Final Exam : Answer Key

You are allowed to use your textbook, but no other kind of documentation. Calculators, mobile phones and other electronic devices are prohibited.

NAME

1. (20 points)

Define a function $f:[0,+\infty) \rightarrow \mathbb{R}$ by setting $f(x)=\sin (\sqrt{x})$. Show that f is continuous on $[0,+\infty)$ and differentiable on $(0,+\infty)$; give a formula for $f^{\prime}(x)$ for all $x>0$. Is f differentiable at 0 ?
(You may use without demonstration the fact that the function $x \mapsto \sin (x)$ is differentiable on \mathbb{R} and that $\sin ^{\prime}(x)=\cos (x)$, and the fact that $x \mapsto \sqrt{x}$ is differentiable on $(0,+\infty)$ and $\left.(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}\right)$

Answer. The function $g: x \mapsto \sin (x)$ is continuous on \mathbb{R}, and the function $h \mapsto \sqrt{x}$ is continuous on \mathbb{R}^{+}. Hence $f=g \circ h$ is continuous on \mathbb{R}^{+}, since it is a obained by composition of two continuous functions.
Similarly, the Chain Rule ensures that f is differentiable on $(0,+\infty)$, and $f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \cos (\sqrt{x})$.
To see whether f is differentiable at 0 , the simplest thing is to go back to the definition; one has $f(0)=0$, so $\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}=\frac{\sin (\sqrt{x})}{x}$. Since we know that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\cos (0)=1$, we see that $\frac{f(x)}{x}$ is not bounded in the neighborhood of 0 (it is the product of a function with limit 1 and a function which is not bounded). Hence $\frac{f(x)-f(0)}{x-0}$ doens't have a limit at 0 , and this shows that f is not differentiable at 0 .
2. (30 points)

Let $0<\alpha<1$.
(a) Show that for all $x>0$ one has

$$
\frac{\alpha}{(x+1)^{1-\alpha}} \leq(x+1)^{\alpha}-x^{\alpha} \leq \frac{\alpha}{n^{1-\alpha}} .
$$

(b) Define a sequence $\left(u_{n}\right)$ by the formula

$$
u_{n}=\sum_{k=1}^{n} \frac{1}{k^{\alpha}} .
$$

Use the inequality above (applied to $\alpha^{\prime}=1-\alpha$) to show that this sequence is not convergent.

Answer. (a) The Mean Value Theorem, applied to the function $x \mapsto x^{\alpha}$ (which is differentiable on $(0,+\infty)$) on the interval $[x, x+1]$, yields that there exists $c \in(x, x+1)$ such that

$$
(x+1)^{\alpha}-x^{\alpha}=\frac{\alpha}{c^{1-\alpha}} .
$$

Since $0<\alpha<1$ one has $1-\alpha>0$ and the fact that $x<c<x+1$ yields

$$
\frac{1}{(x+1)^{1-\alpha}}<\frac{1}{c^{1-\alpha}}<\frac{1}{x^{1-\alpha}} .
$$

This gives us

$$
\frac{\alpha}{(x+1)^{1-\alpha}} \geq(x+1)^{\alpha}-x^{\alpha} \geq \frac{\alpha}{n^{1-\alpha}} .
$$

(b) The inequality above (applied to $\alpha^{\prime}=1-\alpha$, which is such that $0<\alpha^{\prime}<1$) gives in particular that for all $k \geq 1$ one has $(k+1)^{1-\alpha}-k^{1-\alpha} \leq \frac{1-\alpha}{k^{\alpha}}$. Summing these inequalites for $k=1, \ldots, n$ we get

$$
\sum_{k=1}^{n}(k+1)^{1-\alpha}-k^{1-\alpha} \leq \sum_{k=1}^{n} \frac{1-\alpha}{k^{\alpha}} .
$$

Given the cancellations, this is equivalent to

$$
(n+1)^{1-\alpha}-1 \leq(1-\alpha) u_{n}
$$

Given that the sequence $(n+1)^{1-\alpha}-1$ is not bounded above, and that $1-\alpha>0$, this shows that $\left(u_{n}\right)$ is not bounded above, hence it isn't convergent.
3. (30 points)

Let f be continuous on $[0,+\infty)$; for all $x>0$, set $g(x)=\frac{1}{x} \int_{0}^{x} f(t) d t$.
(a) Show that g is continuous on $(0,+\infty)$, and that g has a limit at 0 ; give the value of this limit.
(b) Show that g is differentiable on $(0,+\infty)$ and that for all $x>0$ one has

$$
g^{\prime}(x)=\frac{f(x)-g(x)}{x}
$$

Answer. (a) By the fundamental theorem of integration we know, since f is continuous on $[0,+\infty)$, that the function $x \mapsto F(x)=\int_{0}^{x} f(t) d t$ is differentiable on $[0,+\infty)$; hence it is continuous on $[0,+\infty)$. So on $(0,+\infty)$ g is the product of two continuous functions, which shows that it is continuous on this interval. Also, with our notations one has $g(x)=\frac{F(x)}{x}$. Since $F(0)=0$, and F is differentiable at 0 , we know that $\lim _{x \rightarrow 0} \frac{F(x)}{x}$ exists and is equal to $F^{\prime}(0)=f(0)$. This is equivalent to saying $\lim _{x \rightarrow 0} g(x)=f(0)$.
(b) The product of two differentiable functions is a differentiable function, so (since F is differentiable, $F^{\prime}(x)=$ $f(x)$ and $\left.g(x)=\frac{1}{x} \cdot F(x)\right)$ we see that g is differentiable on $(0,+\infty)$ and

$$
g^{\prime}(x)=-\frac{1}{x^{2}} F(x)+\frac{1}{x} F^{\prime}(x)=-\frac{g(x)}{x}+\frac{f(x)}{x}=\frac{f(x)-g(x)}{x} .
$$

4. (30 points)

Pick two real numbers a, b such that $a<b$ and let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. We want to show that

$$
\sup \{f(x): x \in(a, b)\}=\sup \{f(x): x \in[a, b]\}
$$

(a) Explain why $\sup \{f(x): x \in(a, b)\}$ and $\sup \{f(x): x \in[a, b]\}$ exist.
(b) Show that $\sup \{f(x): x \in(a, b)\} \leq \sup \{f(x): x \in[a, b]\}$.
(c) Assume $f(a)=\sup \{f(x): x \in[a, b]\}$. Show that one also has $f(a)=\sup \{f(x): x \in(a, b)\}$ (look at the sequence $\left.\left(a+\frac{1}{n}\right)\right)$. Can you prove a similar result when $f(b)=\sup \{f(x): x \in[a, b]\}$?
(d) Prove the equality $\sup \{f(x): x \in(a, b)\}=\sup \{f(x): x \in[a, b]\}$.

Answer. (a) Since f is a continuous function on the closed bounded interval $[a, b]$, the Boundedness Theorem ensures that there exists m, M such that $m \leq f(x) \leq M$ for all $x \in[a, b]$. This shows that the set $\{f(x): x \in$ $[a, b]\}$ is bounded, so it has a supremum (because of the completeness property of the real numbers). Since $\{f(x): x \in(a, b)\}$ is a subset of $\{f(x): x \in[a, b]\}$ and the latter set is bounded, we see that $\sup \{f(x): x \in$ $(a, b)\}$ exists too.
(b) For any $x \in(a, b)$ one has $f(x) \leq \sup \{f(x): x \in[a, b]\}$, so $\sup \{f(x): x \in[a, b]\}$ is an upper bound of $\{f(x): x \in(a, b)\}$. By definition of a supremum (least upper bound), this implies that $\sup \{f(x): x \in[a, b]\} \leq$ $\sup \{f(x): x \in[a, b]\}$.
(c) There exists N such that $a_{n}=a+\frac{1}{n} \leq b$ for all $n \geq N$. Thus we can consider the sequence $\left(f\left(a_{n}\right)\right)_{n \geq N}$; since f is continuous at a, this sequence converges to $f(a)$. Since one has $f\left(a_{n}\right) \leq \sup \{f(x): x \in(a, b)\}$, we also have $\lim f\left(a_{n}\right)=f(a) \leq \sup \{f(x): x \in(a, b)\}$. Thus if $f(a)=\sup \{f(x): x \in[a, b]\}$ then we get $\sup \{f(x): x \in[a, b]\} \leq \sup \{f(x): x \in(a, b)\}$, and the result of question (b) ensures that in factsup $\{f(x): x \in$ $[a, b]\}=\sup \{f(x): x \in(a, b)\}$ in that case.
Considering the sequence $b_{n}=b-\frac{1}{n}$, we obtain in the same way that if $f(b)=\sup \{f(x): x \in[a, b]\}$ then $\sup \{f(x): x \in[a, b]\}=\sup \{f(x): x \in(a, b)\}$.
(d) If the sup for f on $[a, b]$ is obtained at either a or b then the result of question (c) shows that $\sup \{f(x): x \in$ $[a, b]\}=\sup \{f(x): x \in(a, b)\}$. There must be a sup for the continuous function f on $[a, b]$, and actually it is a maximum ; so if we are not in the case above then there exists $c \in(a, b)$ such that $f(c)=\sup \{f(x): x \in[a, b]\}$. By definition, one has $f(c) \leq \sup \{f(x): x \in(a, b)\}$, so we again obtain

$$
\sup \{f(x): x \in[a, b]\} \leq \sup \{f(x): x \in(a, b)\}
$$

Since the maximum for f must be attained at either a, b, or some $c \in(a, b)$, the reasoning above shows that if f is continuous on a closed bounded interval $[a, b]$ then

$$
\sup \{f(x): x \in[a, b]\}=\sup \{f(x): x \in(a, b)\}
$$

5. (30 points)

Let $0<\lambda<1$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(\lambda x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
(a) Prove that $f(0)=0$.
(b) Assume that f is differentiable at 0 . Show that there exists $a \in \mathbb{R}$ such that $f(x)=a x$ for all $x \in \mathbb{R}$.

Hint. What can you say of the sequence $\frac{f\left(\lambda^{n} x\right)}{\lambda^{n} x}$? show that $a=f^{\prime}(0)$ works $)$.
(c) Is the result above still true if one no longer assumes that f is differentiable at 0 ?

Answer. (a) One has $f(0)=\lambda f(0)$ and $\lambda \neq 1$, so one must have $f(0)=0$.
(b) Notice that one has, for all $x \neq 0$, that the assumption on f is the same as $\frac{f(\lambda x)}{\lambda x}=\frac{f(x)}{x}$. An easy induction yields that, for all $x \neq 0$ and all $n \in \mathbb{N}$, one has $\frac{f\left(\lambda^{n} x\right)}{\lambda^{n} x}=\frac{f(x)}{x}$.
Now, notice that since $0<\lambda<1$ the sequence $\left(\lambda^{n} x\right)$ converges to 0 . Since f is differentiable at 0 and $f(0)=0$, one has $\lim _{y \rightarrow 0} \frac{f(y)}{y}=f^{\prime}(0)$ by definition of a derivative. But then we get that $\lim _{n \rightarrow+\infty} \frac{f\left(\lambda^{n} x\right)}{\lambda^{n} x}=f^{\prime}(0)$. Since on the other hand we proved that under the assumptions on f this sequence is constant, equal to $\frac{f(x)}{x}$, this shows that $\frac{f(x)}{x}=f^{\prime}(0)$ for all $x \in \mathbb{R}$ different from 0 . This gives us $f(x)=x f^{\prime}(0)$ for all $x \in \mathbb{R}$.
(c) Set $f(x)=0$ for all $x \in \mathbb{Q}, f(x)=x$ for all $x \in \mathbb{R} \backslash \mathbb{Q}$. Then one has that $f\left(\frac{x}{2}\right)=\frac{f(x)}{2}$ for all $x \in \mathbb{R}$, yet there doesn't exist any real number a such that $f(x)=a \cdot x$ for all $x \in \mathbb{R}$. Indeed, if $x \in \mathbb{Q} \backslash\{0\}$ this would yield $a=0$, and if $x \in \mathbb{R} \backslash \mathbb{Q}$ this would yield $a=1$.
6. (30 points)

Let $f:[0,1] \rightarrow[0,1]$ be an increasing function (not necessarily continuous). Show that there exists $x \in[0,1]$ such that $f(x)=x$.
Hint. Consider the set $E=\{x \in[0,1]: f(x)>x\}$; show that one can assume that $0 \in E$. Show that $x=\sup (E)$ works.

Answer. If $f(0)=0$ there is nothing to prove, so we may assume that $f(0)>0$, and this gives

$$
0 \in E=\{x \in[0,1]: f(x)>x\}
$$

Thus we may assume that E is nonempty. Since E is bounded (it is a subset of $[0,1]$), it has a supremum S, which is larger than 0 (because $0 \in E$) and smaller than 1 (because 1 is an upper bound for E).
For any $\varepsilon>0$ there exists $x \in E$ such that $S-\varepsilon<x<S$. Since f is increasing, $f(S) \geq f(x)>x>S-\varepsilon$, so $f(S)>S-\varepsilon$ for all $\varepsilon>0$. This yields $f(S) \geq S$. If $f(S)=S$ we are done; assume that it is not true and $f(S)>S$. Then pick $a \in[0,1]$ such that $S<a<f(S)$. Since f is increasing one has $f(a) \geq f(S)>a$, so $a \in E$, which is impossible because S is the supremum of E. Hence $f(S)=S$, and we are done.
7. (30 points)

Recall that if X is a set, one denotes by $\mathcal{P}(X)$ the set whose elements are the subsets of X; in other words, $\mathcal{P}(X)=\{A: A \subset X\}$. Let now X, Y be sets and $f: X \rightarrow Y$ be a function.
(a) Define a function $\hat{f}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ by setting $\hat{f}(A)=f(A)$ for all $A \subset X$. Show that \hat{f} is injective if, and only if, f is injective.
(b) Similarly, define a function $\tilde{f}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ by setting $\tilde{f}(B)=f^{-1}(B)$ for all $B \subset Y$. Compute $\tilde{f}(\emptyset)$; show that \tilde{f} is injective if, and only if, f is surjective.

Answer. (a) Assume that \hat{f} is injective, and let $x, y \in X$ be such that $f(x)=f(y)$. Then $\hat{f}(\{x\})=\{f(x)\}=$ $\hat{f}(\{y\})$, so since \hat{f} is injective we obain $\{x\}=\{y\}$, in other words $x=y$. Thus if \hat{f} is injective then f is injective. Converesly, assume that f is injective and $A, B \subset X$ are such that $f(A)=f(B)$. Then pick $a \in A$. One has $f(a) \in f(A)=f(B)$, so there exists $b \in B$ such that $f(b)=f(a)$. Since f is injective, this is only possible if $b=a$, hence $a \in B$. Thus $A \subset B$; similarly, one sees that if $B \subset A$. This shows that $A=B$; hence if f is injective then \hat{f} is injective too.
We have just proved that f is injective if, and only if, \hat{f} is injective.
(b) This one is perhaps a bit more complicated. Assume that \tilde{f} is injective; one has $\tilde{f}(\emptyset)=\emptyset$, so for all $y \in Y$ one has $\tilde{f}(\{y\}) \neq \emptyset$. This exactly means that for all $y \in Y f^{-1}(\{y\})=\{x \in X: f(x)=y\}$ is nonempty, in other words that f is surjective.
Converesly, assume that f is surjective, and $A, B \subset Y$ are such that $\tilde{f}(A)=\tilde{f}(B)$. Then pick $a \in A$; since f is surjective, there exists x such that $f(x)=a$. By definition, $x \in f^{-1}(A)$, and since $f^{-1}(A)=f^{-1}(B)$ we also have $x \in f^{-1}(B)$, which means that $f(x)=a \in B$. This is true for all $a \in A$, so $A \subset B$. Since A, B play symmetric roles here, one obtains similarly that $B \subset A$. Hence $A=B$, hence f is injective. This shows that is f is surjective then \tilde{f} is injective.
We have thus proved that \tilde{f} is injective if, and only if, f is surjective.

