University of Illinois at Urbana-Champaign Math 444

Graded Homework VIII Due Friday, November 3.

1. Let q be an integer larger than or equal to 2. For all $n \in \mathbb{N}$, define u_n by the formula $u_n = \cos(\frac{2n\pi}{a})$. Compute u_{nq} , u_{nq+1} ; is the sequence (u_n) convergent?

2. Let $A \subset \mathbb{R}$. A function $f: A \to A$ is said to be *increasing* if $x \leq y \Rightarrow f(x) \leq f(y)$ for all $x, y \in A$. Similarly, one may define what a *decreasing* function is : f is decreasing if $x \le y \Rightarrow f(x) \ge f(y)$ for all $x, y \in A$. 1. Prove that if f is decreasing then $f \circ f$ is increasing.

2. Let now (u_n) be a sequence such that $u_{n+1} = f(u_n)$, where $u_1 \in [0,1]$ and $f: [0,1] \to [0,1]$ is a function. 2.a. Prove that if f is increasing then (u_n) is monotone.

2.b. Prove that if f is decreasing then (u_{2n}) and (u_{2n+1}) are monotone.

3. Prove that a subset A of \mathbb{R} is dense if, and only if, for any real number x there exists a sequence (a_n) of elements of A such that $\lim(a_n) = x$.

4. Given a sequence of real numbers (x_n) , we say that $\lim(u_n) = +\infty$ if, and only if, for any $M \in \mathbb{R}$ there exists a naturel number N such that for any $n \in \mathbb{N}$ one has $n \ge N \Rightarrow u_n \ge M$.

1.a. Prove that a if sequence (x_n) is such that $\lim(x_n) = +\infty$ then all of its subsequences $x_{\varphi(n)}$ are such that $\lim(x_{\varphi(n)}) = +\infty.$

1.b. Prove that if (x_n) is a sequence of positive reals such that $\lim(x_n) = +\infty$ is not true then (x_n) has a bounded subsequence.

1.c. Prove that a sequence of positive reals (x_n) is such that $\lim(x_n) = +\infty$ if, and only if, it doesn't have a convergent subsequence.

2. We wish to prove that, if $\alpha > 0$ is an irrational number and (p_n) , (q_n) are sequence of natural integers such that $\lim \left(\frac{p_n}{q_n}\right) = \alpha$ then $\lim (p_n) = +\infty$ and $\lim (q_n) = +\infty$.

2.a. Pick an irrational number $\alpha > 0$; explain why there exist sequences $(p_n), (q_n)$ as above.

In the following questions we assume we have picked α , (p_n) , (q_n) as above.

2.b Prove that if $\lim(q_n) = +\infty$ then $\lim(p_n) = +\infty$.

2.c. Prove that if (q_n) is not such that $\lim(q_n) = +\infty$ then (q_n) admits a constant subsequence $(q_{\psi(n)})$ (use 1.c; what can you tell about a convergent sequence of integers?).

2.d. Prove that $(p_{\psi(n)})$ is such that for n, m big enough one has $p_{\psi(n)} = p_{\psi(m)}$.

2.e. Conclude.