University of Illinois at Urbana-Champaign Math 444 Fall 2006 Group E13

Graded Homework XI. Due Wednesday, November 29.

1. (a) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is not constant and satisfies $f(x) = f(x^2)$ for all $x \in \mathbb{R}$. (b) Assume now that f is continuous at 0 and 1 and $f(x) = f(x^2)$ for all $x \in \mathbb{R}$. Show that f must be constant. *Hint*: assume that |x| < 1; then what is the limit of the sequence (x_n) defined by $x_1 = x, x_2 = x^2, \ldots, x_{n+1} = x_n^2 \ldots$? How about the sequence $(f(x_n))$? Can you use a similar idea when |x| > 1?

2. Let $f: [0,1] \to [0,1]$ be a continuous function such that $f \circ f = f$ (*). Set

$$E_f = \{x \in [0,1] : f(x) = x\}$$

Show that E_f is nonempty, then that it is an interval.

Hint : what is the link between E_f and f([0,1])?

Can you describe (accurately and using as few words as possible) the functions that satisfy (*)?

3. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 0 & \text{if } x = 0 \\ x^2 \sin(\frac{1}{x}) & \text{else} \end{cases}$. Prove that f is continuous, and even differentiable, on \mathbb{R} , but that f' is not continuous at 0.

(b) Is it true that any function satisfying the conclusion of the intermediate value theorem must be continuous?

4. Determine $a, b \in \mathbb{R}$ such that the function $f: [0, +\infty) \to \mathbb{R}$ defined by $f(x) = \begin{cases} \sqrt{x} & \text{if } 0 \le x \le 1 \\ ax^2 + bx + 1 & \text{else} \end{cases}$

is differentiable on $(0, +\infty)$.

5. Show that a polynomial function of the form $f(x) = x^n + ax + b$ has at most three distinct real roots (here a, b are reals, and n is a natural integer).

Hint : How many zeros can f' have? What must happen to f' between any two zeros of f?

6. Pick a function $f: \mathbb{R}^+ = [0, +\infty) \to \mathbb{R}$, and $l \in \mathbb{R}$. One says that f has limit l at $+\infty$, and one writes $\lim_{x \to +\infty} f(x) = l$, if for any $\varepsilon > 0$ there exists $M \in \mathbb{R}^+$ such that $x \ge M \Rightarrow |f(x) - l| \le \varepsilon$.

(a) Show that, for any continuous function f, one has the following implication : if $f : \mathbb{R}^+ \to \mathbb{R}$ has a limit at $+\infty$ then f is bounded on \mathbb{R}^+ . What is the converse of this assertion? Is it true?

(b) Let $f: \mathbb{R}^+ \to \mathbb{R}$ be such that f(0) = 1 and $\lim_{x \to +\infty} f(x) = 0$. Show that f admits a global maximum on \mathbb{R}^+ . Must it also admit a global minimum on \mathbb{R}^+ ?

(c) Let $f: \mathbb{R}^+ \to \mathbb{R}$ be differentiable on \mathbb{R}^+ , and suppose that $\lim_{x \to +\infty} f'(x) = l$, where l is some real number.

Using the mean value theorem, show that $\lim_{x \to +\infty} \frac{f(x)}{x} = l$.

Hint: First prove that for any $\varepsilon > 0$, there exists a > 0 such that for any x > a one has $\left| \frac{f(x) - f(a)}{x - a} - l \right| \le \varepsilon$. How can you prove this? Why does question 6(c) help?)