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Graded Homework VI

Due Friday, October 20.

1. Let A be a bounded subset of R. Show that there exists a sequence (an) of elements of A such that
lim(an) = sup(A).

Correction.We build by induction a sequence (an) of elements of A such that an ≥ sup(A)− 1
n
for all n ∈ N.

To see that we can do this, �rst pick for a1 any element in A such that a1 ≥ sup(A) − 1. Then, assume that

a1, . . . , an have been de�ned. By de�nition of sup(A), there is some a ∈ A such that sup(A)− 1
n + 1

≤ a.

Then, set an+1 = a.
This shows that, using an inductive de�nition, we can indeed build a sequence an of elements of A such that

an ≥ sup(A)− 1
n
; since an ≤ sup(A) because an ∈ A, this implies that |an − sup(A)| ≤ 1

n
, and this inequality

ensures that (an) converges to sup(A).

2. De�ne, for n ∈ N, un = 1 +
1
2!

+ . . .
1
n!

and vn = un +
1

n.n!
.

(a) Show that (un) is increasing, (vn) is decreasing, un ≤ vn and lim(un − vn) = 0.
(b) Prove that both sequences converge to the same limit (called e.).

(c) Show that, for any n, one has the inequality un < e < un +
1

n.n!
.

(d) Use this to show that e is irrational.

Correction. un+1 − un =
1

(n + 1)!
> 0, so (un) is stricly increasing. To see that (vn) is decreasing, compute

vn+1 − vn =
1

(n + 1)!
+

1
(n + 1)(n + 1)!

− 1
n.n!

=
n(n + 1) + n− (n + 1)2

n(n + 1)(n + 1)!
=

−1
n(n + 1)(n + 1)!

< 0 .

This proves that (vn) is strictly ecreasing ; the fact that un ≤ vn is a direct consequence of the de�nition of

the two sequences, since vn − un =
1

n.n!
≥ 0. As for lim(un − vn), we have 0 ≤ un − vn =

1
n.n!

≤ 1
n
, so the

Squeeze Theorem (and the fact that the Archimedean property of the reals ensures that lim
1
n

= 0) yields

lim(un − vn) = 0.
(b) (un) is increasing and is bounded above (any vm is an upper bound of {un : n ∈ N}), so (un) is convergent.
Similarly, (vn) is decreasing and bounded below, so it is convergent. We may then write that lim un− lim vn =
lim(un − vn) = 0 (proved in question (a)), so lim(un) = lim(vn) = e .
(c) Recall that the limit of an increasing sequence (un) (if it exists) is equal to sup(un), so un ≤ e for all n.
To prove the strict inequality, notice that un < un+1 ≤ e, so that actually un < e for all n ∈ N. Similarly, vn

is strictly decreasing so vn > lim vn = e. Put together, these two inequalities, yield un < e < un +
1

n.n!
.

(d) Assume that e ∈ Q, that is e =
p

q
for some q ∈ Q. Then, using the inequality from question (c) with n = q,

we get q!uq < q!e < q!uq + 1
q . This means that |q!uq − q!e| < 1

q
. Yet, q!uq ∈ N, and q!e = p(q − 1)! ∈ N. Thus,

the only way for |q!uq − q!e| < 1
q
to be true is if q!uq = q!e, and it's impossible since q!uq < q!e according to

question (c).

3. Let (un) be a sequence such that lim(un) = u ∈ R, and ϕ : N → N be a bijection (not necessarily increasing !).
Show that lim(uϕ(n)) = u.



Correction. Pick ε > 0. Since lim(un) = u, there exists K(ε) such that n ≥ K(ε) ⇒ |un − u| ≤ ε. Thus, we
only need to prove that there exists some N(ε) such that n ≥ N(ε) ⇒ ϕ(n) ≥ K(ε). This would be easy if ϕ was
increasing (N(ε) = K(ε) would work in that case). Here, one can notice that, since ϕ : N → N is a surjection,
there exist n1, . . . , nK(ε)−1 such that ϕ(n1) = 1, . . . , ϕ(nK(ε)−1) = K(ε)− 1. But then, since ϕ is injective, as
soon as n > max(n1, . . . , nK(ε)−1), we know that ϕ(n) has to be di�erent from ϕ(n1) = 1, . . . , ϕ(nK(ε)−1) =
K(ε)− 1. This exactly means that, if n ≥ N(ε) = max(n1, . . . , nK(ε)−1) + 1 then ϕ(n) ≥ K(ε). In particular,
n ≥ N(ε) ⇒ |uϕ(n) − u| ≤ ε. This proves that uϕ(n) is convergent, and lim(uϕ(n)) = u.

4. Let (xn) be a monotone sequence such that a subsequence of (xn) is convergent. Show that (xn) is convergent.
Correction. Assume �rst that (xn) is increasing, and let (xϕ(n)) denote a convergent subsequence of (xn) ;
call its limit l. Fix ε > 0. We know that there exists Kϕ(ε) such that

n ≥ Kϕ(ε) ⇒ l − ε ≤ xϕ(n) ≤ l + ε .

Then, set K(ε) = ϕ(Kϕ(ε)). For any n ≥ K(ε), we have xn ≥ xK(ε) (because (xn) is increasing) , and
xK(ε) = xϕ(Kϕ(ε)) ≥ l − ε. We also have, since ϕ(n) ≥ n (this was done in class), that xn ≤ xϕ(n) ≤ l. The two
inequalities together show that l − ε ≤ xn ≤ l for any n ≥ K(ε), and this proves that lim(xn) = l.
If (xn) is decreasing, then (−xn) is increasing ; if a subsequence (xϕ(n)) of (xn) converges, then the correspon-
ding subsequence (−xϕ(n)) of (−xn) is convergent, so the reasoning above proves that (−xn) is convergent,
and thus that (xn) is convergent.

5. Show that the sequences (un) and (vn) de�ned by un = (−1)n +
2
n
and vn = cos(πn2) are not convergent.

Correction. One has u2n = 1 +
1
n
, so that lim(u2n) = 1 ; similarly, u2n+1 = 1 +

2
2n + 1

, so lim(u2n+1) = −1.

Therefore (un) have two subsequences which converge to di�erent limits, so (un) doe not converge.
Similarly, one has v2n = cos(4πn2) = 1, and v2n+1 = cos(4πn2 + 4πn + π) = −1, so, for the same reason, (vn)
does not converge.


