Graded Homework XI.

Due Wednesday, November 29.

1. (a) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not constant and satisfies $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. (b) Assume now that f is continuous at 0 and 1 and $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. Show that f must be constant. Hint : assume that $|x|<1$; then what is the limit of the sequence $\left(x_{n}\right)$ defined by $x_{1}=x, x_{2}=x^{2}, \ldots, x_{n+1}=$ $x_{n}^{2} \ldots$? How about the sequence $\left(f\left(x_{n}\right)\right)$? Can you use a similar idea when $|x|>1$?
2. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $f \circ f=f(*)$. Set

$$
E_{f}=\{x \in[0,1]: f(x)=x\}
$$

Show that E_{f} is nonempty, then that it is an interval.
Hint : what is the link between E_{f} and $f([0,1])$?
Can you describe (accurately and using as few words as possible) the functions that satisfy (*)?
3. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ x^{2} \sin \left(\frac{1}{x}\right) & \text { else }\end{array}\right.$. Prove that f is continuous, and even differentiable, on \mathbb{R}, but that f^{\prime} is not continuous at 0 .
(b) Is it true that any function satisfying the conclusion of the intermediate value theorem must be continuous?
4. Determine $a, b \in \mathbb{R}$ such that the function $f:[0,+\infty) \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}\sqrt{x} & \text { if } 0 \leq x \leq 1 \\ a x^{2}+b x+1 & \text { else }\end{cases}$ is differentiable on $(0,+\infty)$.
5. Show that a polynomial function of the form $f(x)=x^{n}+a x+b$ has at most three distinct real roots (here a, b are reals, and n is a natural integer).
Hint : How many zeros can f^{\prime} have? What must happen to f^{\prime} between any two zeros of f ?
6. Pick a function $f: \mathbb{R}^{+}=[0,+\infty) \rightarrow \mathbb{R}$, and $l \in \mathbb{R}$. One says that f has limit l at $+\infty$, and one writes $\lim _{x \rightarrow+\infty} f(x)=l$, if for any $\varepsilon>0$ there exists $M \in \mathbb{R}^{+}$such that $x \geq M \Rightarrow|f(x)-l| \leq \varepsilon$.
(a) Show that, for any continuous function f, one has the following implication : if $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ has a limit at $+\infty$ then f is bounded on \mathbb{R}^{+}. What is the converse of this assertion? Is it true?
(b) Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be such that $f(0)=1$ and $\lim _{x \rightarrow+\infty} f(x)=0$. Show that f admits a global maximum on \mathbb{R}^{+}. Must it also admit a global minimum on \mathbb{R}^{+}?
(c) Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be differentiable on \mathbb{R}^{+}, and suppose that $\lim _{x \rightarrow+\infty} f^{\prime}(x)=l$, where l is some real number. Using the mean value theorem, show that $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=l$.

Hint : First prove that for any $\varepsilon>0$, there exists $a>0$ such that for any $x>a$ one has $\left|\frac{f(x)-f(a)}{x-a}-l\right| \leq \varepsilon$. How can you prove this? Why does question 6(c) help?)

