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Graded Homework VIII

Due Monday, November 6.

1. Let q be an integer larger than or equal to 2. For all n ∈ N, de�ne un by the formula un = cos(
2nπ
q

).

Compute unq, unq+1 ; is the sequence (un) convergent ?

Correction. One obtains unq = cos(
2nqπ
q

) = cos(2nπ) = 1 ; similarly, one has

unq+1 = cos(
(2nqπ + 2π

q
) = cos(2nπ +

2π
q

) = cos(
2π
q

) 6= 1 because q ≥ 2. This shows that the subsequences

(unq) and (unq+1) have di�erent limits, hence the sequence (un) is not convergent.

2. Let A ⊂ R. A function f : A→ A is said to be increasing if x ≤ y ⇒ f(x) ≤ f(y) for all x, y ∈ A. Similarly,
one may de�ne what a decreasing function is.
1. Prove that if f is decreasing then f ◦ f is increasing.
2. Let now (un) be a sequence such that un+1 = f(un), where u1 ∈ [0, 1] and f is a function from [0, 1] to
[0, 1].
2.a. Prove that if f is increasing then (un) is monotone.
2.b. Prove that if f is decreasing then (u2n) and (u2n+1) are monotone.
Correction. 1. Assume that f is decreasing, and pick x ≤ y, with x, y ∈ A ; since x ≤ y, one gets f(x) ≥ f(y)
because f is decreasing. But then f(f(x)) ≤ f(f(y)) for the same reason ; this is what we wanted to prove.
2..a. Assume that u1 ≤ u2 ; let us then prove by induction that un ≤ un+1 for all n ∈ N. This is true for n = 1
by our assumption, so assume it holds for some n ∈ N, i.e un ≤ un+1 ; then one has f(un) ≤ f(un+1), which
is the same as saying that un+1 ≤ un+2. Thus in that case the sequence (un) is increasing.
Similarly, if u2 ≤ u1, one sees that un ≤ un+1 for all n ∈ N, in other words the sequence is decreasing in that
case. In both cases, we see that the sequence (un) is indeed monotone.
2.b. Let vn = u2n ; one has vn+1 = u2(n+1) = u2n+2 = f(u2n+1) = f(f(u2n)) = (f ◦ f)(vn). Thus, since f ◦ f is
increasing, the preceding question enables us to assert that (vn) is monotone. Similarly, if one lets wn = u2n+1

one also obtains that wn+1 = (f ◦ f)(wn) ; so (wn) is also monotone.

3.Prove that a subset A of R is dense if, and only if, for any real number x there exists a sequence (an) of
elements of A such that lim(an) = x.
Correction. Assume that A ⊂ R is dense, and let x ∈ R. Since A is dense, we know that for any n ∈ N
there exists an ∈ A such that an ∈ [x− 1

n
, x+

1
n

]. This particular sequence of elements (an) is then such

that lim(an) = x (because of the Squeeze Theorem, for instance). Conversely, assume that A ⊂ R has the
property that for any x ∈ R there is a sequence (an) of elements of A such that lim(an) = x, and pick

x < y. De�ne z =
x+ y

2
; there exists a sequence (an) of elements of A such that lim(an) = z. Intuitively,

since this sequence converges to the middle of the interval ]x, y[, it has to enter this interval at some point ;

to prove it, pick ε =
y − x

4
. Then ε > 0, so by de�nition of a convergent sequence there exists N ∈ N such

that n ≥ N ⇒ |an − z| ≤ ε. Given the de�nition of z and ε, the inequality |an − z| ≤ ε is the same as

x+
y − x

4
≤ an ≤ y − y − x

4
. In particular, this means that any an for n ≥ N is an element of A which also

belongs to the interval ]x, y[ ; given that x, y were arbitrary, this proves that A is dense in R.

4. Given a sequence of real numbers (xn), we say that lim(un) = +∞ if, and only if, for any M ∈ R there
exists a naturel number N such that for any n ∈ N one has n ≥ N ⇒ un ≥M .



1.a. Prove that a if sequence (xn) is such that lim(xn) = +∞ then all of its subsequences are such that
lim(xϕ(n) = +∞.
1.b. Prove that if (xn) is a sequence of positive reals such that lim(xn) = +∞ is not true then (xn) has a
bounded subsequence.
1.c. Prove that a sequence of positive reals (xn) is such that lim(xn) = +∞ if, and only if, it doesn't have a
convergent subsequence.
2. We wish to prove that, if α > 0 is an irrational number and (pn), (qn) are sequence of natural integers such
that lim

(
pn
qn

)
= α then lim(pn) = +∞ and lim(qn) = +∞.

2.a. Pick an irrational number α > 0 ; explain why there exist sequences (pn), (qn) as above.
In the following questions we assume we have picked α, (pn), (qn) as above.
2.b Prove that if lim(qn) = +∞ then lim(pn) = +∞.
2.c. Prove that if (qn) is not such that lim(qn) = +∞ then (qn) admits a constant subsequence (qψ(n)) (use
1.d ; what can you tell about a convergent sequence of integers ?).
2.d. Prove that (pψ(n)) is such that for n,m big enough one has pψ(n) = pψ(m).
2.e. Conclude.
Correction. 1.a Let (xϕ(n)) be a subsequence of (xn), and pick M ∈ R ; then we know that there exists N
such that n ≥ N ⇒ xn ≥ M . Since ϕ : N → N is strictly increasing, we know that ϕ(n) ≥ n for any n ∈ N ;
this yields in particular that

n ≥ N ⇒ ϕ(n) ≥ ϕ(N) ≥ N ⇒ xϕ(n) ≥M .

This proves that lim(xϕ(n)) = +∞.
1.b. If (xn) is a sequence of positive reals such that lim(xn) = +∞ is not true, then there must exist some
M ∈ R with the property that for any N ∈ N there exists i ≥ N such that xi ≤ M . But then, one can
inductively build a strictly increasing sequence of integers (in) such that xin ≤M for all n ∈ N (if xi1 , . . . , xin
have been obtained, apply the property from the preceding sentence with N = ni + 1 to �nd ni+1). Then,
setting ϕ(n) = in, the subsequence (xϕ(n)) of (xn) is bounded below by 0, and above by M .
1.c. If (xn) is such that lim(xn) = +∞ then question 1.a shows that (xn) cannot have a convergent subsequence.
To prove the converse, assume that (xn) is such that lim(xn) = +∞ is not true. Then question 1.b shows that
(xn) has a bounded subsequence (xϕ(n)) ; the Bolzano-Weierstrass theorem tells us that (xϕ(n)) must have a
convergent subsequence (xϕ(ψ(n))), which is the desired convergent subsequence of (xn).
2.a. Since Q is dense in R, the fact that for any α ∈ R there exists a sequence of rational numbers rn such that
lim(rn) = α is a consequence of exercise 3 ; and when α ≥ 0 one can also assume that pn, qn ≥ 0 for all n ∈ N.
2.b. Assume that lim(qn) = +∞, and pick M ∈ R. Since lim

(pn
qn

)
= α ≥ 0, there must exist some N1 such

that n ≥ N1 ⇒
pn
qn
≥ α

2
. Since lim(qn) = +∞, we know that there exists N2 such that n ≥ N2 ⇒ qn ≥

2M
α

.

Putting these two inequalities together, we obtain that for any n ≥ N = max(N1, N2) one has pn ≥M .
2.c. If (qn) is not such that lim(qn) = +∞, then question 1.d tells us that it admits a convergent subsequence
(qϕ(n)) ; the sequence (qϕ(n)) is a convergent sequence of integers, so the Cauchy criterion ensures that for
N ∈ N big enough n,m ≥ N ⇒ qϕ(n) = qϕ(m) (we saw this in class). Set then ψ(n) = N + n ; ψ is stricly
increasing, and the subsequence (qψ(n)) of (qn) is constant, equal to q ∈ N.
2.c. Since lim

(pn
qn

)
= α, we know that lim

(pψ(n)

qψ(n)

)
= α (it is a subsequence of the sequence

(pn
qn

)
). Thus, (pψ(n))

is convergent to αq. But then we know that there exists N ∈ N such that n,m ≥ N ⇒ pψ(n) = pψ(m) = p
(again becasue (pψ(n)) is a convergent sequence of integers).

2.e The preceding questions imply that the sequence
(pψ(n)

qψ(n)

)
is eventually constant, equal to

p

q
; it is supposed

to converge to α, so we get α =
p

q
∈ Q, and this contradicts the fact that α is irrational. This contradiction

can only come from our assumption that lim(qn) = +∞ is not true ; in other words, lim(qn) = +∞ has to be
true, and question 2.b implies that lim(pn) = +∞ is also true.


