Math 444

Graded Homework X. Due Friday, November 17.

1.(a) Define a function f on \mathbb{R} by setting $f(x) = \begin{cases} f(x) = x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{else} \end{cases}$. Is this function continuous on

 \mathbb{R} ? (you may use without proof the fact the function $x \mapsto \sin(x)$ is continuous).

(b) Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 1-x & \text{else} \end{cases}$. At which points in \mathbb{R} is g continuous?

Correction. (a) Since we are told that $x \mapsto \sin(x)$ is continuous on \mathbb{R} , we see immediately that f is continuous on $(-\infty, 0) \cup (0, +\infty)$: indeed, on these two intervals f is a composition of continuous functions. Thus, our only problem is at x = 0; we need to see whether f has a limit at 0, and whether that limit is equal to f(0) = 0. As usual with sin, the important thing to remember is that $|\sin(x)| \le 1$ for all $x \in \mathbb{R}$; thus, for all $x \neq 0$ we see that $|f(x)| \le |x|$. This is enough to ensure that $\lim_{x\to 0} f(x) = 0$ (Squeeze theorem). Thus we have proved that $\lim_{x\to 0} f(x) = f(0)$, so f is continuous at 0. Overall, we see that f is continuous on the whole real line.

(b) For all $x \in \mathbb{R}$ there exists a sequence of rational numbers (q_n) and a sequence of irrational numbers (α_n) such that $x = \lim(q_n) = \lim(\alpha_n)$. If g were continuous at x, then we would have $g(x) = \lim(f(q_n)) = \lim(q_n) = x$, and also $g(x) = \lim(f(\alpha_n)) = \lim(1 - \alpha_n) = 1 - x$. This shows that g can only be continuous at x if x = 1 - x, in other words if $x = \frac{1}{2}$.

Now we strongly suspect that g is actually continuous at $\frac{1}{2}$; to show it, it is best not to use sequences, but come back to the ε , δ definition of continuity. Indeed, pick $\varepsilon > 0$; notice that for any real number x, we have $|x - \frac{1}{2}| = |g(x) - \frac{1}{2}|$ (check this in the two cases when x is rational, irrational). Thus we see that whenever $0 < |x - \frac{1}{2}| \le \varepsilon$ we have $|g(x) - \frac{1}{2}| \le \varepsilon$, and this proves that $\lim_{x \to 1/2} g(x) = \frac{1}{2} = f(\frac{1}{2})$. Thus f is continuous exactly at the point $\frac{1}{2}$.

2. Let $f: [a, b] \to \mathbb{R}$ be a continuous function (a < b) such that |f(x) - f(x')| < |x - x'| for all $x \neq x' \in [a, b]$. (a) Using the ε, δ definition of continuity, show that f is continuous on [a, b]. (b) Prove that there exists a unique point $x \in [a, b]$ such that f(x) = x (introduce a suitable auxiiary)

(b) Prove that there exists a unique point $x \in [a, b]$ such that f(x) = x (introduce a suitable auxiliary function).

Correction. (a) The assumption on the function f implies that it is a Lipschitz function, so it must be (uniformly) continuous on [a, b]: indeed, pick some point $x \in [a, b]$ and $\varepsilon > 0$. Then, for any $y \in [a, b]$ such that $|x - y| \leq \varepsilon$, one has $|f(x) - f(y)| < |x - y| \leq |x - y|$. Thus, setting $\delta = \varepsilon$ works in this case (beware : it is not true in general that setting $\delta = \varepsilon$ works; it just happens to be true here because of our assumption on f) to show that f is continuous at x. Since this is true for any $x \in I$, we have proved that f is continuous on I. (b) Define g(x) = f(x) - x. Then one has $g(a) = f(a) - a \geq 0$ (because $a \leq g(x) \leq b$ for all $x \in [a, b]$) and $g(b) = f(b) - b \leq 0$. Thus, either g(a) = 0, or g(b) = 0, or g takes a strictly positive value at a and a strictly negative one at b; in the third case, the mean value theorem tells us that there is $x \in [a, b]$ such that g(x) = 0, and this is obviouslyy true in the first two cases too. So we know that there exists a fixed point of f in [a, b], i.e a point $x \in [a, b]$ such that f(c) = x (g(x) = 0 if, and only if, f(x) = x). To show that this fixed point is unique, proceed by contradiction and assume there are two points $x \neq x' \in [a, b]$ such that f(x) = x and f(x') = x'. Then by assumption on f we have |f(x) - f(x')| < |x - x'|, and this contradicts the fact that

Fall 2006

f(x) = x, f(x) = x'.

3. Let $f: [0,1] \to [0,1]$ be a continuous function such that f(0) = f(1). Show that for all $n \in \mathbb{N}$ there exists $x \in [0, 1 - \frac{1}{n}]$ such that $f(x) = f(x + \frac{1}{n})$. (Hint : is it possible that f((k+1)/n) - f(k/n) keeps a constant sign for all $k = 0, \ldots, n-1$?) **Correction.** Notice first that one may assume $n \ge 2$ (the case n = 1 is trivial, since f(0) = f(1)). If f((k+1)/n) = f(k/n) for some $k = 0, 1, \ldots, n-1$, then we have found $x \in [0, 1 - \frac{1}{n}]$ such that $f(x) = f(x + \frac{1}{n})$ (k/n works). So we may assume that $f((k+1)/n) \ne f(k/n)$ for all $k = 1, \ldots, n-1$. We claim that there must then exist some $k \in 0, \ldots, n-2$ such that f((k+1))/n - f(k/n) and f((k+2)/n) - f(k+1/n) are of opposite signs; indeed, assume this is not true, and suppose for instance that f(1/n) > f(0). Then f(2/n) > f(1/n), f(3/n) > f(2/n), etc., and one eventually obtains $f(1) = f(n/n) > f((n-1)/n) > \ldots f(0)$, which contradicts our assumption that f(1) = f(0). One obtains a similar contradiction if f(1/n) < f(0), so there must exist k such that f((k+1))/n - f(k/n) and f((k+2)/n) - f(k+1/n) are of opposite signs. Set then

g(x) = f(x + 1/n) - f(x); we just proved that g must change signs on the interval [k/n, (k+1)/n] for some k = 0, ..., n-2. The mean value theorem then ensures that g has a 0 in that interval. Since a 0 of g is the same thing as a point x such that f(x) = f(x + 1/n), we see that under the assumptions on f there must indeed exist a point $x \in [0, 1 - 1/n]$ such that f(x) = f(x + 1/n).

4.(a) Show that if f is a continuous function on a closed bounded interval [a, b] such that f(x) > 0 for all $x \in [a, b]$ then there exists m > 0 such that $f(x) \ge m$ for all $x \in [a, b]$.

In the following, we pick two continuous functions f, g from $[0, 1] \rightarrow [0, 1]$ such that f(x) < g(x) for all $x \in [0, 1]$. (b) Show that there exists m > 0 such that f(x) + m < g(x) for all $x \in [0, 1]$.

(c) Show that there exists M > 1 such that Mf(x) < g(x) for all $x \in [0, 1]$.

Correction. (a) Since f is continuous function on the closed bounded interval [a, b], we know that it admits a global minimum on [a, b], i.e that there exists $c \in [a, b]$ such that $f(c) \leq f(x)$ for all $x \in [a, b]$. Setting m = f(c), we have m > 0 because f only takes positive values, and $f(x) \geq m$ for all $x \in [a, b]$

(b) The function g - f is continuous on [0, 1] taking only positive values, so by question (a) there exists m' > 0 such that $g(x) - f(x) \ge m'$ for all $x \in [0, 1]$; but then $m = \frac{m'}{2}$ is such that m > 0 and g(x) - f(x) > m for all $x \in [0, 1]$, in other words f(x) + m < g(x) for all $x \in [0, 1]$ (we had to introduce this m' and then divide it by 2 because question (a) only gave us a *large* inequality, whereas we had to establish a *strict* inequality).

(c) First, notice that one has $0 \le f(x) < g(x)$ for all $x \in [0,1]$, so g only takes positive values. Thus the function $h = \frac{f}{g}$ is continuous on [0,1], and h(x) < 1 for all $x \in [0,1]$. Thus, there exists m' > 0 such that $0 \le h(x) \le 1 - m'$ for all $x \in [0,1]$ (apply a to $x \mapsto 1 - h(x)$, or directly use the fact that h admits a maximum on [0,1]). Again, setting $m = \frac{m'}{2}$ enables us to go from a large inequality, and obtain h(x) < 1 - m' for some m' such that $0 < m' < \frac{1}{2}$ and all $x \in [0,1]$. Given the definition of h, and the fact that 1 - m' > 0, g(x) > 0, this is equivalent to $\frac{1}{1-m'}f(x) < g(x)$ for all $x \in [0,1]$. Setting $M = \frac{1}{1-m'}$, we see that M > 1 (because

0 < m' < 1) and Mf(x) < g(x) for all $x \in [0, 1]$. Remark. The idea behind this exercise is that, if one has an inequality that is true for all x and involves continuous functions on a closed bounded interval then one can use the fact that a continuous function on a closed bounded interval to show that a strengthening of the inequality is also true on that interval; you should convince yourself that all the assumptions in this exercise are important (f must be **continuous**, and the interval must be **closed** and **bounded**).

5. Let f be a **continuous** function from \mathbb{R} to \mathbb{R} such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Recall that we proved in the first midterm that one has then f(q) = qf(1) for all $q \in \mathbb{Q}$. Use this to show that f(x) = xf(1) for all $x \in \mathbb{R}$.

Correction. We know that f(q) = qf(1) for any rational q. Let now x be any real number; by the density theorem, we know that there exists a sequence (q_n) of rationals such that $\lim(q_n) = x$. Since f is conti-

nuous, this implies $\lim(f(q_n)) = f(x)$. But $f(q_n) = q_n f(1)$, so the algebraic theorems about limits give $\lim(f(q_n)) = f(1) \lim(q_n) = xf(1)$. Putting these two equalities together, we indeed obtain that f(x) = xf(1) for all $x \in \mathbb{R}$.

Important note. In the homework assignment, the assumption that f is continuous was forgotten; without this assumption the result is false in general (one can produce counterexamples using the Axiom of Choice). Hence this exercise will *not* be graded.