Graded Homework X.

Due Friday, November 17.
1.(a) Define a function f on \mathbb{R} by setting $f(x)=\left\{\begin{array}{ll}f(x)=x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { else }\end{array}\right.$. Is this function continuous on \mathbb{R} ? (you may use without proof the fact the the function $x \mapsto \sin (x)$ is continuous).
(b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=\left\{\begin{array}{ll}x & \text { if } x \in \mathbb{Q} \\ 1-x & \text { else }\end{array}\right.$. At which points in \mathbb{R} is g continuous?

Correction. (a) Since we are told that $x \mapsto \sin (x)$ is continuous on \mathbb{R}, we see immediately that f is continuous on $(-\infty, 0) \cup(0,+\infty)$: indeed, on these two intervals f is a composition of continuous functions. Thus, our only problem is at $x=0$; we need to see whether f has a limit at 0 , and whether that limit is equal to $f(0)=0$. As usual with \sin, the important thing to remember is that $|\sin (x)| \leq 1$ for all $x \in \mathbb{R}$; thus, for all $x \neq 0$ we see that $|f(x)| \leq|x|$. This is enough to ensure that $\lim _{x \rightarrow 0} f(x)=0$ (Squeeze theorem). Thus we have proved that $\lim _{x \rightarrow 0} f(x)=f(0)$, so f is continuous at 0 . Overall, we see that f is continuous on the whole real line.
(b) For all $x \in \mathbb{R}$ there exists a sequence of rational numbers $\left(q_{n}\right)$ and a sequence of irrational numbers $\left(\alpha_{n}\right)$ such that $x=\lim \left(q_{n}\right)=\lim \left(\alpha_{n}\right)$. If g were continuous at x, then we would have $g(x)=\lim \left(f\left(q_{n}\right)\right)=\lim \left(q_{n}\right)=x$, and also $g(x)=\lim \left(f\left(\alpha_{n}\right)\right)=\lim \left(1-\alpha_{n}\right)=1-x$. This shows that g can only be continuous at x if $x=1-x$, in other words if $x=\frac{1}{2}$.
Now we strongly suspect that g is actually continuous at $\frac{1}{2}$; to show it, it is best not to use sequences, but come back to the ε, δ definition of continuity. Indeed, pick $\varepsilon>0$; notice that for any real number x, we have $\left|x-\frac{1}{2}\right|=\left|g(x)-\frac{1}{2}\right|$ (check this in the two cases when x is rational, irrational). Thus we see that whenever $0<\left|x-\frac{1}{2}\right| \leq \varepsilon$ we have $\left|g(x)-\frac{1}{2}\right| \leq \varepsilon$, and this proves that $\lim _{x \rightarrow 1 / 2} g(x)=\frac{1}{2}=f\left(\frac{1}{2}\right)$. Thus f is continuous exactly at the point $\frac{1}{2}$.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function $(a<b)$ such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\left|x-x^{\prime}\right|$ for all $x \neq x^{\prime} \in[a, b]$.
(a) Using the ε, δ definition of continuity, show that f is continuous on $[a, b]$.
(b) Prove that there exists a unique point $x \in[a, b]$ such that $f(x)=x$ (introduce a suitable auxiiary function).
Correction. (a) The assumption on the function f implies that it is a Lipschitz function, so it must be (uniformly) continuous on $[a, b]$: indeed, pick some point $x \in[a, b]$ and $\varepsilon>0$. Then, for any $y \in[a, b]$ such that $|x-y| \leq \varepsilon$, one has $|f(x)-f(y)|<|x-y| \leq|x-y|$. Thus, setting $\delta=\varepsilon$ works in this case (beware : it is not true in general that setting $\delta=\varepsilon$ works; it just happens to be true here because of our assumption on f) to show that f is continuous at x. Since this is true for any $x \in I$, we have proved that f is continuous on I.
(b) Define $g(x)=f(x)-x$. Then one has $g(a)=f(a)-a \geq 0$ (because $a \leq g(x) \leq b$ for all $x \in[a, b]$) and $g(b)=f(b)-b \leq 0$. Thus, either $g(a)=0$, or $g(b)=0$, or g takes a strictly positive value at a and a strictly negative one at b; in the third case, the mean value theorem tells us that there is $x \in[a, b]$ such that $g(x)=0$, and this is obviouslyy true in the first two cases too. So we know that there exists a fixed point of f in $[a, b]$, i.e a point $x \in[a, b]$ such that $f(c)=x(g(x)=0$ if, and only if, $f(x)=x)$. To show that this fixed point is unique, proceed by contradiction and assume there are two points $x \neq x^{\prime} \in[a, b]$ such that $f(x)=x$ and $f\left(x^{\prime}\right)=x^{\prime}$. Then by assumption on f we have $\left|f(x)-f\left(x^{\prime}\right)\right|<\left|x-x^{\prime}\right|$, and this contradicts the fact that
$f(x)=x, f(x)=x^{\prime}$.
3. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $f(0)=f(1)$.

Show that for all $n \in \mathbb{N}$ there exists $x \in\left[0,1-\frac{1}{n}\right]$ such that $f(x)=f\left(x+\frac{1}{n}\right)$.
(Hint : is it possible that $f((k+1) / n)-f(k / n)$ keeps a constant sign for all $k=0, \ldots, n-1$?)
Correction. Notice first that one may assume $n \geq 2$ (the case $n=1$ is trivial, since $f(0)=f(1)$).
If $f((k+1) / n)=f(k / n)$ for some $k=0,1, \ldots, n-1$, then we have found $x \in\left[0,1-\frac{1}{n}\right]$ such that $f(x)=f\left(x+\frac{1}{n}\right)$ $(k / n$ works $)$. So we may assume that $f((k+1) / n) \neq f(k / n)$ for all $k=1, \ldots, n-1$. We claim that there must then exist some $k \in 0, \ldots n-2$ such that $f((k+1)) / n-f(k / n)$ and $f((k+2) / n)-f(k+1 / n)$ are of opposite signs ; indeed, assume this is not true, and suppose for instance that $f(1 / n)>f(0)$. Then $f(2 / n)>f(1 / n)$, $f(3 / n)>f(2 / n)$, etc., and one eventually obtains $f(1)=f(n / n)>f((n-1) / n)>\ldots f(0)$, which contradicts our assumption that $f(1)=f(0)$. One obtains a similar contradiction if $f(1 / n)<f(0)$, so there must exist k such that $f((k+1)) / n-f(k / n)$ and $f((k+2) / n)-f(k+1 / n)$ are of opposite signs. Set then $g(x)=f(x+1 / n)-f(x)$; we just proved that g must change signs on the interval $[k / n,(k+1) / n]$ for some $k=0, \ldots, n-2$. The mean value theorem then ensures that g has a 0 in that interval. Since a 0 of g is the same thing as a point x such that $f(x)=f(x+1 / n)$, we see that under the assumptions on f there must indeed exist a point $x \in[0,1-1 / n]$ such that $f(x)=f(x+1 / n)$.
4.(a) Show that if f is a continuous function on a closed bounded interval $[a, b]$ such that $f(x)>0$ for all $x \in[a, b]$ then there exists $m>0$ such that $f(x) \geq m$ for all $x \in[a, b]$.
In the following, we pick two continuous functions f, g from $[0,1] \rightarrow[0,1]$ such that $f(x)<g(x)$ for all $x \in[0,1]$.
(b) Show that there exists $m>0$ such that $f(x)+m<g(x)$ for all $x \in[0,1]$.
(c) Show that there exists $M>1$ such that $M f(x)<g(x)$ for all $x \in[0,1]$.

Correction. (a) Since f is continuous function on the closed bounded interval $[a, b]$, we know that it admits a global minimum on $[a, b]$, i.e that there exists $c \in[a, b]$ such that $f(c) \leq f(x)$ for all $x \in[a, b]$. Setting $m=f(c)$, we have $m>0$ because f only takes positive values, and $f(x) \geq m$ for all $x \in[a, b]$
(b) The function $g-f$ is continuous on $[0,1]$ taking only positive values, so by question (a) there exists $m^{\prime}>0$ such that $g(x)-f(x) \geq m^{\prime}$ for all $x \in[0,1]$; but then $m=\frac{m^{\prime}}{2}$ is such that $m>0$ and $g(x)-f(x)>m$ for all $x \in[0,1]$, in other words $f(x)+m<g(x)$ for all $x \in[0,1]$ (we had to introduce this m^{\prime} and then divide it by 2 because question (a) only gave us a large inequality, whereas we had to establish a strict inequality).
(c) First, notice that one has $0 \leq f(x)<g(x)$ for all $x \in[0,1]$, so g only takes positive values. Thus the function $h=\frac{f}{g}$ is continuous on $[0,1]$, and $h(x)<1$ for all $x \in[0,1]$. Thus, there exists $m^{\prime}>0$ such that $0 \leq h(x) \leq 1-m^{\prime}$ for all $x \in[0,1]$ (apply a to $x \mapsto 1-h(x)$, or directly use the fact that h admits a maximum on $[0,1]$). Again, setting $m=\frac{m^{\prime}}{2}$ enables us to go from a large inequality, and obtain $h(x)<1-m^{\prime}$ for some m^{\prime} such that $0<m^{\prime}<\frac{1}{2}$ and all $x \in[0,1]$. Given the definition of h, and the fact that $1-m^{\prime}>0, g(x)>0$, this is equivalent to $\frac{1}{1-m^{\prime}} f(x)<g(x)$ for all $x \in[0,1]$. Setting $M=\frac{1}{1-m^{\prime}}$, we see that $M>1$ (because $\left.0<m^{\prime}<1\right)$) and $M f(x)<g(x)$ for all $x \in[0,1]$.
Remark. The idea behind this exercise is that, if one has an inequality that is true for all x and involves continuous functions on a closed bounded interval then one can use the fact that a continuous function on a closed bounded interval reaches its bounds to show that a strengthening of the inequality is also true on that interval ; you should convince yourself that all the assumptions in this exercise are important (f must be continuous, and the interval must be closed and bounded).
5. Let f be a continuous function from \mathbb{R} to \mathbb{R} such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Recall that we proved in the first midterm that one has then $f(q)=q f(1)$ for all $q \in \mathbb{Q}$. Use this to show that $f(x)=x f(1)$ for all $x \in \mathbb{R}$.
Correction. We know that $f(q)=q f(1)$ for any rational q. Let now x be any real number ; by the density theorem, we know that there exists a sequence $\left(q_{n}\right)$ of rationals such that $\lim \left(q_{n}\right)=x$. Since f is conti-
nuous, this implies $\lim \left(f\left(q_{n}\right)\right)=f(x)$. But $f\left(q_{n}\right)=q_{n} f(1)$, so the algebraic theorems about limits give $\lim \left(f\left(q_{n}\right)\right)=f(1) \lim \left(q_{n}\right)=x f(1)$. Putting these two equalities together, we indeed obtain that $f(x)=x f(1)$ for all $x \in \mathbb{R}$.

Important note. In the homework assignment, the assumption that f is continuous was forgotten; without this assumption the result is false in general (one can produce counterexamples using the Axiom of Choice). Hence this exercise will not be graded.

