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Graded Homework IV

Correction.

1. Compute, if they exist, sup(A) and inf(A) in the following cases. In each case, state whether A admits a
maximal element, and do the same for minimal elements.

A = {
n− 1

n

n + 1
n

: n ∈ N} ; A = { p

pq + 1
: q, p ∈ N}.

Correction. In the �rst case, we have, for all x ∈ A, that x =
n− 1

n

n + 1
n

=
n2 − 1
n2 + 1

for some n ∈ N. From this,

we see that 0 ≤ x ≤ 1 for all x ∈ A, so A is bounded. Furthermore, 0 ∈ A, so since 0 is a lower bound of A we

have 0 = inf(A) and 0 is the minimal element of A. Notice that, for all n ∈ N, one has
n2 − 1
n2 + 1

= 1− 2
n2 + 1

.

Since
2

n2 + 1
≤ 2

n2
≤ 1

n
for all n ≥ 2, we know, by the archimedean property of the reals, that for all ε > 0

there is x ∈ A such that 1− ε < x ; therefore, 1 = sup(A). Since 1 6∈ A, A does not have a maximal element.

In the second case, we have, for all p, q ∈ N, that 0 <
p

pq + 1
< 1. Thus A is bounded. Furthermore, letting

p = 1, we see that
1

q + 1
∈ A for all q ∈ N , so the archimedean property of the reals implies that for any ε > 0

there exists a ∈ A such that a < ε ; since 0 is a lower bound of A, this proves that 0 = inf(A) and that A

doesn't have a minimal element. Similarly, letting q = 1, we see that
p

p + 1
= 1− 1

p + 1
∈ A for all p ∈ N, so

the same reasoning as above proves that 1 = sup(A), and A doesn't have a maximal element.

2. Consider the set A of all x ∈ R such that there exist two natural integers p, q satisfying p < q and

x =
2p2 − 3q

p2 + q
.

(a) Prove that −3 is a lower bound of A, and 2 is an upper bound.
(b) Compute inf(A) and sup(A)

Correction. One has
2p2 − 3q

p2 + q
=

2(p2 + q)− 5q

p2 + q
= 2− 5q

p2 + q
. This shows that 2 ≥ 2p2 − 3q

p2 + q
for all p, q ∈ N,

in other words it proves that 2 is an upper bound of A. Similarly, one has
2p2 − 3q

p2 + q
= −3 +

5p2

p2 + q
≥ −3, so

−3 is a lower bound of A.

(b) Letting p = 1, we see that, for all q > 1, −3 +
5

q + 1
∈ A. Since the archimedean property of R implies

that for all ε > 0 there exists q such that
5

q + 1
< ε, we see that for all ε > 0 there exists q such that

−3 +
5

q + 1
< −3 + ε, in other words a ∈ A such that a < −3 + ε. Since we already saw that −3 is a lower

bound of A, this implies that −3 = inf(A).

Similarly, set q = p + 1 ; we then see that, for any p ∈ N, 2− 5(p + 1)
p2 + p + 1

= 2− 5
1 + 1

p

p + 1 + 1
p

∈ A. Since

5
1 + 1

p

p + 1 + 1
p

≤ 10
p

for all p ∈ N, the archimedean property of the reals is again enough to ensure that, for

any ε > 0, there exists a ∈ A such that a ≥ 2− ε ; since 2 is an upper bound of A, this means that 2 = sup(A).

3 (a). Prove that, for any x ∈ R, E(x) = sup({n ∈ Z : n ≤ x}) exists, and that it is the unique integer n such



that n ≤ x < n + 1 (we more or less saw this in class). Use this characterization of E(x) to solve the questions
(b), (c), (d) and (e) below.
(b) Show that, for all x ∈ R and all n ∈ Z, one has E(x + n) = E(x) + n.
(c) Prove that, for all x, y ∈ R one has E(x) + E(y) ≤ E(x + y) ≤ E(x) + E(y) + 1.
(d) Given x ∈ R, what is the value of E(x) + E(−x) ? (Hint : distinguish the cases x ∈ Z and x 6∈ Z).

(e) Show that, for all x ∈ R and all n ∈ N, one has E(x) = E(
E(nx)

n
).

Correction. (a) The set {n ∈ Z : n ≤ x} is bounded above by x, so it admits a least upper bound, which,
as indicated, we denote by E(x). Furthermore, by de�nition of the least upper bound we know that for any
ε > 0 there is nε ∈ Z such that nε ≤ x and E(x) − ε ≤ nε ≤ E(x) (1). This means that, for any ε, ε′ > 0

we have |nε − nε′ | ≤ ε + ε′. Thus, as soon as ε <
1
2
and ε′ <

1
2
, one has |nε − nε′ | < 1 ; since nε − nε′ ∈ Z,

this means that nε − nε′ = 0, in other words that nε = nε′ = n. Then (1) yields |n− E(x)| ≤ ε for all ε > 0,
so E(x) = n. We �nally proved that E(x) ∈ Z. Since x is an upper bound of the set {n ∈ Z : n ≤ x}, we
have E(x) ≤ x by de�nition of the least upper bound. Also, if we had E(x) + 1 ≤ x, then we would have
E(x) + 1 ∈ {n ∈ Z : n ≤ x} ; since E(x) = sup{n ∈ Z : n ≤ x}, and E(x) + 1 > E(x), this is impossible. This
means that we indeed have E(x) ≤ x < E(x) + 1. Assume that another integer n has this property ; then we
have both n ≤ x < E(x) + 1, and E(x) ≤ x < n + 1, so that n < E(x) + 1 and E(x) < n + 1, in other words
|n− E(x)| < 1, so that n = E(x) : E(x) indeed is the unique integer such that E(x) ≤ x < x + 1.
(b) Let n ∈ Z ; by de�nition of E(x), one has E(x) ≤ x < E(x)+1, so that E(x)+n ≤ x+n < (E(x)+n)+1 ;
since E(x) + n is an integer, the characterization obtained in question (a) enables us to conclude that
E(x + n) = E(x) + n.
(c) One has E(x) ≤ x < E(x) + 1 and E(y) ≤ y < E(y) + 1. This implies that E(x) + E(y) ≤ x + y <
E(x) + E(y) + 2. The left-hand part of the inequality implies that E(x) + E(y) is an integer which is smaller
than x+y, so E(x)+E(y) ≤ E(x+y) ; the right-hand part of the inequality means that E(x)+E(y)+2 > x+y,
so that E(x+y) < E(x)+E(y)+2 ; since these are integers, this may be rewritten as E(x+y) ≤ E(x)+E(y)+1.
(d) If x ∈ Z, then one has E(x) = x, because x is such that x ≤ x < x + 1. For the same reason,
E(−x) = −x, so in that case we have E(x) + E(−x) = 0. If x 6∈ Z, then one has E(x) < x < E(x) + 1, so
−E(x)−1 < −x < −E(−x) ; this implies that E(−x) = −E(x)−1, so in that case we get E(x)+E(−x) = −1.
(e) For all x ∈ R and all n ∈ N, one has nE(x) ≤ nx, which implies that nE(x) ≤ E(nx) (because E(nx)
is the largest integer smaller that x). So, we have nE(x) ≤ E(nx) ≤ nx. Dividing by n, we obtain that

E(x) ≤ E(nx)
n

≤ x. Since x < E(x) + 1, we �nally obtain E(x) ≤ E(nx)
n

< E(x) + 1, and this means that

E(
E(nx)

n
) = E(x).

4. Let {ai : i ∈ N} and {bi : i ∈ N} be two bounded countable subsets of R.
Prove that {|ai − bi| : i ∈ N} is bounded, and that | sup(ai)− sup(bi)| ≤ sup(|ai − bi|) .
Correction. For all i ∈ N one has 0 ≤ |ai − bi| ≤ |ai| + |bi| ≤ sup |ai| : i ∈ N + sup{|bi| : i ∈ N} (the two
suprema on the right exist because of the assumption stating that {ai : i ∈ N} and {bi : i ∈ N} are bounded).
Thus 0 is a lower bound of {|ai − bi| : i ∈ N}, and sup |ai| : i ∈ N + sup{|bi| : i ∈ N} is an upper bound, which
shows that this set is bounded.
To prove the inequality, pick some ε > 0 ; there exists j ∈ N such that aj ≥ sup(ai) − ε. We then have
sup(ai) − sup(bi) ≤ aj − sup(bi) + ε ; since sup(bi) ≥ bj , we see that sup(ai) − sup(bi) ≤ aj − bj + ε ≤
|aj − bj | + ε. This implies that sup(ai) − sup(bi) ≤ sup(|ai − bi|) + ε ; since this is true for all ε > 0, we see
that sup(ai) − sup(bi) ≤ sup(|ai − bi|). Thus, we have proved that, for any two bounded countable subsets
A = {ai : i ∈ N} and B = {bi : i ∈ N}, one has sup(ai) − sup(bi) ≤ sup(|ai − bi|) . Applying this result to
A′ = B and B′ = A, we get sup(bi) − sup(ai) ≤ sup(|bi − ai|) . Putting these two inequalities together, we
�nally obtain that | sup(ai)− sup(bi)| ≤ sup(|ai − bi|).


