University of Illinois at Urbana-Champaign Fall 2006

Math 444 Group E13

Graded Homework XI.
Correction.

1. (a) Give an example of a function f: R — R which is not constant and satisfies f(x) = f(2?) for all z € R.
(b) Assume now that f is continuous at 0 and 1 and f(z) = f(2?) for all € R. Show that f must be constant.
Hint : assume that |x| < 1; then what is the limit of the sequence (z,,) defined by x; = x, x5 = 22, ..., 241 =
x2 ? How about the sequence (f(z,))? Can you use a similar idea when |z| > 17

Correction. (a) There are many possible examples, one of them being the function f defined by f(0) = 0,
and f(x) =1 for all z € R.

(b) Following the indication, pick first z € R such that |z| < 1. Then define a sequence (x.,,) by setting z; = x,
o = 2% ... 2,41 = 22, . ... Then this sequences converges to 0, and one has f(x,41) = f(22) = f(z,) for all
n € N; thus an easy induction proof yields f(xz,) = f(z) for all n € N. Since (z,,) is convergent to 0 and f is
continuous at 0, one must also have lim f(x,,) = f(0), hence we obtain f(z) = f(0) for all x € (—1,1).

Since f is assumed to be continuous at 1, we also obtain that f(1) = f(0). Pick now = € R such that > 1,
and define this time a sequence (y,) by setting y1 = z,y2 = \/Z, ... Yn41 = \/Un, - - .- Then one has y,, = y}/Qn,
and thus lim(y,,) = 1. Thus lim(f(y,)) = f(1) = f(0). But the sequence (y,,) was defined in such a way that
f(yn) = f(Y241) = f(yn+1) for all n € N, which again means that f(y,) = f(y1) = f(z) for all n € N. Putting
the pieces together, we obtain f(z) = f(0) for all > 1. Since f is clearly an even function (i.e f(z) = f(—=x),
because f(x) = f(2%) = f((—z)?)) this also implies that f(z) = f(0) for all z < —1. We have finally managed
to prove that f(z) = f(0) for all z € R, in other words f is constant on R.

Remark. This proof is typical of how one uses continuity to describe the class of functions that satisfy a certain
property (here, f(x) = f(2?)) : first, try to understand what kind of information that property yields (here, it
yields sequences (z,,), (yn) converging to 0, 1 and such that f(x,), f(y.) are constant). Then use this, added
to continuity, to obtain additional information on what the function looks like (here, it is constant).

2. Let f:[0,1] — [0, 1] be a continuous function such that fo f = f (x). Set
Ey ={x€0,1]: f(z) =z} .

Show that E; is nonempty, then that it is an interval.

Hint : what is the link between E; and f([0,1])?

Can you describe (accurately and using as few words as possible) the functions that satisfy (x)?
Correction. Following the hint, let us prove that Ey = f([0,1]). Pick = € Ey; then z = f(x), so z € f([0,1]),
and this proves that E; C f([0,1]). Conversely, pick z € f([0,1], i.e z = f(y) for some y € [0,1]. Then
f(z) = f(f(y)) = f(y) = = by the assumption (x); this means that f([0,1]) C Ey. Both inclusions mean that
f([0,1]) = Ey. Since f is continuous, the image of [0,1] is a closed bounded interval, hence E; is a closed
bounded interval [a,b], with 0 < a < b < 1. This means that f is a continuous mapping such that :

e f maps [0, a] to [a,b], and f(a) = a;

e f maps [b,1] to [a,b], and f(b) =b;

o for all € [a,b] one has f(z) = .

Conversely, if f satisfies the three conditions above for some a < b € [0, 1], then f satisfies (%), so we have
given a description of these functions.
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3. (a) Let f: R — R be defined by f(z) = { . Prove that f is continuous, and even

differentiable, on R, but that f’ is not continuous at 0.



(b) Is it true that any function satisfying the conclusion of the intermediate value theorem must be continuous ?
Correction. To see that f is continuous, see the preceding homework (f(z) = zg(z), where g is a function
that we proved continuous in HW 10; anyway, continuity is implied by differentiability, which we establish
below). It is clear that f is differentiable both on (—o0,0) and on (0, +00) and that on these intervals one has
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f(z)= xsin(;) - sin(;). Thus we see that f’ doesn’t have a limit at 0, for instance because f/(ﬂ) =0 and
T
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f(27rn+7r/2) - 2mn + /2

converge to 0 but are such that f(x,), f(y,) converge to different limits, and this means that f’ doesn’t have
a limit at 0. You would probably expect it to mean that f’ doesn’t exist at 0; this is not the case, however, as
we will see shortly. All it means is that even if f’ exists at 0 it won’t be continuous at that point.
f(@) - £(0)

z—0
converges to 0 at = 0 (see last week’s homework). Thus f’(0) exists and is equal to 0.
(b) By the theorem of Darboux all derivatives satisfy the conclusion of the intermediate value theorem ; since
the function above is a derivative and is not continuous, we see that it is not true that any function satisfying
the conclusion of the intermediate value theorem must be continuous.

— 1, which converges to —1. Hence, there are two sequences (z,,), (y,) which both

1
To check that f’(0) exists, one simply comes back to the definition and writes = zsin(—), which
x

4. Determine a,b € R such that the function f: [0,4+00) — R defined by f(x) = {\/52 f0szsl
ar® +bxr+1 else

is differentiable on (0, 4-00).

Correction. First, notice that f is differentiable on [0,1) and (1,+o00), and that f/'(z) = 2\1/5 on (0,1),

f/(x) = 2ax 4+ b on (0,1). So the only problem is at = 1. First we need to ensure that f is continuous; for

that it needs to satisfy liml f(z) = f(1). This implies that a + b+ 1 = 1, in other words a + b = 0 (to see

that, we equate the left-hand and right-hand limits of f at 1). Conversely, if a + b = 0, then one sees that f is
continuous at 1. Now we need it to be differentiable at 1 ; for this, one must have a+b = 0, and % must

have a limit at 1. If z < 1, then the mean value theorem gives us L2=S0 — f/(¢) = 2%% for some ¢ € (z,1),

so we see that the left-hand limit of W is % Using the same method, we see that the right hand-limit
of Ll(l) at 11is 2a + b, thus these two limits are equal if and only if 2a + b = % Hence f is differentiable

-
at 1if, and only if, a+b=0 and 2a + b = % ; this is equivalent to a = % and b = —%.
Remark. In this exercise we used the important fact that a function f has a limit at a point « € R if, and only

if, it has both a left-hand limit and a right-hand limit at = and they are equal.

5. Show that a polynomial function of the form f(x) = 2™ + ax + b has at most three distinct real roots (here
a,b are reals, and n is a natural integer).

Hint : How many zeros can f’ have? What must happen to f’ between any two zeros of f?

Correction. Between any two zeros of f there must be a zero of f/, because of Rolle’s theorem. This means
that if f/ doesn’t have many zeros then f cannot have many zeros either. Here f'(z) = na"~! + a, so

a
f'(x) =0 2" ! = —— and this has at most two solutions. Thus f(x) = 0 cannot have four distinct real
n

roots or more : if a1 < as < ag < a4 were distinct roots then there would have to be b1 € (a1, a2) such that
f/(bl) =0, by € (a27a3) such that f/(bg) =0, and b € (ag,a4) such that f/(bg) = 0. Thus bl, bg, b3 would be
three distinct solutions of the equation f’(x) = 0, and we saw that this is impossible.

6. Pick a function f: Rt = [0,+00) — R, and I € R. One says that f has limit | at +oo, and one writes
lirf f(x) =1, if for any € > 0 there exists M € RT such that z > M = |f(z) — | <e.

(a) Show that, for any continuous function f, one has the following implication : if f: RT — R has a limit at
+oo then f is bounded on R*. What is the converse of this assertion ? Is it true?
(b) Let f: Rt — R be such that f(0) =1 and lirf f(z) = 0. Show that f admits a global maximum on R™.

Must it also admit a global minimum on R ?
(c) Let f: RT — R be differentiable on R*, and suppose that hT f'(x) =1, where [ is some real number.
Tr— 100



Using the mean value theorem, show that lim ——= =1I.
r—+oo I

f(x) = f(a)

Tr—a

Hint : First prove that for any € > 0, there exists a > 0 such that for any > a one has

l’gs.

How can you prove this? Why does this help ?

Correction. (a) Call [ the limit of f at +00. Then there exists M such that + > M = 1—1 < f(z) <I1+1. We
also know that, since f is continuous on [0, M] it is bounded on this interval (which is closed and bounded),
which means that there exist A, B such that A < f(z) < B for all x € [0, M]. Define now C' = min(A4,! — 1)
and D = max(B,l+ 1) : then C < f(x) < D for all z € RT.

The converse of the assertion would be : "any continuous bounded function on R™ has a limit at +oo"; it is
not true, as f(z) = sin(z) shows. Indeed, this function if bounded but doesn’t have a limit at +oo (to see it,

simply notice that f(27n) =0 and f(27n + g) =1 for all n € N).

(b) Let us apply the same reasoning as in the preceding question : this time | = 0, and B > 1 =1+ 1, so
the reasoning before shows that f(xz) < B for all z € R. But B is defined as being the supremum of f over
the closed bounded interval [0, M], so it is actually the maximum of f on that interval, hence there exists
¢ € 0, M] such that f(c) = B. We then have f(c) > f(x) for all z € R*, and this proves that f admits a
global maximum on RT.

The idea here is that, since "at +oo" f is below some value (here f(0)) the supremum of f(RT) cannot be
"attained at +00", hence it is actually the supremum of f on a closed bounded interval, hence it is actually a
maximum.
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In general, f doesn’t have a global minimum on R™ ; to see this, simply consider the function f(x) = ) :
x
f(]0, +00)) = (0, 1], hence the infimum of f on [0, 4+00) (0) is not a minimum.

(c) Following the hint, begin by picking ¢ > 0 and find a such that z > a = |f'(z) — I| < e. Then pick = > a;
by the mean value theorem applied to f on [a,z], there exists ¢ € (a,z) such that W = f'(c). We thus
obtain that |w — 1| < e for all x > a. One has w = f@) _ S 1f M > g is big enough, one has
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x> M= fgz <e;thus, z > M — |% — l| < 2e. We want to have @ instead of % Notice that
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Hence (for all © > M)
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This enables us to see that there exists M’ > M such that x > M’ = |@ — l| < 3e, and this concludes the
proof.



