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Math 444 Group E13

Graded Homework XI.

Correction.

1. (a) Give an example of a function f : R → R which is not constant and satis�es f(x) = f(x2) for all x ∈ R.
(b) Assume now that f is continuous at 0 and 1 and f(x) = f(x2) for all x ∈ R. Show that f must be constant.
Hint : assume that |x| < 1 ; then what is the limit of the sequence (xn) de�ned by x1 = x, x2 = x2, . . . , xn+1 =
x2

n ? How about the sequence (f(xn)) ? Can you use a similar idea when |x| > 1 ?
Correction. (a) There are many possible examples, one of them being the function f de�ned by f(0) = 0,
and f(x) = 1 for all x ∈ R.
(b) Following the indication, pick �rst x ∈ R such that |x| < 1. Then de�ne a sequence (xn) by setting x1 = x,
x2 = x2, . . . xn+1 = x2

n, . . .. Then this sequences converges to 0, and one has f(xn+1) = f(x2
n) = f(xn) for all

n ∈ N ; thus an easy induction proof yields f(xn) = f(x) for all n ∈ N. Since (xn) is convergent to 0 and f is
continuous at 0, one must also have lim f(xn) = f(0), hence we obtain f(x) = f(0) for all x ∈ (−1, 1).
Since f is assumed to be continuous at 1, we also obtain that f(1) = f(0). Pick now x ∈ R such that x > 1,
and de�ne this time a sequence (yn) by setting y1 = x, y2 =

√
x, . . . yn+1 =

√
yn, . . .. Then one has yn = y

1/2n

1 ,
and thus lim(yn) = 1. Thus lim(f(yn)) = f(1) = f(0). But the sequence (yn) was de�ned in such a way that
f(yn) = f(y2

n+1) = f(yn+1) for all n ∈ N, which again means that f(yn) = f(y1) = f(x) for all n ∈ N. Putting
the pieces together, we obtain f(x) = f(0) for all x > 1. Since f is clearly an even function (i.e f(x) = f(−x),
because f(x) = f(x2) = f((−x)2)) this also implies that f(x) = f(0) for all x < −1. We have �nally managed
to prove that f(x) = f(0) for all x ∈ R, in other words f is constant on R.
Remark. This proof is typical of how one uses continuity to describe the class of functions that satisfy a certain
property (here, f(x) = f(x2)) : �rst, try to understand what kind of information that property yields (here, it
yields sequences (xn), (yn) converging to 0, 1 and such that f(xn), f(yn) are constant). Then use this, added
to continuity, to obtain additional information on what the function looks like (here, it is constant).

2. Let f : [0, 1] → [0, 1] be a continuous function such that f ◦ f = f (∗). Set

Ef = {x ∈ [0, 1] : f(x) = x} .

Show that Ef is nonempty, then that it is an interval.
Hint : what is the link between Ef and f([0, 1]) ?
Can you describe (accurately and using as few words as possible) the functions that satisfy (∗) ?
Correction. Following the hint, let us prove that Ef = f([0, 1]). Pick x ∈ Ef ; then x = f(x), so x ∈ f([0, 1]),
and this proves that Ef ⊂ f([0, 1]). Conversely, pick x ∈ f([0, 1], i.e x = f(y) for some y ∈ [0, 1]. Then
f(x) = f(f(y)) = f(y) = x by the assumption (∗) ; this means that f([0, 1]) ⊂ Ef . Both inclusions mean that
f([0, 1]) = Ef . Since f is continuous, the image of [0, 1] is a closed bounded interval, hence Ef is a closed
bounded interval [a, b], with 0 ≤ a ≤ b ≤ 1. This means that f is a continuous mapping such that :
• f maps [0, a] to [a, b], and f(a) = a ;
• f maps [b, 1] to [a, b], and f(b) = b ;
• for all x ∈ [a, b] one has f(x) = x.
Conversely, if f satis�es the three conditions above for some a ≤ b ∈ [0, 1], then f satis�es (∗), so we have
given a description of these functions.

3. (a) Let f : R → R be de�ned by f(x) =

{
0 if x = 0
x2 sin( 1

x ) else
. Prove that f is continuous, and even

di�erentiable, on R, but that f ′ is not continuous at 0.



(b) Is it true that any function satisfying the conclusion of the intermediate value theorem must be continuous ?
Correction. To see that f is continuous, see the preceding homework (f(x) = xg(x), where g is a function
that we proved continuous in HW 10 ; anyway, continuity is implied by di�erentiability, which we establish
below). It is clear that f is di�erentiable both on (−∞, 0) and on (0,+∞) and that on these intervals one has

f ′(x) = x sin(
1
x

)− sin(
1
x

). Thus we see that f ′ doesn't have a limit at 0, for instance because f ′(
1

2πn
) = 0 and

f(
1

2πn + π/2
) =

1
2πn + π/2

− 1, which converges to −1. Hence, there are two sequences (xn), (yn) which both

converge to 0 but are such that f(xn), f(yn) converge to di�erent limits, and this means that f ′ doesn't have
a limit at 0. You would probably expect it to mean that f ′ doesn't exist at 0 ; this is not the case, however, as
we will see shortly. All it means is that even if f ′ exists at 0 it won't be continuous at that point.

To check that f ′(0) exists, one simply comes back to the de�nition and writes
f(x)− f(0)

x− 0
= x sin(

1
x

), which

converges to 0 at x = 0 (see last week's homework). Thus f ′(0) exists and is equal to 0.
(b) By the theorem of Darboux all derivatives satisfy the conclusion of the intermediate value theorem ; since
the function above is a derivative and is not continuous, we see that it is not true that any function satisfying
the conclusion of the intermediate value theorem must be continuous.

4. Determine a, b ∈ R such that the function f : [0,+∞) → R de�ned by f(x) =

{√
x if 0 ≤ x ≤ 1

ax2 + bx + 1 else

is di�erentiable on (0,+∞).
Correction. First, notice that f is di�erentiable on [0, 1) and (1,+∞), and that f ′(x) = 1

2
√

x
on (0, 1),

f ′(x) = 2ax + b on (0, 1). So the only problem is at x = 1. First we need to ensure that f is continuous ; for
that it needs to satisfy lim

x→1
f(x) = f(1). This implies that a + b + 1 = 1, in other words a + b = 0 (to see

that, we equate the left-hand and right-hand limits of f at 1). Conversely, if a + b = 0, then one sees that f is

continuous at 1. Now we need it to be di�erentiable at 1 ; for this, one must have a+ b = 0, and f(x)−f(1)
x−1 must

have a limit at 1. If x < 1, then the mean value theorem gives us f(x)−f(1)
x−1 = f ′(c) = 1

2
√

c
for some c ∈ (x, 1),

so we see that the left-hand limit of f(x)−f(1)
x−1 is 1

2 . Using the same method, we see that the right hand-limit

of f(x)−f(1)
x−1 at 1 is 2a + b, thus these two limits are equal if and only if 2a + b = 1

2 . Hence f is di�erentiable

at 1 if, and only if, a + b = 0 and 2a + b = 1
2 ; this is equivalent to a = 1

2 and b = − 1
2 .

Remark. In this exercise we used the important fact that a function f has a limit at a point x ∈ R if, and only
if, it has both a left-hand limit and a right-hand limit at x and they are equal.

5. Show that a polynomial function of the form f(x) = xn + ax + b has at most three distinct real roots (here
a, b are reals, and n is a natural integer).
Hint : How many zeros can f ′ have ? What must happen to f ′ between any two zeros of f ?
Correction. Between any two zeros of f there must be a zero of f ′, because of Rolle's theorem. This means
that if f ′ doesn't have many zeros then f cannot have many zeros either. Here f ′(x) = nxn−1 + a, so

f ′(x) = 0 ⇔ xn−1 = −a

n
, and this has at most two solutions. Thus f(x) = 0 cannot have four distinct real

roots or more : if a1 < a2 < a3 < a4 were distinct roots then there would have to be b1 ∈ (a1, a2) such that
f ′(b1) = 0, b2 ∈ (a2, a3) such that f ′(b2) = 0, and b3 ∈ (a3, a4) such that f ′(b3) = 0. Thus b1, b2, b3 would be
three distinct solutions of the equation f ′(x) = 0, and we saw that this is impossible.

6. Pick a function f : R+ = [0,+∞) → R, and l ∈ R. One says that f has limit l at +∞, and one writes
lim

x→+∞
f(x) = l, if for any ε > 0 there exists M ∈ R+ such that x ≥ M ⇒ |f(x)− l| ≤ ε.

(a) Show that, for any continuous function f , one has the following implication : if f : R+ → R has a limit at
+∞ then f is bounded on R+. What is the converse of this assertion ? Is it true ?
(b) Let f : R+ → R be such that f(0) = 1 and lim

x→+∞
f(x) = 0. Show that f admits a global maximum on R+.

Must it also admit a global minimum on R+ ?
(c) Let f : R+ → R be di�erentiable on R+, and suppose that lim

x→+∞
f ′(x) = l, where l is some real number.



Using the mean value theorem, show that lim
x→+∞

f(x)
x

= l.

Hint : First prove that for any ε > 0, there exists a > 0 such that for any x > a one has

∣∣∣∣f(x)− f(a)
x− a

− l

∣∣∣∣ ≤ ε.

How can you prove this ? Why does this help ?
Correction. (a) Call l the limit of f at +∞. Then there exists M such that x ≥ M ⇒ l−1 ≤ f(x) ≤ l+1. We
also know that, since f is continuous on [0,M ] it is bounded on this interval (which is closed and bounded),
which means that there exist A,B such that A ≤ f(x) ≤ B for all x ∈ [0,M ]. De�ne now C = min(A, l − 1)
and D = max(B, l + 1) : then C ≤ f(x) ≤ D for all x ∈ R+.
The converse of the assertion would be : "any continuous bounded function on R+ has a limit at +∞" ; it is
not true, as f(x) = sin(x) shows. Indeed, this function if bounded but doesn't have a limit at +∞ (to see it,

simply notice that f(2πn) = 0 and f(2πn +
π

2
) = 1 for all n ∈ N).

(b) Let us apply the same reasoning as in the preceding question : this time l = 0, and B ≥ 1 = l + 1, so
the reasoning before shows that f(x) ≤ B for all x ∈ R. But B is de�ned as being the supremum of f over
the closed bounded interval [0,M ], so it is actually the maximum of f on that interval, hence there exists
c ∈ [0,M ] such that f(c) = B. We then have f(c) ≥ f(x) for all x ∈ R+, and this proves that f admits a
global maximum on R+.
The idea here is that, since "at +∞" f is below some value (here f(0)) the supremum of f(R+) cannot be
"attained at +∞", hence it is actually the supremum of f on a closed bounded interval, hence it is actually a
maximum.

In general, f doesn't have a global minimum on R+ ; to see this, simply consider the function f(x) =
1

x + 1
:

f([0,+∞)) = (0, 1], hence the in�mum of f on [0,+∞) (0) is not a minimum.
(c) Following the hint, begin by picking ε > 0 and �nd a such that x ≥ a ⇒ |f ′(x)− l| ≤ ε. Then pick x > a ;

by the mean value theorem applied to f on [a, x], there exists c ∈ (a, x) such that fx)−f(a)
x−a = f ′(c). We thus

obtain that | f(x)−f(a)
x−a − l| ≤ ε for all x > a. One has f(x)−f(a)

x−a = f(x)
x−a −

f(a)
x−a . If M ≥ a is big enough, one has

x ≥ M ⇒ f(a)
x−a ≤ ε ; thus, x ≥ M →

∣∣ f(x)
x−a − l

∣∣ ≤ 2ε. We want to have f(x)
x instead of f(x)

x−a . Notice that

f(x)
x− a

=
f(x)

x

x

x− a
=

f(x)
x

+ a
f(x)

x(x− a)
.

Hence (for all x ≥ M)

∣∣f(x)
x

− l
∣∣ ≤ ∣∣ f(x)

x− a
− l

∣∣ +
1
x

∣∣a f(x)
x− a

∣∣ ≤ 2ε +
1
x

∣∣a(l + 2ε)
∣∣ .

This enables us to see that there exists M ′ ≥ M such that x ≥ M ′ ⇒
∣∣ f(x)

x − l
∣∣ ≤ 3ε, and this concludes the

proof.


