Comparison and Measures in Inner Models

F.Schlutzenberg

Department of Mathematics University of North Texas

May 2012, 5th Young Set Theory Workshop, CIRM, Luminy

ヘロト ヘアト ヘビト ヘビト

ъ

Outline

- 2 L[U]
 - κ-models
 - Comparison, Iteration
 - Limit stages of Iteration
 - Wellorder of \mathbb{R}

3 Larger Cardinals

- Extenders
- Iteration Trees
- Analysis of Measures

ъ

- L is well understood, particularly through fine structure
- *L* satisfies GCH
- $\mathbb{R} \cap L$ can be wellordered, in fact there's a Δ_2^1 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- L is well understood, particularly through fine structure
- L satisfies GCH
- $\mathbb{R} \cap L$ can be wellordered, in fact there's a Δ_2^1 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

イロト イポト イヨト イヨト 三日

- L is well understood, particularly through fine structure
- L satisfies GCH
- $\mathbb{R} \cap L$ can be wellordered, in fact there's a Δ_2^1 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

ヘロン 人間 とくほ とくほ とう

- L is well understood, particularly through fine structure
- L satisfies GCH
- $\mathbb{R} \cap L$ can be wellordered, in fact there's a Δ_2^1 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

- L is well understood, particularly through fine structure
- L satisfies GCH
- $\mathbb{R} \cap L$ can be wellordered, in fact there's a Δ_2^1 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

- L is well understood, particularly through fine structure
- L satisfies GCH
- $\mathbb{R} \cap L$ can be wellordered, in fact there's a Δ_2^1 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But L has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

- L is well understood, particularly through fine structure
- L satisfies GCH
- $\mathbb{R} \cap L$ can be wellordered, in fact there's a Δ_2^1 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Outline

Analysis of Measures

ヘロト 人間 ト ヘヨト ヘヨト

ъ

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

$L[\mathcal{U}]$ is the inner model for one measurable cardinal.

Let \mathcal{U} be a normal measure on κ . Let $\mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}]$. Then $L[\mathcal{U}] = L[\mathcal{U}']$ and

 $L[\mathcal{U}'] \models "\mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Definition

Say (M, \mathcal{V}, κ) is a κ -model iff

- *M* is transitive proper class, $M \models \mathsf{ZFC}$, and $\mathcal{V}, \kappa \in M$,
- $M \models V = L[\mathcal{V}]$ and \mathcal{V} is a normal measure on κ .

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

 $L[\mathcal{U}]$ is the inner model for one measurable cardinal.

```
Let \mathcal{U} be a normal measure on \kappa.
Let \mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}]. Then L[\mathcal{U}] = L[\mathcal{U}'] and
```

 $L[\mathcal{U}'] \models "\mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Definition

Say (M, \mathcal{V}, κ) is a κ -model iff

- *M* is transitive proper class, $M \models \mathsf{ZFC}$, and $\mathcal{V}, \kappa \in M$,
- $M \models V = L[\mathcal{V}]$ and \mathcal{V} is a normal measure on κ .

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

 $L[\mathcal{U}]$ is the inner model for one measurable cardinal.

Let \mathcal{U} be a normal measure on κ . Let $\mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}]$. Then $L[\mathcal{U}] = L[\mathcal{U}']$ and

 $L[\mathcal{U}'] \models "\mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Definition

Say (M, \mathcal{V}, κ) is a κ -model iff

- *M* is transitive proper class, $M \models \mathsf{ZFC}$, and $\mathcal{V}, \kappa \in M$,
- $M \models V = L[\mathcal{V}]$ and \mathcal{V} is a normal measure on κ .

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

 $L[\mathcal{U}]$ is the inner model for one measurable cardinal.

Let \mathcal{U} be a normal measure on κ . Let $\mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}]$. Then $L[\mathcal{U}] = L[\mathcal{U}']$ and

 $L[\mathcal{U}'] \models "\mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Definition

Say (M, \mathcal{V}, κ) is a κ -model iff

- *M* is transitive proper class, $M \models \mathsf{ZFC}$, and $\mathcal{V}, \kappa \in M$,
- $M \models V = L[\mathcal{V}]$ and \mathcal{V} is a normal measure on κ .

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

 $L[\mathcal{U}]$ is the inner model for one measurable cardinal.

Let \mathcal{U} be a normal measure on κ . Let $\mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}]$. Then $L[\mathcal{U}] = L[\mathcal{U}']$ and

 $L[\mathcal{U}'] \models "\mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Definition

Say (M, \mathcal{V}, κ) is a κ -model iff

- *M* is transitive proper class, $M \models \mathsf{ZFC}$, and $\mathcal{V}, \kappa \in M$,
- $M \models V = L[\mathcal{V}]$ and \mathcal{V} is a normal measure on κ .

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Solovay proved that in a κ -model, κ is the unique measurable cardinal. This was improved by:

Theorem (Kunen)

Let (M, \mathcal{V}, κ) be a κ -model. In fact, $M \models \mathcal{V}$ is the unique normal measure, and all measures are equivalent to finite products of \mathcal{V} ".

This follows from:

Theorem (Kunen)

Let $(M, \mathcal{V}, \kappa_{\mathcal{V}})$ and $(N, \mathcal{W}, \kappa_{\mathcal{W}})$ be $\kappa_{\mathcal{V}}, \kappa_{\mathcal{W}}$ -models.

• If $\kappa_{\mathcal{V}} = \kappa_{\mathcal{W}}$ then $\mathcal{V} = \mathcal{W}$.

 If κ_V < κ_W then there's an elementary j : M → N such that j(κ_V) = κ_W and j(V) = W. Moreover, W ∈ M and j is a class of M.

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Solovay proved that in a κ -model, κ is the unique measurable cardinal. This was improved by:

Theorem (Kunen)

Let (M, \mathcal{V}, κ) be a κ -model. In fact, $M \models \mathcal{V}$ is the unique normal measure, and all measures are equivalent to finite products of \mathcal{V} ".

This follows from:

Theorem (Kunen)

Let $(M, \mathcal{V}, \kappa_{\mathcal{V}})$ and $(N, \mathcal{W}, \kappa_{\mathcal{W}})$ be $\kappa_{\mathcal{V}}, \kappa_{\mathcal{W}}$ -models.

• If $\kappa_{\mathcal{V}} = \kappa_{\mathcal{W}}$ then $\mathcal{V} = \mathcal{W}$.

 If κ_V < κ_W then there's an elementary j : M → N such that j(κ_V) = κ_W and j(V) = W. Moreover, W ∈ M and j is a class of M.

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Solovay proved that in a κ -model, κ is the unique measurable cardinal. This was improved by:

Theorem (Kunen)

Let (M, \mathcal{V}, κ) be a κ -model. In fact, $M \models \mathcal{V}$ is the unique normal measure, and all measures are equivalent to finite products of \mathcal{V} ".

This follows from:

Theorem (Kunen)

Let $(M, \mathcal{V}, \kappa_{\mathcal{V}})$ and $(N, \mathcal{W}, \kappa_{\mathcal{W}})$ be $\kappa_{\mathcal{V}}, \kappa_{\mathcal{W}}$ -models.

• If
$$\kappa_{\mathcal{V}} = \kappa_{\mathcal{W}}$$
 then $\mathcal{V} = \mathcal{W}$.

 If κ_V < κ_W then there's an elementary j : M → N such that j(κ_V) = κ_W and j(V) = W. Moreover, W ∈ M and j is a class of M.

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Solovay proved that in a κ -model, κ is the unique measurable cardinal. This was improved by:

Theorem (Kunen)

Let (M, \mathcal{V}, κ) be a κ -model. In fact, $M \models \mathcal{V}$ is the unique normal measure, and all measures are equivalent to finite products of \mathcal{V} ".

This follows from:

Theorem (Kunen)

Let $(M, \mathcal{V}, \kappa_{\mathcal{V}})$ and $(N, \mathcal{W}, \kappa_{\mathcal{W}})$ be $\kappa_{\mathcal{V}}, \kappa_{\mathcal{W}}$ -models.

• If
$$\kappa_{\mathcal{V}} = \kappa_{\mathcal{W}}$$
 then $\mathcal{V} = \mathcal{W}$.

 If κ_V < κ_W then there's an elementary j : M → N such that j(κ_V) = κ_W and j(V) = W. Moreover, W ∈ M and j is a class of M.

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Outline

くロト (過) (目) (日)

ъ

Proof Sketch (Kunen's second theorem).

We *compare* (M, V) with (N, W) (suppress " κ_V " and " κ_W ").

Comparison Sketch.

- Form ultrapowers using \mathcal{V}, \mathcal{W} , and images of them, producing new models, until...
- Until we reach same model (R, \mathcal{X}) on either side.

イロト イポト イヨト イヨト 一臣

Proof Sketch (Kunen's second theorem).

```
We compare (M, V) with (N, W) (suppress "\kappa_V" and "\kappa_W").
```

Comparison Sketch.

- Form ultrapowers using V, W, and images of them, producing new models, until...
- Until we reach same model (R, \mathcal{X}) on either side.

$$M \longrightarrow \text{Ult}(M, \mathcal{V}) \longrightarrow \dots \longrightarrow R$$
$$\mathcal{V} \qquad \qquad \mathcal{X}$$
$$N \longrightarrow \text{Ult}(N, \mathcal{W}) \longrightarrow \dots \longrightarrow R$$
$$\mathcal{W} \qquad \qquad \mathcal{X}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof Sketch (Kunen's second theorem).

We *compare* (M, V) with (N, W) (suppress " κ_V " and " κ_W ").

Comparison Sketch.

- Form ultrapowers using V, W, and images of them, producing new models, until...
- Until we reach same model (R, \mathcal{X}) on either side.

$$M \longrightarrow \text{Ult}(M, \mathcal{V}) \longrightarrow \dots \longrightarrow R$$
$$\mathcal{V} \qquad \qquad \mathcal{X}$$
$$N \longrightarrow \text{Ult}(N, \mathcal{W}) \longrightarrow \dots \longrightarrow R$$
$$\mathcal{W} \qquad \qquad \mathcal{X}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

L and Motivation L[µ] Larger Cardinals Larger Cardinals Larger Cardinals Larger Cardinals

Goal.

Produce some γ-model (*R*, *X*) and elementary embeddings

 $i:(M,\mathcal{V}) \to (R,\mathcal{X})$

such that $crit(i) = \kappa_{\mathcal{V}}$ (or *i* is the identity), and likewise

 $j:(N,\mathcal{W})\to(R,\mathcal{X}).$

- Therefore $(M, \mathcal{V}) \equiv (N, \mathcal{W})$ and $\mathbb{R}^M = \mathbb{R}^N$.
- Using how the embeddings *i*, *j* are defined, one can then prove that one side didn't "move" during comparison: either (M, V) = (R, X) or (N, W) = (R, X).

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

L and Motivation L[µ] Larger Cardinals Larger Cardinals Larger Cardinals Larger Cardinals

Goal.

Produce some γ-model (*R*, *X*) and elementary embeddings

 $i:(M,\mathcal{V}) \to (R,\mathcal{X})$

such that $\operatorname{crit}(i) = \kappa_{\mathcal{V}}$ (or *i* is the identity), and likewise

 $j: (N, \mathcal{W}) \rightarrow (R, \mathcal{X}).$

- Therefore $(M, \mathcal{V}) \equiv (N, \mathcal{W})$ and $\mathbb{R}^M = \mathbb{R}^N$.
- Using how the embeddings *i*, *j* are defined, one can then prove that one side didn't "move" during comparison: either (M, V) = (R, X) or (N, W) = (R, X).

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

L and Motivation L[µ] Larger Cardinals Larger Cardinals Larger Cardinals Larger Cardinals

Goal.

Produce some γ-model (*R*, *X*) and elementary embeddings

 $i:(M,\mathcal{V}) \to (R,\mathcal{X})$

such that $\operatorname{crit}(i) = \kappa_{\mathcal{V}}$ (or *i* is the identity), and likewise

 $j: (N, \mathcal{W}) \rightarrow (R, \mathcal{X}).$

- Therefore $(M, \mathcal{V}) \equiv (N, \mathcal{W})$ and $\mathbb{R}^M = \mathbb{R}^N$.
- Using how the embeddings *i*, *j* are defined, one can then prove that one side didn't "move" during comparison: either (M, V) = (R, X) or (N, W) = (R, X).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

L and Motivation L[U] Larger Cardinals
Larger Cardinals
Larger Cardinals
Larger Cardinals
Larger Cardinals
K--models
Comparison, Iteration
Limit stages of Iteration
Wellorder of ℝ

Goal.

Produce some γ-model (*R*, *X*) and elementary embeddings

 $i:(M,\mathcal{V}) \to (R,\mathcal{X})$

such that $\operatorname{crit}(i) = \kappa_{\mathcal{V}}$ (or *i* is the identity), and likewise

$$j: (N, \mathcal{W}) \to (R, \mathcal{X}).$$

- Therefore $(M, \mathcal{V}) \equiv (N, \mathcal{W})$ and $\mathbb{R}^M = \mathbb{R}^N$.
- Using how the embeddings *i*, *j* are defined, one can then prove that one side didn't "move" during comparison: either (*M*, V) = (*R*, X) or (*N*, W) = (*R*, X).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $\begin{array}{l} \kappa \text{-models} \\ \textbf{Comparison, Iteration} \\ \text{Limit stages of Iteration} \\ \text{Wellorder of } \mathbb{R} \end{array}$

Comparison Details.

Start with

$$(M_0, \mathcal{V}_0) = (M, \mathcal{V}) \neq (N_0, \mathcal{W}_0) = (N, \mathcal{W}).$$

Let $\kappa_0 = \kappa_V$ and $\mu_0 = \kappa_W$.

We'll define models $(M_{\alpha}, \mathcal{V}_{\alpha})$ and $(N_{\alpha}, \mathcal{W}_{\alpha})$ for ordinals α .

1*st stage.* There are 3 cases.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 $\begin{array}{l} \kappa \text{-models} \\ \textbf{Comparison, Iteration} \\ \text{Limit stages of Iteration} \\ \text{Wellorder of } \mathbb{R} \end{array}$

Comparison Details.

Start with

$$(M_0, \mathcal{V}_0) = (M, \mathcal{V}) \neq (N_0, \mathcal{W}_0) = (N, \mathcal{W}).$$

Let $\kappa_0 = \kappa_V$ and $\mu_0 = \kappa_W$.

We'll define models $(M_{\alpha}, \mathcal{V}_{\alpha})$ and $(N_{\alpha}, \mathcal{W}_{\alpha})$ for ordinals α .

1*st stage.* There are 3 cases.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Case 1: $\kappa_0 < \mu_0$. Form ultrapower on *M* side. Do nothing on *N* side. Define:

•
$$M_1 = \text{Ult}(M_0, \mathcal{V}_0).$$

• $i_{0,1}: M_0 \rightarrow M_1$ the ultrapower embedding.

•
$$\mathcal{V}_1 = i_{0,1}(\mathcal{V}_0)$$
 and $\kappa_1 = i_{0,1}(\kappa_0)$.

•
$$(N_1, \mathcal{W}_1, \mu_1) = (N_0, \mathcal{W}_0, \mu_0).$$

• $j_{0,1}: N_0 \rightarrow N_1$ the identity.

We have defined (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1) .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Case 1: $\kappa_0 < \mu_0$. Form ultrapower on *M* side. Do nothing on *N* side. Define:

•
$$M_1 = \text{Ult}(M_0, \mathcal{V}_0).$$

• $i_{0,1}: M_0 \rightarrow M_1$ the ultrapower embedding.

•
$$\mathcal{V}_1 = i_{0,1}(\mathcal{V}_0)$$
 and $\kappa_1 = i_{0,1}(\kappa_0)$.

•
$$(N_1, \mathcal{W}_1, \mu_1) = (N_0, \mathcal{W}_0, \mu_0).$$

• $j_{0,1}: N_0 \rightarrow N_1$ the identity.

We have defined (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1) .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Case 1: $\kappa_0 < \mu_0$. Form ultrapower on *M* side. Do nothing on *N* side. Define:

•
$$M_1 = \text{Ult}(M_0, \mathcal{V}_0).$$

• $i_{0,1}: M_0 \rightarrow M_1$ the ultrapower embedding.

•
$$\mathcal{V}_1 = i_{0,1}(\mathcal{V}_0)$$
 and $\kappa_1 = i_{0,1}(\kappa_0)$.

•
$$(N_1, W_1, \mu_1) = (N_0, W_0, \mu_0).$$

•
$$j_{0,1}: N_0 \rightarrow N_1$$
 the identity.

We have defined (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1) .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Case 1: $\kappa_0 < \mu_0$. Form ultrapower on *M* side. Do nothing on *N* side. Define:

•
$$M_1 = \text{Ult}(M_0, \mathcal{V}_0).$$

• $i_{0,1}: M_0 \rightarrow M_1$ the ultrapower embedding.

•
$$\mathcal{V}_1 = i_{0,1}(\mathcal{V}_0)$$
 and $\kappa_1 = i_{0,1}(\kappa_0)$.

•
$$(N_1, W_1, \mu_1) = (N_0, W_0, \mu_0).$$

•
$$j_{0,1}: N_0 \rightarrow N_1$$
 the identity.

We have defined (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1) .

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Case 2: $\kappa_0 > \mu_0$. Symmetric to Case 1.

Case 3: $\kappa_0 = \mu_0$. Take an ultrapower on both sides, M_1 and N_1 are the resulting ultrapowers, $i_{0,1}, \mathcal{V}_1, j_{0,1}, \mathcal{W}_1$ defined as before.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Note M_1 is wellfounded since

 $M_0 \models "\mathcal{U}_0$ is a normal measure and $M_1 = \text{Ult}(V, \mathcal{U}_0)$.".

Moreover,

is elementary and $i_{0,1}(\mathcal{V}_0) = \mathcal{V}_1$, so

 $M_1 \models "\mathcal{V}_1$ is a normal measure on κ_1 and $V = L[\mathcal{V}_1]"$.

So (M_1, \mathcal{V}_1) is a κ_1 -model. Likewise (N_1, \mathcal{W}_1) a μ_1 -model.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Note M_1 is wellfounded since

 $M_0 \models$ " \mathcal{U}_0 is a normal measure and $M_1 = \text{Ult}(V, \mathcal{U}_0)$.".

Moreover,

$$M_0 \stackrel{i_{0,1}}{\longrightarrow} M_1$$

is elementary and $i_{0,1}(\mathcal{V}_0) = \mathcal{V}_1$, so

 $M_1 \models "\mathcal{V}_1$ is a normal measure on κ_1 and $V = L[\mathcal{V}_1]"$.

So (M_1, \mathcal{V}_1) is a κ_1 -model. Likewise (N_1, \mathcal{W}_1) a μ_1 -model.

▲ロト ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● ○ ○ ○
$\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Note M_1 is wellfounded since

 $M_0 \models "\mathcal{U}_0$ is a normal measure and $M_1 = \text{Ult}(V, \mathcal{U}_0)$.".

Moreover,

$$M_0 \xrightarrow{i_{0,1}} M_1$$

is elementary and $i_{0,1}(\mathcal{V}_0) = \mathcal{V}_1$, so

 $M_1 \models "\mathcal{V}_1$ is a normal measure on κ_1 and $V = L[\mathcal{V}_1]$ ".

So (M_1, V_1) is a κ_1 -model. Likewise (N_1, W_1) a μ_1 -model.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Now if $(M_1, V_1) = (N_1, W_1)$, we stop. Otherwise, proceed to:

2nd stage. Repeat 1st stage, working with (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1) . This produces (M_2, \mathcal{V}_2) and $i_{1,2} : M_1 \to M_2$, and likewise (N_2, \mathcal{W}_2) and $j_{1,2}$.

All successor stages are likewise; note we keep producing wellfounded models.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Now if $(M_1, V_1) = (N_1, W_1)$, we stop. Otherwise, proceed to:

2nd stage. Repeat 1st stage, working with (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1) . This produces (M_2, \mathcal{V}_2) and $i_{1,2} : M_1 \to M_2$, and likewise (N_2, \mathcal{W}_2) and $j_{1,2}$.

All successor stages are likewise; note we keep producing wellfounded models.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Now if $(M_1, V_1) = (N_1, W_1)$, we stop. Otherwise, proceed to:

2nd stage. Repeat 1st stage, working with (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1) . This produces (M_2, \mathcal{V}_2) and $i_{1,2} : M_1 \to M_2$, and likewise (N_2, \mathcal{W}_2) and $j_{1,2}$.

All successor stages are likewise; note we keep producing wellfounded models.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Suppose we reach $n < \omega$ such that $(M_n, \mathcal{V}_n) = (N_n, \mathcal{W}_n) = (R, \mathcal{X}).$

Have elementary embeddings $i_{0,1}$, $i_{1,2}$, ..., $i_{n-1,n}$. Let $i_{0,n}$ be their composition:

$$M_0 \xrightarrow{i_{0,1} \to} M_1 \xrightarrow{i_{1,2} \to} M_2 \xrightarrow{} \dots \xrightarrow{} M_{n-1} \xrightarrow{} \dots \xrightarrow{} M_n = R$$

Have $i_{0,n}(\mathcal{V}_0) = \mathcal{V}_n = \mathcal{X}.$

Likewise get embedding

$$j_{0,n}:N_0\to N_n=R,$$

and $j_{0,n}(W_0) = \mathcal{X}$. So $R, \mathcal{X}, i = i_{0,n}$ and $j = j_{0,n}$ are as required

イロン 不良 とくほう 不良 とうほ

L and Motivation L[U] Larger Cardinals Larger Cardinals Larger Cardinals Larger Cardinals

Suppose we reach $n < \omega$ such that $(M_n, \mathcal{V}_n) = (N_n, \mathcal{W}_n) = (R, \mathcal{X}).$

Have elementary embeddings $i_{0,1}, i_{1,2}, \ldots, i_{n-1,n}$. Let $i_{0,n}$ be their composition:

Likewise get embedding

$$j_{0,n}:N_0 o N_n=R,$$

and $j_{0,n}(W_0) = \mathcal{X}$. So $R, \mathcal{X}, i = i_{0,n}$ and $j = j_{0,n}$ are as required

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

L and Motivation L[U] Larger Cardinals Larger Cardinals Larger Cardinals Larger Cardinals

Suppose we reach $n < \omega$ such that $(M_n, \mathcal{V}_n) = (N_n, \mathcal{W}_n) = (R, \mathcal{X}).$

Have elementary embeddings $i_{0,1}, i_{1,2}, \ldots, i_{n-1,n}$. Let $i_{0,n}$ be their composition:

Likewise get embedding

$$j_{0,n}:N_0 o N_n=R,$$

and $j_{0,n}(W_0) = \mathcal{X}$. So $R, \mathcal{X}, i = i_{0,n}$ and $j = j_{0,n}$ are as required

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

L and Motivation L[µ] Larger Cardinals Larger Cardinals Larger Cardinals Larger Cardinals

Suppose we reach $n < \omega$ such that $(M_n, \mathcal{V}_n) = (N_n, \mathcal{W}_n) = (R, \mathcal{X}).$

Have elementary embeddings $i_{0,1}, i_{1,2}, \ldots, i_{n-1,n}$. Let $i_{0,n}$ be their composition:

Likewise get embedding

$$j_{0,n}: N_0 \to N_n = R,$$

and $j_{0,n}(\mathcal{W}_0) = \mathcal{X}$. So $R, \mathcal{X}, i = i_{0,n}$ and $j = j_{0,n}$ are as required.

< 回 > < 回 > < 回 > .

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Outline

くロト (過) (目) (日)

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of \mathbb{R}

What if $(M_n, \mathcal{V}_n) \neq (N_n, \mathcal{W}_n)$ for all $n < \omega$? Must define $(M_\omega, \mathcal{V}_\omega)$ and $(N_\omega, \mathcal{W}_\omega)$ and carry on with comparison.

 $M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots M_{\omega}$

Have $i_{0,n}$ for $n < \omega$. Likewise define e.g. $i_{1,3} = i_{2,3} \circ i_{1,2}$:

 $\cdots \longrightarrow M_k \longrightarrow \cdots \longrightarrow M_m \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots$

Note above diagram commutes. Get commuting system of maps:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

L and Motivation L[U] Larger Cardinals Larger Cardinals Larger Cardinals Larger Cardinals Larger Cardinals

What if $(M_n, \mathcal{V}_n) \neq (N_n, \mathcal{W}_n)$ for all $n < \omega$? Must define $(M_\omega, \mathcal{V}_\omega)$ and $(N_\omega, \mathcal{W}_\omega)$ and carry on with comparison.

 $M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots M_\omega$

Have $i_{0,n}$ for $n < \omega$. Likewise define e.g. $i_{1,3} = i_{2,3} \circ i_{1,2}$:

 $\cdots \longrightarrow M_k \longrightarrow \cdots \longrightarrow M_m \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots$

Note above diagram commutes. Get commuting system of maps:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $\begin{array}{c} \textit{L} \text{ and Motivation} \\ \textit{L}[\mathcal{U}] \\ \text{Larger Cardinals} \end{array} \xrightarrow{\kappa-models} \\ \textit{Comparison, Iteration} \\ \textit{Limit stages of Iteration} \\ \textit{Wellorder of } \mathbb{R} \end{array}$

What if $(M_n, \mathcal{V}_n) \neq (N_n, \mathcal{W}_n)$ for all $n < \omega$? Must define $(M_\omega, \mathcal{V}_\omega)$ and $(N_\omega, \mathcal{W}_\omega)$ and carry on with comparison.

 $M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots M_\omega$

Have $i_{0,n}$ for $n < \omega$. Likewise define e.g. $i_{1,3} = i_{2,3} \circ i_{1,2}$:

Note above diagram commutes.

Get commuting system of maps:

 $\xrightarrow{i_{k,m}} M_m \xrightarrow{i_{m,n}} M_n \xrightarrow{} \cdots$

・ 何 と く き と く き と … き

 L and Motivation
 k-models

 L[U]
 Comparison, Iteration

 Larger Cardinals
 Wellorder of ℝ

What if $(M_n, \mathcal{V}_n) \neq (N_n, \mathcal{W}_n)$ for all $n < \omega$? Must define $(M_\omega, \mathcal{V}_\omega)$ and $(N_\omega, \mathcal{W}_\omega)$ and carry on with comparison.

 $M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots M_\omega$

Have $i_{0,n}$ for $n < \omega$. Likewise define e.g. $i_{1,3} = i_{2,3} \circ i_{1,2}$:

Note above diagram commutes. Get commuting system of maps:

▲ 同 ▶ ▲ 臣 ▶ .

L and Motivation $L[\mathcal{U}]$ Larger Cardinals

 $\kappa\text{-models}$ Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

We define M_{ω} as the direct limit of the system

 $\langle M_n; i_{mn} \rangle_{m \le n < \omega}$.

Threads: For $m, m' < \omega, x \in M_m$ and $x' \in M_{m'}$, we say $(m, x) \approx (m', x')$ iff

 $m \le m' \& i_{m,m'}(x) = x',$

or

$$m' \leq m \& i_{m',m}(x') = x.$$

Because the $i_{m,n}$'s commute and are 1-1, this is an equivalence relation. Let [m, x] denote the thread (i.e. equivalence class) of (m, x).

イロト 不得 とくほ とくほ とう

 L and Motivation
 k-models

 L[U]
 Comparison, Iteration

 Larger Cardinals
 Limit stages of Iteration

We define M_{ω} as the direct limit of the system

 $\langle M_n; i_{mn} \rangle_{m \le n < \omega}$.

Threads: For $m, m' < \omega, x \in M_m$ and $x' \in M_{m'}$, we say $(m, x) \approx (m', x')$ iff

 $m \leq m' \& i_{m,m'}(x) = x',$

or

$$m' \leq m \& i_{m',m}(x') = x.$$

Because the $i_{m,n}$'s commute and are 1-1, this is an equivalence relation. Let [m, x] denote the thread (i.e. equivalence class) of (m, x).

イロン 不得 とくほ とくほ とうほ

 L and Motivation
 k-models

 L[µ]
 Comparison, Iteration

 Larger Cardinals
 Limit stages of Iteration

We define M_{ω} as the direct limit of the system

 $\langle M_n; i_{mn} \rangle_{m \le n < \omega}$.

Threads: For $m, m' < \omega, x \in M_m$ and $x' \in M_{m'}$, we say $(m, x) \approx (m', x')$ iff

$$m \leq m' \& i_{m,m'}(x) = x',$$

or

$$m' \leq m \& i_{m',m}(x') = x.$$

Because the $i_{m,n}$'s commute and are 1-1, this is an equivalence relation. Let [m, x] denote the thread (i.e. equivalence class) of (m, x).

イロン 不得 とくほ とくほ とうほ

L and Motivation $L[\mathcal{U}]$ Larger Cardinals

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Here [0, x] = [2, x''] but $[0, x] \neq [2, y]$.

<ロト <回 > < 注 > < 注 > 、

æ –

 L and Motivation
 κ-models

 L[µ]
 Comparison, Iteration

 Larger Cardinals
 Limit stages of Iteration

Now M_{ω} consists of all threads:

$M_{\omega} = \{ [m, x] \mid m < \omega \& x \in M_m \}.$

Define membership $\in^{M_{\omega}}$ of M_{ω} from membership of M_n 's. For $m \leq m'$,

$$[m, x] \in^{M_{\omega}} [m', x'] \iff i_{m,m'}(x) \in x';$$

likewise for $\ni^{M_{\omega}}$.

Because the $i_{m,n}$'s are elementary, this is well-defined and respects \approx .

Let $i_{m,\omega}: M_m \to M_\omega$ be the natural (elementary) embedding:

$$i_{m,\omega}(x) = [m, x].$$

イロン 不得 とくほ とくほ とうほ

 $\begin{array}{c} {\it L} \mbox{ and Motivation} \\ {\it L}[{\it L}] \\ \mbox{Larger Cardinals} \end{array} \xrightarrow{κ-models} \mbox{Comparison, Iteration} \\ \mbox{Limit stages of Iteration} \\ \mbox{Wellorder of } \mathbb{R} \end{array}$

Now M_{ω} consists of all threads:

$$M_{\omega} = \{ [m, x] \mid m < \omega \& x \in M_m \}.$$

Define membership $\in^{M_{\omega}}$ of M_{ω} from membership of M_n 's. For $m \leq m'$,

$$[m,x]\in^{M_{\omega}}[m',x']\iff i_{m,m'}(x)\in x';$$

likewise for $\ni^{M_{\omega}}$.

Because the $i_{m,n}$'s are elementary, this is well-defined and respects \approx .

Let $i_{m,\omega}: M_m \to M_\omega$ be the natural (elementary) embedding:

 $i_{m,\omega}(x)=[m,x].$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 $\begin{array}{c} {\it L} \mbox{ and Motivation} \\ {\it L}[{\it U}] \\ \mbox{Larger Cardinals} \end{array} \xrightarrow{κ-models} \mbox{Comparison, Iteration} \\ \mbox{Limit stages of Iteration} \\ \mbox{Wellorder of \mathbb{R}} \end{array}$

Now M_{ω} consists of all threads:

$$M_{\omega} = \{ [m, x] \mid m < \omega \& x \in M_m \}.$$

Define membership $\in^{M_{\omega}}$ of M_{ω} from membership of M_n 's. For $m \leq m'$,

$$[m,x]\in^{M_{\omega}}[m',x']\iff i_{m,m'}(x)\in x';$$

likewise for $\ni^{M_{\omega}}$.

Because the $i_{m,n}$'s are elementary, this is well-defined and respects \approx .

Let $i_{m,\omega}: M_m \to M_\omega$ be the natural (elementary) embedding:

$$i_{m,\omega}(x)=[m,x].$$

イロト 不得 トイヨト イヨト 二日 二

L and Motivation $L[\mathcal{U}]$ Larger Cardinals κ -models Comparison, Iteration Limit stages of Iteration Wellorder of \mathbb{R}

This defines M_{ω} . Is it wellfounded?

If so, and N_{ω} is also, can proceed with comparison. Why wellfoundedness important? Comparison algorithm depended on it to start with, and it's needed for the later parts of the proof (to be omitted).

Fact (Gaifman): M_{ω} and N_{ω} are wellfounded, but it's is not obvious. This is the *iterability problem*; its generalization to larger cardinals is a central problem in inner model theory.

ヘロン 人間 とくほ とくほ とう

L and Motivation $L[\mathcal{U}]$ Larger Cardinals κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

This defines M_{ω} . Is it wellfounded?

If so, and N_{ω} is also, can proceed with comparison. Why wellfoundedness important? Comparison algorithm depended on it to start with, and it's needed for the later parts of the proof (to be omitted).

Fact (Gaifman): M_{ω} and N_{ω} are wellfounded, but it's is not obvious. This is the *iterability problem*; its generalization to larger cardinals is a central problem in inner model theory.

イロト 不得 とくほと くほとう

1

 $\begin{array}{c} \mathcal{L} \text{ and Motivation} \\ \mathcal{L}[\mathcal{U}] \\ \text{Larger Cardinals} \end{array} \xrightarrow{\kappa-models} \\ \begin{array}{c} \mathcal{K} \text{-models} \\ \text{Comparison, Iteration} \\ \text{Limit stages of Iteration} \\ \text{Wellorder of } \mathbb{R} \end{array}$

 ω^{th} stage: define M_{ω} as the (wellfounded) direct limit, $i_{0,\omega}$ as direct limit embedding, $\mathcal{V}_{\omega} = i_{0,\omega}(\mathcal{V}_0)$. Likewise for N_{ω} , \mathcal{W}_{ω} .

 $(\omega + 1)^{\text{th}}$ stage: continue comparison with models $(M_{\omega}, \mathcal{V}_{\omega})$ versus $(N_{\omega}, \mathcal{W}_{\omega})$.

These methods produce M_{α} and $i_{\beta,\alpha}$ for all $\beta \leq \alpha \in OR$, and likewise on *N*-side. All models produced are wellfounded.

Fact: The comparison stops somewhere, i.e. $(M_{\alpha}, \mathcal{V}_{\alpha}) = (N_{\alpha}, \mathcal{W}_{\alpha})$ for some $\alpha \in OR$.

This completes the sketch of the proof.

ヘロン ヘアン ヘビン ヘビン

L and Motivation L[U] Larger Cardinals Larger Cardinals Larger Motivation Larger Cardinals Larger Cardinals

 ω^{th} stage: define M_{ω} as the (wellfounded) direct limit, $i_{0,\omega}$ as direct limit embedding, $\mathcal{V}_{\omega} = i_{0,\omega}(\mathcal{V}_0)$. Likewise for N_{ω} , \mathcal{W}_{ω} .

 $(\omega + 1)^{\text{th}}$ stage: continue comparison with models $(M_{\omega}, \mathcal{V}_{\omega})$ versus $(N_{\omega}, \mathcal{W}_{\omega})$.

These methods produce M_{α} and $i_{\beta,\alpha}$ for all $\beta \leq \alpha \in OR$, and likewise on *N*-side. All models produced are wellfounded.

Fact: The comparison stops somewhere, i.e. $(M_{\alpha}, \mathcal{V}_{\alpha}) = (N_{\alpha}, \mathcal{W}_{\alpha})$ for some $\alpha \in OR$.

This completes the sketch of the proof.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Larger Cardinals

 ω^{th} stage: define M_{ω} as the (wellfounded) direct limit, $i_{0,\omega}$ as direct limit embedding, $\mathcal{V}_{\omega} = i_{0,\omega}(\mathcal{V}_0)$. Likewise for N_{ω} , \mathcal{W}_{ω} .

 $(\omega + 1)^{\text{th}}$ stage: continue comparison with models $(M_{\omega}, \mathcal{V}_{\omega})$ versus $(N_{\omega}, \mathcal{W}_{\omega})$.

These methods produce M_{α} and $i_{\beta,\alpha}$ for all $\beta \leq \alpha \in OR$, and likewise on *N*-side. All models produced are wellfounded.

Fact: The comparison stops somewhere, i.e. $(M_{\alpha}, \mathcal{V}_{\alpha}) = (N_{\alpha}, \mathcal{W}_{\alpha})$ for some $\alpha \in OR$.

This completes the sketch of the proof.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

L and Motivation L[ℓ/] Larger Cardinals Larger Cardinals

 ω^{th} stage: define M_{ω} as the (wellfounded) direct limit, $i_{0,\omega}$ as direct limit embedding, $\mathcal{V}_{\omega} = i_{0,\omega}(\mathcal{V}_0)$. Likewise for N_{ω} , \mathcal{W}_{ω} .

 $(\omega + 1)^{\text{th}}$ stage: continue comparison with models $(M_{\omega}, \mathcal{V}_{\omega})$ versus $(N_{\omega}, \mathcal{W}_{\omega})$.

These methods produce M_{α} and $i_{\beta,\alpha}$ for all $\beta \leq \alpha \in OR$, and likewise on *N*-side. All models produced are wellfounded.

Fact: The comparison stops somewhere, i.e. $(M_{\alpha}, \mathcal{V}_{\alpha}) = (N_{\alpha}, \mathcal{W}_{\alpha})$ for some $\alpha \in OR$.

This completes the sketch of the proof.

<ロ> (四) (四) (三) (三) (三) (三)

 κ -models Comparison, Iteration Limit stages of Iteration Wellorder of $\mathbb R$

Outline

くロト (過) (目) (日)

L and Motivation $L[\mathcal{U}]$ Larger Cardinals κ -models Comparison, It Limit stages of Wellorder of \mathbb{R}

Related arguments can be used to show that in $L[\mathcal{U}]$, there is a Δ_3^1 wellorder of \mathbb{R} :

Say (for this slide) that (M, \mathcal{U}, κ) is a *premouse* iff *M* is a transitive model of $ZF - \{\text{Replacement}\}\ \text{plus "}\mathcal{U}\ \text{is a normal}\ \text{measure on }\kappa, \ V = L[\mathcal{U}], \text{ and Replacement for domains } \subseteq V_{\kappa}$ ". We can iterate *M* just like we did for the proper class models in comparison. Say *M* is a *mouse* iff it is a premouse all of whose iterates M_{α} are wellfounded.

In $L[\mathcal{U}]$, can wellorder \mathbb{R} by: "x < y iff there's a mouse (M, \mathcal{U}, κ) such that $x, y \in \mathbb{R}^M$ and $M \models$ " $x <_{L[\mathcal{U}]} y$ ". This is Σ_3^1 , as it's Π_2^1 to assert that M is a mouse.

イロト 不得 とくほと くほとう

L and Motivation $L[\mathcal{U}]$ Larger Cardinals Extenders Iteration Trees Analysis of Measures

Outline

- Iteration Trees
- Analysis of Measures

イロト イポト イヨト イヨト

L and Motivation $L[\mathcal{U}]$ Larger Cardinals

Extenders Iteration Trees Analysis of Measures

Generalizations? To produce models with larger cardinals:

- Build models from *extenders* instead of measures
- Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

ヘロト ヘアト ヘビト ヘビト

Generalizations? To produce models with larger cardinals:

• Build models from *extenders* instead of measures

Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

ヘロン 人間 とくほ とくほ とう

Generalizations? To produce models with larger cardinals:

- Build models from extenders instead of measures
- Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

ヘロン 人間 とくほ とくほ とう

3

Generalizations? To produce models with larger cardinals:

- Build models from extenders instead of measures
- Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Generalizations? To produce models with larger cardinals:

- Build models from extenders instead of measures
- Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 $\begin{array}{c} \textit{L} \text{ and Motivation} \\ \textit{L}[\mathcal{U}] \\ \textit{Larger Cardinals} \\ \end{array} \begin{array}{c} \textit{Extenders} \\ \textit{Iteration Transformed Transformed$

Given $j: V \to N$ elementary with $\kappa = \operatorname{crit}(j)$ and $a \in j(\kappa)^{<\omega}$, have measure E_a over $\kappa^{<\omega}$ defined by:

 $X \in E_a \iff a \in j(X).$

Fixing $\lambda \leq j(\kappa)$, we get an *extender E* of *length* λ by:

$$E = \langle E_a \rangle_{a \in \lambda^{<\omega}}$$
 .

<ロ> <四> <四> <四> <三</td>

 L and Motivation
 Extenders

 L[U]
 Iteration Trees

 Larger Cardinals
 Analysis of Measure

Given $j: V \to N$ elementary with $\kappa = \operatorname{crit}(j)$ and $a \in j(\kappa)^{<\omega}$, have measure E_a over $\kappa^{<\omega}$ defined by:

 $X \in E_a \iff a \in j(X).$

Fixing $\lambda \leq j(\kappa)$, we get an *extender E* of *length* λ by:

$$E = \langle E_a \rangle_{a \in \lambda^{<\omega}}$$
 .

<ロ> <四> <四> <四> <三</td>
Given $j: V \to N$ elementary with $\kappa = \operatorname{crit}(j)$ and $a \in j(\kappa)^{<\omega}$, have measure E_a over $\kappa^{<\omega}$ defined by:

$$X \in E_a \iff a \in j(X).$$

Fixing $\lambda \leq j(\kappa)$, we get an *extender E* of *length* λ by:

$$E = \langle E_a
angle_{a \in \lambda^{<\omega}}$$
 .

イロト 不得 とくほ とくほとう

æ

 $\begin{array}{c} \textit{L} \text{ and Motivation} \\ \textit{L}[\mathcal{U}] \\ \textit{Larger Cardinals} \end{array} \begin{array}{c} \textit{Extenders} \\ \textit{Iteration Tr} \\ \textit{Analysis of } \end{array}$

Given this *E*, can define Ult(V, E) and ultrapower embedding $i_E : V \rightarrow Ult(V, E)$.

If λ is sufficiently closed then Ult(V, E) and N have same V_{λ} .

F.Schlutzenberg Comparison and Measures

イロト イポト イヨト イヨト 三日

Given this *E*, can define Ult(V, E) and ultrapower embedding $i_E : V \rightarrow Ult(V, E)$.

If λ is sufficiently closed then Ult(V, E) and N have same V_{λ} .

・ 回 ト ・ ヨ ト ・ ヨ ト

L and Motivation $L[\mathcal{U}]$ In Larger Cardinals

Extenders Iteration Trees Analysis of Measures

If κ is a strong or Woodin cardinal, then it is so via embeddings from extenders.

To obtain models with strong or Woodin cardinals, we can build from extenders.

Consider models of form $L[\mathbb{E}]$, where, ignoring some details, \mathbb{E} is a sequence of extenders: $\mathbb{E} = \langle \mathbb{E}_{\alpha} \rangle_{\alpha \in I}$.

The extenders appear on the sequence \mathbb{E} in a canonical order. In fact for the standard (fine-structural) models, some \mathbb{E}_{γ} 's are not literally extenders of $L[\mathbb{E}]$ in the sense defined earlier; their component measures can be partial.

ヘロア 人間 アメヨア 人口 ア

er Cardinals Analysis of Measures

If κ is a strong or Woodin cardinal, then it is so via embeddings from extenders.

To obtain models with strong or Woodin cardinals, we can build from extenders.

Consider models of form $L[\mathbb{E}]$, where, ignoring some details, \mathbb{E} is a sequence of extenders: $\mathbb{E} = \langle \mathbb{E}_{\alpha} \rangle_{\alpha \in I}$.

The extenders appear on the sequence \mathbb{E} in a canonical order. In fact for the standard (fine-structural) models, some \mathbb{E}_{γ} 's are not literally extenders of $L[\mathbb{E}]$ in the sense defined earlier; their component measures can be partial.

・ロト ・ 理 ト ・ ヨ ト ・

If κ is a strong or Woodin cardinal, then it is so via embeddings from extenders.

To obtain models with strong or Woodin cardinals, we can build from extenders.

Consider models of form $\mathcal{L}[\mathbb{E}]$, where, ignoring some details, \mathbb{E} is a sequence of extenders: $\mathbb{E} = \langle \mathbb{E}_{\alpha} \rangle_{\alpha \in I}$.

The extenders appear on the sequence \mathbb{E} in a canonical order. In fact for the standard (fine-structural) models, some \mathbb{E}_{γ} 's are not literally extenders of $L[\mathbb{E}]$ in the sense defined earlier; their component measures can be partial.

・ロト ・ 理 ト ・ ヨ ト ・

If κ is a strong or Woodin cardinal, then it is so via embeddings from extenders.

To obtain models with strong or Woodin cardinals, we can build from extenders.

Consider models of form $L[\mathbb{E}]$, where, ignoring some details, \mathbb{E} is a sequence of extenders: $\mathbb{E} = \langle \mathbb{E}_{\alpha} \rangle_{\alpha \in I}$.

The extenders appear on the sequence \mathbb{E} in a canonical order. In fact for the standard (fine-structural) models, some \mathbb{E}_{γ} 's are not literally extenders of $L[\mathbb{E}]$ in the sense defined earlier; their component measures can be partial.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

L and Motivation $L[\mathcal{U}]$ Larger Cardinals

Extenders Iteration Trees Analysis of Measures

Outline

- Iteration Trees
- Analysis of Measures

イロト イポト イヨト イヨト

э

Iterations for $L[\mathcal{U}]$ were simpler than the general case:

- (a) At stage α , we always used $U_{\alpha} = i_{0,\alpha}(U)$ for next ultrapower
- (b) \mathcal{U}_{α} was applied to M_{α} to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, \mathcal{U}_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders E, F involved in the *least difference* between \mathbb{E} and \mathbb{F} , and form ultrapowers using E, F.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that $\mathbb{E}_{\gamma} \neq \mathbb{F}_{\gamma}$.

At later stages of comparison, the least difference needn't be the images of E, F. So we must give up (a).

イロン 不良 とくほう 不良 とうほ

(a) At stage α , we always used $\mathcal{U}_{\alpha} = i_{0,\alpha}(\mathcal{U})$ for next ultrapower

(b) \mathcal{U}_{α} was *applied to* M_{α} to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, \mathcal{U}_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders E, F involved in the *least difference* between \mathbb{E} and \mathbb{F} , and form ultrapowers using E, F.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that $\mathbb{E}_{\gamma} \neq \mathbb{F}_{\gamma}$.

At later stages of comparison, the least difference needn't be the images of E, F. So we must give up (a).

イロン 不良 とくほう 不良 とうほ

- (a) At stage α , we always used $\mathcal{U}_{\alpha} = i_{0,\alpha}(\mathcal{U})$ for next ultrapower
- (b) \mathcal{U}_{α} was applied to M_{α} to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, \mathcal{U}_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders E, F involved in the *least difference* between \mathbb{E} and \mathbb{F} , and form ultrapowers using E, F.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that $\mathbb{E}_{\gamma} \neq \mathbb{F}_{\gamma}$.

At later stages of comparison, the least difference needn't be the images of E, F. So we must give up (a).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- (a) At stage α , we always used $\mathcal{U}_{\alpha} = i_{0,\alpha}(\mathcal{U})$ for next ultrapower
- (b) \mathcal{U}_{α} was applied to M_{α} to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, \mathcal{U}_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders E, F involved in the *least difference* between \mathbb{E} and \mathbb{F} , and form ultrapowers using E, F.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that $\mathbb{E}_{\gamma} \neq \mathbb{F}_{\gamma}$.

At later stages of comparison, the least difference needn't be the images of E, F. So we must give up (a).

- (a) At stage α , we always used $\mathcal{U}_{\alpha} = i_{0,\alpha}(\mathcal{U})$ for next ultrapower
- (b) \mathcal{U}_{α} was applied to M_{α} to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, \mathcal{U}_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders E, F involved in the *least difference* between \mathbb{E} and \mathbb{F} , and form ultrapowers using E, F.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that $\mathbb{E}_{\gamma} \neq \mathbb{F}_{\gamma}$.

At later stages of comparison, the least difference needn't be the images of E, F. So we must give up (a).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 $\begin{array}{lll} \mbox{L and Motivation$} & \mbox{Extenders} \\ \mbox{L [\mathcal{U}]} & \mbox{Iteration Trees} \\ \mbox{Larger Cardinals} & \mbox{Analysis of Meas} \\ \end{array}$

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models "E_{\alpha}$ is an extender".
- (b) E_{α} may be applied to a model M_{β} , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$.

Why (b)? The comparison proof breaks down if we require E_{α} to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models E$ is an extender with $\operatorname{crit}(E) = \kappa^n$, and such that $V_{\kappa+1}^M = V_{\kappa+1}^N$, it makes sense to define $\operatorname{Ult}(N, E)$, even if $E \notin N$.

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models "E_{\alpha}$ is an extender".
- (b) E_{α} may be applied to a model M_{β} , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$.

Why (b)? The comparison proof breaks down if we require E_{α} to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models E$ is an extender with $\operatorname{crit}(E) = \kappa^n$, and such that $V_{\kappa+1}^M = V_{\kappa+1}^N$, it makes sense to define $\operatorname{Ult}(N, E)$, even if $E \notin N$.

 L and Motivation
 Extenders

 L[U]
 Iteration Trees

 Larger Cardinals
 Analysis of Measures

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models "E_{\alpha}$ is an extender".
- (b) E_{α} may be applied to a model M_{β} , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$.

Why (b)? The comparison proof breaks down if we require E_{α} to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models E$ is an extender with $\operatorname{crit}(E) = \kappa^n$, and such that $V_{\kappa+1}^M = V_{\kappa+1}^N$, it makes sense to define $\operatorname{Ult}(N, E)$, even if $E \notin N$.

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models "E_{\alpha}$ is an extender".
- (b) E_{α} may be applied to a model M_{β} , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$.

Why (b)? The comparison proof breaks down if we require E_{α} to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models E$ is an extender with $crit(E) = \kappa$, and such that $V_{\kappa+1}^M = V_{\kappa+1}^N$, it makes sense to define Ult(N, E), even if $E \notin N$.

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models "E_{\alpha}$ is an extender".
- (b) E_{α} may be applied to a model M_{β} , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$.

Why (b)? The comparison proof breaks down if we require E_{α} to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models E$ is an extender with $crit(E) = \kappa$, and such that $V_{\kappa+1}^M = V_{\kappa+1}^N$, it makes sense to define Ult(N, E), even if $E \notin N$.

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models "E_{\alpha}$ is an extender".
- (b) E_{α} may be applied to a model M_{β} , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$.

Why (b)? The comparison proof breaks down if we require E_{α} to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models E$ is an extender with $\operatorname{crit}(E) = \kappa$, and such that $V_{\kappa+1}^M = V_{\kappa+1}^N$, it makes sense to define $\operatorname{Ult}(N, E)$, even if $E \notin N$.

Roughly, an iteration tree T is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $<_{\mathcal{T}}$ be the tree order. Whenever $\gamma \leq_{\mathcal{T}} \delta$ we have an iteration embedding $i_{\gamma,\delta} : M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α : choose $E_{\alpha} \in M_{\alpha}$, form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

ヘロト ヘワト ヘビト ヘビト

Roughly, an iteration tree T is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $<_{\mathcal{T}}$ be the tree order. Whenever $\gamma \leq_{\mathcal{T}} \delta$ we have an iteration embedding $i_{\gamma,\delta} : M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α : choose $E_{\alpha} \in M_{\alpha}$, form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

ヘロト ヘワト ヘビト ヘビト

Roughly, an iteration tree T is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $<_{\mathcal{T}}$ be the tree order. Whenever $\gamma \leq_{\mathcal{T}} \delta$ we have an iteration embedding $i_{\gamma,\delta} : M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α : choose $E_{\alpha} \in M_{\alpha}$, form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

・ロン ・雪 と ・ ヨ と

Roughly, an iteration tree T is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $<_{\mathcal{T}}$ be the tree order. Whenever $\gamma \leq_{\mathcal{T}} \delta$ we have an iteration embedding $i_{\gamma,\delta} : M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α : choose $E_{\alpha} \in M_{\alpha}$, form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

ヘロト ヘワト ヘビト ヘビト

Roughly, an iteration tree T is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $<_{\mathcal{T}}$ be the tree order. Whenever $\gamma \leq_{\mathcal{T}} \delta$ we have an iteration embedding $i_{\gamma,\delta} : M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α : choose $E_{\alpha} \in M_{\alpha}$, form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

・ 回 ト ・ ヨ ト ・ ヨ ト

- Choose an ω -cofinal branch *b* through the tree order $<_{\mathcal{T}}$.
- Let *M_ω* be the direct limit of the models *M_γ* for *γ* ∈ *b*, under the iteration embeddings.
- (Note that for γ ≤_T δ ∈ b, we have i_{γ,δ} exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- Ensure by choice of *b* that M_{ω} is wellfounded.

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

・ロト ・ 理 ト ・ ヨ ト ・

э

- Choose an ω -cofinal branch *b* through the tree order $<_{\mathcal{T}}$.
- Let *M*_ω be the direct limit of the models *M*_γ for γ ∈ *b*, under the iteration embeddings.
- (Note that for γ ≤_T δ ∈ b, we have i_{γ,δ} exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- Ensure by choice of *b* that M_{ω} is wellfounded.

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- Choose an ω -cofinal branch *b* through the tree order $<_{\mathcal{T}}$.
- Let *M*_ω be the direct limit of the models *M*_γ for γ ∈ *b*, under the iteration embeddings.
- (Note that for γ ≤_T δ ∈ b, we have i_{γ,δ} exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- Ensure by choice of *b* that M_{ω} is wellfounded.

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- Choose an ω -cofinal branch *b* through the tree order $<_{\mathcal{T}}$.
- Let *M_ω* be the direct limit of the models *M_γ* for *γ* ∈ *b*, under the iteration embeddings.
- (Note that for γ ≤_T δ ∈ b, we have i_{γ,δ} exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- Ensure by choice of *b* that M_{ω} is wellfounded.

We say the root model M_0 is *iterable* if there is an *iteration* strategy for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- Choose an ω -cofinal branch *b* through the tree order $<_{\mathcal{T}}$.
- Let *M_ω* be the direct limit of the models *M_γ* for *γ* ∈ *b*, under the iteration embeddings.
- (Note that for γ ≤_T δ ∈ b, we have i_{γ,δ} exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- Ensure by choice of *b* that M_{ω} is wellfounded.

We say the root model M_0 is *iterable* if there is an *iteration* strategy for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

イロン 不良 とくほう 不良 とうほ

- Choose an ω -cofinal branch *b* through the tree order $<_{\mathcal{T}}$.
- Let *M_ω* be the direct limit of the models *M_γ* for *γ* ∈ *b*, under the iteration embeddings.
- (Note that for γ ≤_T δ ∈ b, we have i_{γ,δ} exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- Ensure by choice of *b* that M_{ω} is wellfounded.

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

ヘロン 人間 とくほ とくほ とう

L and Motivation Ext $L[\mathcal{U}]$ Iter Larger Cardinals Ana

L[U] Iteration Trees rdinals Analysis of Measures

Outline

- Iteration Trees
- Analysis of Measures

・ 回 ト ・ ヨ ト ・ ヨ ト

ъ

- Each $M_{\alpha} = L_{\gamma}[\mathbb{E}^{M_{\alpha}}]$ for some γ
- E_{α} is anything indexed on $\mathbb{E}^{M_{\alpha}}$ (partial or total extender)

• $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders $\mathbb E$ in a canonical way.

- Each $M_{\alpha} = L_{\gamma}[\mathbb{E}^{M_{\alpha}}]$ for some γ
- E_{α} is anything indexed on $\mathbb{E}^{M_{\alpha}}$ (partial or total extender)

• $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders $\mathbb E$ in a canonical way.

- Each $M_{\alpha} = L_{\gamma}[\mathbb{E}^{M_{\alpha}}]$ for some γ
- E_{α} is anything indexed on $\mathbb{E}^{M_{\alpha}}$ (partial or total extender)
- $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders $\mathbb E$ in a canonical way.

- Each $M_{\alpha} = L_{\gamma}[\mathbb{E}^{M_{\alpha}}]$ for some γ
- E_{α} is anything indexed on $\mathbb{E}^{M_{\alpha}}$ (partial or total extender)
- $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders $\mathbb E$ in a canonical way.

- Each $M_{\alpha} = L_{\gamma}[\mathbb{E}^{M_{\alpha}}]$ for some γ
- E_{α} is anything indexed on $\mathbb{E}^{M_{\alpha}}$ (partial or total extender)
- $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders $\mathbb E$ in a canonical way.

A *fine iteration tree* is a refinement of *iteration tree*, due to Mitchell and Steel, to better suit *fine-structural* inner models $L[\mathbb{E}]$. For fine trees, some of the differences are:

- Each $M_{\alpha} = L_{\gamma}[\mathbb{E}^{M_{\alpha}}]$ for some γ
- E_{α} is anything indexed on $\mathbb{E}^{M_{\alpha}}$ (partial or total extender)
- $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders \mathbb{E} in a canonical way.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

A *fine iteration tree* is a refinement of *iteration tree*, due to Mitchell and Steel, to better suit *fine-structural* inner models $L[\mathbb{E}]$. For fine trees, some of the differences are:

- Each $M_{\alpha} = L_{\gamma}[\mathbb{E}^{M_{\alpha}}]$ for some γ
- E_{α} is anything indexed on $\mathbb{E}^{M_{\alpha}}$ (partial or total extender)
- $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders \mathbb{E} in a canonical way.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 L and Motivation
 Extenders

 L[U]
 Iteration Trees

 Larger Cardinals
 Analysis of Measures

Theorem (S.)

Let M be an iterable, fine-structural inner model satisfying ZFC - Replacement. Suppose $M \models \mathcal{U}$ is a countably complete ultrafilter".

Then there is a finite fine iteration tree T on $M = M_0$, with last model $R = M_n$, with iteration embedding $i_{0,n} : M \to R$, such that:

- R = Ult(M, U),
- The ultrapower embedding $i_{\mathcal{U}}$ equals $i_{0,n}$.

Question. If instead we have $M \models E$ is an extender, what can be said about how E relates to M's extender sequence?

There are various partial results here, but no complete answer is known.

 L and Motivation
 Extenders

 L[U]
 Iteration Trees

 Larger Cardinals
 Analysis of Measures

Theorem (S.)

Let M be an iterable, fine-structural inner model satisfying ZFC - Replacement. Suppose $M \models \mathcal{U}$ is a countably complete ultrafilter".

Then there is a finite fine iteration tree T on $M = M_0$, with last model $R = M_n$, with iteration embedding $i_{0,n} : M \to R$, such that:

- $R = \text{Ult}(M, \mathcal{U})$,
- The ultrapower embedding $i_{\mathcal{U}}$ equals $i_{0,n}$.

Question. If instead we have $M \models E$ is an extender, what can be said about how *E* relates to *M*'s extender sequence?

There are various partial results here, but no complete answer is known.