Graded Homework VIII

Due Friday, November 3.

1. Let q be an integer larger than or equal to 2 . For all $n \in \mathbb{N}$, define u_{n} by the formula $u_{n}=\cos \left(\frac{2 n \pi}{q}\right)$. Compute $u_{n q}, u_{n q+1}$; is the sequence $\left(u_{n}\right)$ convergent?
2. Let $A \subset \mathbb{R}$. A function $f: A \rightarrow A$ is said to be increasing if $x \leq y \Rightarrow f(x) \leq f(y)$ for all $x, y \in A$. Similarly, one may define what a decreasing function is : f is decreasing if $x \leq y \Rightarrow f(x) \geq f(y)$ for all $x, y \in A$.
3. Prove that if f is decreasing then $f \circ f$ is increasing.
4. Let now $\left(u_{n}\right)$ be a sequence such that $u_{n+1}=f\left(u_{n}\right)$, where $u_{1} \in[0,1]$ and $f:[0,1] \rightarrow[0,1]$ is a function.
2.a. Prove that if f is increasing then $\left(u_{n}\right)$ is monotone.
2.b. Prove that if f is decreasing then $\left(u_{2 n}\right)$ and $\left(u_{2 n+1}\right)$ are monotone.
3.Prove that a subset A of \mathbb{R} is dense if, and only if, for any real number x there exists a sequence $\left(a_{n}\right)$ of elements of A such that $\lim \left(a_{n}\right)=x$.
5. Given a sequence of real numbers $\left(x_{n}\right)$, we say that $\lim \left(u_{n}\right)=+\infty$ if, and only if, for any $M \in \mathbb{R}$ there exists a naturel number N such that for any $n \in \mathbb{N}$ one has $n \geq N \Rightarrow u_{n} \geq M$.
1.a. Prove that a if sequence $\left(x_{n}\right)$ is such that $\lim \left(x_{n}\right)=+\infty$ then all of its subsequences $\left.x_{\varphi(n)}\right)$ are such that $\lim \left(x_{\varphi(n)}\right)=+\infty$.
1.b. Prove that if $\left(x_{n}\right)$ is a sequence of positive reals such that $\lim \left(x_{n}\right)=+\infty$ is not true then $\left(x_{n}\right)$ has a bounded subsequence.
1.c. Prove that a sequence of positive reals $\left(x_{n}\right)$ is such that $\lim \left(x_{n}\right)=+\infty$ if, and only if, it doesn't have a convergent subsequence.
6. We wish to prove that, if $\alpha>0$ is an irrational number and $\left(p_{n}\right),\left(q_{n}\right)$ are sequence of natural integers such that $\lim \left(\frac{p_{n}}{q_{n}}\right)=\alpha$ then $\lim \left(p_{n}\right)=+\infty$ and $\lim \left(q_{n}\right)=+\infty$.
2.a. Pick an irrational number $\alpha>0$; explain why there exist sequences $\left(p_{n}\right),\left(q_{n}\right)$ as above.

In the following questions we assume we have picked $\alpha,\left(p_{n}\right),\left(q_{n}\right)$ as above.
2.b Prove that if $\lim \left(q_{n}\right)=+\infty$ then $\lim \left(p_{n}\right)=+\infty$.
2.c. Prove that if $\left(q_{n}\right)$ is not such that $\lim \left(q_{n}\right)=+\infty$ then $\left(q_{n}\right)$ admits a constant subsequence $\left(q_{\psi(n)}\right)$ (use 1.c ; what can you tell about a convergent sequence of integers?).
2.d. Prove that $\left(p_{\psi(n)}\right)$ is such that for n, m big enough one has $p_{\psi(n)}=p_{\psi(m)}$.
2.e. Conclude.

