Forcing nonuniversal Banach spaces

Christina Brech

Universidade de São Paulo

Young Set Theory - 2012

э

Let \mathcal{K} be a class of compact (Hausdorff) spaces. We say that a compact space $L \in \mathcal{K}$ is universal for \mathcal{K} if every $\mathcal{K} \in \mathcal{K}$ is a continuous image of L.

э

Let \mathcal{K} be a class of compact (Hausdorff) spaces. We say that a compact space $L \in \mathcal{K}$ is universal for \mathcal{K} if every $\mathcal{K} \in \mathcal{K}$ is a continuous image of L.

Let \mathcal{X} be a class of (real) Banach spaces. We say that a Banach space $E \in \mathcal{X}$ is isometrically universal for \mathcal{X} if every $X \in \mathcal{X}$ can be isometrically embedded into E.

Let \mathcal{K} be a class of compact (Hausdorff) spaces. We say that a compact space $L \in \mathcal{K}$ is universal for \mathcal{K} if every $\mathcal{K} \in \mathcal{K}$ is a continuous image of L.

Let \mathcal{X} be a class of (real) Banach spaces. We say that a Banach space $E \in \mathcal{X}$ is isometrically universal for \mathcal{X} if every $X \in \mathcal{X}$ can be isometrically embedded into E.

We say that a Banach space $E \in \mathcal{X}$ is universal for \mathcal{X} if every $X \in \mathcal{X}$ can be isomorphically embedded into E.

< 日 > < 同 > < 三 > < 三 >

Let \mathcal{K} be a class of compact (Hausdorff) spaces. We say that a compact space $L \in \mathcal{K}$ is universal for \mathcal{K} if every $\mathcal{K} \in \mathcal{K}$ is a continuous image of L.

Let \mathcal{X} be a class of (real) Banach spaces. We say that a Banach space $E \in \mathcal{X}$ is isometrically universal for \mathcal{X} if every $X \in \mathcal{X}$ can be isometrically embedded into E.

We say that a Banach space $E \in \mathcal{X}$ is universal for \mathcal{X} if every $X \in \mathcal{X}$ can be isomorphically embedded into E.

Classical examples

- 2^{ω} is universal for the class of all compact metrizable spaces.
- C[0,1] is isometrically universal for the class of all separable Banach spaces.

Proposition

 ${\cal K}$ - class of compact spaces, $~{\cal X}$ - class of Banach spaces

3

▲御▶ ▲ 臣▶ ▲ 臣▶

Proposition

 ${\cal K}$ - class of compact spaces, $~{\cal X}$ - class of Banach spaces Suppose that

- $\forall K \in \mathcal{K}, \ C(K) \in \mathcal{X}$
- $\forall X \in \mathcal{X}$, the dual unit ball with the weak^{*} topology $B_{X^*} \in \mathcal{K}$

Proposition

 ${\cal K}$ - class of compact spaces, $~{\cal X}$ - class of Banach spaces Suppose that

- $\forall K \in \mathcal{K}, \ C(K) \in \mathcal{X}$
- $\forall X \in \mathcal{X}$, the dual unit ball with the weak^{*} topology $B_{X^*} \in \mathcal{K}$

If K is universal for \mathcal{K} , then C(K) is isometrically universal for \mathcal{X} .

Proposition

 ${\cal K}$ - class of compact spaces, $~{\cal X}$ - class of Banach spaces Suppose that

- $\forall K \in \mathcal{K}, C(K) \in \mathcal{X}$
- $\forall X \in \mathcal{X}$, the dual unit ball with the weak* topology $B_{X^*} \in \mathcal{K}$

If K is universal for \mathcal{K} , then C(K) is isometrically universal for \mathcal{X} .

Remarks:

- Given any compact space K, C(K) is a Banach space of density equal to the weight of K.
- Given any Banach space X, B_{X^*} equipped with the weak* topology is a compact space of weight equal to the density of X.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Example 1: compact spaces of weight κ and Banach spaces of density κ .

3

Example 1: compact spaces of weight κ and Banach spaces of density κ .

• Parovicenko:

CH implies that $\omega^*=\beta\mathbb{N}\setminus\mathbb{N}$ is universal for compact spaces of weight $\omega_1=\mathfrak{c}$

3

Example 1: compact spaces of weight κ and Banach spaces of density κ .

• Parovicenko:

CH implies that $\omega^* = \beta \mathbb{N} \setminus \mathbb{N}$ is universal for compact spaces of weight $\omega_1 = \mathfrak{c}$ and that $\ell_{\infty}/c_0 \equiv C(\omega^*)$ is isometrically universal for Banach spaces of density $\omega_1 = \mathfrak{c}$.

Example 1: compact spaces of weight κ and Banach spaces of density κ .

• Parovicenko:

CH implies that $\omega^* = \beta \mathbb{N} \setminus \mathbb{N}$ is universal for compact spaces of weight $\omega_1 = \mathfrak{c}$ and that $\ell_{\infty}/c_0 \equiv C(\omega^*)$ is isometrically universal for Banach spaces of density $\omega_1 = \mathfrak{c}$.

• Dow, Hart:

It is consistent that there is no universal for compact spaces of weight \mathfrak{c} .

• Shelah, Usvyatsov:

It is consistent that there is no isometrically universal for Banach spaces of density $\mathfrak{c}.$

• B., Koszmider:

It is consistent that there is no universal for Banach spaces of density \mathfrak{c} (and of density ω_1).

Example 2: uniform Eberlein compact spaces of weight κ (UE) and Banach spaces of density κ which have a uniformly Gâteaux differentiable renorming (UG).

Example 2: uniform Eberlein compact spaces of weight κ (UE) and Banach spaces of density κ which have a uniformly Gâteaux differentiable renorming (UG).

Theorem (Bell)

• CH implies that there is a universal for UE compact spaces of weight $\omega_1 = \mathfrak{c}$

Example 2: uniform Eberlein compact spaces of weight κ (UE) and Banach spaces of density κ which have a uniformly Gâteaux differentiable renorming (UG).

Theorem (Bell)

 CH implies that there is a universal for UE compact spaces of weight ω₁ = c and that there is an isometrically universal for UG Banach spaces of density ω₁ = c.

Example 2: uniform Eberlein compact spaces of weight κ (UE) and Banach spaces of density κ which have a uniformly Gâteaux differentiable renorming (UG).

Theorem (Bell)

- CH implies that there is a universal for UE compact spaces of weight ω₁ = c and that there is an isometrically universal for UG Banach spaces of density ω₁ = c.
- It is consistent that there is no universal UE compact space of weight ω_1 .

Example 2: uniform Eberlein compact spaces of weight κ (UE) and Banach spaces of density κ which have a uniformly Gâteaux differentiable renorming (UG).

Theorem (Bell)

- CH implies that there is a universal for UE compact spaces of weight ω₁ = c and that there is an isometrically universal for UG Banach spaces of density ω₁ = c.
- It is consistent that there is no universal UE compact space of weight ω_1 .

Theorem (B., Koszmider)

It is consistent that there is no universal for UG Banach spaces of density ω_1 nor of density $\mathfrak{c}.$

イロト 不得 とうせい かほとう ほ

We will force the existence of ω_2 -many UG Banach spaces of density ω_1 such that no Banach space of density ω_1 in the extension can contain isomorphic copies of all of these spaces.

3

Image: A matrix and a matrix

We will force the existence of ω_2 -many UG Banach spaces of density ω_1 such that no Banach space of density ω_1 in the extension can contain isomorphic copies of all of these spaces.

The ω_2 -many UG Banach spaces of density ω_1 will be obtained as Banach spaces of continuous functions on the Stone space of ω_2 -many generic ω_1 -sized Boolean algebras with good properties, which are called c-algebras.

We will force the existence of ω_2 -many UG Banach spaces of density ω_1 such that no Banach space of density ω_1 in the extension can contain isomorphic copies of all of these spaces.

The ω_2 -many UG Banach spaces of density ω_1 will be obtained as Banach spaces of continuous functions on the Stone space of ω_2 -many generic ω_1 -sized Boolean algebras with good properties, which are called c-algebras.

Define a forcing notion \mathbb{P} which adds a c-algebra to the ground model V and prove that given a Banach space X in V, there is no isomorphic embedding $T : C(K) \to X$ in $V^{\mathbb{P}}$, where K is the Stone space of the generic c-algebra.

イロト 不得 トイヨト イヨト 二日

We will force the existence of ω_2 -many UG Banach spaces of density ω_1 such that no Banach space of density ω_1 in the extension can contain isomorphic copies of all of these spaces.

The ω_2 -many UG Banach spaces of density ω_1 will be obtained as Banach spaces of continuous functions on the Stone space of ω_2 -many generic ω_1 -sized Boolean algebras with good properties, which are called c-algebras.

Define a forcing notion \mathbb{P} which adds a c-algebra to the ground model V and prove that given a Banach space X in V, there is no isomorphic embedding $T : C(K) \to X$ in $V^{\mathbb{P}}$, where K is the Stone space of the generic c-algebra.

Consider Σ the product of ω_2 copies of \mathbb{P} , with finite supports. Given any Banach space X of density ω_1 in V^{Σ} , it is already "determined" at an intermediate model $V^{\Sigma_{\lambda}}$ for some $\lambda < \omega_2$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

We will force the existence of ω_2 -many UG Banach spaces of density ω_1 such that no Banach space of density ω_1 in the extension can contain isomorphic copies of all of these spaces.

The ω_2 -many UG Banach spaces of density ω_1 will be obtained as Banach spaces of continuous functions on the Stone space of ω_2 -many generic ω_1 -sized Boolean algebras with good properties, which are called c-algebras.

Define a forcing notion \mathbb{P} which adds a c-algebra to the ground model V and prove that given a Banach space X in V, there is no isomorphic embedding $T : C(K) \to X$ in $V^{\mathbb{P}}$, where K is the Stone space of the generic c-algebra.

Consider Σ the product of ω_2 copies of \mathbb{P} , with finite supports. Given any Banach space X of density ω_1 in V^{Σ} , it is already "determined" at an intermediate model $V^{\Sigma_{\lambda}}$ for some $\lambda < \omega_2$. Then, if K is the Stone space of the c-algebra corresponding to the λ copy of \mathbb{P} , C(K) cannot be isomorphically embedded into X in V^{Σ} .

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

A Boolean algebra \mathcal{B} is a **c-algebra** if $\mathcal{B} = \langle A_{\xi,n} : \xi < \omega_1, i \in \omega \rangle$ where $\{A_{\xi,i} : \xi < \omega_1\}$ are pairwise disjoint antichains such that

 $A_{\xi_1,i_1} \vee \cdots \vee A_{\xi_m,i_m} \neq 1$ for distinct pairs $(\xi_1,i_1),\ldots,(\xi_m,i_m) \in \omega_1 \times \omega$.

Theorem (Bell)

If \mathcal{B} is a c-algebra, then its Stone space K is a uniform Eberlein compact space. Therefore, C(K) is a UG Banach space.

イロト イポト イヨト イヨト 二日

The forcing notion

- $p=(n_p,D_p,F_p)\in \mathbb{P}$ if
 - $n_p \in \omega$,
 - $D_{
 ho} \in [\omega_1]^{<\omega}$,
 - F_p is a finite subset of $Fn_{<\omega}(n_p, D_p)$,
 - $[n_p \times D_p]^1 \subseteq F_p$.

∃ → < ∃ →</p>

- 3

The forcing notion

$$\begin{split} p &= (n_p, D_p, F_p) \in \mathbb{P} \text{ if} \\ &= n_p \in \omega, \\ &= D_p \in [\omega_1]^{<\omega}, \\ &= F_p \text{ is a finite subset of } Fn_{<\omega}(n_p, D_p), \\ &= [n_p \times D_p]^1 \subseteq F_p. \end{split}$$

$$p &\leq q \text{ if} \\ &= n_p \geq n_q, \\ &= D_p \supseteq D_q, \\ &= F_p \supseteq F_q, \end{split}$$

• $\forall f \in F_p \exists g \in F_q \text{ such that } f \cap (n_q \times D_q) \subseteq g.$

∃ >

3

$$A_{\xi,i} = \{f \in Fn_{<\omega}(\omega,\omega_1) : \exists p \in G \text{ such that } f \in F_p \text{ and } f(i) = \xi\}.$$

Let \mathcal{B} be the subalgebra of the Boolean algebra $\wp(Fn_{<\omega}(\omega,\omega_1))$ generated by the sets $\{A_{\xi,i}: (i,\xi) \in \omega \times \omega_1\}.$

Image: A mathematical states and a mathem

$$A_{\xi,i} = \{ f \in Fn_{<\omega}(\omega, \omega_1) : \exists p \in G \text{ such that } f \in F_p \text{ and } f(i) = \xi \}.$$

Let \mathcal{B} be the subalgebra of the Boolean algebra $\wp(Fn_{<\omega}(\omega,\omega_1))$ generated by the sets $\{A_{\xi,i}: (i,\xi) \in \omega \times \omega_1\}$.

In V[G], we have that:

• given distinct pairs $(i_1, \xi_1), ..., (i_k, \xi_k), (i, \xi), A_{\xi,i} \setminus (A_{\xi_1, i_1} \cup ... \cup A_{\xi_k, i_k}) \neq \emptyset;$

$$A_{\xi,i} = \{ f \in Fn_{<\omega}(\omega, \omega_1) : \exists p \in G \text{ such that } f \in F_p \text{ and } f(i) = \xi \}.$$

Let \mathcal{B} be the subalgebra of the Boolean algebra $\wp(Fn_{<\omega}(\omega,\omega_1))$ generated by the sets $\{A_{\xi,i}: (i,\xi) \in \omega \times \omega_1\}$.

In V[G], we have that:

• given distinct pairs $(i_1, \xi_1), \dots, (i_k, \xi_k), (i, \xi), A_{\xi,i} \setminus (A_{\xi_1, i_1} \cup \dots \cup A_{\xi_k, i_k}) \neq \emptyset$;

• given
$$i \in \omega$$
 and $\xi \neq \eta$, $A_{\xi,i} \cap A_{\eta,i} = \emptyset$.

$$\mathsf{A}_{\xi,i} = \{ f \in \mathit{Fn}_{<\omega}(\omega,\omega_1) : \exists p \in G \text{ such that } f \in \mathit{F}_p \text{ and } f(i) = \xi \}.$$

Let \mathcal{B} be the subalgebra of the Boolean algebra $\wp(Fn_{<\omega}(\omega,\omega_1))$ generated by the sets $\{A_{\xi,i}: (i,\xi) \in \omega \times \omega_1\}$.

In V[G], we have that:

• given distinct pairs $(i_1, \xi_1), \dots, (i_k, \xi_k), (i, \xi), A_{\xi,i} \setminus (A_{\xi_1, i_1} \cup \dots \cup A_{\xi_k, i_k}) \neq \emptyset;$

• given
$$i \in \omega$$
 and $\xi \neq \eta$, $A_{\xi,i} \cap A_{\eta,i} = \emptyset$.

Therefore, \mathcal{B} is a c-algebra of cardinality ω_1 and its Stone space K is a uniform Eberlein compact space of weight ω_1 .

$$\mathsf{A}_{\xi,i} = \{ f \in \mathit{Fn}_{<\omega}(\omega,\omega_1) : \exists p \in G \text{ such that } f \in \mathit{F}_p \text{ and } f(i) = \xi \}.$$

Let \mathcal{B} be the subalgebra of the Boolean algebra $\wp(Fn_{<\omega}(\omega,\omega_1))$ generated by the sets $\{A_{\xi,i}: (i,\xi) \in \omega \times \omega_1\}$.

In V[G], we have that:

• given distinct pairs $(i_1, \xi_1), ..., (i_k, \xi_k), (i, \xi), A_{\xi,i} \setminus (A_{\xi_1, i_1} \cup ... \cup A_{\xi_k, i_k}) \neq \emptyset;$

• given
$$i \in \omega$$
 and $\xi \neq \eta$, $A_{\xi,i} \cap A_{\eta,i} = \emptyset$.

Therefore, \mathcal{B} is a c-algebra of cardinality ω_1 and its Stone space K is a uniform Eberlein compact space of weight ω_1 .

Theorem

Given any Banach space X in the ground model V, there is no isomorphic embedding $T : C(K) \rightarrow X$ in V[G].

< 日 > < 同 > < 回 > < 回 > < 回 > <

Given $p_1 = (n_1, D_1, F_1)$, $p_2 = (n_2, D_2, F_2) \in \mathbb{P}$, we say that they are isomorphic if $n_1 = n_2$ and there is an order-preserving bijection $e : D_1 \to D_2$ such that $e|_{D_1 \cap D_2} = id$ and for all $f \in Fn_{<\omega}(\omega, \omega_1)$, $f \in F_1$ if and only if $e[f] \in F_2$, where e[f](i) = e(f(i)).

イロト イポト イヨト イヨト 二日

Given $p_1 = (n_1, D_1, F_1)$, $p_2 = (n_2, D_2, F_2) \in \mathbb{P}$, we say that they are isomorphic if $n_1 = n_2$ and there is an order-preserving bijection $e : D_1 \to D_2$ such that $e|_{D_1 \cap D_2} = id$ and for all $f \in Fn_{<\omega}(\omega, \omega_1)$, $f \in F_1$ if and only if $e[f] \in F_2$, where e[f](i) = e(f(i)).

Lemma

Let $p_k = (n, D_k, F_k)$ in \mathbb{P} , for $1 \le k \le m$, be pairwise isomorphic conditions such that $(D_k)_{1 \le k \le m}$ is a Δ -system with root D.

1 There is $p \leq p_1, \ldots, p_m$ such that

 $\forall \xi \in D_k \setminus D \quad \forall \xi' \in D_{k'} \setminus D \quad \forall i \neq i' \qquad p \Vdash \dot{A}_{\xi,i} \cap \dot{A}_{\xi',i'} = \emptyset.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Given $p_1 = (n_1, D_1, F_1)$, $p_2 = (n_2, D_2, F_2) \in \mathbb{P}$, we say that they are isomorphic if $n_1 = n_2$ and there is an order-preserving bijection $e : D_1 \to D_2$ such that $e|_{D_1 \cap D_2} = id$ and for all $f \in Fn_{<\omega}(\omega, \omega_1)$, $f \in F_1$ if and only if $e[f] \in F_2$, where e[f](i) = e(f(i)).

Lemma

Let $p_k = (n, D_k, F_k)$ in \mathbb{P} , for $1 \le k \le m$, be pairwise isomorphic conditions such that $(D_k)_{1 \le k \le m}$ is a Δ -system with root D.

1 There is $p \leq p_1, \ldots, p_m$ such that

$$\forall \xi \in D_k \setminus D \quad \forall \xi' \in D_{k'} \setminus D \quad \forall i \neq i' \qquad p \Vdash \dot{A}_{\xi,i} \cap \dot{A}_{\xi',i'} = \emptyset.$$

2 Given $\xi_k \in D_k \setminus D$ and distinct $i_k < n$, there is $p \le p_1, \ldots, p_m$ such that

$$p \Vdash \dot{A}_{\check{\xi}_1,i_1} \cap \cdots \cap \dot{A}_{\check{\xi}_m,i_m} \neq \emptyset.$$

イロト 不得 とくほ とくほ とうしょう

Definition

 Σ is the product of ω_2 copies of \mathbb{P} , with finite supports.

Theorem

 $V^{\Sigma} \models$ " $\mathfrak{c} = \omega_2$ and there is no Banach space X of density ω_1 such that for every uniform Eberlein compact space K of weight at most ω_1 , C(K) can be isomorphically embedded into X".

References

M. Bell.

Universal uniform Eberlein compact spaces. Proc. Amer. Math. Soc., 128(7):2191–2197, 2000.

C. Brech and P. Koszmider.

On universal Banach spaces of density continuum. to appear in Israel J. Math.

C. Brech and P. Koszmider.

On universal spaces for the class of banach spaces whose dual balls are uniform eberlein compacts.

to appear in Proc. Amer. Math. Soc.