Graded Homework IV

Correction.

1. Compute, if they exist, $\sup (A)$ and $\inf (A)$ in the following cases. In each case, state whether A admits a maximal element, and do the same for minimal elements.
$A=\left\{\frac{n-\frac{1}{n}}{n+\frac{1}{n}}: n \in \mathbb{N}\right\} ; A=\left\{\frac{p}{p q+1}: q, p \in \mathbb{N}\right\}$.
Correction. In the first case, we have, for all $x \in A$, that $x=\frac{n-\frac{1}{n}}{n+\frac{1}{n}}=\frac{n^{2}-1}{n^{2}+1}$ for some $n \in \mathbb{N}$. From this, we see that $0 \leq x \leq 1$ for all $x \in A$, so A is bounded. Furthermore, $0 \stackrel{n}{\in} A$, so since 0 is a lower bound of A we have $0=\inf (A)$ and 0 is the minimal element of A. Notice that, for all $n \in \mathbb{N}$, one has $\frac{n^{2}-1}{n^{2}+1}=1-\frac{2}{n^{2}+1}$. Since $\frac{2}{n^{2}+1} \leq \frac{2}{n^{2}} \leq \frac{1}{n}$ for all $n \geq 2$, we know, by the archimedean property of the reals, that for all $\varepsilon>0$ there is $x \in A$ such that $1-\varepsilon<x$; therefore, $1=\sup (A)$. Since $1 \notin A, A$ does not have a maximal element. In the second case, we have, for all $p, q \in \mathbb{N}$, that $0<\frac{p}{p q+1}<1$. Thus A is bounded. Furthermore, letting $p=1$, we see that $\frac{1}{q+1} \in A$ for all $q \in N$, so the archimedean property of the reals implies that for any $\varepsilon>0$ there exists $a \in A$ such that $a<\varepsilon$; since 0 is a lower bound of A, this proves that $0=\inf (A)$ and that A doesn't have a minimal element. Similarly, letting $q=1$, we see that $\frac{p}{p+1}=1-\frac{1}{p+1} \in A$ for all $p \in \mathbb{N}$, so the same reasoning as above proves that $1=\sup (A)$, and A doesn't have a maximal element.
2. Consider the set A of all $x \in \mathbb{R}$ such that there exist two natural integers p, q satisfying $p<q$ and $x=\frac{2 p^{2}-3 q}{p^{2}+q}$.
(a) Prove that -3 is a lower bound of A, and 2 is an upper bound.
(b) $\operatorname{Compute} \inf (A)$ and $\sup (A)$

Correction. One has $\frac{2 p^{2}-3 q}{p^{2}+q}=\frac{2\left(p^{2}+q\right)-5 q}{p^{2}+q}=2-\frac{5 q}{p^{2}+q}$. This shows that $2 \geq \frac{2 p^{2}-3 q}{p^{2}+q}$ for all $p, q \in \mathbb{N}$, in other words it proves that 2 is an upper bound of A. Similarly, one has $\frac{2 p^{2}-3 q}{p^{2}+q}=-3+\frac{5 p^{2}}{p^{2}+q} \geq-3$, so -3 is a lower bound of A.
(b) Letting $p=1$, we see that, for all $q>1,-3+\frac{5}{q+1} \in A$. Since the archimedean property of \mathbb{R} implies that for all $\varepsilon>0$ there exists q such that $\frac{5}{q+1}<\varepsilon$, we see that for all $\varepsilon>0$ there exists q such that $-3+\frac{5}{q+1}<-3+\varepsilon$, in other words $a \in A$ such that $a<-3+\varepsilon$. Since we already saw that -3 is a lower bound of A, this implies that $-3=\inf (A)$.
Similarly, set $q=p+1$; we then see that, for any $p \in \mathbb{N}, 2-\frac{5(p+1)}{p^{2}+p+1}=2-5 \frac{1+\frac{1}{p}}{p+1+\frac{1}{p}} \in A$. Since $5 \frac{1+\frac{1}{p}}{p+1+\frac{1}{p}} \leq \frac{10}{p}$ for all $p \in \mathbb{N}$, the archimedean property of the reals is again enough to ensure that, for any $\varepsilon>0$, there exists $a \in A$ such that $a \geq 2-\varepsilon$; since 2 is an upper bound of A, this means that $2=\sup (A)$. 3 (a). Prove that, for any $x \in \mathbb{R}, E(x)=\sup (\{n \in \mathbb{Z}: n \leq x\})$ exists, and that it is the unique integer n such
that $n \leq x<n+1$ (we more or less saw this in class). Use this characterization of $E(x)$ to solve the questions (b), (c), (d) and (e) below.
(b) Show that, for all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$, one has $E(x+n)=E(x)+n$.
(c) Prove that, for all $x, y \in \mathbb{R}$ one has $E(x)+E(y) \leq E(x+y) \leq E(x)+E(y)+1$.
(d) Given $x \in \mathbb{R}$, what is the value of $E(x)+E(-x)$? (Hint : distinguish the cases $x \in \mathbb{Z}$ and $x \notin \mathbb{Z}$).
(e) Show that, for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$, one has $E(x)=E\left(\frac{E(n x)}{n}\right)$.

Correction. (a) The set $\{n \in \mathbb{Z}: n \leq x\}$ is bounded above by x, so it admits a least upper bound, which, as indicated, we denote by $E(x)$. Furthermore, by definition of the least upper bound we know that for any $\varepsilon>0$ there is $n_{\varepsilon} \in \mathbb{Z}$ such that $n_{\varepsilon} \leq x$ and $E(x)-\varepsilon \leq n_{\varepsilon} \leq E(x)$ (1). This means that, for any $\varepsilon, \varepsilon^{\prime}>0$ we have $\left|n_{\varepsilon}-n_{\varepsilon^{\prime}}\right| \leq \varepsilon+\varepsilon^{\prime}$. Thus, as soon as $\varepsilon<\frac{1}{2}$ and $\varepsilon^{\prime}<\frac{1}{2}$, one has $\left|n_{\varepsilon}-n_{\varepsilon^{\prime}}\right|<1$; since $n_{\varepsilon}-n_{\varepsilon^{\prime}} \in \mathbb{Z}$, this means that $n_{\varepsilon}-n_{\varepsilon^{\prime}}=0$, in other words that $n_{\varepsilon}=n_{\varepsilon^{\prime}}=n$. Then (1) yields $|n-E(x)| \leq \varepsilon$ for all $\varepsilon>0$, so $E(x)=n$. We finally proved that $E(x) \in \mathbb{Z}$. Since x is an upper bound of the set $\{n \in \mathbb{Z}: n \leq x\}$, we have $E(x) \leq x$ by definition of the least upper bound. Also, if we had $E(x)+1 \leq x$, then we would have $E(x)+1 \in\{n \in Z: n \leq x\}$; since $E(x)=\sup \{n \in Z: n \leq x\}$, and $E(x)+1>E(x)$, this is impossible. This means that we indeed have $E(x) \leq x<E(x)+1$. Assume that another integer n has this property; then we have both $n \leq x<E(x)+1$, and $E(x) \leq x<n+1$, so that $n<E(x)+1$ and $E(x)<n+1$, in other words $|n-E(x)|<1$, so that $n=E(x): E(x)$ indeed is the unique integer such that $E(x) \leq x<x+1$.
(b) Let $n \in \mathbb{Z}$; by definition of $E(x)$, one has $E(x) \leq x<E(x)+1$, so that $E(x)+n \leq x+n<(E(x)+n)+1$; since $E(x)+n$ is an integer, the characterization obtained in question (a) enables us to conclude that $E(x+n)=E(x)+n$.
(c) One has $E(x) \leq x<E(x)+1$ and $E(y) \leq y<E(y)+1$. This implies that $E(x)+E(y) \leq x+y<$ $E(x)+E(y)+2$. The left-hand part of the inequality implies that $E(x)+E(y)$ is an integer which is smaller than $x+y$, so $E(x)+E(y) \leq E(x+y)$; the right-hand part of the inequality means that $E(x)+E(y)+2>x+y$, so that $E(x+y)<E(x)+E(y)+2$; since these are integers, this may be rewritten as $E(x+y) \leq E(x)+E(y)+1$. (d) If $x \in \mathbb{Z}$, then one has $E(x)=x$, because x is such that $x \leq x<x+1$. For the same reason, $E(-x)=-x$, so in that case we have $E(x)+E(-x)=0$. If $x \notin \mathbb{Z}$, then one has $E(x)<x<E(x)+1$, so $-E(x)-1<-x<-E(-x)$; this implies that $E(-x)=-E(x)-1$, so in that case we get $E(x)+E(-x)=-1$. (e) For all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$, one has $n E(x) \leq n x$, which implies that $n E(x) \leq E(n x)$ (because $E(n x)$ is the largest integer smaller that x). So, we have $n E(x) \leq E(n x) \leq n x$. Dividing by n, we obtain that $E(x) \leq \frac{E(n x)}{n} \leq x$. Since $x<E(x)+1$, we finally obtain $E(x) \leq \frac{E(n x)}{n}<E(x)+1$, and this means that $E\left(\frac{E(n x)}{n}\right)=E(x)$.
4. Let $\left\{a_{i}: i \in \mathbb{N}\right\}$ and $\left\{b_{i}: i \in \mathbb{N}\right\}$ be two bounded countable subsets of \mathbb{R}.

Prove that $\left\{\left|a_{i}-b_{i}\right|: i \in \mathbb{N}\right\}$ is bounded, and that $\left|\sup \left(a_{i}\right)-\sup \left(b_{i}\right)\right| \leq \sup \left(\left|a_{i}-b_{i}\right|\right)$.
Correction. For all $i \in \mathbb{N}$ one has $0 \leq\left|a_{i}-b_{i}\right| \leq\left|a_{i}\right|+\left|b_{i}\right| \leq \sup \left|a_{i}\right|: i \in \mathbb{N}+\sup \left\{\left|b_{i}\right|: i \in \mathbb{N}\right\}$ (the two suprema on the right exist because of the assumption stating that $\left\{a_{i}: i \in \mathbb{N}\right\}$ and $\left\{b_{i}: i \in \mathbb{N}\right\}$ are bounded). Thus 0 is a lower bound of $\left\{\left|a_{i}-b_{i}\right|: i \in \mathbb{N}\right\}$, and $\sup \left|a_{i}\right|: i \in \mathbb{N}+\sup \left\{\left|b_{i}\right|: i \in \mathbb{N}\right\}$ is an upper bound, which shows that this set is bounded.
To prove the inequality, pick some $\varepsilon>0$; there exists $j \in \mathbb{N}$ such that $a_{j} \geq \sup \left(a_{i}\right)-\varepsilon$. We then have $\sup \left(a_{i}\right)-\sup \left(b_{i}\right) \leq a_{j}-\sup \left(b_{i}\right)+\varepsilon ;$ since $\sup \left(b_{i}\right) \geq b_{j}$, we see that $\sup \left(a_{i}\right)-\sup \left(b_{i}\right) \leq a_{j}-b_{j}+\varepsilon \leq$ $\left|a_{j}-b_{j}\right|+\varepsilon$. This implies that $\sup \left(a_{i}\right)-\sup \left(b_{i}\right) \leq \sup \left(\left|a_{i}-b_{i}\right|\right)+\varepsilon$; since this is true for all $\varepsilon>0$, we see that $\sup \left(a_{i}\right)-\sup \left(b_{i}\right) \leq \sup \left(\left|a_{i}-b_{i}\right|\right)$. Thus, we have proved that, for any two bounded countable subsets $A=\left\{a_{i}: i \in \mathbb{N}\right\}$ and $B=\left\{b_{i}: i \in \mathbb{N}\right\}$, one has $\sup \left(a_{i}\right)-\sup \left(b_{i}\right) \leq \sup \left(\left|a_{i}-b_{i}\right|\right)$. Applying this result to $A^{\prime}=B$ and $B^{\prime}=A$, we get $\sup \left(b_{i}\right)-\sup \left(a_{i}\right) \leq \sup \left(\left|b_{i}-a_{i}\right|\right)$. Putting these two inequalities together, we finally obtain that $\left|\sup \left(a_{i}\right)-\sup \left(b_{i}\right)\right| \leq \sup \left(\left|a_{i}-b_{i}\right|\right)$.

