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Abstract

Using classical results of infinite-dimensional geometry, we show
that the isometry group of the Urysohn space, endowed with its
usual Polish group topology, is homeomorphic to the separable Hilbert
space l2(N).
The proof is based on a lemma about extensions of metric spaces by
finite metric spaces, which we also use to investigate (answering a
question of I. Goldbring) the relationship, when A, B are finite sub-
sets of the Urysohn space, between the group of isometries fixing A

pointwise, the group of isometries fixing B pointwise, and the group
of isometries fixing A ∩ B pointwise.

1 Introduction.

The Urysohn space U
1 was first built by P.S Urysohn more than eighty years

ago, see [4]. It seems to have been considered as little more than a curiosity
for a long time, but in the past few decades interest in this space and its
isometry group has steadily grown. This is in part thanks to the result,
due to V.V. Uspenkij ([6]), that the isometry group of U is a universal
Polish group; it is also the consequence of an improved understanding of
the dynamics and Ramsey-type properties of various “infinite-dimensional”
structures and their groups of automorphisms, as well as the realization that
these structures offer interesting problems and perspectives. At any rate,
now the topology of the Urysohn space is completely understood, while its

1For precise definitions of the objects discussed in this Introduction, see Section 2

below.
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geometry and the properties of its isometry group are the subject of ongoing
active research, as witnessed by the volume [5].

Uspenskij’s result was made possible by Katětov’s construction of the
Urysohn space, which was based on what we call in this paper Katětov maps;
these maps provide a good tool to understand one-point metric extensions
of a metric space X. It is more difficult to manipulate extensions of X by
bigger sets; we begin by proving a lemma that shows that one can essentially
manipulate metric extensions of a metric spaceX by sets isometric to a given
finite metric space F in much the same way that one manipulates one-point
extensions of X.

This lemma provides a useful tool for back-and forth constructions where
many conditions have to be satisfied all at once; we first use it to prove that
any element of the natural basis for the topology of Iso(U) is homotopically
trivial. This in turn implies that Iso(U) is an ANR, which yields the main
result of the paper.

Theorem. The isometry group Iso(U) is homeomorphic to the Hilbert space
ℓ2(N)

In the last section of the paper, we study stabilizers of finite sets and
prove a theorem that illustrates the homogeneity properties of U. This result
answers a question that was asked to me by I. Goldbring.
Below we make the convention that for A ⊆ Iso(U), the notation 〈A〉 stands
for the closed subgroup generated by A, while if A ⊆ U, Iso(U|A) denotes
the set of isometries fixing A pointwise.

Theorem. Let A,B ⊆ U be finite sets. Then

Iso(U|A ∩B) = 〈Iso(U|A), Iso(U|B)〉

For information about Polish spaces and groups, we refer to [2] and its
bibliography; the volume [5] is an excellent reference for information on the
Urysohn space.

2 Notations and definitions.

We recall that a Polish metric space is a separable metric space (X, d) whose
distance is complete, while a Polish group is a separable topological group
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whose topology admits a compatible complete metric.

WheneverX,Y are metric spaces, an isometry fromX to Y is a distance-
preserving map which is also onto. If f : X → Y is distance-preserving but
not onto, then we say that f is an isometric embedding of X into Y . If
(X, d) is a Polish metric space we denote by Iso(X, d) (or Iso(X) for short)
its isometry group, which we endow with the Polish group topology of point-
wise convergence.

Let (X, d) be a metric space; a map f : X → R is said to be a Katětov
map if it satisfies the following inequalities:

∀x, y ∈ X |f(x) − f(y)| ≤ d(x, y) ≤ f(x) + f(y) .

These maps identify with one-point metric extensions X ∪{z} of X, via the
correspondence z 7→ f = d(z, ·).
We denote by E(X) the set of Katětov maps on X; it can be made into a
metric space iself by setting, for all f, g ∈ E(X):

d(f, g) = sup{|f(x) − g(x)| : x ∈ X} .

The geometric interpretation of that distance is as follows: if f, g ∈ E(X),
then d(f, g) is the smallest possible distance between two points zf , zg in
a metric extension X ∪ {zf} ∪ {zg} which is such that d(zf , x) = f(x) and
d(zg, x) = g(x) for all x ∈ X.

If Y ⊂ X, then any map f ∈ E(Y ) can be extended to f̂ ∈ E(X), where

∀x ∈ X f̂(x) = inf{f(y) + d(x, y) : y ∈ Y } .

The mapping f 7→ f̂ is an isometric embedding of E(Y ) into E(X); below
we call f̂ the Katětov extension of f .
We also need the notion of support of a Katětov map f : we say that f ∈
E(X) is supported by S ⊂ X if one has

∀x ∈ X f(x) = inf{f(s) + d(x, s) : s ∈ S} .

We recall that the Urysohn space U is characterized up to isometry,
among all Polish metric spaces, by the following property:

∀A finite ⊂ U ∀f ∈ E(A) ∃z ∈ U ∀a ∈ Ad(z, a) = f(a) .

Equivalently, U is the only Polish metric space which is :
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• universal, i.e any Polish metric space isometrically embeds into U.

• ultrahomogeneous, i.e any isometry between finite subsets of U extends
to an isometry of the whole space.

Below, we will make use of the well-known fact, due to Huhunaišvili ([3])
that U is compactly injective, which means that given any two metric com-
pacta K ⊂ L, every isometric embedding ϕ : K → U extends to an isometric
embedding ϕ̃ : L→ U. This implies that an isometry between two compact
subsets of U extends to an isometry of the whole space.

Finally, let us make a convention: whenever we manipulate enumerated
finite metric spaces, we say that {a1, . . . , bn} and {b1, . . . , bn} are isometric
as enumerated finite metric spaces if the map ai 7→ bi is an isometry. If it is
clear from the context we will forget to mention the enumeration and just
say that {a1, . . . , an} and {b1, . . . , bn} are isometric.

3 A lemma about metric spaces.

As explained in the introduction, the following lemma will be crucial to our
constructions. Its aim is to extend the definition of the space E(X) to the
case where one considers extensions of X by a given finite metric space;
of course the construction yields E(X) as a result if one considers metric
extensions of X by a singleton.

Lemma 3.1. Let X be a metric space, and {a1, . . . , an} be an enumerated
finite metric space. Then there exists a metric space Y ⊃ X and subsets
Y1, . . . , Yn ⊂ Y such that Y = ∪Yi, X = Yi ∩ Yj for all i 6= j and

(a) For each abstract metric extension X ∪ {a′1, . . . , a
′

n} of X by an enu-
merated set isometric to {a1, . . . , an}, there exist yi ∈ Yi such that
X ∪ {y1, . . . , yn} identifies with X ∪ {a′1, . . . , a

′

n} in the natural way.

(b) ∀i ∀y, y′ ∈ Yi d(y, y
′) = sup{|d(y, x) − d(y′, x)| : x ∈ X} .

One may think of this lemma as a generalization of Katětov’s definition
of the space E(X): E(X) is the space of extensions of X by one point, the
space Y above may be thought of as the set of extensions of X by finite sets
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isometric to some given finite set. The tricky part is to define a suitable
distance, since one must take in consideration n-tuples and not points.

Proof of Lemma 3.1.

First, pick n disjoint copies of E(X), form their union, and then identify
points of X in different copies; this way, one obtains an abstract set Y = ∪Yi

such that each Yi is naturally identified with E(X), and the intersection of
any two distinct Yi’s is X.
If f ∈ E(X), we let f i denote the corresponding element of Yi; we now
define a weight function ω, by applying the following rules:

• For all i, ω(f i, gi) = d(f, g);

• For all i 6= j, and all f i ∈ Yi \ X, gj ∈ Yj \ X, if setting d(f i, gj) =
d(ai, aj) is compatible with the triangle inequality for the natural par-
tial distance on X ∪ {f i, gj}, then ω(f i, gj) = d(ai, aj);

• Otherwise, ω(f i, gj) is undefined.

To simplify the explanations below, we borrow notation from graph theory
and say that a finite sequence γ = (y0, . . . , yn) is a path joining y0 and yn if
ω(yi, yi+1) is defined for all i ≤ n − 1. We also say that y0, . . . , yn are the
vertices of γ, and define the weight l(γ) of γ by setting

l(γ) =
n−1∑

i=0

ω(yi, yi+1) .

We now let d denote the pseudometric associated to this weight function;
in other words,

d(y, y′) = inf{l(γ) : γ is a path joining y and y′} .

Notice that any two points are joined by a path, so d(y, y′) is finite for all
(y, y′) ∈ Y 2; furthermore it is clear that d is a distance on Y .

Claim. If γ is a path joining x and y and such that ω(x, y) is defined, then
l(γ) ≥ ω(x, y); in particular d agrees with ω whenever it’s defined.
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Proof of the Claim.

Consider first a path γ with three vertices (x, z, y) of elements of Y such
that x ∈ X; let us see why ω(x, z) + ω(z, y) ≥ ω(x, y). This is clear if all
three points are in X, if z ∈ Y \X and y ∈ X, and if z ∈ X and y ∈ Y \X.
It is also obvious when y, z both belong to the same Yi \ X. So, we may
assume that z = f i ∈ Yi \X, and y = gj ∈ Yj \X, with i 6= j.
By hypothesis, ω(f i, gj) is well-defined, which implies that f(x)+d(ai, aj) ≥
g(x) and this is what we needed.
Therefore, if x, x′ ∈ X, the inf in the definition of d is attained on a path with
only two vertices, so that d(x, x′) = d(x, x′). Actually, we have proved more
than that, since we do not need both endpoints of the path to belong to X
in order to obtain a path with less vertices. We thus see that d(x, f i) = f(x)
for all x ∈ X and all f i ∈ Yi.
Now we consider a general path γ = (y0, . . . , yn) such that ω(y0, yn) is
defined. If y0, yn belong to the same Yi then, by definition of the distance
on E(X), ω(y0, yn) is the smallest possible distance d(z0, zn) in a two-point
metric extension X ∪ {z0} ∪ {zn} where d(z0, x) = d(y0, x) and d(zn, x) =
d(yn, x) for all x ∈ X. Since d is such a distance, we must have ω(y0, yn) ≤
d(y0, yn) ≤ l(γ).
We finally consider the case where y0 = f i ∈ Yi, , yn = gj ∈ Yj, i 6= j.
If γ goes through some x ∈ X, then the reasoning used above shows that
(y0, x, yn) has to be a path of smaller weight than l(γ); the fact that ω(y0, yn)
is defined ensures that

ω(y0, x) + ω(x, yn) ≥ d(ai, aj) = ω(y0, yn) .

If γ does not go through X, then one can first use the preceding case to see
that one may assume consecutive vertices of γ never belong to the same Yi.
Then the triangle inequality in {a1, . . . , an} ensures that l(γ) is again more
than d(ai, aj) = ω(y0, yn). �claim

Note that this claim implies that (Y, d) satisfies condition (b) of the
lemma above. Next, we need to see that we indeed embedded in Y all
extensions of X by an enumerated set isometric to {a1, . . . , an}; for that, it
is enough to notice that our construction ensures the following:

∀i 6= j ∀f i ∈ Yi ∀g
j ∈ Yj (ω(f i, gj) = d(ai, aj)) ⇔ (d(f i, gj) = d(ai, aj))

We already know that this is true if f i or gj ∈ X, so we assume that both
elements do not belong to X. Then, the implication from right to left is a
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direct consequence of the definition of ω and the fact that d is a distance.
The implication from left to right is an obvious consequence of the fact that
d extends ω.
We have finally done enough to prove (a): if X ∪ {a′1, . . . , a

′

n} is an ex-
tension of X by an enumerated set isometric to {a1, . . . , an}, then each a′i
uniquely defines yi ∈ Yi such that d(yi, x) = d(a′i, x) for all i, and one has
ω(yi, yj) = d(ai, aj) for all (i, j). Therefore, {y1, . . . , yn} is the desired subset
of Y .
This concludes the proof of lemma 3.1. �3.1

4 Topology of Iso(U).

We prove here that Iso(U) is homeomorphic to the separable Hilbert space;
I am grateful to Vladimir Uspenskij for his help and advice on how to prove
this result.
It should be pointed out here that Uspenskij showed that U itself is also
homeomorphic to ℓ2(N), see [7]. Since Iso(U) is a Polish group, showing that
it is an absolute retract (AR in short) is enough to prove that it is homeo-
morphic to ℓ2(N); this is a consequence of a deep result due to Toruńczyk
and Dobrowolski ([1]).
And to prove that Iso(U) is AR, it is enough to show that its topology has
a basis that is stable under finite intersections, contains Iso(U), and is such
that for any V in that basis all the homotopy groups Πn(V ) are trivial. The
reader is invited to consult [8] for proofs and explanations of these facts
from infinite-dimensional topology; the results we use here are exposed in
chapter 5 of that book.

In our study of the topology of Iso(U), we’ll combine Lemma 3.1 with
an easy technical lemma, which we state below; if Y is a metric space we
let K(Y ) denote the set of compact subsets of Y , endowed with the Vietoris
topology.

Lemma 4.1. Let Y be a metric space, X be a topological space and x 7→ Kx

be a continuous map from X to K(Y ), x 7→ ϕ(x) a continuous map from
X to Y and x 7→ ψx a continuous map from X to E(Y ) such that ψx is
supported by Kx.
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Then there exists a continuous map x 7→ τx from X to E(Y ) such that
τx(y) = ψx(y) for all x ∈ X and y ∈ Kx, and

τx(ϕ(x)) = inf{f(x) : f ∈ E(Y ) and f(y) = ψx(y) for all y ∈ Kx} .

The statement above is somewhat technical, but the idea is simple: given
a continuous assignment of partial metric conditions on Y , and a continuous
assignment of points ϕ(x) in Y , one can build a continuous assignment of
metric conditions on Y which extends the partial conditions and also takes
a minimal value on ϕ(x).

Proof of lemma 4.1. Define for all x ∈ X the map τx by setting succes-
sively:

1. τx(y) = ψx(y) for all y ∈ Kx;

2. τx(ϕ(x)) = sup{|d(ϕ(x), y) − ψx(y)| : y ∈ Kx}.

This defines a map τx which belongs to E(Kx ∪ {ϕ(x)}); letting again τx
denote its Katětov extension to Y , the proof is finished. �4.1

Now we are ready to state the main technical result of this section.

Proposition 4.2. Let V be a basic open set for the topology of Iso(U), and
K ⊆ L be two compact spaces. Let also ϕ0 be some element of V , and
Φ0, Φ1 : L → V be two continuous maps such that Φj(k) = ϕ0 for j = 0, 1
and all k ∈ K.
Then there exists a continuous path Φ: L × [0, 1] → V between Φ0 and Φ1,
such that Φ(k, t) = ϕ0 for all k ∈ K and all t ∈ [0, 1].

By "basic open set for the topology of Iso(U)", we mean some element
of the natural basis for the product topology.
In particular, all the homotopy groups of V are trivial: taking K = ∅ and
L = {0} proves that V is path-connected, and letting K be a singleton and
L = S

n shows that Πn(V ) is trivial for all n.
As we explained above, this implies that Iso(U) is AR, hence Proposition
4.2 is enough to prove that Iso(U) is homeomorphic to the Hilbert space.

Notation. If F,X are metric spaces then we denote by Emb(F,X) the set
of isometric embeddings of F into X (we don’t endow it with a topology).
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Let us now explain the construction in detail; we begin by explaining
how to prove proposition 4.2 in the case when V = Iso(U).

Proof of Proposition 4.2 in the case V = Iso(U).
In this case, we may assume that ϕ0 = id, and that Φ0(l) = id for all l ∈ L.
We use the back-and-forth method; to apply it we pick a countable dense
subset {xn : n ∈ N} of U.
We build an increasing sequence of compact sets Fn ⊂ U, and maps (l, t) 7→
Φn

l,t from L× [0, 1] to Emb(Fn,U), with the following properties:

1. Φn+1
l,t extends Φn

l,t for all n and all (l, t) ∈ L× [0, 1];

2. Φn
l,0(x) = x and Φn

l,1(x) = Φ1(l)(x) for all x ∈ Fn and all l ∈ L;

3. Φn
k,t(x) = x for all k ∈ K and all x ∈ Fn;

4. ∀x ∈ Fn (l, t) 7→ Φn
l,t(x) is continuous;

5. ∀n xn ∈ F2n;

6. ∀n ∀l, t xn ∈ Φ2n+1
l,t (F2n+1).

If one lets F = ∪Fi, then at the end of this construction we get isometric
maps Φl,t : F → U, with the property that (l, t) 7→ Φl,t(x) is continuous for
all x; these maps extend to isometries Φl,t : U → U with the same property
(the construction ensures that they are surjective, and continuity is easy to
check). Since we have by construction that Φl,0 = Φ0(l) and Φl,1 = Φ1(l) for
all l ∈ L, and Φk,t = ϕ0 for all k ∈ K, setting Φ(l, t) = Φl,t defines a map
with the desired properties.

We now explain how to carry out the construction above; for this, we need
to be able to do two different things:
- (forth) If F is a compact set obtained at a previous step of the construc-
tion, (l, t) 7→ Φl,t(x) is a continuous map for all x and satisfying all the
conditions above, and z is some point not in F , then one has to be able to
extend the maps Φl,t to F ∪ {z} in such a way that they still satisfy all the
conditions.
- (back) If F , (l, t) 7→ Φl,t are as above, and z ∈ U, then one must find some
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compact set F ′ ⊃ F , and a suitable extension of the maps Φl,t to F ′, in such
a way that z ∈ Φl,t(F

′) for all l, t.
To do this, we first notice that it is easy to find continuously points zl,t

such that it would be compatible to set F ′ = F ∪ {zl,t}, and Φl,t(zl,t) = z;
explicitly, the points must satisfy d(zl,t, y) = d(z,Φl,t(y)) for all l, t. Then,
we have to do a more complicated version of the forth step, extending Φl,t

to each zl,t while preserving continuity. So it should be enough to detail the
back step.

Back step.

Let F ⊂ U be compact, z ∈ U and (l, t) 7→ Φl,t be maps satisfying the
conditions for the back step.
We begin by picking a continuous map (l, t) 7→ zl,t such that

∀y ∈ F d(zl,t, y) = d(z,Φl,t(y)) .

This is possible because of the compact injectivity of U.
Then we fix a countable dense set {(ln, tn)} in L× [0, 1] and extend induc-
tively the maps Φl,t to F ∪ {zln,tn}n∈N in such a way that

• Φln,tn(zln,tn) = z for all n;

• (l, t) 7→ Φl,t(zln,tn) is continuous for all n;,

• all the boundary conditions are respected.

Then each Φl,t extends to F ∪ {zl,t : (l, t) ∈ L× [0, 1]}, and it defines a map
(l, t) 7→ Φl,t with all the desired properties.
We now explain how to carry out this inductive extension; pick n ∈ N and
assume that we have defined Φl,t(zl0,t0), . . . ,Φl,t(zln−1tn−1

) in such a way that,
for all i ≤ n− 1 and all l, t one has

d(Φl,t(zli,ti), z) = d(zli,ti , zl,t) .

Define now
M = F ∪ {zl0,t0 , . . . , zln−1,tn−1

}, and

Yl,t = {z} ∪ {Φl,t(m) : m ∈M}, Y =
⋃

(l,t)∈L×[0,1]

Yl,t .

Let ψl,t denote the Katětov map on Y with support in Yl,t and values defined
by:
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• ψl,t(z) = d(zln,tn , zl,t);

• ψl,t(Φl,t(m)) = d(zln,tn ,m) for all m ∈M .

Apply now lemma 4.1 to ψ with the functions

• (l, t) 7→ ϕ1(l, t) = zln,tn ;

• (l, t) 7→ ϕ2(l, t) = z;

• (l, t) 7→ ϕ3(l, t) = Φl,1(zln,tn).

This yields three continuous maps τ1, τ2, τ3 with values in E(Y ) such that
d(τi(l, t), z) = d(zln,tn , zl,t), d(τi(l, t),Φl,t(m)) = d(zln,tn ,m) for all m ∈ M ,
and τ1(l, 0) = zln,tn , τ2(ln, tn) = z and τ3(l, 1) = Φl,1(zln,tn).
We are almost done: let f, g, h : L×[0, 1] → R be three positive-valued maps
such that f + g+ h = 1, f(l, 0) = 1 = h(l, 1) for all l ∈ L, and g(ln, tn) = 1.
Then, set

zn
l,t = f(l, t)τ1(l, t) + g(l, t)τ2(l, t) + h(l, t)τ3(l, t).

Since the map (l, t) 7→ zn
l,t is continuous, and U is compactly injective, one

may assume that zn
l,t belongs to U for all (l, t). Then, setting Φl,t(zln,tn) = zn

l,t

defines a suitable extension of the maps Φl,t. �4.2(V =Iso(U))

This concludes the proof of Proposition 4.2 in the case when V = Iso(U).
The general case is now not too hard to obtain, thanks to lemma 3.1: we
will use the same back-and-forth construction as above, with a special first
step that ensures that we stay within a given basic open set V .

Proof of Proposition 4.2 in the general case.

Let V = {ϕ ∈ Iso(U) : d(ϕ(xi), yi) < εi(i = 1, . . . n)} be an element of the
natural basis for the topology of Iso(U).
Pick some ϕ0 ∈ V and continuous maps Φ0,Φ1 : L→ V such that Φi(k) = ϕ0

for all k ∈ K. This time, we let

Y = {x1, . . . , xn} ∪ {y1, . . . , yn} ∪ {ϕ0(x1), . . . , ϕ0(xn)}

Take a metric space Y ′ as in Lemma 3.1 for Y , {x1, . . . , xn}.
Then, define for all (l, t) an extension of Y by a set {zl,t, . . . , zl,t

n } isometric
to {x1, . . . , xn} by setting:
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• d(zi
l,t, z

j
l,t) = d(xi, xj),

• ∀y ∈ Y d(zi
l,t, y) = (1 − t)d(Φ0(l)(xi), y) + td(Φ1(l)(xi), y)

One can assume that each zi
l,t belongs to Y ′

i , and the condition (b) of Lemma
3.1 guarantees that the maps (l, t) 7→ zi

l,t are all continuous, so that Y ∪{zi
l,t}

is compact.
This means as usual that we may assume that zi

l,t ∈ U, and d(zi
l,t, yi) < εi

since it is a convex combination of d(Φ1(l)(xi), yi) and d(Φ0(l)(xi), yi), which
are both < εi.
We have just built continuous maps (t, l) 7→ zi

l,t ∈ U (i = 1, . . . n) such that:

• zi
l,0 = Φ0(l)(xi) and zi

l,1 = Φ1(l)(xi) for all l ∈ L;

• zi
k,t = ϕ0(xi);

• d(zi
k,t, z

j
k,t) = d(xi, xj);

• d(zi
l,t, yi) < εi for all t, l.

One may now set Φl,t(xi) = zi
l,t, and proceed with the construction as

in the case when V = U (using the back-and-forth argument that was ex-
plained above, starting with the compact set we just built); in the end, we
obtain a continuous path Φl,t with all the desired properties, the fact that
Φl,t ∈ V for all l, t being ensured by the beginning of this construction.�4.2

We have finally proved the main result of this section.

Theorem 4.3. The group Iso(U) is homeomorphic to the Hilbert space
ℓ2(N).

5 Stabilizers of finite sets.

In the section we will discuss a result about stabilizers of finite sets in the
Urysohn space; the theorem we obtain was conjectured by I. Goldbring.

If A ⊂ U is a finite set we denote by Iso(U|A) the set of isometries of
U that coincide with idU on A; if G ⊂ Iso(U) we denote by 〈G〉 the closed
subgroup generated by G.
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Definition 5.1. A metric triangle {a, b, c} is called flat if one of the triangle
inequalities for {a, b, c} is actually an equality.

Below we will use the following observation: assume X is a set, d1, . . . , dn

are distances on X and d = 1
n

∑
di. Then d is still a distance on X, and if

a triangle is not flat for some di then it is not flat for d either.

Proposition 5.2. Let A = {a1, . . . , an} and B = {b1, . . . , bn} ⊂ U be
enumerated finite isometric sets, with additionally ai = bi for all i less than
some k (possibly 0) and ai 6= bj for all i, j > k.
Let also ϕ : A→ U be a partial isometry such that ϕ(ai) = ai for all i ≤ k.
Then for any ε > 0 there exists ψ ∈ 〈Iso(U|A), Iso(U|B)〉 such that

∀i ∈ {1, . . . , n} d(ψ(ai), ϕ(ai)) ≤ ε .

Proof of Proposition 5.2.

Pick A,B, ϕ as above and let

C = ϕ(A), ci = ϕ(ai), G = 〈Iso(U|A), Iso(U|B)〉 .

Using the finite injectivity of U and the triangle inequality, we see that by
moving each ci (i > k) a little bit we can assume that ci 6∈ A ∪ B for all
i > k.
The idea of the proof is that, starting from any ψ(a1), . . . , ψ(an) with ψ ∈
〈Iso(U|A), Iso(U|B)〉 one can find some other ψ̃(a1), . . . , ψ̃(an) with ψ̃ still
in 〈Iso(U|A), Iso(U|B)〉 and ψ̃(ai) being closer to ci than ψ(ai).

To see why this is possible, one needs to perform various operations,
which are detailed in a series of lemmas. We first have to make a technical
assumption whose usefulness will be apparent only later on; on first reading
it may be a good idea to skip it and read the rest of the proof to see why it
is useful.

Lemma 5.3. Without loss of generality, one can assume that every triangle
{ap, cq, br} where q > k and max(p, r) > k is flat. Similarly, one can assume
that no triangle {bp, cq, cr} or {ap, cq, cr} with p, q > k is flat.

Proof of Lemma 5.3

Let us introduce some notation. Denote by C the collection of metric exten-
sions of A∪B by a set {x1, . . . , xn} isometric to {a1, . . . , an} and such that
xi = ai for i ≤ k.
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We may see C as an element of this collection. Now, let ∆ be one of
the triangles this lemma is concerned with (say, ∆ = {ap, cq, br}). For
d = {d1, . . . , dn} ∈ C we let ∆d denote the metric triangle obtained by re-
placing each ci in ∆ by di (so in our example ∆d = {ap, dq, br}).
For each triangle ∆, it is not too hard to see that there exists some d ∈ C
such that ∆d is not flat. So, taking the average of all these extensions, we
see that there exists an element e of C such that each ∆e is not flat.
Finally, consider for each δ > 0 the element eδ of C obtained by setting

∀z ∈ A ∪B d(eδ
i , z) = (1 − δ)d(ci, z) + δd(ei, z) .

This is an element of C such that none of the triangles we care about are
flat; also, using Lemma 3.1 and the finite injectivity of U, we see that we
can assume that this extension is realized by points δ-close to the ci’s.
In other words, by moving each ci very slightly we can assume that each
triangle we care about is not flat. Hence proving Proposition 5.2 in the case
when all these triangles are not flat is enough to prove it altogether. �5.3

We now assume that all of the triangles mentioned above are not flat.
Denote by O the closure (in U

n) of the set

{g(a1), . . . , g(an) : g ∈ G} .

We also let F (x1, . . . , xn) =
∑
d(xi, ci) for (x1, . . . , xn) ∈ O, and

R = inf{F (x1, . . . , xn) : (x1, . . . , xn) ∈ O} .

Note that O is G-invariant; what we want to prove is that R = 0. We
proceed by contradiction and assume that R > 0. Let us begin by showing
that R is actually a minimum.

Lemma 5.4. There exists (x1, . . . , xn) ∈ O such that F (x1, . . . , xn) = R.

Proof of Lemma 5.4.

Pick a sequence xi in O such that F (xi) converges to R. Note that up to
some extraction one may assume that d(xi

j, ap) and d(xi
j, cp) converge, for

all fixed p, when i goes to infinity.
Hence, using Lemma 3.1 and the finite injectivity of U, we see that there
exist sequences (yi

j) for all j ∈ {1, . . . , n} such that
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• d(yi
j, ap) = d(xi

j, ap) and d(yi
j, cp) = d(xi

j, cp) for all i and all j, p ∈
{1, . . . , n},

• d(yi
j, y

i
p) = d(xi

p, x
i
p) (= d(aj, ap))

• Each sequence (yi
j) converges to some xj.

Now note that the conditions above mean in particular that for all i one
can map xi to yi by an isometry fixing A, hence each yi belongs to O.
Since O is closed we obtain that (x1, . . . , xn) ∈ O, and then it is clear that
F (x1, . . . , xn) = R. �5.4

Now fix x ∈ O such that F (x) = R.

Lemma 5.5. Assume that there exists some i0 such that

∀j ∈ {1, . . . , n} |d(ci0 , bj) − d(xi0 , bj)| < d(ci0 , xi0)

Then we reach a contradiction (and so it must be that R = 0).

Proof of Lemma 5.5.

We know that if {z1, . . . , zn} is an abstract extension of B by a set isometric
to {x1, . . . , xn} and such that d(zi, bj) = d(xi, bj) for all i, j, then this ex-
tension is realized in U by points z1, . . . , zn satisfying additionally (thanks
to lemma 3.1)

∀i d(zi, ci) = sup{|d(ci, bj) − d(xi, bj)| : j = 1, . . . , n} .

Such z1, . . . , zn are equal to g(x1), . . . , g(xn) for some g in Iso(U|B), which
shows that (z1, . . . , zn) ∈ O.
We have by construction d(zi, ci) ≤ d(xi, ci) for all i and the only way that
d(zi0 , ci0) is not strictly less than d(xi0 , ci0) is that there exists j such that
|d(ci0 , bj) − d(xi0 , bj)| = d(ci0 , xi0). This is ruled out by the hypothesis of
the lemma, and so F (z1, . . . , zn) < F (x1, . . . , xn), which is also impossible.
So our assumption that R > 0 must be wrong. �5.5

We would have finished the proof if not for the possible existence of those
pesky flat triangles, which we now must remove. That is the purpose of the
following lemma.

Lemma 5.6. There exists y1, . . . , yn ∈ O such that F (y1, . . . , yn) = R and
for some i0 one has |d(ci0 , bj) − d(yi0 , bj)| < d(ci0 , yi0) for all j.
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Proof of Lemma 5.6. Pick (x1, . . . , xn) ∈ O such that F (x1, . . . , xn) = R
and fix i0 > k such that xi0 6= ci0 (if there is no such i0 then R = 0, which
is impossible by assumption).
Fix also j0 such that |d(ci0 , bj0) − d(xi0 , bj0)| = d(ci0 , xi0).

Claim. There exist z1, . . . , zn ∈ U such that

(1) d(zi, zj) = d(ai, aj) for any i, j;

(2) d(zi, aj) = d(xi, aj) for all i and j;

(3) d(zi, ci) = d(xi, ci);

(4) |d(ci0 , bj0) − d(zi0 , bj0)| < d(ci0 , zi0).

This claim is the heart of the lemma; indeed, it provides an abstract
extension that removes one of the offending flat triangles, and then one just
has to use a convex combination of all these extensions to obtain an abstract
extension of A∪B ∪C by elements y1, . . . , yn which satisfies conditions (1)
through (3) above, and is such that no triangle {yi0 , ci0 , bj} is flat.
Using the finite injectivity of U, one can assume that y1, . . . , yn are in U,
and then they must be in O since there is an isometry fixing A and map-
ping {x1, . . . , xn} to {y1, . . . , yn} because of condition (2). Then condition
(3) ensures that F (x1 . . . , xn) = F (y1, . . . , yn), which was the last point to
check.

Proof of the claim.

Assume first that d(ci0 , bj0) − d(xi0 , bj0) = d(ci0 , xi0).
Then we want to define an abstract extension of A∪B∪C by a set isometric
to {a1, . . . , an} by setting

• d(zi0 , bj0) = d(xi0 , bj0) + δ

• d(zi0 , x) = d(xi0 , x) if x 6= bj0 .

In other words, we want to increase the distance to bj0 while keeping all
others constant; if this is not possible even for very small δ > 0, then it
must happen that for some x ∈ A ∪B ∪ C \ {bj0} one has

d(xi0 , x) + d(x, bj0) = d(xi0 , bj0) .
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From this we get, using the triangle inequality (a picture is useful here!)

d(ci0 , xi0) + d(xi0 , x) + d(x, bj0) = d(ci0 , bj0)

This implies in turn that

d(ci0 , xi0) + d(xi0 , x) = d(ci0 , x)(1)

d(ci0 , x) + d(x, bj0) = d(ci0 , bj0)(2)

If x does not belong to A∩B, or if j0 ≥ k+ 1, then (2) is prohibited by
Lemma 5.3.
So it must be that x belongs to A∩B and j0 ≤ k. But then one must have
d(ci0 , x) = d(xi0 , x), and from (1) we then get ci0 = xi0 . This contradicts
our choice of i0.

The case when d(xi0 , ci0) + d(ci0 , bj0) = d(xi0 , bj0) is similar, except this
time one wants to decrease the distance to bj0 while keeping all others con-
stant. If it’s not possible then the same line of reasoning as above leads to
the desired contradiction. �5.6

This concludes the proof of Proposition 5.2. �5.2

Theorem 5.7. Let A,B ⊆ U be finite sets. Then

Iso(U|A ∩B) = 〈Iso(U|A), Iso(U|B)〉

Proof of Theorem 5.7.

Let A,B ⊆ U be finite and ϕ ∈ Iso(U|A∩B). Let V be a basic neighborhood
of ϕ, which we can assume without loss of generality to be of the form

V = {ψ ∈ Iso(U) : d(ψ(xi), ϕ(xi)) < ε}

with ε > 0, A ⊆ {x1, . . . , xn} = X0.

Claim. Without loss of generality, one can assume that A ∩B = X0 ∩B.

Proof. We have to consider the case when some points of X0 belong to
B \A; so we are concerned with points in (X0 \A)∩B. Set ε′ = ε/3. Since
(X0 \A)∩B is finite, there exists for any xj ∈ (X0 \A)∩B a point x′j which
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does not belong to B and is such that d(xj, x
′

j) < ε′. Replace each xj by x′j,
and denote by X ′

0 the set thus obtained. It still contains A; furthermore,
the open set

V ′ = {ψ ∈ Iso(U) : ∀x ∈ X ′

0 d(ψ(x), ϕ(x)) < ε′}

is contained in V . So, replacing V by V ′ and X0 by X ′

0 we are now in the
situation described by the claim. �claim

Using an amalgamation over A ∩ B, one can increase X0 to some finite
set X and B to some finite set X̃ isometric to X (by an isometry fixing
A ∩B) such that additionally X ∩ X̃ = A ∩B.
Then we can find some isometry ψ with d(ψ(xi), ϕ(xi)) < ε/2 for all i,
ψ(y) = y for all y ∈ X ∩ X̃, and ψ(X \ X̃) ∩ X̃ = ∅.
Applying Proposition 5.2 to X, X̃, ψ we get an isometry

ψ̃ ∈ 〈Iso(U|X), Iso(U|X̃)〉 ⊆ 〈Iso(U|A), Iso(U|B)〉

such that d(ψ̃(xi), ψ(xi)) < ε/2, so the triangle inequality gives us that ψ̃ is
in V . This proves that 〈Iso(U|A), Iso(U|B)〉 is dense in Iso(U|A∩B), and
this concludes the proof. �5.7

When seeing the statement of theorem 5.7, it is natural to wonder
whether one really needs to consider the closure of the subgroup H gen-
erated by Iso(U|A) and Iso(U|B): it may be that one already has H =
Iso(U|A ∩ B) and no closure operation is needed. To see that it is needed
indeed, consider the case when A,B are nonempty finite subsets of U with
empty intersection. In this case Iso(U|A ∩B) = Iso(U).
For any isometry ϕ that fixes either A or B one must have, because of the
triangle inequality:

∀x ∈ U d(x, ϕ(x)) ≤ 2d(x,A ∪B) .

Now consider a product of n isometries ϕ1, . . . , ϕn belonging to Iso(U|A)∪
Iso(U|B), and observe that

∀x ∈ U d(ϕ1 . . . ϕn(x), x) ≤ d(ϕ2 . . . ϕn(x), x) + d(ϕ1(x), x) .

By induction, we obtain that any isometry ψ which can be written as a
product of n elements of Iso(U|A) ∪ Iso(U|B) must satisfy

∀x ∈ U d(x, ϕ(x)) ≤ 2nd(x,A ∪B) .
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The set of isometries satisfying those conditions is meager in Iso(U), and
since this is true for all n, H itself is meager in Iso(U).

We conclude this section, and this article, by pointing out that the ideas
presented here may be used to prove that Theorem 5.7 is still true when one
replaces U by the Urysohn space of diameter 1 (which is the unique, up to
isometry, Polish metric space of diameter 1 which is both ultrahomogeneous
and universal for separable metric spaces of diameter 1). Note also that it
seems reasonable to expect that the same theorem holds with A,B compact
instead of finite, but I did not try to check the details.
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