Marcin Sabok (IMPAN) www.math.uni.wroc.pl/~sabok

Research Statement

I am interested in descriptive set theory and definable proper forcing. One of the recent directions here is the canonization of analytic equivalence relations. Given a class of analytic equivalence relations \mathbf{E} on a Polish space X, a σ -ideal I on X and a finite set of equivalence relations F_1, \ldots, F_n on X we say that \mathbf{E} canonizes to F_1, \ldots, F_n on I-positive Borel sets, in symbols

$$\mathbf{E} \xrightarrow{}_{\mathbf{r}} F_1, \ldots, F_n$$

if for every Borel *I*-positive set $B \subseteq X$ and any equivalence relation $E \in \mathbf{E}$ there is an *I*-positive Borel set $C \subseteq B$ such that $E \upharpoonright C = F_i \upharpoonright C$ for some $i \leq n$.

If the finite set F_1, \ldots, F_n contains just two trivial equivalence relations (identity and everything), then we say about *total canonization*. For example, Silver's dichotomy gives total canonization for **E** being the class of all Borel equivalence relations and *I* the σ -ideal of countable sets. For other σ -ideals, e.g. connected to a probability measure or topological dimension, the canonization will also be true although may require new techniques. For some other σ -ideals, e.g. the smooth ideal, canonization may take more complicated form, including more than just the two trivial equivalence relations, or restricting the class of equivalence relations to those below $E_{K_{\sigma}}$ or classifiable by countable structures.

This theory is the subject of my forthcoming book with Vladimir Kanovei and Jindra Zapletal [1].

References

^[1] Kanovei V., Sabok M., Zapletal J.*Canonical Ramsey Theory on Polish Spaces*, Cambridge Tracts in Mathematica, CUP, to appear.