Graded Homework IV

Due Friday, October 6.

1. Compute, if they exist, $\sup(A)$ and $\inf(A)$ in the following cases. In each case, state whether A admits a maximal element, and do the same for minimal elements.

$$A = \{\frac{n - \frac{1}{n}}{n + \frac{1}{n}} \colon n \in \mathbb{N}\}\,;\, A = \{\frac{p}{pq + 1} \colon q, p \in \mathbb{N}\}.$$

- 2. Consider the set A of all $x \in \mathbb{R}$ such that there exist two natural integers p,q satisfying p < q and $x=\frac{2p^2-3q}{p^2+q}.$ (a) Prove that -3 is a lower bound of A, and 2 is an upper bound.
- (b) Compute $\inf(A)$ and $\sup(A)$ (for $\sup(A)$, look at what happens when q = p + 1, divide by p and try to use the Archimedean property of the reals)
- 3 (a). Prove that, for any $x \in \mathbb{R}$, $E(x) = \sup(\{n \in \mathbb{Z} : n \le x\})$ exists, and that it is the unique integer n such that $n \le x < n+1$ (we more or less saw this in class). Use this characterization of E(x) to solve the questions (b), (c), (d) and (e) below.
- (b) Show that, for all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$, one has E(x+n) = E(x) + n.
- (c) Prove that, for all $x, y \in \mathbb{R}$ one has $E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1$. (d) Given $x \in \mathbb{R}$, what is the value of E(x) + E(-x)? (Hint: distinguish the cases $x \in \mathbb{Z}$ and $x \notin \mathbb{Z}$).
- (e) Show that, for all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$, one has $E(x) = E(\frac{E(nx)}{n})$.
- 4. Let $\{a_i: i \in \mathbb{N}\}$ and $\{b_i: i \in \mathbb{N}\}$ be two bounded countable subsets of \mathbb{R} . Prove that $\{|a_i - b_i| : i \in \mathbb{N}\}\$ is bounded, and that $|\sup(a_i) - \sup(b_i)| \le \sup(|a_i - b_i|)$.