Graded Homework XI.
 Correction.

1. (a) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not constant and satisfies $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. (b) Assume now that f is continuous at 0 and 1 and $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. Show that f must be constant. Hint: assume that $|x|<1$; then what is the limit of the sequence $\left(x_{n}\right)$ defined by $x_{1}=x, x_{2}=x^{2}, \ldots, x_{n+1}=$ x_{n}^{2} ? How about the sequence $\left(f\left(x_{n}\right)\right)$? Can you use a similar idea when $|x|>1$?
Correction. (a) There are many possible examples, one of them being the function f defined by $f(0)=0$, and $f(x)=1$ for all $x \in \mathbb{R}$.
(b) Following the indication, pick first $x \in \mathbb{R}$ such that $|x|<1$. Then define a sequence (x_{n}) by setting $x_{1}=x$, $x_{2}=x^{2}, \ldots x_{n+1}=x_{n}^{2}, \ldots$ Then this sequences converges to 0 , and one has $f\left(x_{n+1}\right)=f\left(x_{n}^{2}\right)=f\left(x_{n}\right)$ for all $n \in \mathbb{N}$; thus an easy induction proof yields $f\left(x_{n}\right)=f(x)$ for all $n \in \mathbb{N}$. Since $\left(x_{n}\right)$ is convergent to 0 and f is continuous at 0 , one must also have $\lim f\left(x_{n}\right)=f(0)$, hence we obtain $f(x)=f(0)$ for all $x \in(-1,1)$.
Since f is assumed to be continuous at 1 , we also obtain that $f(1)=f(0)$. Pick now $x \in \mathbb{R}$ such that $x>1$, and define this time a sequence $\left(y_{n}\right)$ by setting $y_{1}=x, y_{2}=\sqrt{x}, \ldots y_{n+1}=\sqrt{y_{n}}, \ldots$. Then one has $y_{n}=y_{1}^{1 / 2^{n}}$, and thus $\lim \left(y_{n}\right)=1$. Thus $\lim \left(f\left(y_{n}\right)\right)=f(1)=f(0)$. But the sequence $\left(y_{n}\right)$ was defined in such a way that $f\left(y_{n}\right)=f\left(y_{n+1}^{2}\right)=f\left(y_{n+1}\right)$ for all $n \in \mathbb{N}$, which again means that $f\left(y_{n}\right)=f\left(y_{1}\right)=f(x)$ for all $n \in \mathbb{N}$. Putting the pieces together, we obtain $f(x)=f(0)$ for all $x>1$. Since f is clearly an even function (i.e $f(x)=f(-x)$, because $\left.f(x)=f\left(x^{2}\right)=f\left((-x)^{2}\right)\right)$ this also implies that $f(x)=f(0)$ for all $x<-1$. We have finally managed to prove that $f(x)=f(0)$ for all $x \in \mathbb{R}$, in other words f is constant on \mathbb{R}.
Remark. This proof is typical of how one uses continuity to describe the class of functions that satisfy a certain property (here, $f(x)=f\left(x^{2}\right)$) : first, try to understand what kind of information that property yields (here, it yields sequences $\left(x_{n}\right),\left(y_{n}\right)$ converging to 0,1 and such that $f\left(x_{n}\right), f\left(y_{n}\right)$ are constant). Then use this, added to continuity, to obtain additional information on what the function looks like (here, it is constant).
2. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $f \circ f=f(*)$. Set

$$
E_{f}=\{x \in[0,1]: f(x)=x\} .
$$

Show that E_{f} is nonempty, then that it is an interval.
Hint : what is the link between E_{f} and $f([0,1])$?
Can you describe (accurately and using as few words as possible) the functions that satisfy ($*$)?
Correction. Following the hint, let us prove that $E_{f}=f([0,1])$. Pick $x \in E_{f}$; then $x=f(x)$, so $x \in f([0,1])$, and this proves that $E_{f} \subset f([0,1])$. Conversely, pick $x \in f([0,1]$, i.e $x=f(y)$ for some $y \in[0,1]$. Then $f(x)=f(f(y))=f(y)=x$ by the assumption $(*)$; this means that $f([0,1]) \subset E_{f}$. Both inclusions mean that $f([0,1])=E_{f}$. Since f is continuous, the image of $[0,1]$ is a closed bounded interval, hence E_{f} is a closed bounded interval $[a, b]$, with $0 \leq a \leq b \leq 1$. This means that f is a continuous mapping such that :

- f maps $[0, a]$ to $[a, b]$, and $f(a)=a$;
- f maps $[b, 1]$ to $[a, b]$, and $f(b)=b$;
- for all $x \in[a, b]$ one has $f(x)=x$.

Conversely, if f satisfies the three conditions above for some $a \leq b \in[0,1]$, then f satisfies ($*$), so we have given a description of these functions.
3. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ x^{2} \sin \left(\frac{1}{x}\right) & \text { else }\end{array}\right.$. Prove that f is continuous, and even differentiable, on \mathbb{R}, but that f^{\prime} is not continuous at 0 .
(b) Is it true that any function satisfying the conclusion of the intermediate value theorem must be continuous? Correction. To see that f is continuous, see the preceding homework $(f(x)=x g(x)$, where g is a function that we proved continuous in HW 10 ; anyway, continuity is implied by differentiability, which we establish below). It is clear that f is differentiable both on $(-\infty, 0)$ and on $(0,+\infty)$ and that on these intervals one has $f^{\prime}(x)=x \sin \left(\frac{1}{x}\right)-\sin \left(\frac{1}{x}\right)$. Thus we see that f^{\prime} doesn't have a limit at 0 , for instance because $f^{\prime}\left(\frac{1}{2 \pi n}\right)=0$ and $f\left(\frac{1}{2 \pi n+\pi / 2}\right)=\frac{1}{2 \pi n+\pi / 2}-1$, which converges to -1 . Hence, there are two sequences $\left(x_{n}\right),\left(y_{n}\right)$ which both converge to 0 but are such that $f\left(x_{n}\right), f\left(y_{n}\right)$ converge to different limits, and this means that f^{\prime} doesn't have a limit at 0 . You would probably expect it to mean that f^{\prime} doesn't exist at 0 ; this is not the case, however, as we will see shortly. All it means is that even if f^{\prime} exists at 0 it won't be continuous at that point.
To check that $f^{\prime}(0)$ exists, one simply comes back to the definition and writes $\frac{f(x)-f(0)}{x-0}=x \sin \left(\frac{1}{x}\right)$, which converges to 0 at $x=0$ (see last week's homework). Thus $f^{\prime}(0)$ exists and is equal to 0 .
(b) By the theorem of Darboux all derivatives satisfy the conclusion of the intermediate value theorem; since the function above is a derivative and is not continuous, we see that it is not true that any function satisfying the conclusion of the intermediate value theorem must be continuous.
4. Determine $a, b \in \mathbb{R}$ such that the function $f:[0,+\infty) \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}\sqrt{x} & \text { if } 0 \leq x \leq 1 \\ a x^{2}+b x+1 & \text { else }\end{cases}$ is differentiable on $(0,+\infty)$.
Correction. First, notice that f is differentiable on $[0,1)$ and $(1,+\infty)$, and that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ on $(0,1)$, $f^{\prime}(x)=2 a x+b$ on $(0,1)$. So the only problem is at $x=1$. First we need to ensure that f is continuous; for that it needs to satisfy $\lim _{x \rightarrow 1} f(x)=f(1)$. This implies that $a+b+1=1$, in other words $a+b=0$ (to see that, we equate the left-hand and right-hand limits of f at 1). Conversely, if $a+b=0$, then one sees that f is continuous at 1 . Now we need it to be differentiable at 1 ; for this, one must have $a+b=0$, and $\frac{f(x)-f(1)}{x-1}$ must have a limit at 1 . If $x<1$, then the mean value theorem gives us $\frac{f(x)-f(1)}{x-1}=f^{\prime}(c)=\frac{1}{2 \sqrt{c}}$ for some $c \in(x, 1)$, so we see that the left-hand limit of $\frac{f(x)-f(1)}{x-1}$ is $\frac{1}{2}$. Using the same method, we see that the right hand-limit of $\frac{f(x)-f(1)}{x-1}$ at 1 is $2 a+b$, thus these two limits are equal if and only if $2 a+b=\frac{1}{2}$. Hence f is differentiable at 1 if, and only if, $a+b=0$ and $2 a+b=\frac{1}{2}$; this is equivalent to $a=\frac{1}{2}$ and $b=-\frac{1}{2}$.
Remark. In this exercise we used the important fact that a function f has a limit at a point $x \in \mathbb{R}$ if, and only if, it has both a left-hand limit and a right-hand limit at x and they are equal.
5. Show that a polynomial function of the form $f(x)=x^{n}+a x+b$ has at most three distinct real roots (here a, b are reals, and n is a natural integer).
Hint: How many zeros can f^{\prime} have? What must happen to f^{\prime} between any two zeros of f ?
Correction. Between any two zeros of f there must be a zero of f^{\prime}, because of Rolle's theorem. This means that if f^{\prime} doesn't have many zeros then f cannot have many zeros either. Here $f^{\prime}(x)=n x^{n-1}+a$, so $f^{\prime}(x)=0 \Leftrightarrow x^{n-1}=-\frac{a}{n}$, and this has at most two solutions. Thus $f(x)=0$ cannot have four distinct real roots or more : if $a_{1}<a_{2}<a_{3}<a_{4}$ were distinct roots then there would have to be $b_{1} \in\left(a_{1}, a_{2}\right)$ such that $f^{\prime}\left(b_{1}\right)=0, b_{2} \in\left(a_{2}, a_{3}\right)$ such that $f^{\prime}\left(b_{2}\right)=0$, and $b_{3} \in\left(a_{3}, a_{4}\right)$ such that $f^{\prime}\left(b_{3}\right)=0$. Thus b_{1}, b_{2}, b_{3} would be three distinct solutions of the equation $f^{\prime}(x)=0$, and we saw that this is impossible.
6. Pick a function $f: \mathbb{R}^{+}=[0,+\infty) \rightarrow \mathbb{R}$, and $l \in \mathbb{R}$. One says that f has limit l at $+\infty$, and one writes $\lim _{x \rightarrow+\infty} f(x)=l$, if for any $\varepsilon>0$ there exists $M \in \mathbb{R}^{+}$such that $x \geq M \Rightarrow|f(x)-l| \leq \varepsilon$.
(a) Show that, for any continuous function f, one has the following implication : if $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ has a limit at $+\infty$ then f is bounded on \mathbb{R}^{+}. What is the converse of this assertion? Is it true?
(b) Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be such that $f(0)=1$ and $\lim _{x \rightarrow+\infty} f(x)=0$. Show that f admits a global maximum on \mathbb{R}^{+}. Must it also admit a global minimum on \mathbb{R}^{+}?
(c) Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be differentiable on \mathbb{R}^{+}, and suppose that $\lim _{x \rightarrow+\infty} f^{\prime}(x)=l$, where l is some real number.

Using the mean value theorem, show that $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=l$.
Hint : First prove that for any $\varepsilon>0$, there exists $a>0$ such that for any $x>a$ one has $\left|\frac{f(x)-f(a)}{x-a}-l\right| \leq \varepsilon$. How can you prove this? Why does this help?
Correction. (a) Call l the limit of f at $+\infty$. Then there exists M such that $x \geq M \Rightarrow l-1 \leq f(x) \leq l+1$. We also know that, since f is continuous on $[0, M]$ it is bounded on this interval (which is closed and bounded), which means that there exist A, B such that $A \leq f(x) \leq B$ for all $x \in[0, M]$. Define now $C=\min (A, l-1)$ and $D=\max (B, l+1)$: then $C \leq f(x) \leq D$ for all $x \in \mathbb{R}^{+}$.
The converse of the assertion would be : "any continuous bounded function on \mathbb{R}^{+}has a limit at $+\infty$ "; it is not true, as $f(x)=\sin (x)$ shows. Indeed, this function if bounded but doesn't have a limit at $+\infty$ (to see it, simply notice that $f(2 \pi n)=0$ and $f\left(2 \pi n+\frac{\pi}{2}\right)=1$ for all $\left.n \in \mathbb{N}\right)$.
(b) Let us apply the same reasoning as in the preceding question : this time $l=0$, and $B \geq 1=l+1$, so the reasoning before shows that $f(x) \leq B$ for all $x \in \mathbb{R}$. But B is defined as being the supremum of f over the closed bounded interval $[0, M]$, so it is actually the maximum of f on that interval, hence there exists $c \in[0, M]$ such that $f(c)=B$. We then have $f(c) \geq f(x)$ for all $x \in \mathbb{R}^{+}$, and this proves that f admits a global maximum on \mathbb{R}^{+}.
The idea here is that, since "at $+\infty$ " f is below some value (here $f(0)$) the supremum of $f\left(\mathbb{R}^{+}\right)$cannot be "attained at $+\infty$ ", hence it is actually the supremum of f on a closed bounded interval, hence it is actually a maximum.
In general, f doesn't have a global minimum on \mathbb{R}^{+}; to see this, simply consider the function $f(x)=\frac{1}{x+1}$: $f([0,+\infty))=(0,1]$, hence the infimum of f on $[0,+\infty)(0)$ is not a minimum.
(c) Following the hint, begin by picking $\varepsilon>0$ and find a such that $x \geq a \Rightarrow\left|f^{\prime}(x)-l\right| \leq \varepsilon$. Then pick $x>a$; by the mean value theorem applied to f on $[a, x]$, there exists $c \in(a, x)$ such that $\frac{f x)-f(a)}{x-a}=f^{\prime}(c)$. We thus obtain that $\left|\frac{f(x)-f(a)}{x-a}-l\right| \leq \varepsilon$ for all $x>a$. One has $\frac{f(x)-f(a)}{x-a}=\frac{f(x)}{x-a}-\frac{f(a)}{x-a}$. If $M \geq a$ is big enough, one has $x \geq M \Rightarrow \frac{f(a)}{x-a} \leq \varepsilon$; thus, $x \geq M \rightarrow\left|\frac{f(x)}{x-a}-l\right| \leq 2 \varepsilon$. We want to have $\frac{f(x)}{x}$ instead of $\frac{f(x)}{x-a}$. Notice that

$$
\frac{f(x)}{x-a}=\frac{f(x)}{x} \frac{x}{x-a}=\frac{f(x)}{x}+a \frac{f(x)}{x(x-a)} .
$$

Hence (for all $x \geq M$)

$$
\left|\frac{f(x)}{x}-l\right| \leq\left|\frac{f(x)}{x-a}-l\right|+\frac{1}{x}\left|a \frac{f(x)}{x-a}\right| \leq 2 \varepsilon+\frac{1}{x}|a(l+2 \varepsilon)| .
$$

This enables us to see that there exists $M^{\prime} \geq M$ such that $x \geq M^{\prime} \Rightarrow\left|\frac{f(x)}{x}-l\right| \leq 3 \varepsilon$, and this concludes the proof.

