Graded Homework IV

Due Friday, October 6.

1. Compute, if they exist, $\sup (A)$ and $\inf (A)$ in the following cases. In each case, state whether A admits a maximal element, and do the same for minimal elements.
$A=\left\{\frac{n-\frac{1}{n}}{n+\frac{1}{n}}: n \in \mathbb{N}\right\} ; A=\left\{\frac{p}{p q+1}: q, p \in \mathbb{N}\right\}$.
2. Consider the set A of all $x \in \mathbb{R}$ such that there exist two natural integers p, q satisfying $p<q$ and $x=\frac{2 p^{2}-3 q}{p^{2}+q}$.
(a) Prove that -3 is a lower bound of A, and 2 is an upper bound.
(b) Compute $\inf (A)$ and $\sup (A)$ (for $\sup (A)$, look at what happens when $q=p+1$, divide by p and try to use the Archimedean property of the reals)

3 (a). Prove that, for any $x \in \mathbb{R}, E(x)=\sup (\{n \in \mathbb{Z}: n \leq x\})$ exists, and that it is the unique integer n such that $n \leq x<n+1$ (we more or less saw this in class). Use this characterization of $E(x)$ to solve the questions (b), (c), (d) and (e) below.
(b) Show that, for all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$, one has $E(x+n)=E(x)+n$.
(c) Prove that, for all $x, y \in \mathbb{R}$ one has $E(x)+E(y) \leq E(x+y) \leq E(x)+E(y)+1$.
(d) Given $x \in \mathbb{R}$, what is the value of $E(x)+E(-x)$? (Hint : distinguish the cases $x \in \mathbb{Z}$ and $x \notin \mathbb{Z}$).
(e) Show that, for all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$, one has $E(x)=E\left(\frac{E(n x)}{n}\right)$.
4. Let $\left\{a_{i}: i \in \mathbb{N}\right\}$ and $\left\{b_{i}: i \in \mathbb{N}\right\}$ be two bounded countable subsets of \mathbb{R}.

Prove that $\left\{\left|a_{i}-b_{i}\right|: i \in \mathbb{N}\right\}$ is bounded, and that $\left|\sup \left(a_{i}\right)-\sup \left(b_{i}\right)\right| \leq \sup \left(\left|a_{i}-b_{i}\right|\right)$.

