
Université Claude Bernard - Lyon 1 Semestre de printemps 2024-2025
Master mathématiques et applications Analyse Fonctionnelle 2

Contrôle partiel du 10 mars 2025: éléments de correction

Dans ce sujet on ne considère que des R-espaces vectoriels.

Exercice 1. Soit X un espace de Banach, et B une partie de X convexe, fermée, symétrique, qui
contient 0 et telle que pour tout x ∈ X il existe λ ∈ R+ tel que x ∈ λB.

1. Soit λ, µ ∈ R+ tels que λ ≤ µ. Montrer que λB ⊆ µB.
Soit x ∈ λB ; soit b ∈ B tel que x = λb. Comme λ ≤ µ on peut écrire λ = tµ avec t ∈ [0, 1]. On a
alors

x = tµb = µ(tb + (1 − t)0)

Comme B est convexe et contient 0 et b, on vient d’écrire x = µb′ avec b′ = tb ∈ B. Ceci prouve
que x ∈ µB et établit donc l’inclusion λB ⊆ µB.

2. Montrer que 0 appartient à l’intérieur de B.
En appliquant l’hypothèse, on obtient X =

⋃
λ∈R+

λB. À l’aide du résultat de la question précédente,

on en déduit que X =
⋃

n∈N∗
nB. Puisque chaque nB est fermé, et X est un espace de Banach, le

théorème de Baire nous assure qu’il existe n ∈ N∗ tel que nB est d’intérieur non vide. Donc B est
également d’intérieur non vide.
Soit x ∈ B et r > 0 tels que B(x, r) ⊆ B. Pour tout y ∈ X tel que ∥y∥ < r on a

y = (x + y) + (y − x)
2 ∈ B

En effet, ∥x + y − x∥ = ∥y∥ < r donc x + y ∈ B ; de même x − y ∈ B donc y − x ∈ B puisque
B est symétrique. Donc y appartient à B puisque c’est le milieu de deux éléments de B et B est
convexe. On vient de prouver que B(0, r) ⊆ B, ce qui conclut.

Exercice 2. Soit X un espace de Banach et Y un sous-espace vectoriel fermé de X. Soit x ∈ X \ Y .
Montrer qu’il existe f ∈ X∗ avec les propriétés suivantes :

• f(y) = 0 pour tout y ∈ Y .
• f(x) = 1.

• ∥f∥ = 1
d(x, Y ) .

Puisque x ̸∈ Y , on peut définir une application linéaire f : Y ⊕ Rx → R en posant f(y) = 0 pour tout
y ∈ Y et f(x) = 1. Pour montrer que f est continue et calculer sa norme on écrit

sup
{ |f(y + λx)|

∥y + λx∥
: y ∈ Y , λ ∈ R, y + λx ̸= 0

}
= sup

{ |λ|
∥y + λx∥

: y ∈ Y , λ ∈ R∗
}

= sup
{

1
∥ 1

λy + x∥
: y ∈ Y , λ ∈ R∗

}

= sup
{ 1

∥y′ + x∥
: y′ ∈ Y

}
= 1

inf{∥y + x∥ : y ∈ Y }

= 1
d(x, Y )



À partir de la deuxième équation ci-dessus on n’a considéré que λ ̸= 0, parce que pour λ = 0 et y ∈ Y
on a f(y + λx) = 0 (et on ne divise pas par 0 parce que λx ̸∈ Y dès que λ ̸= 0).
On vient de montrer que f est continue, et que ∥f∥ = 1

d(x, Y ) ; pour conclure, il ne nous reste qu’à

appliquer le théorème de Hahn–Banach pour obtenir une application f ∈ X∗ satisfaisant les conditions
de l’énoncé.

Exercice 3. Soit X, Y deux espaces de Banach.
1. Soit T : X → Y une application linéaire. Montrer que T est continue si, et seulement si, φ ◦ T est

continue pour tout φ ∈ Y ∗.
Comme suggéré par l’énoncé, on va appliquer le théorème du graphe fermé, ce qui est licite
puisque que X et Y sont des espaces de Banach. Considérons donc une suite (xn)n∈N telle que
(xn)n converge vers x ∈ X et (T (xn))n converge vers y ∈ Y .
Pour tout φ ∈ Y ∗ on a que (φ(T (xn)))n converge vers φ(y) ; puisque φ ◦ T est continue et (xn)n

converge vers x, on conclut que φ(y) = φ ◦ T (x) = φ(T (x)).
On sait donc que φ(y) = φ(T (x)) pour tout φ ∈ Y ∗ ; d’après un corollaire du théorème de Hahn–
Banach vu en cours (ou en appliquant le résultat de l’exercice précédent !), cela n’est possible que
si y = T (x). Toutes les hypothèses du théorème du graphe fermé sont donc satisfaites : T est
continue.

2. Soit F : X → Y une fonction.
(a) On suppose que F est lipschitzienne. Montrer que φ ◦ F est lipschitzienne pour tout φ ∈ Y ∗.

Soit K tel que ∥F (x) − F (x′)∥ ≤ M∥x − x′∥ pour tout x, x′ ∈ X. Pour φ ∈ Y ∗ on a

|φ ◦ F (x) − φ ◦ F (x′)| ≤ ∥φ∥∥F (x) − F (x′)∥ ≤ M∥φ∥∥x − x′∥

On vient de prouver que φ ◦ F est lipschitzienne.
(b) On souhaite établir la réciproque de l’énoncé précédent ; on suppose que φ◦F est lipschitzienne

pour tout φ ∈ Y ∗.
i. Pour x1 ̸= x2 ∈ X on considère l’application Tx1,x2 : Y ∗ → R, définie par

Tx1,x2(φ) = φ ◦ F (x1) − φ ◦ F (x2)
∥x1 − x2∥

.

Montrer que pour tout φ ∈ Y ∗ l’ensemble {Tx1,x2(φ) : x1 ̸= x2 ∈ X} est borné dans R.
Soit φ ∈ Y ∗. Puisque φ ◦ F est lipschitzienne, il existe K tel que

∀x1, x2 ∈ X |φ ◦ F (x1) − φ ◦ F (x2)| ≤ K∥x1 − x2∥ .

On en conclut que {Tx1,x2(φ) : x1 ̸= x2 ∈ X} est contenu dans [−K, K].
ii. Montrer qu’il existe une constante M telle que pour tout x1, x2 ∈ X et tout φ ∈ Y ∗ on

ait
|φ ◦ F (x1) − φ ◦ F (x2)| ≤ M∥φ∥∥x1 − x2∥.

Chaque application Tx1,x2 est une application linéaire continue de Y ∗ dans R. De plus
Y ∗ est complet, comme tout espace dual ; et on vient d’établir à la question précédente
que {Tx1,x2 : x1 ̸= x2 ∈ X} est ponctuellement borné.
On peut donc appliquer le théorème de Banach–Steinhaus pour obtenir qu’il existe M ∈
R+ tel que ∥Tx1,x2∥ ≤ M pour tout x1 ̸= x2 ∈ X, ce qui correspond à l’inégalité attendue
par l’énoncé.

iii. Conclure.
Fixons une constante M comme à la question précédente ; en utilisant le fait (conséquence
du théorème de Hahn–Banach) que, pour tout y ∈ Y , on a

∥y∥ = sup{|φ(y)| : φ ∈ BY ∗}



on obtient que
∀x1 ̸= x2 ∈ X ∥F (x1) − F (x2)∥ ≤ M∥x1 − x2∥

Cette inégalité est bien sûr vraie aussi quand x1 = x2, et on vient d’établir que F est
M -lipschitzienne.

Exercice 4.
1. Soit X un espace vectoriel normé, et Y un sous-espace vectoriel fermé. On considère l’espace

quotient X/Y , c’est-à-dire l’ensemble des classes d’équivalence sur X pour la relation d’équivalence
∼ telle que x1 ∼ x2 ssi x1 − x2 ∈ Y ; on note [x] = x + Y la classe d’équivalence de x. On rappelle
que, par définition, pour tout λ ∈ R et tout x1, x2 ∈ X on a

λ[x1] + [x2] = [λx1 + x2] .

On note π : x → [x] l’application quotient, qui est linéaire.
On pose ∥∥∥∥[x]

∥∥∥∥ = inf{∥x + y∥ : y ∈ Y }

(a) Montrer que ∥ · ∥ est une norme sur X/Y , et que π est continue.
On a ∥0∥ = ∥[0]∥ = 0 puisque 0 ∈ Y . Réciproquement, si ∥[x]∥ = 0 alors il existe une suite
(yn)n∈N ∈ Y telle que ∥x + yn∥ tend vers 0 ; autrement dit (−yn)n∈N converge vers x, donc
x ∈ Y puisque −yn ∈ Y pour tout n et Y est fermé. Par conséquent si ∥[x]∥ = 0 alors x ∈ Y ,
ou encore [x] = 0. On vient d’établir la propriété de séparation.
Pour λ ∈ R∗ et A ⊆ R on a inf{|λ|a : a ∈ A} = |λ| inf A, et on en déduit (en utilisant que
λY = Y si λ ̸= 0) que ∥λ[x]∥ = |λ|∥[x]∥ pour tout λ ∈ R∗. Cette égalité est vraie aussi pour
λ = 0.
Soit x1, x2 ∈ X, et ε > 0. Par définition d’une borne inférieure, il existe y1, y2 ∈ Y tels que
∥x1 + y1∥ ≤ ∥[x1]∥ + ε et ∥x2 + y2∥ ≤ ∥[x2]∥ + ε. Il s’ensuit que

∥x1 + x2 + y1 + y2∥ ≤ ∥[x1]∥ + ∥[x2]∥ + 2ε .

Comme y1 + y2 ∈ Y , et ε > 0 est quelconque, on en conclut que ∥[x1 + x2]∥ ≤ ∥[x1]∥ + ∥[x2]∥.
On vient d’établir que ∥ · ∥ satisfait l’inégalité triangulaire.
Par définition de la norme quotient on a ∥π(x)∥ ≤ ∥x∥ pour tout x ∈ X (parce que 0 ∈ Y )
et π est linéaire par définition, donc elle est continue.

(b) On suppose que X est un espace de Banach. Soit (zn)n∈N une suite dans X/Y telle que∑
∥zn∥ converge. Montrer qu’il existe une suite (xn)n∈N dans X telle que π(xn) = zn pour

tout n ∈ N et
∑

∥xn∥ converge.
Pour tout n ∈ N il existe un ∈ X tel que zn = π(un). Par définition d’une borne inférieure,
pour tout n ∈ N on peut trouver yn ∈ Y tel que ∥un +yn∥ ≤ ∥zn∥+2−n. Posons xn = un +yn.
Alors π(xn) = π(un) = zn pour tout n ∈ N, et ∥xn∥ ≤ ∥zn∥ + 2−n donc

∑
∥xn∥ converge.

(c) Montrer que (X/Y, ∥ · ∥) est un espace de Banach.
Soit (zn)n∈N une suite d’éléments de X/Y telle que

∑
∥zn∥ converge. D’après le résultat

qu’on vient d’établir, on peut trouver (xn)n∈N telle que π(xn) = zn pour tout n et
∑

∥xn∥
soit convergente.
Comme X est complet, on sait que

∑
xn est convergente ; comme π est linéaire et continue

cela entraîne que
∑

π(xn) =
∑

zn est convergente. Cela prouve que X/Y , muni de la norme
quotient, est un espace de Banach.

2. Soit E, F deux espaces de Banach et T : E → F une application linéaire continue et surjective.
On considère l’espace quotient X = E/ ker(T ), muni de la norme quotient définie à la question
précédente. Comme précédemment on note [e] = e + ker(T ) la classe d’équivalence de e ∈ E, et
π(e) = [e].



(a) Montrer qu’il existe une unique application linéaire continue T̃ : X → F telle que

∀e ∈ E T̃ (π(e)) = T (e) .

Par définition, π(e1) = π(e2) si, et seulement si, e1 − e2 ∈ ker(T ), autrement dit si, et
seulement si, T (e1) = T (e2). On peut donc bien poser T̃ (π(e)) = T (e) pour tout e ∈ E ; reste
à montrer que T̃ est linéaire et continue.
À nouveau, la linéarité est claire : soit x1, x2 ∈ X et λ ∈ R. Alors il existe e1, e2 ∈ E tel que
x1 = π(e1), x2 = π(e2) donc λx1 + x2 = π(λe1 + e2) et

T̃ (λx1 + x2) = T (λe1 + e2) = λT (e1) + T (e2) = λT̃ (x1) + T̃ (x2) .

Pour vérifier la continuité de T̃ , notons que ∥T (e)∥ ≤ ∥T∥∥e∥ pour tout e ∈ E ; par conséquent
∥T̃ (x)∥ ≤ ∥T∥∥e∥ pour tout e tel que π(e) = x. Puisque ∥x∥ = inf{∥e∥ : π(e) = x} on obtient
∥T̃ (x)∥ ≤ ∥T∥∥x∥. Comme T̃ est linéaire, cela établit sa linéarité.

(b) Montrer que T̃ est bijective et que son inverse est continu.
Soit f ∈ F . Puisque T est surjective, il existe e ∈ E tel que T (e) = f , donc T̃ (π(e)) = f .
Ceci prouve que T̃ est surjective.
Soit x ∈ ker(T̃ ) ; soit e tel que π(e) = x. Alors T̃ (x) = 0 = T (e) donc e ∈ ker(T ), d’où
x = π(e) = 0. Donc T̃ est injective.
Finalement, T̃ est une bijection linéaire continue de X sur F ; comme X et F sont tous les
deux des espaces de Banach, on peut appliquer le théorème d’isomorphisme de Banach pour
conclure que l’inverse de T̃ est continu.


