L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0)

Comparison and Measures in Inner Models

F.Schlutzenberg

Department of Mathematics University of North Texas

May 2012, 5th Young Set Theory Workshop, CIRM, Luminy

イロメ イ押メ イヨメ イヨメー

÷.

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0)

Outline

- 2 *L*[[U](#page-9-0)]
	- \bullet κ [-models](#page-9-0)
	- [Comparison, Iteration](#page-19-0)
	- **[Limit stages of Iteration](#page-44-0)**
	- \bullet [Wellorder of](#page-62-0) $\mathbb R$

3 [Larger Cardinals](#page-64-0)

- **o** [Extenders](#page-64-0)
- **•** [Iteration Trees](#page-79-0)
- [Analysis of Measures](#page-102-0)

4 0 8

高 \sim 2990

B

→ 唐 > → 唐 >

- *L* is well understood, particularly through *fine structure*
- *L* satisfies GCH
- $\mathbb{R}\cap L$ can be wellordered, in fact there's a Δ^1_2 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- **•** But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

- *L* is well understood, particularly through *fine structure*
- *L* satisfies GCH
- $\mathbb{R}\cap L$ can be wellordered, in fact there's a Δ^1_2 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- **•** But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

 $\left\{ \bigoplus_k k \right\} \in \mathbb{R}$ is a different

B

- *L* is well understood, particularly through *fine structure*
- *L* satisfies GCH
- $\mathbb{R}\cap L$ can be wellordered, in fact there's a Δ^1_2 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- **•** But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

 290

B

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

- *L* is well understood, particularly through *fine structure*
- *L* satisfies GCH
- $\mathbb{R}\cap L$ can be wellordered, in fact there's a Δ^1_2 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- **•** But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

 $\left\{ \left\vert \left\{ \mathbf{P}\right\} \right\vert \times \left\{ \left\vert \mathbf{P}\right\vert \right\} \right\}$ and $\left\{ \left\vert \mathbf{P}\right\vert \right\}$

B

 QQQ

- *L* is well understood, particularly through *fine structure*
- *L* satisfies GCH
- $\mathbb{R}\cap L$ can be wellordered, in fact there's a Δ^1_2 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

イロト イ押 トイヨ トイヨ トー

÷. QQQ

- *L* is well understood, particularly through *fine structure*
- *L* satisfies GCH
- $\mathbb{R}\cap L$ can be wellordered, in fact there's a Δ^1_2 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

÷. QQQ

- *L* is well understood, particularly through *fine structure*
- *L* satisfies GCH
- $\mathbb{R}\cap L$ can be wellordered, in fact there's a Δ^1_2 wellorder
- *L* is canonical: every proper class model of ZF computes the same *L*
- But *L* has no measurable cardinals (Scott)

Motivation: construct/analyze models like *L*, but containing large cardinals.

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

÷.

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Outline

- **[Iteration Trees](#page-79-0)**
- [Analysis of Measures](#page-102-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

B

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0) κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

L[U] is the inner model for one measurable cardinal.

Let U be a normal measure on κ . Let $\mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}].$ Then $L[\mathcal{U}] = L[\mathcal{U}']$ and

 $L[\mathcal{U}'] \models \mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Say (M, V, κ) is a κ -model iff

- *M* is transitive proper class, $M \models$ ZFC, and $V, \kappa \in M$,
- $M \models "V = L[V]$ and *V* is a normal measure on κ ".

(Implies that in *V*, *V* is a filter on κ ; but if $M \neq V$ it need not be an ultrafilter.) **K ロ ト K 何 ト K ヨ ト K ヨ ト**

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0) κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

L[U] is the inner model for one measurable cardinal.

```
Let \mathcal U be a normal measure on \kappa.
Let \mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}]. Then L[\mathcal{U}] = L[\mathcal{U}'] and
```
 $L[\mathcal{U}'] \models \mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Say (M, V, κ) is a κ -model iff

- *M* is transitive proper class, $M \models$ ZFC, and $V, \kappa \in M$,
- $M \models "V = L[V]$ and *V* is a normal measure on κ ".

(Implies that in *V*, *V* is a filter on κ ; but if $M \neq V$ it need not be an ultrafilter.) イロト イ団 トイヨ トイヨ トー

 290

G

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

L[U] is the inner model for one measurable cardinal.

Let $\mathcal U$ be a normal measure on κ . Let $\mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}].$ Then $L[\mathcal{U}] = L[\mathcal{U}']$ and

 $L[\mathcal{U}'] \models \mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Say (M, V, κ) is a κ -model iff

- *M* is transitive proper class, $M \models$ ZFC, and $V, \kappa \in M$,
- $M \models "V = L[V]$ and *V* is a normal measure on κ ".

(Implies that in *V*, *V* is a filter on κ ; but if $M \neq V$ it need not be an ultrafilter.) イロト イ押 トイヨ トイヨ トー \equiv

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

L[U] is the inner model for one measurable cardinal.

Let $\mathcal U$ be a normal measure on κ . Let $\mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}].$ Then $L[\mathcal{U}] = L[\mathcal{U}']$ and

 $L[\mathcal{U}'] \models \mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Definition

Say (M, V, κ) is a κ -model iff

- *M* is transitive proper class, $M \models$ ZFC, and $V, \kappa \in M$,
- $M \models "V = L[V]$ and V is a normal measure on κ ".

(Implies that in *V*, *V* is a filter on κ ; but if $M \neq V$ it need not be an ultrafilter.) ◆ロ→ ◆伊→ ◆ミ→ →ミ→ ニヨー

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

L[U] is the inner model for one measurable cardinal.

Let $\mathcal U$ be a normal measure on κ . Let $\mathcal{U}' = \mathcal{U} \cap L[\mathcal{U}].$ Then $L[\mathcal{U}] = L[\mathcal{U}']$ and

 $L[\mathcal{U}'] \models \mathcal{U}'$ is a normal measure on κ and $V = L[\mathcal{U}']$.

Definition

Say (M, V, κ) is a κ -model iff

- *M* is transitive proper class, $M \models$ ZFC, and $V, \kappa \in M$,
- $M \models "V = L[V]$ and V is a normal measure on κ ".

(Implies that in *V*, *V* is a filter on κ ; but if $M \neq V$ it need not be an ultrafilter.) ◆ロ→ ◆伊→ ◆ミ→ →ミ→ ニヨー

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Solovay proved that in a κ -model, κ is the unique measurable cardinal. This was improved by:

Theorem (Kunen)

Let (M, V, κ) *be a* κ *-model. In fact, M* \models $\mathcal V$ *is the unique normal measure, and all measures are equivalent to finite products of* V*".*

This follows from:

Let (M, V, κ_V) *and* (N, W, κ_W) *be* κ_V, κ_W *-models.*

-
-

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Solovay proved that in a κ -model, κ is the unique measurable cardinal. This was improved by:

Theorem (Kunen)

Let (M, V, κ) *be a* κ *-model. In fact, M* \models $\mathcal V$ *is the unique normal measure, and all measures are equivalent to finite products of* V*".*

This follows from:

Theorem (Kunen)

Let (M, V, κ_V) *and* (N, W, κ_W) *be* κ_V, κ_W *-models.*

• If $\kappa_{\mathcal{V}} = \kappa_{\mathcal{W}}$ then $\mathcal{V} = \mathcal{W}$.

• If $\kappa_{\mathcal{V}} < \kappa_{\mathcal{W}}$ then there's an elementary *j* : $M \rightarrow N$ such that $j(\kappa_{\mathcal{V}}) = \kappa_{\mathcal{W}}$ and $j(\mathcal{V}) = \mathcal{W}$. Moreover, $\mathcal{W} \in M$ and j is a *class of M.*

 Ω

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Solovay proved that in a κ -model, κ is the unique measurable cardinal. This was improved by:

Theorem (Kunen)

Let (M, V, κ) *be a* κ *-model. In fact, M* \models $\mathcal V$ *is the unique normal measure, and all measures are equivalent to finite products of* V*".*

This follows from:

Theorem (Kunen)

Let (M, V, κ_V) *and* (N, W, κ_W) *be* κ_V, κ_W *-models.*

• If
$$
\kappa_{\mathcal{V}} = \kappa_{\mathcal{W}}
$$
 then $\mathcal{V} = \mathcal{W}$.

• If $\kappa_{\mathcal{V}} < \kappa_{\mathcal{W}}$ then there's an elementary *j* : $M \rightarrow N$ such that $j(\kappa_{\mathcal{V}}) = \kappa_{\mathcal{W}}$ and $j(\mathcal{V}) = \mathcal{W}$. Moreover, $\mathcal{W} \in M$ and j is a *class of M.*

 Ω

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Solovay proved that in a κ -model, κ is the unique measurable cardinal. This was improved by:

Theorem (Kunen)

Let (M, V, κ) *be a* κ *-model. In fact, M* \models $\mathcal V$ *is the unique normal measure, and all measures are equivalent to finite products of* V*".*

This follows from:

Theorem (Kunen)

Let (M, V, κ_V) *and* (N, W, κ_W) *be* κ_V, κ_W *-models.*

• If
$$
\kappa_{\mathcal{V}} = \kappa_{\mathcal{W}}
$$
 then $\mathcal{V} = \mathcal{W}$.

• If $\kappa_{\mathcal{V}} < \kappa_{\mathcal{W}}$ then there's an elementary $j : M \to N$ such that $j(\kappa_{\mathcal{V}}) = \kappa_{\mathcal{W}}$ and $j(\mathcal{V}) = \mathcal{W}$. Moreover, $\mathcal{W} \in M$ and *j* is a *class of M.*

 Ω

[Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Outline

イロメ イ押 メイヨメ イヨメ

B

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Proof Sketch (Kunen's second theorem).

We *compare* (M, V) with (N, W) (suppress " κ_V " and " κ_W ").

Comparison Sketch.

- Form ultrapowers using V, W , and images of them, producing new models, until. . .
- Until we reach same model (R, \mathcal{X}) on either side.

イロト イ団 トイヨ トイヨ トー

B

Proof Sketch (Kunen's second theorem).

```
We compare (M, V) with (N, W) (suppress "\kappa_V" and "\kappa_W").
```
Comparison Sketch.

- Form ultrapowers using V, W , and images of them, producing new models, until. . .
- Until we reach same model (R, \mathcal{X}) on either side.

M /Ult(*M*, V) /. . . /*R* V X *N* /Ult(*N*, W) /. . . /*R* W X

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

重。 $2Q$ *Proof Sketch (Kunen's second theorem)*.

We *compare* (M, V) with (N, W) (suppress " κ_V " and " κ_W ").

Comparison Sketch.

- Form ultrapowers using V, W , and images of them, producing new models, until. . .
- Until we reach same model (R, \mathcal{X}) on either side.

$$
M \longrightarrow \text{Ult}(M, \mathcal{V}) \longrightarrow ... \longrightarrow R
$$

\n
$$
\mathcal{V} \qquad \qquad \mathcal{X}
$$

\n
$$
N \longrightarrow \text{Ult}(N, \mathcal{W}) \longrightarrow ... \longrightarrow R
$$

\n
$$
\mathcal{W} \qquad \qquad \mathcal{X}
$$

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

重。 $2Q$

Goal.

• Produce some γ -model (R, χ) and elementary embeddings

 $i:(M,\mathcal{V})\rightarrow (R,\mathcal{X})$

such that crit(*i***) =** κ **_V (or** *i* **is the identity), and likewise**

 $j: (N, \mathcal{W}) \rightarrow (R, \mathcal{X})$.

- Therefore $(M, \mathcal{V}) \equiv (N, \mathcal{W})$ and $\mathbb{R}^M = \mathbb{R}^N$.
- Using how the embeddings *i*, *j* are defined, one can then prove that one side didn't "move" during comparison: either $(M, V) = (R, \mathcal{X})$ or $(N, \mathcal{W}) = (R, \mathcal{X})$.

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

÷.

Goal.

• Produce some γ -model (R, χ) and elementary embeddings

 $i:(M,\mathcal{V})\rightarrow (R,\mathcal{X})$

such that crit(i) = κ _V (or *i* is the identity), and likewise

 $j : (N, \mathcal{W}) \rightarrow (R, \mathcal{X}).$

- Therefore $(M, \mathcal{V}) \equiv (N, \mathcal{W})$ and $\mathbb{R}^M = \mathbb{R}^N$.
- Using how the embeddings *i*, *j* are defined, one can then prove that one side didn't "move" during comparison: either $(M, V) = (R, \mathcal{X})$ or $(N, \mathcal{W}) = (R, \mathcal{X})$.

◆ロ→ ◆伊→ ◆ミ→ →ミ→ ニヨー

Goal.

• Produce some γ -model (R, χ) and elementary embeddings

 $i:(M,\mathcal{V})\rightarrow (R,\mathcal{X})$

such that crit(i) = κ _V (or *i* is the identity), and likewise

 $j : (N, \mathcal{W}) \rightarrow (R, \mathcal{X}).$

- Therefore $(M, \mathcal{V}) \equiv (N, \mathcal{W})$ and $\mathbb{R}^M = \mathbb{R}^N$.
- Using how the embeddings *i*, *j* are defined, one can then prove that one side didn't "move" during comparison: either $(M, V) = (R, \mathcal{X})$ or $(N, \mathcal{W}) = (R, \mathcal{X})$.

イロト イ押 トイヨ トイヨ トーヨー

Goal.

• Produce some γ -model (R, χ) and elementary embeddings

 $i:(M,\mathcal{V})\rightarrow (R,\mathcal{X})$

such that crit(*i*) = κ _V (or *i* is the identity), and likewise

$$
j:(N,\mathcal{W})\to (R,\mathcal{X}).
$$

- Therefore $(M, \mathcal{V}) \equiv (N, \mathcal{W})$ and $\mathbb{R}^M = \mathbb{R}^N$.
- Using how the embeddings *i*, *j* are defined, one can then prove that one side didn't "move" during comparison: either $(M, V) = (R, \mathcal{X})$ or $(N, \mathcal{W}) = (R, \mathcal{X})$.

イロト イ押 トイヨ トイヨ トーヨー

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Comparison Details.

Start with

$$
(M_0, V_0) = (M, V) \neq (N_0, W_0) = (N, W).
$$

Let $\kappa_0 = \kappa_{\mathcal{V}}$ and $\mu_0 = \kappa_{\mathcal{W}}$.

We'll define models (M_α, V_α) and (N_α, W_α) for ordinals α .

1*st stage.* There are 3 cases.

イロト イ押 トイヨ トイヨ トー

重し 2990

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Comparison Details.

Start with

$$
(M_0, V_0) = (M, V) \neq (N_0, W_0) = (N, W).
$$

Let $\kappa_0 = \kappa_{\mathcal{V}}$ and $\mu_0 = \kappa_{\mathcal{W}}$.

We'll define models $(M_\alpha, \mathcal{V}_\alpha)$ and $(N_\alpha, \mathcal{W}_\alpha)$ for ordinals α .

1*st stage.* There are 3 cases.

KO KARK KEK KEK E YOKA

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Case 1: $\kappa_0 < \mu_0$. Form ultrapower on *M* side. Do nothing on *N* side. Define:

$$
\bullet \ M_1 = \text{Ult}(M_0,V_0).
$$

 \bullet *i*_{0.1} : $M_0 \rightarrow M_1$ the ultrapower embedding.

•
$$
V_1 = i_{0,1}(V_0)
$$
 and $\kappa_1 = i_{0,1}(\kappa_0)$.

•
$$
(N_1, \mathcal{W}_1, \mu_1) = (N_0, \mathcal{W}_0, \mu_0).
$$

 \bullet *j*_{0.1} : $N_0 \rightarrow N_1$ the identity.

We have defined (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1) .

イロト イ押 トイヨ トイヨ トー

÷. $2Q$

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Case 1: $\kappa_0 < \mu_0$. Form ultrapower on *M* side. Do nothing on *N* side. Define:

$$
\bullet \ \ M_1 = \text{Ult}(M_0,\mathcal V_0).
$$

 \bullet *i*_{0.1} : $M_0 \rightarrow M_1$ the ultrapower embedding.

•
$$
V_1 = i_{0,1}(V_0)
$$
 and $\kappa_1 = i_{0,1}(\kappa_0)$.

•
$$
(N_1, \mathcal{W}_1, \mu_1) = (N_0, \mathcal{W}_0, \mu_0).
$$

 \bullet *j*_{0.1} : $N_0 \rightarrow N_1$ the identity.

```
We have defined (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1).
```
K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

重。 $2Q$

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Case 1: $\kappa_0 < \mu_0$. Form ultrapower on *M* side. Do nothing on *N* side. Define:

$$
\bullet \ \ M_1 = \text{Ult}(M_0,\mathcal V_0).
$$

 \bullet *i*_{0.1} : $M_0 \rightarrow M_1$ the ultrapower embedding.

•
$$
V_1 = i_{0,1}(V_0)
$$
 and $\kappa_1 = i_{0,1}(\kappa_0)$.

•
$$
(N_1, \mathcal{W}_1, \mu_1) = (N_0, \mathcal{W}_0, \mu_0).
$$

 \bullet $j_{0,1}$: $N_0 \rightarrow N_1$ the identity.

We have defined (M_1, \mathcal{V}_1) and (N_1, \mathcal{W}_1) .

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

重。 $2Q$

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Case 1: $\kappa_0 < \mu_0$. Form ultrapower on *M* side. Do nothing on *N* side. Define:

•
$$
M_1 = \text{Ult}(M_0, V_0)
$$
.

 \bullet *i*_{0.1} : $M_0 \rightarrow M_1$ the ultrapower embedding.

•
$$
V_1 = i_{0,1}(V_0)
$$
 and $\kappa_1 = i_{0,1}(\kappa_0)$.

•
$$
(N_1, \mathcal{W}_1, \mu_1) = (N_0, \mathcal{W}_0, \mu_0).
$$

•
$$
j_{0,1} : N_0 \to N_1
$$
 the identity.

We have defined (M_1, V_1) and (N_1, W_1) .

イロト イ押 トイヨ トイヨ トー

重し $2Q$

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0) κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Case 2: $\kappa_0 > \mu_0$. Symmetric to Case 1.

Case 3: $\kappa_0 = \mu_0$. Take an ultrapower on both sides, M_1 and N_1 are the resulting ultrapowers, $i_{0,1}$, V_1 , $j_{0,1}$, W_1 defined as before.

イロト イ押 トイヨ トイヨ トー

重。 $2Q$

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Note M_1 is wellfounded since

 $M_0 \models \mathcal{U}_0$ is a normal measure and $M_1 = \text{Ult}(V, \mathcal{U}_0)$.".

Moreover,

$$
M_0 \xrightarrow{i_{0,1}} M_1
$$

is elementary and $i_{0,1}(\mathcal{V}_0) = \mathcal{V}_1$, so

 $M_1 \models \mathcal{V}_1$ is a normal measure on κ_1 and $V = L[\mathcal{V}_1]^n$.

So (M_1, V_1) is a κ_1 -model. Likewise (N_1, W_1) a μ_1 -model.

イロト イ押 トイヨ トイヨ トー

÷.

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Note M_1 is wellfounded since

 $M_0 \models \mathcal{U}_0$ is a normal measure and $M_1 = \text{Ult}(V, \mathcal{U}_0)$.".

Moreover,

$$
M_0 \stackrel{i_{0,1}}{\longrightarrow} M_1
$$

is elementary and $i_{0.1}(\mathcal{V}_0) = \mathcal{V}_1$, so

 $M_1 \models \mathcal{V}_1$ is a normal measure on κ_1 and $V = L[\mathcal{V}_1]^n$.

So (M_1, V_1) is a κ_1 -model. Likewise (N_1, W_1) a μ_1 -model.

イロン イ押ン イミン イヨン・ヨー
κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Note M_1 is wellfounded since

 $M_0 \models \mathcal{U}_0$ is a normal measure and $M_1 = \text{Ult}(V, \mathcal{U}_0)$.".

Moreover,

$$
M_0 \stackrel{i_{0,1}}{\longrightarrow} M_1
$$

is elementary and $i_{0,1}(\mathcal{V}_0) = \mathcal{V}_1$, so

 $M_1 \models \mathcal{V}_1$ is a normal measure on κ_1 and $V = L[\mathcal{V}_1]^n$.

So (M_1, V_1) is a κ_1 -model. Likewise (N_1, W_1) a μ_1 -model.

KO KARK KEK KEK E YOKA

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Now if $(M_1, V_1) = (N_1, W_1)$, we stop. Otherwise, proceed to:

2nd stage. Repeat 1st stage, working with (M_1, V_1) and (N_1, \mathcal{W}_1) . This produces (M_2, \mathcal{V}_2) and $i_1, i_2 : M_1 \rightarrow M_2$, and likewise (N_2, \mathcal{W}_2) and j_1 ₂.

All successor stages are likewise; note we keep producing wellfounded models.

イロト イ押 トイヨ トイヨ トー

÷.

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Now if $(M_1, V_1) = (N_1, W_1)$, we stop. Otherwise, proceed to:

2nd stage. Repeat 1st stage, working with (M_1, V_1) and (N_1, \mathcal{W}_1) . This produces (M_2, \mathcal{V}_2) and $i_{1,2} : M_1 \rightarrow M_2$, and likewise (N_2, \mathcal{W}_2) and j_1 ₂.

All successor stages are likewise; note we keep producing wellfounded models.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

重。 $2Q$

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Now if $(M_1, V_1) = (N_1, W_1)$, we stop. Otherwise, proceed to:

2nd stage. Repeat 1st stage, working with (M_1, V_1) and (N_1, \mathcal{W}_1) . This produces (M_2, \mathcal{V}_2) and $i_{1,2} : M_1 \rightarrow M_2$, and likewise (N_2, \mathcal{W}_2) and j_1 ₂.

All successor stages are likewise; note we keep producing wellfounded models.

イロト イ押 トイヨ トイヨ トーヨー

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Suppose we reach $n < \omega$ such that $(M_n, V_n) = (N_n, W_n) = (R, X).$

Have elementary embeddings *i*0,1, *i*1,2, . . . , *in*−1,*n*. Let $i_{0,n}$ be their composition:

$$
M_0 \xrightarrow{\frown i_{0,1} \to M_1} M_1 \xrightarrow{\qquad i_{1,2} \to M_2} M_2 \xrightarrow{\qquad \qquad } M_{n-1} \xrightarrow{\qquad \qquad i_{n-1,n} \to M_n = R
$$

Have $i_{0,n}(V_0) = V_n = \mathcal{X}$.

Likewise get embedding

$$
j_{0,n}:N_0\to N_n=R,
$$

and $j_{0,n}(W_0) = X$. So $R, X, i = j_{0,n}$ and $j = j_{0,n}$ are as required.

イロメ 不優 トイヨメ イヨメー

 \equiv

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0)

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Suppose we reach $n < \omega$ such that $(M_n, V_n) = (N_n, W_n) = (R, X).$

Have elementary embeddings *i*0,1, *i*1,2, . . . , *in*−1,*n*. Let $i_{0,n}$ be their composition:

Likewise get embedding

$$
j_{0,n}:N_0\to N_n=R,
$$

and j_0 , $n(\mathcal{W}_0) = \mathcal{X}$. So R, \mathcal{X} , $i = j_0$, and $j = j_0$, are as required.

 290

イロト イ押 トイヨ トイヨ トー

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0)

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Suppose we reach $n < \omega$ such that $(M_n, V_n) = (N_n, W_n) = (R, X).$

Have elementary embeddings *i*0,1, *i*1,2, . . . , *in*−1,*n*. Let $i_{0,n}$ be their composition:

Likewise get embedding

$$
j_{0,n}:N_0\to N_n=R,
$$

and j_0 , $n(\mathcal{W}_0) = \mathcal{X}$. So R, \mathcal{X} , $i = j_0$, and $j = j_0$, are as required.

イロト イ押 トイヨ トイヨト

B

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0) κ[-models](#page-9-0)

[Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Suppose we reach $n < \omega$ such that $(M_n, V_n) = (N_n, W_n) = (R, X).$

Have elementary embeddings *i*0,1, *i*1,2, . . . , *in*−1,*n*. Let $i_{0,n}$ be their composition:

Likewise get embedding

$$
j_{0,n}: N_0 \to N_n = R,
$$

and $j_{0,n}(\mathcal{W}_0) = \mathcal{X}$. So $R, \mathcal{X}, i = j_{0,n}$ and $j = j_{0,n}$ are as required.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 290

[Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Outline

イロメ イ押 メイヨメ イヨメ

B

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0)

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

What if $(M_n, V_n) \neq (N_n, W_n)$ for all $n < \omega$? Must define (M_ω, V_ω) and $(N_\omega, \mathcal{W}_\omega)$ and carry on with comparison.

 $M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots M_m$

Have $i_{0,n}$ for $n < \omega$. Likewise define e.g. $i_{1,3} = i_{2,3} \circ i_{1,2}$:

ik,*ⁿ*

Note above diagram commutes. Get commuting system of maps:

 \cdots ////////
M_k

 \vdots $M_m \longrightarrow M_m$

i^{*m*,*n*(*i*^m,*n*(*i*^m,*n*(*i*^m,*n*(*i*^m)}

イロト イ団 トイヨ トイヨ トー

What if $(M_n, V_n) \neq (N_n, W_n)$ for all $n < \omega$? Must define $(M_\omega, \mathcal{V}_\omega)$ and $(N_\omega, \mathcal{W}_\omega)$ and carry on with comparison.

 $M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots M_m$

Have i_0 , for $n < \omega$. Likewise define e.g. $i_{1,3} = i_{2,3} \circ i_{1,2}$:

ik,*ⁿ*

Note above diagram commutes. Get commuting system of maps:

 \cdots ////////
M_k

 \vdots $M_m \longrightarrow M_m$

 \vdots $M_n \longrightarrow M_n$

イロト イ押 トイヨ トイヨ トー

 \equiv

What if $(M_n, V_n) \neq (N_n, W_n)$ for all $n < \omega$? Must define $(M_\omega, \mathcal{V}_\omega)$ and $(N_\omega, \mathcal{W}_\omega)$ and carry on with comparison.

 $M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots M_m$

Have $i_{0,n}$ for $n < \omega$. Likewise define e.g. $i_{1,3} = i_{2,3} \circ i_{1,2}$.

 $\cdots \longrightarrow M_m$

ik,*ⁿ*

Note above diagram commutes.

Get commuting system of maps:

ik,*^m*

 \cdots ////////
M_k

 $\cdots \longrightarrow M_n$

イロメ イ押 メイヨメ イヨメ

 \equiv

What if $(M_n, V_n) \neq (N_n, W_n)$ for all $n < \omega$? Must define (M_ω, V_ω) and (N_ω, W_ω) and carry on with comparison.

 $M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots M_m$

Have $i_{0,n}$ for $n < \omega$. Likewise define e.g. $i_{1,3} = i_{2,3} \circ i_{1,2}$.

Note above diagram commutes. Get commuting system of maps:

K ロ ▶ K 伊 ▶ K ヨ ▶

L [and Motivation](#page-2-0) *L*[U] [Larger Cardinals](#page-64-0) κ[-models](#page-9-0)

[Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

We define *M*^ω as the direct limit of the system

 $\langle M_n; i_{mn} \rangle_{m \leq n \leq \omega}$.

Threads: For $m,m' < \omega,$ $x \in M_m$ and $x' \in M_{m'}$, we say $(m, x) \approx (m', x')$ iff

$$
m \leq m' \& i_{m,m'}(x) = x',
$$

or

$$
m' \leq m \& i_{m',m}(x') = x.
$$

Because the *im*,*n*'s commute and are 1-1, this is an equivalence relation. Let [*m*, *x*] denote the thread (i.e. equivalence class) of (m, x) .

4 ロ) (何) (日) (日)

B

We define *M*^ω as the direct limit of the system

 $\langle M_n; i_{mn} \rangle_{m \leq n \leq \omega}$.

Threads: For $m, m' < \omega, x \in M_m$ and $x' \in M_{m'}$, we say $(m, x) \approx (m', x')$ iff

$$
m\leq m'\& i_{m,m'}(x)=x',
$$

or

$$
m' \leq m \& i_{m',m}(x') = x.
$$

Because the *im*,*n*'s commute and are 1-1, this is an equivalence relation. Let [*m*, *x*] denote the thread (i.e. equivalence class) of (m, x) .

イロメ 不優 トイヨメ イヨメー

B

We define *M*^ω as the direct limit of the system

 $\langle M_n; i_{mn} \rangle_{m \leq n \leq \omega}$.

Threads: For $m, m' < \omega, x \in M_m$ and $x' \in M_{m'}$, we say $(m, x) \approx (m', x')$ iff

$$
m\leq m'\& i_{m,m'}(x)=x',
$$

or

$$
m' \leq m \& i_{m',m}(x') = x.
$$

Because the *im*,*n*'s commute and are 1-1, this is an equivalence relation. Let [*m*, *x*] denote the thread (i.e. equivalence class) of (m, x) .

イロト イ押 トイヨ トイヨ トー

÷.

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Here $[0, x] = [2, x'']$ but $[0, x] \neq [2, y]$.

メロメメ 御きメ 老き メ 悪きこ

重

 299

Now *M*^ω consists of all threads:

$M_{\omega} = \{ [m, x] \mid m < \omega \& x \in M_m \}.$

Define membership ∈ *^M*^ω of *M*^ω from membership of *Mn*'s. For $m \le m'$,

$$
[m, x] \in \real^{M_\omega} [m', x'] \iff i_{m, m'}(x) \in x';
$$

likewise for 3 *^M*^ω .

Because the *im*,*n*'s are elementary, this is well-defined and respects ≈.

Let i_m _ω : $M_m \rightarrow M_\omega$ be the natural (elementary) embedding:

$$
i_{m,\omega}(x)=[m,x].
$$

イロメ 不優 トイヨメ イヨメー

B

Now *M*^ω consists of all threads:

$$
M_{\omega}=\{[m,x]\mid m<\omega\ \&\ x\in M_m\}.
$$

Define membership ∈ *^M*^ω of *M*^ω from membership of *Mn*'s. For $m \leq m'$,

$$
[m, x] \in \real^{M_\omega} [m', x'] \iff i_{m, m'}(x) \in x';
$$

likewise for $\ni^{\mathcal{M}_\omega}$.

Because the *im*,*n*'s are elementary, this is well-defined and respects ≈.

Let i_m _ω : $M_m \rightarrow M_\omega$ be the natural (elementary) embedding:

 i_{m} _ω $(x) = [m, x]$.

◆ロ→ ◆伊→ ◆ミ→ →ミ→ ニヨー

Now *M*^ω consists of all threads:

$$
M_{\omega}=\{[m,x]\mid m<\omega\ \&\ x\in M_m\}.
$$

Define membership ∈ *^M*^ω of *M*^ω from membership of *Mn*'s. For $m \leq m'$,

$$
[m, x] \in \real^{M_\omega}[m', x'] \iff i_{m, m'}(x) \in x';
$$

likewise for $\ni^{\mathcal{M}_\omega}$.

Because the *im*,*n*'s are elementary, this is well-defined and respects ≈.

Let $i_{m,\omega}: M_m \to M_\omega$ be the natural (elementary) embedding:

$$
i_{m,\omega}(x)=[m,x].
$$

イロン イ押ン イミン イヨン・ヨー

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0)

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

This defines *M*ω. Is it wellfounded?

If so, and N_{ω} is also, can proceed with comparison. Why wellfoundedness important? Comparison algorithm depended on it to start with, and it's needed for the later parts of the proof (to be omitted).

Fact (Gaifman): M_w and *N_w are* wellfounded, but it's is not obvious. This is the *iterability problem*; its generalization to larger cardinals is a central problem in inner model theory.

イロメ イ押 メイヨメ イヨメ

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0)

κ[-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

This defines *M*ω. Is it wellfounded?

If so, and *N*^ω is also, can proceed with comparison. Why wellfoundedness important? Comparison algorithm depended on it to start with, and it's needed for the later parts of the proof (to be omitted).

Fact (Gaifman): M_ω and *N_ω are* wellfounded, but it's is not obvious. This is the *iterability problem*; its generalization to larger cardinals is a central problem in inner model theory.

イロメ イ押 メイヨメ イヨメ

ă.

 ω^th *stage:* define M_ω as the (wellfounded) direct limit, $i_{0,\omega}$ as direct limit embedding, $V_\omega = i_{0,\omega}(V_0)$. Likewise for N_{ω} , W_{ω} .

 $(\omega + 1)$ th stage: continue comparison with models $(M_\omega, \mathcal{V}_\omega)$ versus $(N_{\omega}, \mathcal{W}_{\omega})$.

These methods produce M_{α} and $i_{\beta,\alpha}$ for all $\beta \leq \alpha \in \mathbb{OR}$, and likewise on *N*-side. All models produced are wellfounded.

Fact: The comparison stops somewhere, i.e. $(M_\alpha, \mathcal{V}_\alpha) = (N_\alpha, \mathcal{W}_\alpha)$ for some $\alpha \in \mathbb{OR}$.

This completes the sketch of the proof.

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

 Ω

 ω^th *stage:* define M_ω as the (wellfounded) direct limit, $i_{0,\omega}$ as direct limit embedding, $V_\omega = i_{0,\omega}(V_0)$. Likewise for N_{ω} , W_{ω} .

 $(\omega +$ 1)th stage: continue comparison with models $(M_{\omega},\mathcal{V}_{\omega})$ versus $(N_{\omega}, \mathcal{W}_{\omega}).$

These methods produce M_{α} and $i_{\beta,\alpha}$ for all $\beta \leq \alpha \in \mathbb{OR}$, and likewise on *N*-side. All models produced are wellfounded.

Fact: The comparison stops somewhere, i.e. $(M_\alpha, \mathcal{V}_\alpha) = (N_\alpha, \mathcal{W}_\alpha)$ for some $\alpha \in \mathbb{OR}$.

This completes the sketch of the proof.

K ロ ト K 何 ト K ヨ ト K ヨ ト

ă.

 ω^th *stage:* define M_ω as the (wellfounded) direct limit, $i_{0,\omega}$ as direct limit embedding, $V_\omega = i_{0,\omega}(V_0)$. Likewise for N_{ω} , W_{ω} .

 $(\omega +$ 1)th stage: continue comparison with models $(M_{\omega},\mathcal{V}_{\omega})$ versus $(N_{\omega}, \mathcal{W}_{\omega}).$

These methods produce M_{α} and $i_{\beta,\alpha}$ for all $\beta \leq \alpha \in \text{OR}$, and likewise on *N*-side. All models produced are wellfounded.

Fact: The comparison stops somewhere, i.e. $(M_\alpha, \mathcal{V}_\alpha) = (N_\alpha, \mathcal{W}_\alpha)$ for some $\alpha \in \mathbb{OR}$.

This completes the sketch of the proof.

イロト イ押 トイヨ トイヨ トー

 2990

÷.

 ω^th *stage:* define M_ω as the (wellfounded) direct limit, $i_{0,\omega}$ as direct limit embedding, $V_\omega = i_{0,\omega}(V_0)$. Likewise for N_{ω} , W_{ω} .

 $(\omega +$ 1)th stage: continue comparison with models $(M_{\omega},\mathcal{V}_{\omega})$ versus $(N_{\omega}, \mathcal{W}_{\omega}).$

These methods produce M_{α} and $i_{\beta,\alpha}$ for all $\beta \leq \alpha \in \text{OR}$, and likewise on *N*-side. All models produced are wellfounded.

Fact: The comparison stops somewhere, i.e. $(M_{\alpha},\mathcal{V}_{\alpha})=(N_{\alpha},\mathcal{W}_{\alpha})$ for some $\alpha\in$ OR.

This completes the sketch of the proof.

イロト イ伊 トイヨ トイヨ トー

B $2Q$

[Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Outline

メロメメ 御きメ ミカメ モド

B

 κ [-models](#page-9-0) [Comparison, Iteration](#page-19-0) [Limit stages of Iteration](#page-44-0) [Wellorder of](#page-62-0) $\mathbb R$

Related arguments can be used to show that in *L*[U], there is a Δ^1_3 wellorder of \R :

Say (for this slide) that (M, U, κ) is a *premouse* iff M is a transitive model of $ZF - \{Replacement\}$ plus " U is a normal measure on κ , $V = L[\mathcal{U}]$, and Replacement for domains $\subseteq V_{\kappa}$ ". We can iterate *M* just like we did for the proper class models in comparison. Say *M* is a *mouse* iff it is a premouse all of whose iterates M_{α} are wellfounded.

In *L[U]*, can wellorder $\mathbb R$ by: " $x < y$ iff there's a mouse (M, U, κ) ${\sf such\ that\ } x,y\in\mathbb{R}^M\ {\sf and}\ M\models``x<_{L[\mathcal{U}]}\ y" .$ This is $\Sigma^1_3,$ as it's Π^1_2 to assert that *M* is a mouse.

イロメ 不優 トイヨメ イヨメー

ă.

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0) [Extenders](#page-64-0) [Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Outline

2 *L*[[U](#page-9-0)]

- \bullet κ [-models](#page-9-0)
- **[Comparison, Iteration](#page-19-0)**
- **[Limit stages of Iteration](#page-44-0)**
- \bullet [Wellorder of](#page-62-0) $\mathbb R$

3 [Larger Cardinals](#page-64-0)

- **o** [Extenders](#page-64-0)
- **[Iteration Trees](#page-79-0)**
- [Analysis of Measures](#page-102-0)

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

4日下

B

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0)

[Extenders](#page-64-0) [Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Generalizations? To produce models with larger cardinals:

- Build models from *extenders* instead of measures
- Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

4 0 8

÷.

[Extenders](#page-64-0) [Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Generalizations? To produce models with larger cardinals:

Build models from *extenders* instead of measures

• Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

4 0 8

÷.

[Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Generalizations? To produce models with larger cardinals:

- Build models from *extenders* instead of measures
- Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

イロト イ押 トイヨ トイヨト

÷.

[Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Generalizations? To produce models with larger cardinals:

- Build models from *extenders* instead of measures
- Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

イロト イ押 トイヨ トイヨ トー

÷. QQQ

[Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Generalizations? To produce models with larger cardinals:

- Build models from *extenders* instead of measures
- Must deal with more complex iterations

An extender:

- Is a set-sized object coding an elementary embedding
- Consists of a collection of measures, which cohere appropriately

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

4 0 8

÷. QQQ

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0) **[Extenders](#page-64-0)** [Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Given $j: V \to N$ elementary with $\kappa = \text{crit}(j)$ and $a \in j(\kappa)^{<\omega}$, have measure E_a over $\kappa^{<\omega}$ defined by:

 $X \in E_a \iff a \in j(X)$.

Fixing $\lambda \leq j(\kappa)$, we get an *extender* E of *length* λ by:

$$
E = \langle E_a \rangle_{a \in \lambda^{<\omega}}.
$$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷.

 299

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0) [Extenders](#page-64-0) [Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Given $j: V \to N$ elementary with $\kappa = \text{crit}(j)$ and $a \in j(\kappa)^{<\omega}$, have measure E_a over $\kappa^{<\omega}$ defined by:

 $X \in E_a \iff a \in j(X)$.

Fixing $\lambda \leq j(\kappa)$, we get an *extender* E of *length* λ by:

$$
E = \langle E_a \rangle_{a \in \lambda^{<\omega}}.
$$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \Rightarrow

 299
Given $j: V \to N$ elementary with $\kappa = \text{crit}(j)$ and $a \in j(\kappa)^{<\omega}$, have measure E_a over $\kappa^{<\omega}$ defined by:

 $X \in E_a \iff a \in j(X)$.

Fixing $\lambda \leq j(\kappa)$, we get an *extender* E of *length* λ by:

$$
E = \left< E_a \right>_{a \in \lambda^{<\omega}}.
$$

モニー・モン イミン イヨン エミ

Given this *E*, can define Ult(*V*, *E*) and ultrapower embedding $i_F: V \to \text{Ult}(V, E).$

If λ is sufficiently closed then Ult(*V*, *E*) and *N* have same V_{λ} .

イロト イ押 トイヨ トイヨ トー

÷.

 2990

L [and Motivation](#page-2-0) *L*[U] [Larger Cardinals](#page-64-0) [Extenders](#page-64-0) [Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Given this *E*, can define Ult(*V*, *E*) and ultrapower embedding $i_F: V \to \text{Ult}(V, E).$

If λ is sufficiently closed then Ult(*V*, *E*) and *N* have same V_{λ} .

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

4 0 8

B

[Extenders](#page-64-0) [Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

If κ is a strong or Woodin cardinal, then it is so via embeddings from extenders.

To obtain models with strong or Woodin cardinals, we can build from extenders.

Consider models of form *L*[E], where, ignoring some details, E is a sequence of extenders: $\mathbb{E} = \langle \mathbb{E}_{\alpha} \rangle_{\alpha \in I^{\ast}}$

The extenders appear on the sequence E in a canonical order. In fact for the standard (fine-structural) models, some \mathbb{E}_{γ} 's are not literally extenders of *L*[E] in the sense defined earlier; their component measures can be partial.

4 ロ) (何) (日) (日)

If κ is a strong or Woodin cardinal, then it is so via embeddings from extenders.

To obtain models with strong or Woodin cardinals, we can build from extenders.

Consider models of form *L*[E], where, ignoring some details, E is a sequence of extenders: $\mathbb{E} = \langle \mathbb{E}_{\alpha} \rangle_{\alpha \in I^{\ast}}$

The extenders appear on the sequence E in a canonical order. In fact for the standard (fine-structural) models, some \mathbb{E}_{γ} 's are not literally extenders of *L*[E] in the sense defined earlier; their component measures can be partial.

K ロ ト K 何 ト K ヨ ト K ヨ ト

If κ is a strong or Woodin cardinal, then it is so via embeddings from extenders.

To obtain models with strong or Woodin cardinals, we can build from extenders.

Consider models of form *L*[E], where, ignoring some details, E is a sequence of extenders: $\mathbb{E} = \langle \mathbb{E}_\alpha \rangle_{\alpha \in I}$.

The extenders appear on the sequence E in a canonical order. In fact for the standard (fine-structural) models, some \mathbb{E}_{γ} 's are not literally extenders of *L*[E] in the sense defined earlier; their component measures can be partial.

メロトメ 御 トメ 差 トメ 差 トー

If κ is a strong or Woodin cardinal, then it is so via embeddings from extenders.

To obtain models with strong or Woodin cardinals, we can build from extenders.

Consider models of form *L*[E], where, ignoring some details, E is a sequence of extenders: $\mathbb{E} = \langle \mathbb{E}_\alpha \rangle_{\alpha \in I}$.

The extenders appear on the sequence $\mathbb E$ in a canonical order. In fact for the standard (fine-structural) models, some \mathbb{E}_{γ} 's are not literally extenders of *L*[E] in the sense defined earlier; their component measures can be partial.

メロメメ 御きメ 老き メ 悪き し

 2990

÷.

L [and Motivation](#page-2-0) *L*[U] [Larger Cardinals](#page-64-0)

[Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Outline

2 *L*[[U](#page-9-0)]

- \bullet κ [-models](#page-9-0)
- **[Comparison, Iteration](#page-19-0)**
- **[Limit stages of Iteration](#page-44-0)**
- \bullet [Wellorder of](#page-62-0) $\mathbb R$

3 [Larger Cardinals](#page-64-0)

• [Extenders](#page-64-0)

• [Iteration Trees](#page-79-0)

• [Analysis of Measures](#page-102-0)

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

4日下

B

Iterations for $L[\mathcal{U}]$ were simpler than the general case:

- (a) At stage α , we always used $\mathcal{U}_{\alpha} = i_{0,\alpha}(\mathcal{U})$ for next ultrapower
- (b) U_{α} was *applied to M_α* to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, U_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders *E*, *F* involved in the *least difference* between E and F, and form ultrapowers using *E*, *F*.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that $\mathbb{E}_{\gamma} \neq \mathbb{F}_{\gamma}$.

At later stages of comparison, the least difference needn't be the images of *E*, *F*. So we must give up (a).

4 ロ) (何) (日) (日)

Iterations for *L*[U] were simpler than the general case:

(a) At stage α , we always used $\mathcal{U}_{\alpha} = i_{0,\alpha}(\mathcal{U})$ for next ultrapower

(b) U_{α} was *applied to M_α* to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, U_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders *E*, *F* involved in the *least difference* between E and F, and form ultrapowers using *E*, *F*.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that

At later stages of comparison, the least difference needn't be the images of *E*, *F*. So we must give up (a).

K ロ ト K 何 ト K ヨ ト K ヨ ト

Iterations for $L[\mathcal{U}]$ were simpler than the general case:

- (a) At stage α , we always used $\mathcal{U}_{\alpha} = i_{0,\alpha}(\mathcal{U})$ for next ultrapower
- (b) U_{α} was *applied to M*_α to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, U_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders *E*, *F* involved in the *least difference* between E and F, and form ultrapowers using *E*, *F*.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that

At later stages of comparison, the least difference needn't be the images of *E*, *F*. So we must give up (a).

イロト イ団ト イヨト イヨト

ă,

Iterations for *L*[U] were simpler than the general case:

- (a) At stage α , we always used $\mathcal{U}_{\alpha} = i_{0,\alpha}(\mathcal{U})$ for next ultrapower
- (b) U_{α} was *applied to M*_α to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, U_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders *E*, *F* involved in the *least difference* between E and F, and form ultrapowers using *E*, *F*.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that $\mathbb{E}_{\gamma} \neq \mathbb{F}_{\gamma}$.

At later stages of comparison, the least difference needn't be the images of *E*, *F*. So we must give up (a).

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 2990

B

Iterations for *L*[U] were simpler than the general case:

- (a) At stage α , we always used $\mathcal{U}_{\alpha} = i_{0,\alpha}(\mathcal{U})$ for next ultrapower
- (b) U_{α} was *applied to M_α* to form $M_{\alpha+1} = \text{Ult}(M_{\alpha}, U_{\alpha})$

Comparing $L[\mathbb{E}]$ versus $L[\mathbb{F}]$, where $\mathbb{E} \neq \mathbb{F}$, we choose the extenders *E*, *F* involved in the *least difference* between E and F, and form ultrapowers using *E*, *F*.

I.e., choose $E = \mathbb{E}_{\gamma}$ and $F = \mathbb{F}_{\gamma}$, where γ is least such that $\mathbb{E}_{\gamma} \neq \mathbb{F}_{\gamma}$.

At later stages of comparison, the least difference needn't be the images of *E*, *F*. So we must give up (a).

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷.

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models^* E_{\alpha}$ is an extender".
- (b) E_α may be applied to a model M_β , with $\beta < \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_\beta, E_\alpha)$.

Why (b)? The comparison proof breaks down if we require *E*_α to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models "E$ is an extender with $\text{crit}(E) = \kappa$ ", and such that $\mathit{V}^{M}_{\kappa+1} = \mathit{V}^{N}_{\kappa+1},$ it makes sense to define Ult(N, E), even if $E \notin N$. 4 ロ } 4 6 } 4 \pm } 4 \pm }

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models^* E_{\alpha}$ is an extender".
- (b) E_α may be applied to a model M_β , with $\beta < \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_\beta, E_\alpha)$.

Why (b)? The comparison proof breaks down if we require *E*_α to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models "E$ is an extender with $\text{crit}(E) = \kappa$ ", and such that $\mathit{V}^{M}_{\kappa+1} = \mathit{V}^{N}_{\kappa+1},$ it makes sense to define Ult(N, E), even if $E \notin N$. **K ロ ト K 何 ト K ヨ ト K ヨ ト**

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models^* E_{\alpha}$ is an extender".
- (b) E_α may be applied to a model M_β , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_\beta, E_\alpha)$.

Why (b)? The comparison proof breaks down if we require *E*_α to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models "E$ is an extender with $\text{crit}(E) = \kappa$ ", and such that $\mathit{V}^{M}_{\kappa+1} = \mathit{V}^{N}_{\kappa+1},$ it makes sense to define Ult(N, E), even if $E \notin N$. イロメ 不優 トメ ヨ メ ス ヨ メー

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models^{\alpha} E_{\alpha}$ is an extender".
- (b) E_α may be applied to a model M_β , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_\beta, E_\alpha)$.

Why (b)? The comparison proof breaks down if we require E_{α} to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models "E$ is an extender with $\text{crit}(E) = \kappa$ ", and such that $\mathit{V}^{M}_{\kappa+1} = \mathit{V}^{N}_{\kappa+1},$ it makes sense to define Ult(N, E), even if $E \notin N$. イロト イ団ト イヨト イヨト

 290

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models^{\alpha} E_{\alpha}$ is an extender".
- (b) E_α may be applied to a model M_β , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_\beta, E_\alpha)$.

Why (b)? The comparison proof breaks down if we require E_α to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models "E$ is an extender with $\text{crit}(E) = \kappa$ ", and such that $\mathit{V}^{M}_{\kappa+1} = \mathit{V}^{N}_{\kappa+1},$ it makes sense to define Ult(N, E), even if $E \notin N$. イロト イ団 トイミト イミト

More general iterations allow (starting with a base model M_0):

- (a) At stage α , may choose any $E_{\alpha} \in M_{\alpha}$ such that $M_{\alpha} \models^{\alpha} E_{\alpha}$ is an extender".
- (b) E_α may be applied to a model M_β , with $\beta \leq \alpha$. That is, $M_{\alpha+1} = \text{Ult}(M_\beta, E_\alpha)$.

Why (b)? The comparison proof breaks down if we require E_α to apply to M_{α} .

This obstacle overcome by (b) and *iteration trees*. This was a key innovation due to Mitchell, Martin and Steel.

Given models M, N such that $M \models "E$ is an extender with $\text{crit}(E) = \kappa"$, and such that $\mathsf{V}_{\kappa+1}^{\mathsf{M}} = \mathsf{V}_{\kappa+1}^{\mathsf{N}},$ it makes sense to define Ult(N, E), even if $E \notin N$. イロト イ団ト イヨト イヨト

Roughly, an iteration tree $\mathcal T$ is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $\langle \tau \rangle$ be the tree order. Whenever $\gamma \langle \tau \rangle$ we have an iteration embedding $i_{\gamma,\delta}: M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α : choose $E_{\alpha} \in M_{\alpha}$, form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

4 ロ) (何) (日) (日)

Roughly, an iteration tree $\mathcal T$ is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $\langle \tau \rangle$ be the tree order. Whenever $\gamma \langle \tau \rangle$ we have an iteration embedding $i_{\gamma,\delta}: M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α : choose $E_{\alpha} \in M_{\alpha}$, form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

4 ロ) (何) (日) (日)

Roughly, an iteration tree $\mathcal T$ is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $\langle \tau \rangle$ be the tree order. Whenever $\gamma \langle \tau \rangle$ we have an iteration embedding $i_{\gamma,\delta}: M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α : choose $E_{\alpha} \in M_{\alpha}$, form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

4 ロ) (何) (日) (日)

Roughly, an iteration tree $\mathcal T$ is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $\langle \tau \rangle$ be the tree order. Whenever $\gamma \langle \tau \rangle$ we have an iteration embedding $i_{\gamma,\delta}: M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α **: choose** $E_{\alpha} \in M_{\alpha}$ **,** form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

4 ロ) (何) (日) (日)

Roughly, an iteration tree $\mathcal T$ is a tree on some ordinal λ , with a model M_{α} attached to each node $\alpha < \lambda$. 0 is the root node.

Let $\langle \tau \rangle$ be the tree order. Whenever $\gamma \langle \tau \rangle$ we have an iteration embedding $i_{\gamma,\delta}: M_{\gamma} \to M_{\delta}$.

Arrows in diagram represent tree order and embeddings.

Stage α : choose $E_{\alpha} \in M_{\alpha}$, form $M_{\alpha+1} = \text{Ult}(M_{\beta}, E_{\alpha})$, some $\beta \leq \alpha$. And $i_{\beta,\alpha+1}$ is the ultrapower embedding.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

- Choose an ω -cofinal branch *b* through the tree order \leq_{τ} .
- Let M_{ω} , be the direct limit of the models M_{γ} for $\gamma \in \mathcal{b}$, under the iteration embeddings.
- (Note that for $\gamma \leq \tau \delta \in b$, we have $i_{\gamma \delta}$ exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- **Ensure by choice of** *b* **that** *M***_w is wellfounded.**

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

4 ロ) (何) (日) (日)

- Choose an ω -cofinal branch *b* through the tree order $\langle \tau$.
- Let M_{ω} , be the direct limit of the models M_{γ} for $\gamma \in \mathcal{b}$, under the iteration embeddings.
- (Note that for $\gamma \leq \tau \delta \in b$, we have $i_{\gamma \delta}$ exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- **Ensure by choice of** *b* **that** *M***_w is wellfounded.**

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

K ロ ト K 何 ト K ヨ ト K ヨ ト

- Choose an ω -cofinal branch *b* through the tree order \leq_{τ} .
- Let M_{ω} be the direct limit of the models M_{γ} for $\gamma \in \mathcal{b}$, under the iteration embeddings.
- (Note that for $\gamma \leq \tau \delta \in b$, we have $i_{\gamma \delta}$ exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- **Ensure by choice of** *b* **that** *M***_w is wellfounded.**

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

K ロ ト K 何 ト K ヨ ト K ヨ ト

E

- Choose an ω -cofinal branch *b* through the tree order $\langle \tau \rangle$.
- Let M_{ω} be the direct limit of the models M_{γ} for $\gamma \in \mathcal{b}$, under the iteration embeddings.
- (Note that for $\gamma \leq \tau \delta \in b$, we have $i_{\gamma,\delta}$ exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- **Ensure by choice of** *b* **that** *M***_w is wellfounded.**

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

イロト イ団ト イヨト イヨト

E

- Choose an ω -cofinal branch *b* through the tree order $\langle \tau \rangle$.
- Let M_{ω} be the direct limit of the models M_{γ} for $\gamma \in b$, under the iteration embeddings.
- (Note that for $\gamma \leq \tau \delta \in \mathbf{b}$, we have $i_{\gamma,\delta}$ exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- **•** Ensure by choice of *b* that *M*_ω is wellfounded.

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

イロト イ団ト イヨト イヨト

 290

B

- Choose an ω -cofinal branch *b* through the tree order $\langle \tau \rangle$.
- Let M_{ω} be the direct limit of the models M_{γ} for $\gamma \in \mathcal{b}$, under the iteration embeddings.
- (Note that for $\gamma \leq \tau \delta \in \mathbf{b}$, we have $i_{\gamma,\delta}$ exists; we also maintain commutativity of these embeddings, so the direct limit works.)
- **•** Ensure by choice of *b* that *M*_ω is wellfounded.

We say the root model M_0 is *iterable* if there is an *iteration strategy* for M_0 ; this strategy must choose branches at limit stages and ensure the wellfoundedness of all models produced.

イロト イ押 トイヨ トイヨト

B

L [and Motivation](#page-2-0) *L*[U] [Larger Cardinals](#page-64-0)

[Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Outline

2 *L*[[U](#page-9-0)]

- \bullet κ [-models](#page-9-0)
- **[Comparison, Iteration](#page-19-0)**
- **[Limit stages of Iteration](#page-44-0)**
- **•** [Wellorder of](#page-62-0) \mathbb{R}

3 [Larger Cardinals](#page-64-0)

- **•** [Extenders](#page-64-0)
- **[Iteration Trees](#page-79-0)**
- [Analysis of Measures](#page-102-0)

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

4 0 8

B

- Each $\mathcal{M}_\alpha = \mathcal{L}_\gamma[\mathbb{E}^{\mathcal{M}_\alpha}]$ for some γ
- E_α is anything indexed on \mathbb{E}^{M_α} (partial or total extender)

 \bullet *i*_{α,β} need not exist, even when $\alpha \leq_T \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders E in a canonical way.

4 ロ) (何) (日) (日)

- Each $\textit{M}_{\alpha} = \textit{L}_{\gamma}[\mathbb{E}^{\textit{M}_{\alpha}}]$ for some γ
- E_α is anything indexed on \mathbb{E}^{M_α} (partial or total extender)

 \bullet *i*_{α,β} need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders E in a canonical way.

イロメ 不優 トメ ヨ メ ス ヨ メー

- Each $\textit{M}_{\alpha} = \textit{L}_{\gamma}[\mathbb{E}^{\textit{M}_{\alpha}}]$ for some γ
- E_α is anything indexed on \mathbb{E}^{M_α} (partial or total extender)
- \bullet *i*_{α,β} need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders E in a canonical way.

イロト イ押 トイヨ トイヨ トー

B

- Each $\textit{M}_{\alpha} = \textit{L}_{\gamma}[\mathbb{E}^{\textit{M}_{\alpha}}]$ for some γ
- E_α is anything indexed on \mathbb{E}^{M_α} (partial or total extender)

• $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders E in a canonical way.

イロト イ団ト イヨト イヨト

B

- Each $\textit{M}_{\alpha} = \textit{L}_{\gamma}[\mathbb{E}^{\textit{M}_{\alpha}}]$ for some γ
- E_α is anything indexed on \mathbb{E}^{M_α} (partial or total extender)

• $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders E in a canonical way.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

B

A *fine iteration tree* is a refinement of *iteration tree*, due to Mitchell and Steel, to better suit *fine-structural* inner models *L*[E]. For fine trees, some of the differences are:

- Each $\textit{M}_{\alpha} = \textit{L}_{\gamma}[\mathbb{E}^{\textit{M}_{\alpha}}]$ for some γ
- E_α is anything indexed on \mathbb{E}^{M_α} (partial or total extender)

• $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural **inner models?** All measures come from the sequence of extenders E in a canonical way.

イロン イ押ン イヨン イヨン 一重

 2990

A *fine iteration tree* is a refinement of *iteration tree*, due to Mitchell and Steel, to better suit *fine-structural* inner models *L*[E]. For fine trees, some of the differences are:

- Each $\textit{M}_{\alpha} = \textit{L}_{\gamma}[\mathbb{E}^{\textit{M}_{\alpha}}]$ for some γ
- E_α is anything indexed on \mathbb{E}^{M_α} (partial or total extender)

• $i_{\alpha,\beta}$ need not exist, even when $\alpha \leq_{\mathcal{T}} \beta$

The definition of *iterability* adapts. Standard canonical inner models are fine-structural and iterable.

What can we say about measures that appear in fine-structural inner models? All measures come from the sequence of extenders E in a canonical way.

◆ロ→ ◆伊→ ◆ミ→ →ミ→ ニヨー

 2990

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0) [Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Theorem (S.)

Let M be an iterable, fine-structural inner model satisfying ZFC − *Replacement. Suppose M* |=*"*U *is a countably complete ultrafilter".*

Then there is a finite fine iteration tree $\mathcal T$ *on M* = M_0 *, with last model* $R = M_n$, with iteration embedding i_0 , $\colon M \to R$, such *that:*

- \bullet $R = \text{Ult}(M, \mathcal{U}),$
- The ultrapower embedding $i_{\mathcal{U}}$ *equals* $i_{0,n}$ *.*

Question. If instead we have $M \models E$ is an extender", what can be said about how *E* relates to *M*'s extender sequence?

There are various partial results here, but no complete answer is known. **K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶** B

 $2Q$

L [and Motivation](#page-2-0) $L[\mathcal{U}]$ [Larger Cardinals](#page-64-0) [Extenders](#page-64-0) [Iteration Trees](#page-79-0) [Analysis of Measures](#page-102-0)

Theorem (S.)

Let M be an iterable, fine-structural inner model satisfying ZFC − *Replacement. Suppose M* |=*"*U *is a countably complete ultrafilter".*

Then there is a finite fine iteration tree $\mathcal T$ *on M* = M_0 *, with last model* $R = M_n$, with iteration embedding i_0 , $\colon M \to R$, such *that:*

- \bullet $R = \text{Ult}(M, \mathcal{U})$,
- **•** The ultrapower embedding i_{U} equals $i_{0,n}$.

Question. If instead we have $M \models E$ is an extender", what can be said about how *E* relates to *M*'s extender sequence?

There are various partial results here, but no complete answer is known. イロト イ団ト イヨト イヨト G

 $2Q$