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Training exercises : Correction.

5.2.7 : We more or less saw that example in class : de�ne a function f : [0, 1] → [0, 1] by setting, for all

x ∈ [0, 1], f(x) =

{
−1 if x ∈ Q
1 else .

Pick a number x ∈ [0, 1], and recall that there exist a sequence (qn) of

rational numbers in [0, 1 and a sequence (αn) of irrational numbers in [0, 1] such that lim(qn) = lim(αn) = x.
One also has f(qn) = 0 for all n ∈ N, and f(αn) = 1 for all n inN ; this proves that f doesn't have a limit at
x, so it cannot be continuous at that point. Thus f is discontinuous at every point of [0, 1], yet |f | is constant
(equal to 1), so it is a continuous function.

5.2.8 : Recall again that any real number is the limit of a sequence of rational numbers ; pick x ∈ R, and a
sequence of rational numbers (qn) that converges to x. Then one has lim f(qn) = f(x) since f is continuous at
x, and for the same reason lim g(qn) = g(x). Since by assumption f(qn) = g(qn), we obtain that f(x) = g(x).
The same argument is su�cient to prove that, given two continuous function f, g, it is enough that they
coincide on a dense subset of the real line to ensure that they are equal everywhere.

5.2.9 : First, notice that for any x ∈ R and any ε > 0 there exist m ∈ Z and n ∈ N such that x− ε ≤ m

2n
≤ x.

Indeed, pick n ∈ N such that
1
2n

≤ ε. Then there exists m ∈ Z such that
m

2n
< x and the set A of such m′s is

bounded above. Let m denote the supremum of this set ; as usual, using the de�nition of a supremum, one can

prove that m must actually be an integer, and that m ∈ A. Clearly m + 1 6∈ A, and this yields
m

2n
+

1
2n

≥ x,

so that
m

2n
≥ x− 1

2n
. This proves that

x− ε ≤ m

2n
≤ x .

We have just proved that the set S = {m

2n
: n ∈ N, m ∈ Z} is dense in R. Our assumption on the function f

is that f(s) = 0 for all s ∈ S, and that f is continuous, so reasoning as in the preceding exercise we obtain
f(x) = 0 for all x ∈ R.

5.2.14 : First, notice that if g(x) = 0 for some x ∈ R then one must actually have g(y) = 0 for all y ∈ R :
indeed,

g(y) = g(y − x + x) = g(y − x)g(x) = 0 .

Thus, we may as well assume that g(x) 6= 0 for all x ∈ R ; notice then that g(0)g(x) = g(x) for all x inR, so
that g(0) = 1.
Assume now that g is continuous at 0, pick x ∈ R and a sequence (xn) of reals that is convergent to x. Then
we wish to prove that lim g(xn) = g(x). For that, we have to use our assumption that g is continuous at 0 :
it is then natural to look for a sequence that converges to 0 and that tells us something about our problem.
Here this sequence is (yn) = (xn − x) : to use it, we write that

g(xn) = g(xn − x + x) = g(xn − x)g(x) = g(yn)g(x).

We know that lim g(yn) = g(0) = 1 because g is continuous at 0, so we obtain lim g(xn) = g(x). Since the
sequence (xn) was arbitrary, we have proved that g is continous at x. This is true for all x ∈ R, so g is
continuous on R.
Notice that then g doesn't have a zero, so it doesn't change sign (it is continuous !) ; since g(0) = 1, g takes
only positive values. If one sets h(x) = ln(g(x)), one has h(x + y) = h(x) + h(y) for all x ∈ R and we can



use what we proved about such a function in the homework. This enables one to prove that there exists a real
number λ such that g(x) = eλx for all x ∈ R.

5.3.8 : One has f(1) = 2 ln(1)+
√

1− 2 = −1, and f(2) = 2 ln(2)+
√

2− 2 = ln(4)+
√

2− 2 ≥ 1+
√

2− 2 > 0.
Thus the intermediate value theorem tells us that there exists c ∈ [1, 2] such that f(c) = 0. The bisection
method proceeds as follows : f(3/2) is greater than 0, hence there must be a solution of the equation in the
interval [1, 3/2] ; now let us look at what happens at the middle of this interval (5/4) : there we see that
f(5/4) ≤ 0. Hence there is a solution of the equation in the interval [5/4, 3/2] ; the middle of this interval is
11/8, and computation shows that f(11/8) ≤ 0. Thus there is a solution in the interval [11/8, 3/2]. We need
to keep going until we obtain an interval of length smaller than 10−2 in which we know that there is a solution
to the equation : this process yields eventually that there is a solution in the interval [189/128, 190/128] so an
approximate (with at least 10−2 acccuracy) value of the solution is 1.48.
Remark. What we did above doesn't prove that the solution we obtained is unique ; to see that, one would
need to study the variations of the function. The bisection method only gives one solution, not all of them...

5.4.11 : Assume that there exists a constant K such that
√

x ≤ Kx for all x ∈ [0, 1] (one can forget the
absolute values here because all the numbers involved are nonnegative). First notice that necessarily K ≥ 1

(that's what the inequality yields when x = 1). Apply then the inequality to x =
1

K4
; this yields

1
K2

≤ K

K4
,

and this is equivalent to K ≤ 1. Thus the only possible constant would be K = 1, and if it worked then

one would have

√
1
2

=
√

2
2
≤ 1

2
, and this is not true. Thus there is no K as in the inequality above and this

shows that g is not a Lipschitz function on [0, 1]. Yet it is uniformly continuous on that interval because any
continuous function on a closed bounded interval must be uniformly continuous on that interval.
Remark : To show that K could not exist, we used a statement of the form "for all x something happens" by
saying "well, if it happens for all x, then it must also happen for this (well-chosen) x, and this can't be true".

5.4.14 : Assume that f is a continuous function on R and that f(x + p) = f(x) for some p > 0 and all x ∈ R.
Then notice �rst that f(x) = f(x + Kp) for all x ∈ R and all K ∈ Z (prove this). Also, for all x ∈ R there
exists K ∈ Z such that x + Kp ∈ [0, p] (to prove it, use a method similar to that of exercise 5.2.9, or use the

function E(
x

p
)). Since f is continuous on [0, p], it is bounded on that interval so there exists m,M ∈ R such

that m ≤ f(y) ≤ M for all y ∈ [0, p]. Given the choice of K, this implies that m ≤ f(x + Kp) ≤ M , and this
is the same as saying that m ≤ f(x) ≤ M . We have thus proved that f is bounded on R.
To show that f is uniformly continuous, the idea is again that f is essentially de�ned on a closed bounded
interval (and then "repeats" its values), and continuous functions de�ned on closed bounded intervals are
uniformly continuous. Thus this should be easy to write down ; there is, however, a slight problems due to the
bounds of intervals of length p (try to write down a proof to convinve yourself). To avoid this problem, we use
the interval [0, 2p] instead of the interval [0, p].
Pick ε > 0 ; we know that there exists δ such that for any two x, y ∈ [0, 2p] one has |x−y| ≤ δ ⇒ |f(x)−f(y)| ≤
ε. We would like this implication to hold for any two x, y ∈ R ; for this, notice that, if δ ≤ p, then for any
x, y ∈ R such that |x− y| ≤ δ there exists K ∈ Z such that both x + Kp and y + Kp belong to [0, 2p] (are you
able to prove this ?). Set now δ′ = min(δ, p). Then pick any x, y ∈ R such that |x−y| ≤ δ′. One can �nd K ∈ Z
such that x + Kp, y + Kp both belong to [0, 2p] ; since |(x + Kp)− (y + Kp)| = |x− y| ≤ δ′ ≤ δ, we see that
|f(x + Kp)− f(y + Kp) ≤ ε|. Since f is p-periodic and K ∈ Z, we have f(x + Kp) = f(x), f(y + Kp) = f(y) ;
hence we �nally obtained that for any x, y ∈ R, |x−y| ≤ δ′ ⇒ |f(x)−f(y)| ≤ ε. This shows that f is uniformly
continuous on R.
Remark. There are a few assertions above that should be explained in more detail ; are you able to do so ? Do
you see why the interval [0, 2p] was used above instead of the interval [0, p] ?

6.1.2 : One has
f(x)− f(0)

x− 0
= x−2/3, and x−2/3 doesn't have a limit at 0 (it is not locally bounded). This

shows that
f(x)− f(0)

x− 0
doesn't have a limit at x = 0, in other words f is not di�erentiable at 0.



6.1.9 : It is enough to apply the Chain Rule : given that the function x 7→ −x is di�erentiable on R and has
a derivative equal to −1, we obtain (taking the derivative of both sides of the equation f(x) = f(−x)) that
f ′(x) = (−1)f ′(−x) = −f ′(−x). This proves that the derivative of an even function is an odd function. The
exact same proof (taking this time the derivative of both sides of f(x) = −f(−x)) yields that if f is an odd
function then its derivative is an even function.

6.1.10 : This is more or less the same exercise as exercise 3 of HW11.

6.2.6 We know that sin′(x) = cos(x) for all x ∈ R ; thus, if x < y ∈ R, the mean value theorem yields
f(x)−f(y) = cos(c)(x−y) for some c ∈ (x, y). Since | cos(c)| ≤ 1 for all x ∈ R, we obtain |f(x)−f(y)| ≤ |x−y|
for any x, y such that x < y. This inequality is also true if x = y, and since x, y play symmetric roles it must
also be true if x > y. Thus we have proved that | sin(x)− sin(y)| ≤ |x− y| for all x, y ∈ R.

6.2.8 : To show that f ′(a) exists, we need to look at
f(x)− f(a)

x− a
. Applying the mean value theorem to f

(which satis�es its assumptions) we obtain that
f(x)− f(a)

x− a
= f ′(c) for some c ∈ (a, x). Since lim

x→a
f ′(x) = A,

we know that for any ε > 0 there exists δ such that a < x ≤ a+δ ⇒ |f ′(x)−A| ≤ ε. Given what we've written

before, and since when x ≤ a+ δ one also has c ≤ a+ δ, we get a < x ≤ a + δ ⇒
∣∣f(x)− f(a)

x− a
−A

∣∣ ≤ ε. Thus,

lim
(

f(x)− f(a)
x− a

)
= A, and this shows that f ′(a) exists and equals A.

6.2.11 : De�ne f(x) =
√

x. Then f is uniformly continuous on [0, 1] since it is continuous on that clo-

sed,bounded interval, it is di�erentiable on (0, 1) and f ′(x) =
1

2
√

x
is not bounded on (0, 1).

Remark. The point of this exercise is that when |f ′| is bounded on (a, b) then one gets that f is uniformly
continuous on [a, b] (notice that one interval is closed and one is open) ; actually, one gets that f is Lipschitz
on [a, b]. Here we see that the converse is false, i.e a function can be uniformly continuous on [a, b] even if its
derivative is not bounded on (a, b).

6.2.13 : Pick x < y ∈ I. Then f(y) − f(x) = f ′(c)(x − y) for some c ∈ (x, y) because of the Mean Value
theorem applied to the function f on [x, y] (notice that f satis�es all the assumptions of this theorem, since it
is di�erentiable on [x, y] and hence is certainly continuous on [x, y] and di�erentiable on (x, y)). Since f ′ only
takes positive values, we see that f(y)− f(x) > 0 as soon as y > x : f is strictly increasing.
Remark. This is one of the reasons why the Mean Value Theorem is so important : it justi�es the results about
variations of functions.

6.2.14 : We saw in class that derivatives satisfy the conclusion of the intermediate value theorem (that's
Darboux's theorem). Thus if there were two points x, x′ ∈ I such that f ′(x) ≤ 0 and f ′(x) ≥ 0 then f ′ would
necessarily have a zero somewhere between x and x′. Thus if f ′ does not take the value 0 on an interval I then
it must keep a constant sign, in other words one must have either f ′(x) > 0 for all x ∈ I or f ′(x) < 0 for all
x ∈ I.
Remark. This is related to the preceding exercise : if one wants to study the variations of a function f , one
needs to establish where f(x) > 0 and where f(x) > 0. This exercise tells you that to do so, you need to look
�rst for points where f ′(x) = 0 : if f ′ changes sign then it's at one of those points (of course it doesn't have
to actually change sign at a zero, look at what happens when f(x) = x3).

6.2.17 : One has g′(x)−f ′(x) ≥ 0 for all x, thus (applying the mean value theorem to the di�erentiable function
g − f , as in exercise 6.2.13), we get that g − f is an increasing function. Since (g − f)(0) = g(0) − f(0) = 0,
we get (g − f)(x) = g(x)− f(x) ≥ 0 for all x ≥ 0 (and (g − f)(x) = g(x)− f(x) ≤ 0 ) for all x ≤ 0.
In other words, g(x) ≥ f(x) for all x ≥ 0 (and g(x) ≤ f(x) for all x ≤ 0).


