα ≤ α

n1−α
.

(b) Define a sequence (un) by the formula

un =
n∑

k=1

1
kα

.

Use the inequality above (applied to α′ = 1− α) to show that this sequence is not convergent.

Answer. (a) The Mean Value Theorem, applied to the function x 7→ xα (which is differentiable on (0,+∞))
on the interval [x, x + 1], yields that there exists c ∈ (x, x + 1) such that

(x + 1)α − xα =
α

c1−α
.

Since 0 < α < 1 one has 1− α > 0 and the fact that x < c < x + 1 yields

1
(x + 1)1−α

<
1

c1−α
<

1
x1−α

.

This gives us
α

(x + 1)1−α
≥ (x + 1)α − xα ≥ α

n1−α
.

(b) The inequality above (applied to α′ = 1−α, which is such that 0 < α′ < 1) gives in particular that for all

k ≥ 1 one has (k + 1)1−α − k1−α ≤ 1− α

kα
. Summing these inequalites for k = 1, . . . , n we get

n∑
k=1

(k + 1)1−α − k1−α ≤
n∑

k=1

1− α

kα
.

Given the cancellations, this is equivalent to

(n + 1)1−α − 1 ≤ (1− α)un .

Given that the sequence (n + 1)1−α − 1 is not bounded above, and that 1−α > 0, this shows that (un) is not
bounded above, hence it isn’t convergent.



3. (30 points)

Let f be continuous on [0,+∞) ; for all x > 0, set g(x) =
1
x

∫ x

0

f(t)dt.

(a) Show that g is continuous on (0,+∞), and that g has a limit at 0 ; give the value of this limit.
(b) Show that g is differentiable on (0,+∞) and that for all x > 0 one has

g′(x) =
f(x)− g(x)

x
.

Answer. (a) By the fundamental theorem of integration we know, since f is continuous on [0,+∞), that the
function x 7→ F (x) =

∫ x

0
f(t)dt is differentiable on [0,+∞) ; hence it is continuous on [0,+∞). So on (0,+∞)

g is the product of two continuous functions, which shows that it is continuous on this interval. Also, with our
notations one has g(x) = F (x)

x . Since F (0) = 0, and F is differentiable at 0, we know that limx→0
F (x)

x exists
and is equal to F ′(0) = f(0). This is equivalent to saying limx→0 g(x) = f(0).
(b) The product of two differentiable functions is a differentiable function, so (since F is differentiable, F ′(x) =
f(x) and g(x) = 1

x · F (x)) we see that g is differentiable on (0,+∞) and

g′(x) = − 1
x2

F (x) +
1
x

F ′(x) = −g(x)
x

+
f(x)

x
=

f(x)− g(x)
x

.



4. (30 points)
Pick two real numbers a, b such that a < b and let f : [a, b] → R be continuous. We want to show that

sup{f(x) : x ∈ (a, b)} = sup{f(x) : x ∈ [a, b]} .

(a) Explain why sup{f(x) : x ∈ (a, b)} and sup{f(x) : x ∈ [a, b]} exist.
(b) Show that sup{f(x) : x ∈ (a, b)} ≤ sup{f(x) : x ∈ [a, b]}.
(c) Assume f(a) = sup{f(x) : x ∈ [a, b]}. Show that one also has f(a) = sup{f(x) : x ∈ (a, b)} (look at the
sequence (a + 1

n )). Can you prove a similar result when f(b) = sup{f(x) : x ∈ [a, b]} ?
(d) Prove the equality sup{f(x) : x ∈ (a, b)} = sup{f(x) : x ∈ [a, b]}.

Answer. (a) Since f is a continuous function on the closed bounded interval [a, b], the Boundedness Theorem
ensures that there exists m,M such that m ≤ f(x) ≤ M for all x ∈ [a, b]. This shows that the set {f(x) : x ∈
[a, b]} is bounded, so it has a supremum (because of the completeness property of the real numbers). Since
{f(x) : x ∈ (a, b)} is a subset of {f(x) : x ∈ [a, b]} and the latter set is bounded, we see that sup{f(x) : x ∈
(a, b)} exists too.
(b) For any x ∈ (a, b) one has f(x) ≤ sup{f(x) : x ∈ [a, b]}, so sup{f(x) : x ∈ [a, b]} is an upper bound of
{f(x) : x ∈ (a, b)}. By definition of a supremum (least upper bound), this implies that sup{f(x) : x ∈ [a, b]} ≤
sup{f(x) : x ∈ [a, b]}.
(c) There exists N such that an = a + 1

n ≤ b for all n ≥ N . Thus we can consider the sequence (f(an))n≥N ;
since f is continuous at a, this sequence converges to f(a). Since one has f(an) ≤ sup{f(x) : x ∈ (a, b)},
we also have lim f(an) = f(a) ≤ sup{f(x) : x ∈ (a, b)}. Thus if f(a) = sup{f(x) : x ∈ [a, b]} then we get
sup{f(x) : x ∈ [a, b]} ≤ sup{f(x) : x ∈ (a, b)}, and the result of question (b) ensures that in factsup{f(x) : x ∈
[a, b]} = sup{f(x) : x ∈ (a, b)} in that case.
Considering the sequence bn = b − 1

n , we obtain in the same way that if f(b) = sup{f(x) : x ∈ [a, b]} then
sup{f(x) : x ∈ [a, b]} = sup{f(x) : x ∈ (a, b)}.
(d) If the sup for f on [a, b] is obtained at either a or b then the result of question (c) shows that sup{f(x) : x ∈
[a, b]} = sup{f(x) : x ∈ (a, b)}. There must be a sup for the continuous function f on [a, b], and actually it is a
maximum ; so if we are not in the case above then there exists c ∈ (a, b) such that f(c) = sup{f(x) : x ∈ [a, b]}.
By definition, one has f(c) ≤ sup{f(x) : x ∈ (a, b)}, so we again obtain

sup{f(x) : x ∈ [a, b]} ≤ sup{f(x) : x ∈ (a, b)}

Since the maximum for f must be attained at either a, b, or some c ∈ (a, b), the reasoning above shows that
if f is continuous on a closed bounded interval [a, b] then

sup{f(x) : x ∈ [a, b]} = sup{f(x) : x ∈ (a, b)} .



5. (30 points)
Let 0 < λ < 1 and f : R → R be such that f(λx) = λf(x) for all x ∈ R.
(a) Prove that f(0) = 0.
(b) Assume that f is differentiable at 0. Show that there exists a ∈ R such that f(x) = ax for all x ∈ R.
Hint. What can you say of the sequence f(λnx)

λnx ? show that a = f ′(0) works).
(c) Is the result above still true if one no longer assumes that f is differentiable at 0 ?

Answer. (a) One has f(0) = λf(0) and λ 6= 1, so one must have f(0) = 0.

(b) Notice that one has, for all x 6= 0, that the assumption on f is the same as
f(λx)

λx
=

f(x)
x

. An easy

induction yields that, for all x 6= 0 and all n ∈ N, one has
f(λnx)

λnx
=

f(x)
x

.
Now, notice that since 0 < λ < 1 the sequence (λnx) converges to 0. Since f is differentiable at 0 and f(0) = 0,

one has lim
y→0

f(y)
y

= f ′(0) by definition of a derivative. But then we get that lim
n→+∞

f(λnx)
λnx

= f ′(0). Since on

the other hand we proved that under the assumptions on f this sequence is constant, equal to
f(x)

x
, this shows

that
f(x)

x
= f ′(0) for all x ∈ R different from 0. This gives us f(x) = xf ′(0) for all x ∈ R.

(c) Set f(x) = 0 for all x ∈ Q, f(x) = x for all x ∈ R \Q. Then one has that f(
x

2
) =

f(x)
2

for all x ∈ R, yet
there doesn’t exist any real number a such that f(x) = a · x for all x ∈ R. Indeed, if x ∈ Q \ {0} this would
yield a = 0, and if x ∈ R \Q this would yield a = 1.



6. (30 points)
Let f : [0, 1] → [0, 1] be an increasing function (not necessarily continuous). Show that there exists x ∈ [0, 1]
such that f(x) = x.
Hint. Consider the set E = {x ∈ [0, 1] : f(x) > x} ; show that one can assume that 0 ∈ E. Show that x = sup(E)
works.

Answer. If f(0) = 0 there is nothing to prove, so we may assume that f(0) > 0, and this gives

0 ∈ E = {x ∈ [0, 1] : f(x) > x} .

Thus we may assume that E is nonempty. Since E is bounded (it is a subset of [0, 1]), it has a supremum S,
which is larger than 0 (because 0 ∈ E) and smaller than 1 (because 1 is an upper bound for E).
For any ε > 0 there exists x ∈ E such that S − ε < x < S. Since f is increasing, f(S) ≥ f(x) > x > S − ε,
so f(S) > S − ε for all ε > 0. This yields f(S) ≥ S. If f(S) = S we are done ; assume that it is not true and
f(S) > S. Then pick a ∈ [0, 1] such that S < a < f(S). Since f is increasing one has f(a) ≥ f(S) > a, so
a ∈ E, which is impossible because S is the supremum of E. Hence f(S) = S, and we are done.



7. (30 points)
Recall that if X is a set, one denotes by P(X) the set whose elements are the subsets of X ; in other words,
P(X) = {A : A ⊂ X}. Let now X, Y be sets and f : X → Y be a function.
(a) Define a function f̂ : P(X) → P(Y ) by setting f̂(A) = f(A) for all A ⊂ X. Show that f̂ is injective if, and
only if, f is injective.
(b) Similarly, define a function f̃ : P(Y ) → P(X) by setting f̃(B) = f−1(B) for all B ⊂ Y . Compute f̃(∅) ;
show that f̃ is injective if, and only if, f is surjective.

Answer. (a) Assume that f̂ is injective, and let x, y ∈ X be such that f(x) = f(y). Then f̂({x}) = {f(x)} =
f̂({y}), so since f̂ is injective we obain {x} = {y}, in other words x = y. Thus if f̂ is injective then f is
injective. Converesly, assume that f is injective and A,B ⊂ X are such that f(A) = f(B). Then pick a ∈ A.
One has f(a) ∈ f(A) = f(B), so there exists b ∈ B such that f(b) = f(a). Since f is injective, this is only
possible if b = a, hence a ∈ B. Thus A ⊂ B ; similarly, one sees that if B ⊂ A. This shows that A = B ; hence
if f is injective then f̂ is injective too.
We have just proved that f is injective if, and only if, f̂ is injective.

(b) This one is perhaps a bit more complicated. Assume that f̃ is injective ; one has f̃(∅) = ∅, so for all y ∈ Y
one has f̃({y}) 6= ∅. This exactly means that for all y ∈ Y f−1({y}) = {x ∈ X : f(x) = y} is nonempty, in
other words that f is surjective.
Converesly, assume that f is surjective, and A,B ⊂ Y are such that f̃(A) = f̃(B). Then pick a ∈ A ; since
f is surjective, there exists x such that f(x) = a. By definition, x ∈ f−1(A), and since f−1(A) = f−1(B) we
also have x ∈ f−1(B), which means that f(x) = a ∈ B. This is true for all a ∈ A, so A ⊂ B. Since A,B play
symmetric roles here, one obtains similarly that B ⊂ A. Hence A = B, hence f̃ is injective. This shows that
is f is surjective then f̃ is injective.
We have thus proved that f̃ is injective if, and only if, f is surjective.


