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Graded Homework X.

Due Friday, November 17.

1.(a) De�ne a function f on R by setting f(x) =

{
f(x) = x sin( 1

x ) if x 6= 0
0 else

. Is this function continuous on

R ? (you may use without proof the fact the the function x 7→ sin(x) is continuous).

(b) Let g : R → R be de�ned by g(x) =

{
x if x ∈ Q
1− x else

. At which points in R is g continuous ?

Correction. (a) Since we are told that x 7→ sin(x) is continuous on R, we see immediately that f is continuous
on (−∞, 0)∪(0,+∞) : indeed, on these two intervals f is a composition of continuous functions. Thus, our only
problem is at x = 0 ; we need to see whether f has a limit at 0, and whether that limit is equal to f(0) = 0. As
usual with sin, the important thing to remember is that | sin(x)| ≤ 1 for all x ∈ R ; thus, for all x 6= 0 we see
that |f(x)| ≤ |x|. This is enough to ensure that lim

x→0
f(x) = 0 (Squeeze theorem). Thus we have proved that

lim
x→0

f(x) = f(0), so f is continuous at 0. Overall, we see that f is continuous on the whole real line.

(b) For all x ∈ R there exists a sequence of rational numbers (qn) and a sequence of irrational numbers (αn) such
that x = lim(qn) = lim(αn). If g were continuous at x, then we would have g(x) = lim(f(qn)) = lim(qn) = x,
and also g(x) = lim(f(αn)) = lim(1−αn) = 1−x. This shows that g can only be continuous at x if x = 1−x,

in other words if x =
1
2
.

Now we strongly suspect that g is actually continuous at
1
2
; to show it, it is best not to use sequences, but

come back to the ε, δ de�nition of continuity. Indeed, pick ε > 0 ; notice that for any real number x, we have

|x− 1
2
| = |g(x)− 1

2
| (check this in the two cases when x is rational, irrational). Thus we see that whenever

0 < |x− 1
2
| ≤ ε we have |g(x)− 1

2
| ≤ ε, and this proves that lim

x→1/2
g(x) =

1
2

= f(
1
2
). Thus f is continuous

exactly at the point
1
2
.

2. Let f : [a, b] → R be a continuous function (a < b) such that |f(x)− f(x′)| < |x− x′| for all x 6= x′ ∈ [a, b].
(a) Using the ε, δ de�nition of continuity, show that f is continuous on [a, b].
(b) Prove that there exists a unique point x ∈ [a, b] such that f(x) = x (introduce a suitable auxiiary
function).
Correction. (a) The assumption on the function f implies that it is a Lipschitz function, so it must be
(uniformly) continuous on [a, b] : indeed, pick some point x ∈ [a, b] and ε > 0. Then, for any y ∈ [a, b] such
that |x− y| ≤ ε, one has |f(x)− f(y)| < |x− y| ≤ |x− y|. Thus, setting δ = ε works in this case (beware : it is
not true in general that setting δ = ε works ; it just happens to be true here because of our assumption on f)
to show that f is continuous at x. Since this is true for any x ∈ I, we have proved that f is continuous on I.
(b) De�ne g(x) = f(x) − x. Then one has g(a) = f(a) − a ≥ 0 (because a ≤ g(x) ≤ b for all x ∈ [a, b]) and
g(b) = f(b)− b ≤ 0. Thus, either g(a) = 0, or g(b) = 0, or g takes a strictly positive value at a and a strictly
negative one at b ; in the third case, the mean value theorem tells us that there is x ∈ [a, b] such that g(x) = 0,
and this is obviouslyy true in the �rst two cases too. So we know that there exists a �xed point of f in [a, b],
i.e a point x ∈ [a, b] such that f(c) = x (g(x) = 0 if, and only if, f(x) = x). To show that this �xed point
is unique, proceed by contradiction and assume there are two points x 6= x′ ∈ [a, b] such that f(x) = x and
f(x′) = x′. Then by assumption on f we have |f(x) − f(x′)| < |x − x′|, and this contradicts the fact that



f(x) = x, f(x) = x′.

3. Let f : [0, 1] → [0, 1] be a continuous function such that f(0) = f(1).

Show that for all n ∈ N there exists x ∈ [0, 1− 1
n

] such that f(x) = f(x +
1
n

).

(Hint : is it possible that f((k + 1)/n)− f(k/n) keeps a constant sign for all k = 0, . . . , n− 1 ?)
Correction. Notice �rst that one may assume n ≥ 2 (the case n = 1 is trivial, since f(0) = f(1)).

If f((k + 1)/n) = f(k/n) for some k = 0, 1, . . . , n−1, then we have found x ∈ [0, 1− 1
n

] such that f(x) = f(x +
1
n

)

(k/n works). So we may assume that f((k + 1)/n) 6= f(k/n) for all k = 1, . . . , n− 1. We claim that there must
then exist some k ∈ 0, . . . n−2 such that f((k + 1))/n− f(k/n) and f((k + 2)/n)− f(k + 1/n) are of opposite
signs ; indeed, assume this is not true, and suppose for instance that f(1/n) > f(0). Then f(2/n) > f(1/n),
f(3/n) > f(2/n), etc., and one eventually obtains f(1) = f(n/n) > f((n − 1)/n) > . . . f(0), which contra-
dicts our assumption that f(1) = f(0). One obtains a similar contradiction if f(1/n) < f(0), so there
must exist k such that f((k + 1))/n− f(k/n) and f((k + 2)/n)− f(k + 1/n) are of opposite signs. Set then
g(x) = f(x + 1/n) − f(x) ; we just proved that g must change signs on the interval [k/n, (k + 1)/n] for some
k = 0, . . . , n − 2. The mean value theorem then ensures that g has a 0 in that interval. Since a 0 of g is the
same thing as a point x such that f(x) = f(x + 1/n), we see that under the assumptions on f there must
indeed exist a point x ∈ [0, 1− 1/n] such that f(x) = f(x + 1/n).

4.(a) Show that if f is a continuous function on a closed bounded interval [a, b] such that f(x) > 0 for all
x ∈ [a, b] then there exists m > 0 such that f(x) ≥ m for all x ∈ [a, b].
In the following, we pick two continuous functions f, g from [0, 1] → [0, 1] such that f(x) < g(x) for all x ∈ [0, 1].
(b) Show that there exists m > 0 such that f(x) + m < g(x) for all x ∈ [0, 1].
(c) Show that there exists M > 1 such that Mf(x) < g(x) for all x ∈ [0, 1].
Correction. (a) Since f is continuous function on the closed bounded interval [a, b], we know that it admits
a global minimum on [a, b], i.e that there exists c ∈ [a, b] such that f(c) ≤ f(x) for all x ∈ [a, b]. Setting
m = f(c), we have m > 0 because f only takes positive values, and f(x) ≥ m for all x ∈ [a, b]
(b) The function g−f is continuous on [0, 1] taking only positive values, so by question (a) there exists m′ > 0

such that g(x) − f(x) ≥ m′ for all x ∈ [0, 1] ; but then m =
m′

2
is such that m > 0 and g(x) − f(x) > m for

all x ∈ [0, 1], in other words f(x) + m < g(x) for all x ∈ [0, 1] (we had to introduce this m′ and then divide it
by 2 because question (a) only gave us a large inequality, whereas we had to establish a strict inequality).
(c) First, notice that one has 0 ≤ f(x) < g(x) for all x ∈ [0, 1], so g only takes positive values. Thus the

function h =
f

g
is continuous on [0, 1], and h(x) < 1 for all x ∈ [0, 1]. Thus, there exists m′ > 0 such that

0 ≤ h(x) ≤ 1−m′ for all x ∈ [0, 1] (apply a to x 7→ 1−h(x), or directly use the fact that h admits a maximum

on [0, 1]). Again, setting m =
m′

2
enables us to go from a large inequality, and obtain h(x) < 1−m′ for some

m′ such that 0 < m′ <
1
2
and all x ∈ [0, 1]. Given the de�nition of h, and the fact that 1−m′ > 0, g(x) > 0,

this is equivalent to
1

1−m′ f(x) < g(x) for all x ∈ [0, 1]. Setting M =
1

1−m′ , we see that M > 1 (because

0 < m′ < 1)) and Mf(x) < g(x) for all x ∈ [0, 1].
Remark. The idea behind this exercise is that, if one has an inequality that is true for all x and involves
continuous functions on a closed bounded interval then one can use the fact that a continuous function on
a closed bounded interval reaches its bounds to show that a strengthening of the inequality is also true on
that interval ; you should convince yourself that all the assumptions in this exercise are important (f must be
continuous, and the interval must be closed and bounded).

5. Let f be a continuous function from R to R such that f(x+y) = f(x)+f(y) for all x, y ∈ R. Recall that we
proved in the �rst midterm that one has then f(q) = qf(1) for all q ∈ Q. Use this to show that f(x) = xf(1)
for all x ∈ R.
Correction. We know that f(q) = qf(1) for any rational q. Let now x be any real number ; by the density
theorem, we know that there exists a sequence (qn) of rationals such that lim(qn) = x. Since f is conti-



nuous, this implies lim(f(qn)) = f(x). But f(qn) = qnf(1), so the algebraic theorems about limits give
lim(f(qn)) = f(1) lim(qn) = xf(1). Putting these two equalities together, we indeed obtain that f(x) = xf(1)
for all x ∈ R.

Important note. In the homework assignment, the assumption that f is continuous was forgotten ; without
this assumption the result is false in general (one can produce counterexamples using the Axiom of Choice ).
Hence this exercise will not be graded.


