Training exercises: Correction.

5.2.7 : We more or less saw that example in class : define a function $f:[0,1] \rightarrow[0,1]$ by setting, for all $x \in[0,1], f(x)=\left\{\begin{array}{ll}-1 & \text { if } x \in \mathbb{Q} \\ 1 & \text { else } .\end{array}\right.$ Pick a number $x \in[0,1]$, and recall that there exist a sequence $\left(q_{n}\right)$ of rational numbers in $\left[0,1\right.$ and a sequence $\left(\alpha_{n}\right)$ of irrational numbers in $[0,1]$ such that $\lim \left(q_{n}\right)=\lim \left(\alpha_{n}\right)=x$. One also has $f\left(q_{n}\right)=0$ for all $n \in \mathbb{N}$, and $f\left(\alpha_{n}\right)=1$ for all n in N; this proves that f doesn't have a limit at x, so it cannot be continuous at that point. Thus f is discontinuous at every point of $[0,1]$, yet $|f|$ is constant (equal to 1), so it is a continuous function.
5.2.8 : Recall again that any real number is the limit of a sequence of rational numbers ; pick $x \in \mathbb{R}$, and a sequence of rational numbers $\left(q_{n}\right)$ that converges to x. Then one has $\lim f\left(q_{n}\right)=f(x)$ since f is continuous at x, and for the same reason $\lim g\left(q_{n}\right)=g(x)$. Since by assumption $f\left(q_{n}\right)=g\left(q_{n}\right)$, we obtain that $f(x)=g(x)$. The same argument is sufficient to prove that, given two continuous function f, g, it is enough that they coincide on a dense subset of the real line to ensure that they are equal everywhere.
5.2.9 : First, notice that for any $x \in \mathbb{R}$ and any $\varepsilon>0$ there exist $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $x-\varepsilon \leq \frac{m}{2^{n}} \leq x$. Indeed, pick $n \in \mathbb{N}$ such that $\frac{1}{2^{n}} \leq \varepsilon$. Then there exists $m \in \mathbb{Z}$ such that $\frac{m}{2^{n}}<x$ and the set A of such $m^{\prime} s$ is bounded above. Let m denote the supremum of this set ; as usual, using the definition of a supremum, one can prove that m must actually be an integer, and that $m \in A$. Clearly $m+1 \notin A$, and this yields $\frac{m}{2^{n}}+\frac{1}{2^{n}} \geq x$, so that $\frac{m}{2^{n}} \geq x-\frac{1}{2^{n}}$. This proves that

$$
x-\varepsilon \leq \frac{m}{2^{n}} \leq x
$$

We have just proved that the set $S=\left\{\frac{m}{2^{n}}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$ is dense in \mathbb{R}. Our assumption on the function f is that $f(s)=0$ for all $s \in S$, and that f is continuous, so reasoning as in the preceding exercise we obtain $f(x)=0$ for all $x \in \mathbb{R}$.
5.2.14 : First, notice that if $g(x)=0$ for some $x \in \mathbb{R}$ then one must actually have $g(y)=0$ for all $y \in \mathbb{R}$: indeed,

$$
g(y)=g(y-x+x)=g(y-x) g(x)=0 .
$$

Thus, we may as well assume that $g(x) \neq 0$ for all $x \in \mathbb{R}$; notice then that $g(0) g(x)=g(x)$ for all x in \mathbb{R}, so that $g(0)=1$.
Assume now that g is continuous at 0 , pick $x \in \mathbb{R}$ and a sequence $\left(x_{n}\right)$ of reals that is convergent to x. Then we wish to prove that $\lim g\left(x_{n}\right)=g(x)$. For that, we have to use our assumption that g is continuous at 0 : it is then natural to look for a sequence that converges to 0 and that tells us something about our problem. Here this sequence is $\left(y_{n}\right)=\left(x_{n}-x\right)$: to use it, we write that

$$
g\left(x_{n}\right)=g\left(x_{n}-x+x\right)=g\left(x_{n}-x\right) g(x)=g\left(y_{n}\right) g(x) .
$$

We know that $\lim g\left(y_{n}\right)=g(0)=1$ because g is continuous at 0 , so we obtain $\lim g\left(x_{n}\right)=g(x)$. Since the sequence $\left(x_{n}\right)$ was arbitrary, we have proved that g is continous at x. This is true for all $x \in \mathbb{R}$, so g is continuous on \mathbb{R}.
Notice that then g doesn't have a zero, so it doesn't change sign (it is continuous !) ; since $g(0)=1, g$ takes only positive values. If one sets $h(x)=\ln (g(x))$, one has $h(x+y)=h(x)+h(y)$ for all $x \in \mathbb{R}$ and we can
use what we proved about such a function in the homework. This enables one to prove that there exists a real number λ such that $g(x)=e^{\lambda x}$ for all $x \in \mathbb{R}$.
5.3.8: One has $f(1)=2 \ln (1)+\sqrt{1}-2=-1$, and $f(2)=2 \ln (2)+\sqrt{2}-2=\ln (4)+\sqrt{2}-2 \geq 1+\sqrt{2}-2>0$. Thus the intermediate value theorem tells us that there exists $c \in[1,2]$ such that $f(c)=0$. The bisection method proceeds as follows : $f(3 / 2)$ is greater than 0 , hence there must be a solution of the equation in the interval $[1,3 / 2]$; now let us look at what happens at the middle of this interval (5/4) : there we see that $f(5 / 4) \leq 0$. Hence there is a solution of the equation in the interval $[5 / 4,3 / 2]$; the middle of this interval is $11 / 8$, and computation shows that $f(11 / 8) \leq 0$. Thus there is a solution in the interval $[11 / 8,3 / 2]$. We need to keep going until we obtain an interval of length smaller than 10^{-2} in which we know that there is a solution to the equation : this process yields eventually that there is a solution in the interval [189/128, 190/128] so an approximate (with at least 10^{-2} acccuracy) value of the solution is 1.48.
Remark. What we did above doesn't prove that the solution we obtained is unique; to see that, one would need to study the variations of the function. The bisection method only gives one solution, not all of them...
5.4.11 : Assume that there exists a constant K such that $\sqrt{x} \leq K x$ for all $x \in[0,1]$ (one can forget the absolute values here because all the numbers involved are nonnegative). First notice that necessarily $K \geq 1$ (that's what the inequality yields when $x=1$). Apply then the inequality to $x=\frac{1}{K^{4}}$; this yields $\frac{1}{K^{2}} \leq \frac{\bar{K}}{K^{4}}$, and this is equivalent to $K \leq 1$. Thus the only possible constant would be $K=1$, and if it worked then one would have $\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2} \leq \frac{1}{2}$, and this is not true. Thus there is no K as in the inequality above and this shows that g is not a Lipschitz function on $[0,1]$. Yet it is uniformly continuous on that interval because any continuous function on a closed bounded interval must be uniformly continuous on that interval.
Remark : To show that K could not exist, we used a statement of the form "for all x something happens" by saying "well, if it happens for all x, then it must also happen for this (well-chosen) x, and this can't be true".
5.4.14 : Assume that f is a continuous function on \mathbb{R} and that $f(x+p)=f(x)$ for some $p>0$ and all $x \in \mathbb{R}$. Then notice first that $f(x)=f(x+K p)$ for all $x \in \mathbb{R}$ and all $K \in \mathbb{Z}$ (prove this). Also, for all $x \in \mathbb{R}$ there exists $K \in \mathbb{Z}$ such that $x+K p \in[0, p]$ (to prove it, use a method similar to that of exercise 5.2 .9 , or use the function $E\left(\frac{x}{p}\right)$). Since f is continuous on $[0, p]$, it is bounded on that interval so there exists $m, M \in \mathbb{R}$ such that $m \leq f(y) \leq M$ for all $y \in[0, p]$. Given the choice of K, this implies that $m \leq f(x+K p) \leq M$, and this is the same as saying that $m \leq f(x) \leq M$. We have thus proved that f is bounded on \mathbb{R}.
To show that f is uniformly continuous, the idea is again that f is essentially defined on a closed bounded interval (and then "repeats" its values), and continuous functions defined on closed bounded intervals are uniformly continuous. Thus this should be easy to write down; there is, however, a slight problems due to the bounds of intervals of length p (try to write down a proof to convinve yourself). To avoid this problem, we use the interval $[0,2 p]$ instead of the interval $[0, p]$.
Pick $\varepsilon>0$; we know that there exists δ such that for any two $x, y \in[0,2 p]$ one has $|x-y| \leq \delta \Rightarrow|f(x)-f(y)| \leq$ ε. We would like this implication to hold for any two $x, y \in \mathbb{R}$; for this, notice that, if $\delta \leq p$, then for any $x, y \in \mathbb{R}$ such that $|x-y| \leq \delta$ there exists $K \in \mathbb{Z}$ such that both $x+K p$ and $y+K p$ belong to $[0,2 p]$ (are you able to prove this?). Set now $\delta^{\prime}=\min (\delta, p)$. Then pick any $x, y \in \mathbb{R}$ such that $|x-y| \leq \delta^{\prime}$. One can find $K \in \mathbb{Z}$ such that $x+K p, y+K p$ both belong to $[0,2 p]$; since $|(x+K p)-(y+K p)|=|x-y| \leq \delta^{\prime} \leq \delta$, we see that $|f(x+K p)-f(y+K p) \leq \varepsilon|$. Since f is p-periodic and $K \in \mathbb{Z}$, we have $f(x+K p)=f(x), f(y+K p)=f(y)$; hence we finally obtained that for any $x, y \in \mathbb{R},|x-y| \leq \delta^{\prime} \Rightarrow|f(x)-f(y)| \leq \varepsilon$. This shows that f is uniformly continuous on \mathbb{R}.
Remark. There are a few assertions above that should be explained in more detail ; are you able to do so ? Do you see why the interval $[0,2 p]$ was used above instead of the interval $[0, p]$?
6.1.2 : One has $\frac{f(x)-f(0)}{x-0}=x^{-2 / 3}$, and $x^{-2 / 3}$ doesn't have a limit at 0 (it is not locally bounded). This shows that $\frac{f(x)-f(0)}{x-0}$ doesn't have a limit at $x=0$, in other words f is not differentiable at 0 .
6.1.9 : It is enough to apply the Chain Rule : given that the function $x \mapsto-x$ is differentiable on \mathbb{R} and has a derivative equal to -1 , we obtain (taking the derivative of both sides of the equation $f(x)=f(-x)$) that $f^{\prime}(x)=(-1) f^{\prime}(-x)=-f^{\prime}(-x)$. This proves that the derivative of an even function is an odd function. The exact same proof (taking this time the derivative of both sides of $f(x)=-f(-x)$) yields that if f is an odd function then its derivative is an even function.
6.1.10 : This is more or less the same exercise as exercise 3 of HW11.
6.2.6 We know that $\sin ^{\prime}(x)=\cos (x)$ for all $x \in \mathbb{R}$; thus, if $x<y \in \mathbb{R}$, the mean value theorem yields $f(x)-f(y)=\cos (c)(x-y)$ for some $c \in(x, y)$. Since $|\cos (c)| \leq 1$ for all $x \in \mathbb{R}$, we obtain $|f(x)-f(y)| \leq|x-y|$ for any x, y such that $x<y$. This inequality is also true if $x=y$, and since x, y play symmetric roles it must also be true if $x>y$. Thus we have proved that $|\sin (x)-\sin (y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
6.2.8 : To show that $f^{\prime}(a)$ exists, we need to look at $\frac{f(x)-f(a)}{x-a}$. Applying the mean value theorem to f (which satisfies its assumptions) we obtain that $\frac{f(x)-f(a)}{x-a}=f^{\prime}(c)$ for some $c \in(a, x)$. Since $\lim _{x \rightarrow a} f^{\prime}(x)=A$, we know that for any $\varepsilon>0$ there exists δ such that $a<x \leq a+\delta \Rightarrow\left|f^{\prime}(x)-A\right| \leq \varepsilon$. Given what we've written before, and since when $x \leq a+\delta$ one also has $c \leq a+\delta$, we get $a<x \leq a+\delta \Rightarrow\left|\frac{f(x)-f(a)}{x-a}-A\right| \leq \varepsilon$. Thus, $\lim \left(\frac{f(x)-f(a)}{x-a}\right)=A$, and this shows that $f^{\prime}(a)$ exists and equals A.
6.2.11 : Define $f(x)=\sqrt{x}$. Then f is uniformly continuous on $[0,1]$ since it is continuous on that closed,bounded interval, it is differentiable on $(0,1)$ and $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ is not bounded on $(0,1)$.
Remark. The point of this exercise is that when $\left|f^{\prime}\right|$ is bounded on (a, b) then one gets that f is uniformly continuous on $[a, b]$ (notice that one interval is closed and one is open) ; actually, one gets that f is Lipschitz on $[a, b]$. Here we see that the converse is false, i.e a function can be uniformly continuous on $[a, b]$ even if its derivative is not bounded on (a, b).
6.2.13 : Pick $x<y \in I$. Then $f(y)-f(x)=f^{\prime}(c)(x-y)$ for some $c \in(x, y)$ because of the Mean Value theorem applied to the function f on $[x, y]$ (notice that f satisfies all the assumptions of this theorem, since it is differentiable on $[x, y]$ and hence is certainly continuous on $[x, y]$ and differentiable on $(x, y))$. Since f^{\prime} only takes positive values, we see that $f(y)-f(x)>0$ as soon as $y>x: f$ is strictly increasing.
Remark. This is one of the reasons why the Mean Value Theorem is so important : it justifies the results about variations of functions.
6.2.14 : We saw in class that derivatives satisfy the conclusion of the intermediate value theorem (that's Darboux's theorem). Thus if there were two points $x, x^{\prime} \in I$ such that $f^{\prime}(x) \leq 0$ and $f^{\prime}(x) \geq 0$ then f^{\prime} would necessarily have a zero somewhere between x and x^{\prime}. Thus if f^{\prime} does not take the value 0 on an interval I then it must keep a constant sign, in other words one must have either $f^{\prime}(x)>0$ for all $x \in I$ or $f^{\prime}(x)<0$ for all $x \in I$.
Remark. This is related to the preceding exercise : if one wants to study the variations of a function f, one needs to establish where $f(x)>0$ and where $f(x)>0$. This exercise tells you that to do so, you need to look first for points where $f^{\prime}(x)=0$: if f^{\prime} changes sign then it's at one of those points (of course it doesn't have to actually change sign at a zero, look at what happens when $\left.f(x)=x^{3}\right)$.
6.2.17 : One has $g^{\prime}(x)-f^{\prime}(x) \geq 0$ for all x, thus (applying the mean value theorem to the differentiable function $g-f$, as in exercise 6.2.13), we get that $g-f$ is an increasing function. Since $(g-f)(0)=g(0)-f(0)=0$, we get $(g-f)(x)=g(x)-f(x) \geq 0$ for all $x \geq 0$ (and $(g-f)(x)=g(x)-f(x) \leq 0)$ for all $x \leq 0$.
In other words, $g(x) \geq f(x)$ for all $x \geq 0$ (and $g(x) \leq f(x)$ for all $x \leq 0$).

