Integration : correction of the exercises.

1. (a) Assume that $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function such that $f(x) \geq 0$ for all $x \in(a, b)$, and $\int_{a}^{b} f(t) d t=0$. Show that $f(x)=0$ for all $x \in[a, b]$; can you use the fundamental theorem of calculus to prove this result?
(b) Use this to show that if f is continuous on $[a, b]$ and $\int_{a}^{b} f(t) d t=0$ then there must exist $t \in(a, b)$ such that $f(t)=0$.
Correction. (a) First, notice that, since f is continuous, proving that $f(t)=0$ for all $t \in[a, b]$ is the same as proving that $f(t)=0$ for all $t \in(a, b)$. Now, let us prove the contraposite of the result we are interested in; in other words, let us prove that if $f(x)>0$ for some $x \in(a, b), f(x) \geq 0$ for all $x \in(a, b)$ and f is continuous on $[a, b]$ then $\int_{a}^{b} f(t) d t>0$. To prove this, notice that since f is continuous at x there exists $\delta>0$ such that $f(y) \geq \frac{f(x)}{2}$ for all $y \in[a, b]$ such that $|y-x| \leq \delta$. If δ is small enough, $[x-\delta, x+\delta] \subset[a, b]$; but then

$$
\int_{x-\delta}^{x+\delta} f(t) d t \geq 2 \delta \frac{f(x)}{2}=\delta f(x)>0
$$

Since $f(y) \geq 0$ for all $y \in[a, b]$, we know that $\int_{a}^{x-\delta} f(t) d t \geq 0$ and $\int_{x+\delta}^{b} f(t) d t \geq 0$; thus the additivity theorem shows that $\int_{a}^{b} f(t) d t>0$, which is what we wanted.
One can indeed prove this result using the fundamental theorem of calculus (and the mean value theorem) : Set $F(x)=\int_{a}^{x} f(t) d t$; then F is differentiable and $F^{\prime}(x)=f(x) \geq 0$, hence F is increasing. We have $F(a)=0$ by definition, and the assumption that $\int_{a}^{b} f(t) d t=0$ gives $F(b)=0$. Since F is increasing, this means that actually F is constant on $[a, b]$, thus its derivative is equal to 0 on $[a, b]$, and this gives $f(x)=0$ for all $x \in[a, b]$.
(b) First, notice that if f doesn't take the value 0 on (a, b) then f is either always >0 or always <0 on $[a, b]$ (because of the intermediate value theorem). But then the preceding quesion shows that one cannot have $\int_{a}^{b} f(t) d t=0$. Hence there must exist $t \in(a, b)$ such that $f(t)=0$.
2. Use the result of the preceding exercise to solve the following questions.
(a) Find all the continuous functions $f:[a, b] \rightarrow \mathbb{R}$ such that $\int_{a}^{b} f(t) d t=(b-a) \sup \{|f(x)|: x \in[a, b]\}$.
(b) Assume $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $\int_{0}^{1} f(t) d t=\frac{1}{2}$; prove that there exists $a \in(0,1)$ such that $f(a)=a$.
(c) Show that if f, g are continuous on $[0,1]$ and $\int_{0}^{1} f(t) d t=\int_{0}^{1} g(t) d t$ then there must exist some $c \in[0,1]$ such that $f(x)=g(c)$.
Correction. (a) The function g defined on $[a, b]$ by $g(x)=\sup \{|f(x)|: x \in[a, b]\}-f(x)$ is continuous, and $g(x) \geq 0$ for all $x \in[a, b]$. The assumption $\int_{a}^{b} f(t) d t=(b-a) \sup \{|f(x)|: x \in[a, b]\}$ is equivalent to $\int_{a}^{b} g(t) d t=0$, which in turn is equivalent to $g(x)=0$ for all $x \in[a, b]$. This means that the functions that satisfy the equality we are interested in are the functions f which are constant on $[a, b]$, and nonnegative.
(b) Assume that for all $t \in(0,1)$ one has $f(t)>t$; then we know that $\int_{0}^{1}(f(t)-t) d t>0$, and this is the same as saying that $\int_{0}^{1} f(t) d t>\frac{1}{2}$. Similarly, if $f(t)<t$ for all $t \in(0,1)$ one gets $\int_{0}^{1} f(t) d t>\frac{1}{2}$. Thus, it is only possible that $\int_{0}^{1} f(t) d t=\frac{1}{2}$ if there exist $t, t^{\prime} \in(0,1)$ such that $f(t) \geq t, f\left(t^{\prime}\right) \leq t^{\prime}$. If either $f(t)=t$ or $f\left(t^{\prime}\right)=t^{\prime}$ we are done; otherwise the function $x \mapsto f(x)-x$ changes sign on $(0,1)$. Since this function is continuous, the mean value theorem ensures that it must have a zero on $(0,1)$, which shows that there exists $a \in(0,1)$ such that $f(a)=a$.
(c) This is a direct consequence of question 1 (b) (applied to the continuous function $f-g$).
3. Using Riemann sums, compute the limits (when $n \rightarrow+\infty$) of the following sequences :

$$
\sum_{k=1}^{n} \frac{1}{n+k} ; \quad \sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}} ; \quad \sum_{k=1}^{n} \frac{k^{2}}{n^{3}} ; \quad \sum_{k=1}^{n}\left(\operatorname { s i n } \left(\frac{k \pi}{2 n}-\sin \left(\frac{(k-1) \pi}{2 n}\right) \ln \left(1+\sin \left(\frac{k \pi}{2 n}\right)\right) ; \quad ; \quad \sum_{k=1}^{n} \frac{(-1)^{k}}{k}\right.\right.
$$

Correction. Here, the trick is to recognize Riemann sums : the first one is $\sum_{k=1}^{n} \frac{1}{n+k}=\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+\frac{k}{n}}$, and this is a Riemann sum for the function $x \mapsto \frac{1}{1+x}$ for a tagged partition of $[0,1]$ with mesh $1 / n$. Thus, we obtain $\lim \left(\sum_{k=1}^{n} \frac{1}{n+k}\right)=\int_{0}^{1} \frac{d t}{1+t}=\ln (2)$.
The second one is similar : $\sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}=\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+\left(\frac{k}{n}\right)^{2}}$, hence $\lim \left(\sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}\right)=\int_{0}^{1} \frac{d t}{1+t^{2}}=$ $\arctan (1)-\arctan (0)=\frac{\pi}{4}$.
The third one is more of the same : $\sum_{k=1}^{n} \frac{k^{2}}{n^{3}}=\frac{1}{n} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2}$, hence $\lim \left(\sum_{k=1}^{n} \frac{k^{2}}{n^{3}}\right)=\int_{0}^{1} t^{2} d t=\frac{1}{3}$.
The fourth one looks nasty, but again it is a Riemann sum for the continuous function $t \mapsto \ln (1+t)$ on $[0,1]$, with regard to the tagged partition $\left\{\left[\sin \left(\frac{(k-1) \pi}{2 n}\right), \sin \left(\frac{k \pi}{2 n}\right)\right], \sin \left(\frac{k \pi}{2 n}\right)\right\}$, the mesh of which is smaller than $\frac{1}{2 n}$ (use the mean value theorem to prove this). Hence when $n \rightarrow+\infty$ the sum converges to $\int_{0}^{1} \ln (1+t) d t$, which is computable using integration by parts :

$$
\int_{0}^{1} \ln (1+t) d t=[(t+1) \ln (t+1)]_{t=0}^{1}-\int_{t=0}^{1} 1 d t=2 \ln (2)-1
$$

The last one doesn't look like a Riemann sum ; there is some work to be done before one can see a Riemann sum appear. Assume first that $n=2 p$; one has

$$
u_{2 p}=\sum_{k=1}^{n} \frac{(-1)^{k}}{k}=-\sum_{k=1}^{n} \frac{1}{k}+2 \sum_{k=1}^{p} \frac{1}{2 k}=-\sum_{k=1}^{n} \frac{1}{k}+\sum_{k=1}^{p} \frac{1}{k}
$$

Hence, when $n=2 p$, one has $\sum_{k=1}^{n} \frac{(-1)^{k}}{k}=-\sum_{k=p+1}^{2 p} \frac{1}{k}=-\sum_{k=1}^{p} \frac{1}{p+k}$. The sum on the right is actually a Riemann sum for the continuous function $t \mapsto \frac{1}{1+x}$ on $[0,1]$ and the tagged partition $\left\{\left[\frac{k-1}{p}, \frac{k}{p}\right], \frac{k}{p}\right\}$, the mesh of which is $\frac{1}{p}$ (can you see why ?). So, we see that $u_{2 p}$ converges to $-\int_{0}^{1} \frac{d t}{1+t}=\ln (2)$. Since $u_{2 p+1}-u_{2 p}$ converges to 0 , we see that one also has $\lim \left(u_{2 p+1}\right)=-\ln (2)$. A theorem we saw in class ensures that $\left(u_{n}\right)$ is convergent and $\lim \left(u_{n}\right)=-\ln (2)$.
4. Let $f, g:[0,1] \rightarrow \mathbb{R}$ be continuous functions. Show that $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) g\left(\frac{k-1}{n}\right)=\int_{0}^{1} f(t) g(t) d t$.

Correction. This is trickier than it looks : if we had $f\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right)$ in the sum, then it would just be a usual Riemann sum and we could apply the results seen in class. Unfortunately, this is not what we have ; how can we deal with this? One can proceed as follows : first, write that

$$
\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) g\left(\frac{k-1}{n}\right)=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right)+\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left(g\left(\frac{k-1}{n}\right)-g\left(\frac{k}{n}\right)\right)
$$

The first term converges to $\int_{0}^{1} f(t) g(t) d t$, so we want to prove that the second term converges to 0 . For that, we use the fact that g is uniformly continuous on $[0,1]$; given $\varepsilon>0$, there exists δ_{ε} such that $|x-y| \leq \delta_{\varepsilon} \Rightarrow$
$|f(x)-f(y)| \leq \varepsilon$ for all $x, y \in[a, b]$. Hence if n is big enough one has $\left|g\left(\frac{k-1}{n}\right)-g\left(\frac{k-1}{n}\right)\right| \leq \varepsilon$, so that

$$
\left\lvert\, \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left(\left.g\left(\frac{k-1}{n}\right)-g\left(\frac{k}{n}\right)\left|\leq \varepsilon \frac{1}{n} \sum_{k=1}^{n}\right| f\left(\frac{k}{n}\right) \right\rvert\,\right.\right.
$$

Since f is Riemann-integrable $|f|$ also is Riemann-integrable, hence $\frac{1}{n} \sum_{k=1}^{n}\left|f\left(\frac{k}{n}\right)\right|$ converges to $\int_{a}^{b}|f(t)| d t$. So if n is big enough one has $\frac{1}{n} \sum_{k=1}^{n}\left|f\left(\frac{k}{n}\right)\right| \leq \int_{a}^{b}|f(t)| d t+1$. Putting all this together, we get that for any ε there exists $K \in \mathbb{N}$ such that $\left|\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left(g\left(\frac{k-1}{n}\right)-g\left(\frac{k}{n}\right)\right)\right| \leq \varepsilon\left(\int_{a}^{b}|f(t)| d t+1\right)$ for all $n \geq K$. This proves that $\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left(g\left(\frac{k-1}{n}\right)-g\left(\frac{k}{n}\right)\right)$ converges to 0 (when $n \rightarrow+\infty$), which is what we needed to prove.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $\int_{0}^{1} f(u) u^{k} d u=0$ for all $k \in\{0, \ldots, n\}$. Show that f has at least $n+1$ distinct zeros in $(0,1)$.
Hint : prove the result by induction using integration by parts and Rolle's theorem.
Correction. Following the hint, let us prove the result by induction. For $n=0$ the result is a direct consequence of exercise 1 ; assume the result is true for n. Then pick a continuous function f such that $\int_{0}^{1} f(u) u^{k} d u=0$ for all $k \in\{0, \ldots, n+1\}$, and set $F(x)=\int_{0}^{x} f(t) d t$. The assumption on f for $k=0$ yields $F(0)=F(1)=0$. Also, for any $k=1, \ldots, n$, one has

$$
\int_{0}^{1} u^{k} d u=\left[k u^{k-1}\right]_{0}^{1}-k \int_{0}^{1} u^{k-1} F(u) d u
$$

Thus we obtain $\int_{0}^{1} u^{k-1} F(u) d u=0$ for all $k=1, \ldots, n$, which yields (because of our induction hypothesis) that F has at least n distinct zeros in $(0,1)$. Since $F(0)=F(1)=0, F$ must have at least $n+2$ distinct zeros on $[0,1]$. And $F^{\prime}=f$ has a zero between any two zeros of F, which shows that f has at least $n+1$ distinct zeros on $(0,1)$.
7.1.13. We need to use the definition of a Riemann integral ; assume the points c_{1}, \ldots, c_{n} are indexed in such a way that $c_{1}<c_{2}<\ldots<c_{n-1}<c_{n}$, and set $M=\max \left\{\left|f\left(c_{i}\right)\right|: i=1, \ldots, n\right\}$. Then pick a tagged partition $\dot{\mathcal{P}}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1, \ldots m}$ of $[a, b]$. One has

$$
|S(f, \dot{\mathcal{P}})|=\left|\sum_{i=1}^{m}\left(x_{i}-x_{i-1}\right) f\left(t_{i}\right)\right| \leq \sum_{i=1}^{m}\left|\left(x_{i}-x_{i-1}\right) f\left(t_{i}\right)\right| \leq\|\dot{\mathcal{P}}\| \sum_{i=1}^{m}\left|f\left(t_{i}\right)\right|
$$

Since there are only n points in the interval at which $f(x) \neq 0$, and at each of these points one has $|f(x)| \leq M$, we see that $|S(f, \dot{\mathcal{P}})| \leq\|\dot{\mathcal{P}}\| .2 n$. M (because there can be at most two t_{i} with the same value, and at most n points at which f is nonzero, so at most $2 n$ of them can appear in the sum). But then (since n, M are constant) we are done : if one sets $\delta_{\varepsilon}=\frac{\varepsilon}{2 n M}$, what we have proved implies that for any partition $\dot{\mathcal{P}}$ with mesh less than δ_{ε} one has $|S(f, \dot{\mathcal{P}})| \leq \varepsilon$. This is exactly what we needed to prove that $f \in \mathcal{R}([a, b])$ and $\int_{a}^{b} f(x) d x=0$.
7.1.14. This is a consequence of the preceding exercise : indeed, the function $f-g$ satisfies the condition of exercise 7.1.13, hence $f-g \in \mathcal{R}[a, b]$ and $\int_{a}^{b}(f(t)-g(t)) d t=0$. But then $f=(f-g)+g$ is the sum of two Riemann-integrable functions, so $f \in \mathcal{R}([a, b])$ and $\int_{a}^{b} f(t) d t=\int_{a}^{b}(f(t)-g(t)) d t+\int_{a}^{b} g(t) d t=\int_{a}^{b} g(t) d t$.
7.1.15. Let us follow the hint : pick $\varepsilon>0$, set $\delta_{\varepsilon}=\frac{\varepsilon}{4 \alpha}$ and pick a tagged partition $\dot{\mathcal{P}}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1, \ldots, n}$ with mesh $\leq \delta_{\varepsilon}$. Then by definition one has $S(\varphi, \dot{\mathcal{P}})=\sum_{i=1}^{n}\left(x_{i}-x_{i_{1}}\right) \varphi\left(t_{i}\right)$. There are two possibilities for $\varphi\left(t_{i}\right)$: either it is equal to 0 , or it is equal to α. Only the t_{i} 's that belong to [c, d] contribute to the sum. Let $I=\left\{i: t_{i} \in[c, d]\right\}$. Then $S(\varphi, \dot{\mathcal{P}})=\alpha \sum_{i \in I}\left(x_{i}-x_{i-1}\right)$. Since $t_{i} \in\left[x_{i-1}, x_{i}\right], t_{i}$ can only be in $[c, d]$ if $\left(x_{i-1}<a\right.$ and $\left.x_{i} \geq a\right)$, or (x_{i-1}, x_{i} are both in $[c, d]$), or $\left(x_{i-1} \leq d\right.$ and $\left.x_{i}>d\right)$. The first and third condition can each
be satisfied at most by one index, and the remaining $\left[x_{i-1}, x_{i}\right]$ from a partition of a subinterval of $[c, d]$, so that $S(\varphi, \dot{\mathcal{P}}) \leq \alpha(d-c)+2 \delta_{\varepsilon} \alpha$. Similarly, the "chunk" of $[x, d]$ that can be missed by the t_{i} 's is at most $2 \delta_{\varepsilon}$ long, hence $S(\varphi, \dot{\mathcal{P}}) \geq \alpha(d-c)-2 \delta_{\varepsilon} \alpha$. This shows that whenever $\dot{\mathcal{P}}$ is a tagged partition with mesh less than $\delta_{\varepsilon}=\frac{\varepsilon}{4 \alpha}$ one has

$$
\alpha(d-c)-\frac{\varepsilon}{2} \leq S(\varphi, \dot{\mathcal{P}}) \leq \alpha(d-c)+\frac{\varepsilon}{2} .
$$

This is enough to show that $\varphi \in \mathcal{R}\left([a, b]\right.$ and $\int_{a}^{b} \varphi(t) d t=\alpha(d-c)$.
7.2.11. Let's follow the hint and define (given $\varepsilon>0) \alpha_{\varepsilon}, \omega_{\varepsilon}$ by $\alpha_{\varepsilon}(x)=\left\{\begin{array}{ll}-M & \text { if } x \in[a, c) \\ f(x) & \text { if } x \in[c, b]\end{array}\right.$ and $\omega_{\varepsilon}(x)=$ $\left\{\begin{array}{ll}M & \text { if } x \in[a, c) \\ f(x) & \text { if } x \in[c, b]\end{array}\right.$ (c is to be specified later). Then one has $\alpha_{\varepsilon}(x) \leq f(x) \leq \omega_{\varepsilon}(x)$ for all $x \in[a, b]$. Also, $\alpha_{\varepsilon}, \omega_{\varepsilon}$ are both Riemann-integrable on $[a, b]$ because of the Additivity theorem. Finally, one has $\int_{a}^{b}\left(\omega_{\varepsilon}(t)-\alpha_{\varepsilon}(t)\right) d t=$ $\int_{a}^{c} 2 M d t=2 M(c-a)$ by definition of $\alpha_{\varepsilon}, \omega_{\varepsilon}$. Hence if one sets $c=a+\frac{\varepsilon}{2 M}$ we get that $\int_{a}^{b}\left(\omega_{\varepsilon}(t)-\alpha_{\varepsilon}(t)\right) \leq \varepsilon$. So we managed to prove that the assumptions of the Squeeze Theorem are satisfied, hence $f \in \mathcal{R}([a, b])$. Then since $\mid f(x) \leq M$ for all $x \in[a, b]$ we see that $\left|\int_{a}^{c} f(t) d t\right| \leq M(c-a)$, so $\lim _{c \rightarrow a} \int_{a}^{c} f(t) d t=0$. Thus the additivity theorem gives $\lim _{c \rightarrow a} \int_{c}^{b} f(t) d t=\int_{a}^{b} f(t) d t$.
7.2.12. This is a consequence of the preceding exercise : $|g(x)| \leq 1$ for all $x \in[0,1]$, and g is continuous on $[c, 1]$ for all $c \in(0,1)$. Hence it is Riemann-integrable on $[0,1]$.
7.2.16. Set $F(x)=\int_{a}^{x} f(t) d t$; since f is continuous on $[a, b]$, the fundamental theorem of calculus ensures that F is differentiable on $[a, b]$, hence it satisfies the assumptions of the Mean Value theorem on this interval, so there exists $c \in(a, b)$ such that $F(b)-F(a)=F^{\prime}(c)(b-a)$. This is the same as saying that there exists $c \in(a, b)$ such that $\int_{a}^{b} f(t) d t=f(c)(b-a)$.
One can also solve this exercise differently : one has $f([a, b])=[m, M]$ by the theorems about continuous functions, from which we get $m(b-a) \leq \int_{a}^{b} f(t) d t \leq M(b-a)$ But then $m \leq \frac{\int_{a}^{b} f(t) d t}{b-a} \leq M$, hence there exists c such that $f(c)=\frac{\int_{a}^{b} f(t) d t}{b-a}$, which is the same as saying that $(b-a) f(x)=\int_{a}^{b} f(t) d t$.
7.2.17. We can apply a similar method to the one in the exercise above : denote again $f([a, b])$ by $[m, M]$. Then one has $\int_{a}^{b} f(t) g(t)-m \int_{a}^{b} g(t) d t=\int_{a}^{b}(f(t)-m) g(t) d t \geq 0$ (because $f(t) \geq m$ and $g(t) \geq 0$ for all $t \in[a, b]$. Similarly, one finds that $\int_{a}^{b} f(t) g(t) d t \leq M \int_{a}^{b} g(t) d t$. Put together, this yields

$$
m \leq \frac{1}{\int_{a}^{b} g(t) d t} \int_{a}^{b} f(t) g(t) d t \leq M
$$

Thanks to the intermediate value theorem, we can now conclude : there exists $c \in[a, b]$ such that $f(c)=$ $\frac{1}{\int_{a}^{b} g(t) d t} \int_{a}^{b} f(t) g(t) d t$, which is the same as $\int_{a}^{b} f(t) g(t) d t=f(c) \int_{a}^{b} g(t) d t$. This result is clearly false if one no longer assumes that g takes nonnegative values; for instance, let $a=-1, b=1, f(t)=t$ and $g(t)=t$. Then one has $\int_{a}^{b} f(t) g(t) d t=1$ but $f(c) \int_{a}^{b} g(t) d t=0$ for all $c \in[0,1]$.
7.3.11. Here one needs to apply the Chain Rule (and the fundamental theorem of calculus), which yields :
(a) In this case $F(x)=G\left(x^{2}\right)$, where $G^{\prime}(x)=\frac{1}{1+x^{3}}$; hence $F^{\prime}(x)=\frac{2 x}{1+\left(x^{2}\right)^{3}}=\frac{2 x}{1+x^{6}}$.
(b) This time $F(x)=G(x)-G\left(x^{2}\right)$, where $G^{\prime}(x)=\sqrt{1+x^{2}}$. Hence $F^{\prime}(x)=G^{\prime}(x)-2 x G^{\prime}\left(x^{2}\right)=\sqrt{1+x^{2}}-$ $2 x \sqrt{1+x^{4}}$.
7.3.13. Set first $F(x)=\int_{0}^{x} f(t) d t$. Then we know that F is differentiable and $F^{\prime}(x)=f(x)$. By definition, we have $g(x)=F(x+c)-F(x-c)$, hence g is a composition of differentiable functions. Thus g is differentiable on \mathbb{R}, and the Chain Rule yields $g^{\prime}(x)=F^{\prime}(x+c)-F^{\prime}(x-c)=f(x+c)-f(x-c)$.
7.3.14. First notice that the assumption on f implies that $\int_{0}^{1} f(t) d t=0$ (take $x=0$). Set $F(x)=\int_{0}^{x} f(t) d t$. Then the assumption on F become $F(x)=F(1)-F(x)$ for all $x \in[0,1]$, and since $F(1)=0$ this yields $F(x)=0$ for all $x \in[0,1]$. Since f is continuous the fundamental theorem of calculus gives $F^{\prime}=f$, hence $f(x)=0$ for all $x \in[0,1]$.
7.3.21. (a) The functions $x \mapsto(t f(x)+g(x))^{2}$ and $x \mapsto(t f(x)-g(x))^{2}$ are both Riemann-integrable on [a,b] and take nonnegative values, hence $\int_{a}^{b}(t f(u) \pm g(u))^{2} d t \geq 0$.
(b) We have :
$\int_{a}^{b}(t f(u)+g(u))^{2} d u=\int_{a}^{b}\left(t^{2} f^{2}(u)+2 t f(u) g(u)+g(u)^{2}\right) d u=t^{2} \int_{a}^{b} f(u)^{2} d u+2 t \int_{a}^{b} f(u) g(u) d u+\int_{a}^{b} g(u)^{2} d u$.
Since the quantity on the left is positive, we obtain $-2 t \int_{a}^{b} f(u) g(u) d u \leq t^{2} \int_{a}^{b} f(u)^{2} d u+\int_{a}^{b} g(u)^{2} d u$. Hence for any $t>0$ we have $-2 \int_{a}^{b} f(u) g(u) d u \leq t \int_{a}^{b} f(u)^{2} d u+\frac{1}{t} \int_{a}^{b} g(u)^{2} d u$. Similarly, using the fact that $\int_{a}^{b}(t f(u)-$ $g(u))^{2} d u \geq 0$, one obtains $2 \int_{a}^{b} f(u) g(u) d u \leq t \int_{a}^{b} f(u)^{2} d u+\frac{1}{t} \int_{a}^{b} g(u)^{2} d u$. The two inequalities together yield

$$
2\left|\int_{a}^{b} f(u) g(u) d u\right| \leq t \int_{a}^{b} f(u)^{2} d u+\frac{1}{t} \int_{a}^{b} g(u)^{2} d u
$$

(c) If $\int_{a}^{b} f^{2}(u) d u=0$ then the result above implies that $2\left|\int_{a}^{b} f(u) g(u) d u\right| \leq \frac{1}{t} \int_{a}^{b} g(u)^{2} d u$ for all $t>0$. This is only possible if $\int f(u) g(u) d u=0$.
(d) Since one has both $f g \leq|f g|$ and $-f g \leq|f g|$, it is true that both $\int_{a}^{b} f(u) g(u) d u \leq \int_{a}^{b}|f(u) g(u)| d u$ and $-\int_{a}^{b} f(u) g(u) d u \leq \int_{a}^{b}|f(u) g(u)| d u$. This means that $\left|\int_{a}^{b} f(u) g(u) d u\right| \leq \int_{a}^{b}|f(u) g(u)| d u$, which is equivalent to the inequality on the left.
To prove the inequality on the right,recall that we know from (b) (applied to $|f|,|g|)$ that $t^{2} \int_{a}^{b} f^{2}(u) d u+$ $\left.2 t \int_{a}^{b}|f(u) g(u)| d u+\int_{a}^{b} g-u\right)^{2} d u \geq 0$ for all $t \in \mathbb{R}$. This means that the polynomial function $t \mapsto t^{2} \int_{a}^{b} f^{2}(u) d u+$ $\left.2 t \int_{a}^{b}|f(u) g(u)| d u+\int_{a}^{b} g-u\right)^{2} d u$ keeps a constant sign on \mathbb{R}, and this is possible only if its discriminant $4\left(\int_{a}^{b}|f(u) g(u)| u\right)^{2}-4 \int_{a}^{b} f^{2}(u) d u \int_{a}^{b} g(u)^{2} d u$ is ≤ 0. In other words, one must have

$$
\left(\int_{a}^{b}|f(u) g(u)| d u\right)^{2} \leq \int_{a}^{b} f(u)^{2} d u \int_{a}^{b} g(u)^{2} d u
$$

To get the inequality we are asked to prove, apply this inequality to the functions $f(t)=1 / t$ and $g(t)=1$: this yields $\left(\int_{a}^{b} \frac{d t}{t}\right)^{2} \leq \int_{a}^{b} \frac{d t}{t^{2}} \int_{a}^{b} d t=\left(\frac{1}{a}-\frac{1}{b}\right)(b-a)=\frac{(b-a)^{2}}{a b}$. Taking the square root, one has

$$
\int_{a}^{b} \frac{d t}{t} \leq \frac{(b-a)}{\sqrt{a} b}
$$

