Graded Homework VI

Due Friday, October 20.

1. Let A be a bounded subset of \mathbb{R}. Show that there exists a sequence $\left(a_{n}\right)$ of elements of A such that $\lim \left(a_{n}\right)=\sup (A)$.
Correction. We build by induction a sequence $\left(a_{n}\right)$ of elements of A such that $a_{n} \geq \sup (A)-\frac{1}{n}$ for all $n \in \mathbb{N}$. To see that we can do this, first pick for a_{1} any element in A such that $a_{1} \geq \sup (A)-1$. Then, assume that a_{1}, \ldots, a_{n} have been defined. By definition of $\sup (A)$, there is some $a \in A$ such that $\sup (A)-\frac{1}{n+1} \leq a$. Then, set $a_{n+1}=a$.
This shows that, using an inductive definition, we can indeed build a sequence a_{n} of elements of A such that $a_{n} \geq \sup (A)-\frac{1}{n} ;$ since $a_{n} \leq \sup (A)$ because $a_{n} \in A$, this implies that $\left|a_{n}-\sup (A)\right| \leq \frac{1}{n}$, and this inequality ensures that $\left(a_{n}\right)$ converges to $\sup (A)$.
2. Define, for $n \in \mathbb{N}, u_{n}=1+\frac{1}{2!}+\ldots \frac{1}{n!}$ and $v_{n}=u_{n}+\frac{1}{n \cdot n!}$.
(a) Show that $\left(u_{n}\right)$ is increasing, $\left(v_{n}\right)$ is decreasing, $u_{n} \leq v_{n}$ and $\lim \left(u_{n}-v_{n}\right)=0$.
(b) Prove that both sequences converge to the same limit (called e.).
(c) Show that, for any n, one has the inequality $u_{n}<e<u_{n}+\frac{1}{n \cdot n!}$.
(d) Use this to show that e is irrational.

Correction. $u_{n+1}-u_{n}=\frac{1}{(n+1)!}>0$, so $\left(u_{n}\right)$ is stricly increasing. To see that $\left(v_{n}\right)$ is decreasing, compute

$$
v_{n+1}-v_{n}=\frac{1}{(n+1)!}+\frac{1}{(n+1)(n+1)!}-\frac{1}{n \cdot n!}=\frac{n(n+1)+n-(n+1)^{2}}{n(n+1)(n+1)!}=\frac{-1}{n(n+1)(n+1)!}<0
$$

This proves that $\left(v_{n}\right)$ is strictly ecreasing; the fact that $u_{n} \leq v_{n}$ is a direct consequence of the definition of the two sequences, since $v_{n}-u_{n}=\frac{1}{n . n!} \geq 0$. As for $\lim \left(u_{n}-v_{n}\right)$, we have $0 \leq u_{n}-v_{n}=\frac{1}{n . n!} \leq \frac{1}{n}$, so the Squeeze Theorem (and the fact that the Archimedean property of the reals ensures that $\lim \frac{1}{n}=0$) yields $\lim \left(u_{n}-v_{n}\right)=0$.
(b) $\left(u_{n}\right)$ is increasing and is bounded above (any v_{m} is an upper bound of $\left\{u_{n}: n \in \mathbb{N}\right\}$), so $\left(u_{n}\right)$ is convergent. Similarly, $\left(v_{n}\right)$ is decreasing and bounded below, so it is convergent. We may then write that $\lim u_{n}-\lim v_{n}=$ $\lim \left(u_{n}-v_{n}\right)=0$ (proved in question (a)), so $\lim \left(u_{n}\right)=\lim \left(v_{n}\right)=e$.
(c) Recall that the limit of an increasing sequence $\left(u_{n}\right)$ (if it exists) is equal to $\sup \left(u_{n}\right)$, so $u_{n} \leq e$ for all n. To prove the strict inequality, notice that $u_{n}<u_{n+1} \leq e$, so that actually $u_{n}<e$ for all $n \in \mathbb{N}$. Similarly, v_{n} is strictly decreasing so $v_{n}>\lim v_{n}=e$. Put together, these two inequalities, yield $u_{n}<e<u_{n}+\frac{1}{n . n!}$.
(d) Assume that $e \in \mathbb{Q}$, that is $e=\frac{p}{q}$ for some $q \in \mathbb{Q}$. Then, using the inequality from question (c) with $n=q$, we get $q!u_{q}<q!e<q!u_{q}+\frac{1}{q}$. This means that $\left|q!u_{q}-q!e\right|<\frac{1}{q}$. Yet, $q!u_{q} \in \mathbb{N}$, and $q!e=p(q-1)!\in \mathbb{N}$. Thus, the only way for $\left|q!u_{q}-q!e\right|<\frac{1}{q}$ to be true is if $q!u_{q}=q!e$, and it's impossible since $q!u_{q}<q!e$ according to question (c).
3. Let $\left(u_{n}\right)$ be a sequence such that $\lim \left(u_{n}\right)=u \in \mathbb{R}$, and $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection (not necessarily increasing!). Show that $\lim \left(u_{\varphi(n)}\right)=u$.

Correction. Pick $\varepsilon>0$. Since $\lim \left(u_{n}\right)=u$, there exists $K(\varepsilon)$ such that $n \geq K(\varepsilon) \Rightarrow\left|u_{n}-u\right| \leq \varepsilon$. Thus, we only need to prove that there exists some $N(\varepsilon)$ such that $n \geq N(\varepsilon) \Rightarrow \varphi(n) \geq K(\varepsilon)$. This would be easy if φ was increasing $(N(\varepsilon)=K(\varepsilon)$ would work in that case). Here, one can notice that, since $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ is a surjection, there exist $n_{1}, \ldots, n_{K(\varepsilon)-1}$ such that $\varphi\left(n_{1}\right)=1, \ldots, \varphi\left(n_{K(\varepsilon)-1}\right)=K(\varepsilon)-1$. But then, since φ is injective, as soon as $n>\max \left(n_{1}, \ldots, n_{K(\varepsilon)-1}\right)$, we know that $\varphi(n)$ has to be different from $\varphi\left(n_{1}\right)=1, \ldots, \varphi\left(n_{K(\varepsilon)-1}\right)=$ $K(\varepsilon)-1$. This exactly means that, if $n \geq N(\varepsilon)=\max \left(n_{1}, \ldots, n_{K(\varepsilon)-1}\right)+1$ then $\varphi(n) \geq K(\varepsilon)$. In particular, $n \geq N(\varepsilon) \Rightarrow\left|u_{\varphi(n)}-u\right| \leq \varepsilon$. This proves that $u_{\varphi(n)}$ is convergent, and $\lim \left(u_{\varphi(n)}\right)=u$.
4. Let $\left(x_{n}\right)$ be a monotone sequence such that a subsequence of $\left(x_{n}\right)$ is convergent. Show that $\left(x_{n}\right)$ is convergent. Correction. Assume first that $\left(x_{n}\right)$ is increasing, and let $\left(x_{\varphi(n)}\right)$ denote a convergent subsequence of $\left(x_{n}\right)$; call its limit l. Fix $\varepsilon>0$. We know that there exists $K_{\varphi}(\varepsilon)$ such that

$$
n \geq K_{\varphi}(\varepsilon) \Rightarrow l-\varepsilon \leq x_{\varphi(n)} \leq l+\varepsilon
$$

Then, set $K(\varepsilon)=\varphi\left(K_{\varphi}(\varepsilon)\right)$. For any $n \geq K(\varepsilon)$, we have $x_{n} \geq x_{K(\varepsilon)}$ (because $\left(x_{n}\right)$ is increasing), and $x_{K(\varepsilon)}=x_{\varphi\left(K_{\varphi}(\varepsilon)\right)} \geq l-\varepsilon$. We also have, since $\varphi(n) \geq n$ (this was done in class), that $x_{n} \leq x_{\varphi(n)} \leq l$. The two inequalities together show that $l-\varepsilon \leq x_{n} \leq l$ for any $n \geq K(\varepsilon)$, and this proves that $\lim \left(x_{n}\right)=l$. If $\left(x_{n}\right)$ is decreasing, then $\left(-x_{n}\right)$ is increasing ; if a subsequence $\left(x_{\varphi(n)}\right)$ of $\left(x_{n}\right)$ converges, then the corresponding subsequence $\left(-x_{\varphi(n)}\right)$ of $\left(-x_{n}\right)$ is convergent, so the reasoning above proves that $\left(-x_{n}\right)$ is convergent, and thus that $\left(x_{n}\right)$ is convergent.
5. Show that the sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ defined by $u_{n}=(-1)^{n}+\frac{2}{n}$ and $v_{n}=\cos \left(\pi n^{2}\right)$ are not convergent. Correction. One has $u_{2 n}=1+\frac{1}{n}$, so that $\lim \left(u_{2 n}\right)=1$; similarly, $u_{2 n+1}=1+\frac{2}{2 n+1}$, so $\lim \left(u_{2 n+1}\right)=-1$. Therefore $\left(u_{n}\right)$ have two subsequences which converge to different limits, so $\left(u_{n}\right)$ doe not converge.
Similarly, one has $v_{2 n}=\cos \left(4 \pi n^{2}\right)=1$, and $v_{2 n+1}=\cos \left(4 \pi n^{2}+4 \pi n+\pi\right)=-1$, so, for the same reason, $\left(v_{n}\right)$ does not converge.

