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Inner model theory involves construction/analysis of canonical
inner models. Simplest is L, Gödel’s constructible universe.

L is well understood, particularly through fine structure
L satisfies GCH
R ∩ L can be wellordered, in fact there’s a ∆1

2 wellorder
L is canonical: every proper class model of ZF computes
the same L
But L has no measurable cardinals (Scott)

Motivation: construct/analyze models like L, but containing
large cardinals.
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L[U ] is the inner model for one measurable cardinal.

Let U be a normal measure on κ.
Let U ′ = U ∩ L[U ]. Then L[U ] = L[U ′] and

L[U ′] |= “U ′ is a normal measure on κ and V = L[U ′].

Definition
Say (M,V, κ) is a κ-model iff

M is transitive proper class, M |= ZFC, and V, κ ∈ M,
M |=“V = L[V] and V is a normal measure on κ”.

(Implies that in V , V is a filter on κ; but if M 6= V it need not be
an ultrafilter.)
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Solovay proved that in a κ-model, κ is the unique measurable
cardinal. This was improved by:

Theorem (Kunen)

Let (M,V, κ) be a κ-model.
In fact, M |=“V is the unique normal measure, and all measures
are equivalent to finite products of V”.

This follows from:

Theorem (Kunen)

Let (M,V, κV) and (N,W, κW) be κV , κW -models.
If κV = κW then V =W.
If κV < κW then there’s an elementary j : M → N such that
j(κV) = κW and j(V) =W. Moreover,W ∈ M and j is a
class of M.
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Proof Sketch (Kunen’s second theorem).

We compare (M,V) with (N,W) (suppress “κV ” and “κW ”).

Comparison Sketch.
Form ultrapowers using V,W, and images of them,
producing new models, until. . .
Until we reach same model (R,X ) on either side.

M // Ult(M,V) // . . . // R

V X

N // Ult(N,W) // . . . // R

W X
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Goal.
Produce some γ-model (R,X ) and elementary
embeddings

i : (M,V)→ (R,X )

such that crit(i) = κV (or i is the identity), and likewise

j : (N,W)→ (R,X ).

Therefore (M,V) ≡ (N,W) and RM = RN .
Using how the embeddings i , j are defined, one can then
prove that one side didn’t “move” during comparison: either
(M,V) = (R,X ) or (N,W) = (R,X ).

F.Schlutzenberg Comparison and Measures
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Comparison Details.

Start with

(M0,V0) = (M,V) 6= (N0,W0) = (N,W).

Let κ0 = κV and µ0 = κW .

We’ll define models (Mα,Vα) and (Nα,Wα) for ordinals α.

1st stage. There are 3 cases.
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Case 1: κ0 < µ0.
Form ultrapower on M side. Do nothing on N side.
Define:

M1 = Ult(M0,V0).
i0,1 : M0 → M1 the ultrapower embedding.
V1 = i0,1(V0) and κ1 = i0,1(κ0).
(N1,W1, µ1) = (N0,W0, µ0).
j0,1 : N0 → N1 the identity.

We have defined (M1,V1) and (N1,W1).
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Case 2: κ0 > µ0. Symmetric to Case 1.

Case 3: κ0 = µ0. Take an ultrapower on both sides, M1 and N1
are the resulting ultrapowers, i0,1,V1, j0,1,W1 defined as before.
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Note M1 is wellfounded since

M0 |= “U0 is a normal measure and M1 = Ult(V ,U0).”.

Moreover,

M0
i0,1−→ M1

is elementary and i0,1(V0) = V1, so

M1 |= “V1 is a normal measure on κ1 and V = L[V1]”.

So (M1,V1) is a κ1-model. Likewise (N1,W1) a µ1-model.
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Now if (M1,V1) = (N1,W1), we stop. Otherwise, proceed to:

2nd stage. Repeat 1st stage, working with (M1,V1) and
(N1,W1). This produces (M2,V2) and i1,2 : M1 → M2, and
likewise (N2,W2) and j1,2.

All successor stages are likewise; note we keep producing
wellfounded models.
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Suppose we reach n < ω such that
(Mn,Vn) = (Nn,Wn) = (R,X ).

Have elementary embeddings i0,1, i1,2, . . . , in−1,n.
Let i0,n be their composition:

M0 i0,1 //

i0,n

++
M1 i1,2 // M2 // . . . // Mn−1 in−1,n // Mn = R

Have i0,n(V0) = Vn = X .

Likewise get embedding

j0,n : N0 → Nn = R,

and j0,n(W0) = X . So R,X , i = i0,n and j = j0,n are as required.

F.Schlutzenberg Comparison and Measures
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What if (Mn,Vn) 6= (Nn,Wn) for all n < ω?
Must define (Mω,Vω) and (Nω,Wω) and carry on with
comparison.

M0 // M1 // M2 // · · · // Mn // · · · Mω

Have i0,n for n < ω. Likewise define e.g. i1,3 = i2,3 ◦ i1,2:

M0 i0,1 //
i0,2

))

i0,3

''
M1 i1,2 //

i1,3
))

M2 i2,3 // M3
Note above diagram commutes.
Get commuting system of maps:

· · · // Mk //
ik,m ))

ik,n

&&
· · · // Mm //

im,n
))· · · // Mn // · · ·
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We define Mω as the direct limit of the system

〈Mn; imn〉m≤n<ω .

Threads: For m,m′ < ω, x ∈ Mm and x ′ ∈ Mm′ , we say
(m, x) ≈ (m′, x ′) iff

m ≤ m′ & im,m′(x) = x ′,

or
m′ ≤ m & im′,m(x ′) = x .

Because the im,n’s commute and are 1-1, this is an equivalence
relation. Let [m, x ] denote the thread (i.e. equivalence class) of
(m, x).
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M0 M1 M2 M3 · · · Mk · · ·

y

i2,k

i2,k (y) 55

x

i0,k

i0,1(x)=x ′

i1,2(x ′)=x ′′

i0,k (x)77

· · · · · ·
Here [0, x ] = [2, x ′′] but [0, x ] 6= [2, y ].
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Now Mω consists of all threads:

Mω = {[m, x ] | m < ω & x ∈ Mm}.

Define membership ∈Mω of Mω from membership of Mn’s.
For m ≤ m′,

[m, x ] ∈Mω [m′, x ′] ⇐⇒ im,m′(x) ∈ x ′;

likewise for 3Mω .
Because the im,n’s are elementary, this is well-defined and
respects ≈.

Let im,ω : Mm → Mω be the natural (elementary) embedding:

im,ω(x) = [m, x ].
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This defines Mω. Is it wellfounded?

If so, and Nω is also, can proceed with comparison. Why
wellfoundedness important? Comparison algorithm depended
on it to start with, and it’s needed for the later parts of the proof
(to be omitted).

Fact (Gaifman): Mω and Nω are wellfounded, but it’s is not
obvious. This is the iterability problem; its generalization to
larger cardinals is a central problem in inner model theory.
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ωth stage: define Mω as the (wellfounded) direct limit, i0,ω as
direct limit embedding, Vω = i0,ω(V0).
Likewise for Nω,Wω.

(ω + 1)th stage: continue comparison with models (Mω,Vω)
versus (Nω,Wω).

These methods produce Mα and iβ,α for all β ≤ α ∈ OR, and
likewise on N-side. All models produced are wellfounded.

Fact: The comparison stops somewhere, i.e.
(Mα,Vα) = (Nα,Wα) for some α ∈ OR.

This completes the sketch of the proof.
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Related arguments can be used to show that in L[U ], there is a
∆1

3 wellorder of R:

Say (for this slide) that (M,U , κ) is a premouse iff M is a
transitive model of ZF− {Replacement} plus “U is a normal
measure on κ, V = L[U ], and Replacement for domains ⊆ Vκ”.
We can iterate M just like we did for the proper class models in
comparison. Say M is a mouse iff it is a premouse all of whose
iterates Mα are wellfounded.

In L[U ], can wellorder R by: “x < y iff there’s a mouse (M,U , κ)
such that x , y ∈ RM and M |=“x <L[U ] y ”. This is Σ1

3, as it’s Π1
2 to

assert that M is a mouse.
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Generalizations? To produce models with larger cardinals:
Build models from extenders instead of measures
Must deal with more complex iterations

An extender:
Is a set-sized object coding an elementary embedding
Consists of a collection of measures, which cohere
appropriately
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Given j : V → N elementary with κ = crit(j) and a ∈ j(κ)<ω,
have measure Ea over κ<ω defined by:

X ∈ Ea ⇐⇒ a ∈ j(X ).

V N

j(κ)

•
κ

j

88

a

Fixing λ ≤ j(κ), we get an extender E of length λ by:

E = 〈Ea〉a∈λ<ω .
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Given this E , can define Ult(V ,E) and ultrapower embedding
iE : V → Ult(V ,E).

If λ is sufficiently closed then Ult(V ,E) and N have same Vλ.
V Ult(V ,E) N

• /o/o/o/o

κ

i
E

99

λ
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If κ is a strong or Woodin cardinal, then it is so via embeddings
from extenders.
To obtain models with strong or Woodin cardinals, we can build
from extenders.

Consider models of form L[E], where, ignoring some details, E
is a sequence of extenders: E = 〈Eα〉α∈I .

The extenders appear on the sequence E in a canonical order.
In fact for the standard (fine-structural) models, some Eγ ’s are
not literally extenders of L[E] in the sense defined earlier; their
component measures can be partial.
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Iterations for L[U ] were simpler than the general case:
(a) At stage α, we always used Uα = i0,α(U) for next

ultrapower
(b) Uα was applied to Mα to form Mα+1 = Ult(Mα,Uα)

Comparing L[E] versus L[F], where E 6= F, we choose the
extenders E ,F involved in the least difference between E and
F, and form ultrapowers using E ,F .
I.e., choose E = Eγ and F = Fγ , where γ is least such that
Eγ 6= Fγ .
At later stages of comparison, the least difference needn’t be
the images of E ,F . So we must give up (a).
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More general iterations allow (starting with a base model M0):
(a) At stage α, may choose any Eα ∈ Mα such that Mα |=“Eα is

an extender”.
(b) Eα may be applied to a model Mβ, with β ≤ α.

That is, Mα+1 = Ult(Mβ,Eα).

Why (b)? The comparison proof breaks down if we require Eα
to apply to Mα.

This obstacle overcome by (b) and iteration trees. This was a
key innovation due to Mitchell, Martin and Steel.

Given models M,N such that M |=“E is an extender with
crit(E) = κ”, and such that V M

κ+1 = V N
κ+1, it makes sense to

define Ult(N,E), even if E /∈ N.
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Roughly, an iteration tree T is a tree on some ordinal λ, with a
model Mα attached to each node α < λ. 0 is the root node.

Mα+1 Mα 3 Eα

Mβ

i
Mβ
Eα

=iβ,α+1

OO

ZZ

M0

i0,α

HH

i0,β

[[

OO

Let <T be the tree order. Whenever γ ≤T δ we have an
iteration embedding iγ,δ : Mγ → Mδ.

Arrows in diagram represent tree order and embeddings.

Stage α: choose Eα ∈ Mα, form Mα+1 = Ult(Mβ,Eα), some
β ≤ α. And iβ,α+1 is the ultrapower embedding.
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With iteration trees, limit stages of iteration introduce a very
significant new issue. Given an iteration tree T of length ω, how
to define Mω? Idea:

Choose an ω-cofinal branch b through the tree order <T .
Let Mω be the direct limit of the models Mγ for γ ∈ b, under
the iteration embeddings.
(Note that for γ ≤T δ ∈ b, we have iγ,δ exists; we also
maintain commutativity of these embeddings, so the direct
limit works.)
Ensure by choice of b that Mω is wellfounded.

We say the root model M0 is iterable if there is an iteration
strategy for M0; this strategy must choose branches at limit
stages and ensure the wellfoundedness of all models produced.
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A fine iteration tree is a refinement of iteration tree, due to
Mitchell and Steel, to better suit fine-structural inner models
L[E]. For fine trees, some of the differences are:

Each Mα = Lγ [EMα ] for some γ
Eα is anything indexed on EMα (partial or total extender)
iα,β need not exist, even when α ≤T β

The definition of iterability adapts. Standard canonical inner
models are fine-structural and iterable.

What can we say about measures that appear in fine-structural
inner models? All measures come from the sequence of
extenders E in a canonical way.

F.Schlutzenberg Comparison and Measures



L and Motivation
L[U ]

Larger Cardinals

Extenders
Iteration Trees
Analysis of Measures

A fine iteration tree is a refinement of iteration tree, due to
Mitchell and Steel, to better suit fine-structural inner models
L[E]. For fine trees, some of the differences are:

Each Mα = Lγ [EMα ] for some γ
Eα is anything indexed on EMα (partial or total extender)
iα,β need not exist, even when α ≤T β

The definition of iterability adapts. Standard canonical inner
models are fine-structural and iterable.

What can we say about measures that appear in fine-structural
inner models? All measures come from the sequence of
extenders E in a canonical way.

F.Schlutzenberg Comparison and Measures



L and Motivation
L[U ]

Larger Cardinals

Extenders
Iteration Trees
Analysis of Measures

A fine iteration tree is a refinement of iteration tree, due to
Mitchell and Steel, to better suit fine-structural inner models
L[E]. For fine trees, some of the differences are:

Each Mα = Lγ [EMα ] for some γ
Eα is anything indexed on EMα (partial or total extender)
iα,β need not exist, even when α ≤T β

The definition of iterability adapts. Standard canonical inner
models are fine-structural and iterable.

What can we say about measures that appear in fine-structural
inner models? All measures come from the sequence of
extenders E in a canonical way.

F.Schlutzenberg Comparison and Measures



L and Motivation
L[U ]

Larger Cardinals

Extenders
Iteration Trees
Analysis of Measures

A fine iteration tree is a refinement of iteration tree, due to
Mitchell and Steel, to better suit fine-structural inner models
L[E]. For fine trees, some of the differences are:

Each Mα = Lγ [EMα ] for some γ
Eα is anything indexed on EMα (partial or total extender)
iα,β need not exist, even when α ≤T β

The definition of iterability adapts. Standard canonical inner
models are fine-structural and iterable.

What can we say about measures that appear in fine-structural
inner models? All measures come from the sequence of
extenders E in a canonical way.

F.Schlutzenberg Comparison and Measures



L and Motivation
L[U ]

Larger Cardinals

Extenders
Iteration Trees
Analysis of Measures

A fine iteration tree is a refinement of iteration tree, due to
Mitchell and Steel, to better suit fine-structural inner models
L[E]. For fine trees, some of the differences are:

Each Mα = Lγ [EMα ] for some γ
Eα is anything indexed on EMα (partial or total extender)
iα,β need not exist, even when α ≤T β

The definition of iterability adapts. Standard canonical inner
models are fine-structural and iterable.

What can we say about measures that appear in fine-structural
inner models? All measures come from the sequence of
extenders E in a canonical way.

F.Schlutzenberg Comparison and Measures



L and Motivation
L[U ]

Larger Cardinals

Extenders
Iteration Trees
Analysis of Measures

A fine iteration tree is a refinement of iteration tree, due to
Mitchell and Steel, to better suit fine-structural inner models
L[E]. For fine trees, some of the differences are:

Each Mα = Lγ [EMα ] for some γ
Eα is anything indexed on EMα (partial or total extender)
iα,β need not exist, even when α ≤T β

The definition of iterability adapts. Standard canonical inner
models are fine-structural and iterable.

What can we say about measures that appear in fine-structural
inner models? All measures come from the sequence of
extenders E in a canonical way.

F.Schlutzenberg Comparison and Measures



L and Motivation
L[U ]

Larger Cardinals

Extenders
Iteration Trees
Analysis of Measures

A fine iteration tree is a refinement of iteration tree, due to
Mitchell and Steel, to better suit fine-structural inner models
L[E]. For fine trees, some of the differences are:

Each Mα = Lγ [EMα ] for some γ
Eα is anything indexed on EMα (partial or total extender)
iα,β need not exist, even when α ≤T β

The definition of iterability adapts. Standard canonical inner
models are fine-structural and iterable.

What can we say about measures that appear in fine-structural
inner models? All measures come from the sequence of
extenders E in a canonical way.

F.Schlutzenberg Comparison and Measures



L and Motivation
L[U ]

Larger Cardinals

Extenders
Iteration Trees
Analysis of Measures

Theorem (S.)
Let M be an iterable, fine-structural inner model satisfying
ZFC− Replacement. Suppose M |=“U is a countably complete
ultrafilter”.
Then there is a finite fine iteration tree T on M = M0, with last
model R = Mn, with iteration embedding i0,n : M → R, such
that:

R = Ult(M,U),
The ultrapower embedding iU equals i0,n.

Question. If instead we have M |=“E is an extender”, what can
be said about how E relates to M ’s extender sequence?

There are various partial results here, but no complete answer
is known.
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