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Controle partiel du 10 mars 2025: éléments de correction

Dans ce sujet on ne considére que des R-espaces vectoriels.

Exercice 1. Soit X un espace de Banach, et B une partie de X conveze, fermée, symétrique, qui
contient 0 et telle que pour tout x € X il existe A € Ry tel que x € AB.

1. Soit A\, € Ry tels que A < . Montrer que AB C uB.
Soit z € AB; soit b € B tel que x = A\b. Comme A < p on peut écrire A = tu avec ¢t € [0,1]. On a

alors
x = tub = p(tb+ (1 —t)0)

Comme B est convexe et contient 0 et b, on vient d’écrire x = ub’ avec b’ = tb € B. Ceci prouve
que x € puB et établit donc 'inclusion AB C uB.

2. Montrer que 0 appartient a lintérieur de B.
En appliquant I’hypothese, on obtient X = U AB. A laide du résultat de la question précédente,
AeR

on en déduit que X = U nB. Puisque chaque nB est fermé, et X est un espace de Banach, le

neN*
théoréme de Baire nous assure qu’il existe n € N* tel que nB est d’intérieur non vide. Donc B est

également d’intérieur non vide.
Soit € B et r > 0 tels que B(x,r) C B. Pour tout y € X tel que |ly|]| <r on a
(z+y) +y—=)

= B
Yy 5 €

En effet, ||z +y — z|| = ||y|| < r donc z +y € B; de méme = —y € B donc y — z € B puisque
B est symétrique. Donc y appartient a B puisque c’est le milieu de deux éléments de B et B est
convexe. On vient de prouver que B(0,7) C B, ce qui conclut.

Exercice 2. Soit X un espace de Banach et Y un sous-espace vectoriel fermé de X. Soit x € X \ Y.
Montrer qu’il existe f € X* avec les propriétés suivantes :

e f(y) =0 pour tout y €Y.
o f(x)=1.

1= 75

Puisque z ¢ Y, on peut définir une application linéaire f: Y & Rz — R en posant f(y) = 0 pour tout
y €Y et f(x) = 1. Pour montrer que f est continue et calculer sa norme on écrit
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A partir de la deuxiéme équation ci-dessus on n’a considéré que A # 0, parce que pour A\=0et y € Y
on a f(y+ Ax) =0 (et on ne divise pas par 0 parce que Az € Y dés que A # 0).

On vient de montrer que f est continue, et que | f| =

————; pour conclure, il ne nous reste qu’a
d(z,Y)

appliquer le théoréme de Hahn—Banach pour obtenir une application f € X* satisfaisant les conditions

de I'énoncé.

Exercice 3. Soit X,Y deux espaces de Banach.

1. Soit T: X — Y une application linéaire. Montrer que T est continue si, et seulement si, p ol est
continue pour tout p € Y*.

Comme suggéré par 1’énoncé, on va appliquer le théoreme du graphe fermé, ce qui est licite
puisque que X et Y sont des espaces de Banach. Considérons donc une suite (x,),en telle que
(zn)n converge vers x € X et (T'(z,))n converge vers y € Y.

Pour tout ¢ € Y™ on a que (¢(T(x,)))n converge vers ¢(y); puisque ¢ o T est continue et ()
converge vers z, on conclut que p(y) = p o T'(z) = (T (x)).

On sait donc que ¢(y) = ¢(T'(z)) pour tout ¢ € Y*; d’apres un corollaire du théoréme de Hahn—
Banach vu en cours (ou en appliquant le résultat de ’exercice précédent !), cela n’est possible que
si y = T'(z). Toutes les hypothéses du théoréme du graphe fermé sont donc satisfaites : T est

continue.

2. Soit F: X =Y wune fonction.

(a) On suppose que F est lipschitzienne. Montrer que ¢ o F' est lipschitzienne pour tout p € Y*.
Soit K tel que ||F(z) — F(2')|| < M||z — 2'|| pour tout x,2" € X. Pour ¢ € Y* on a

[po F(z) — o F(z')| < |l@lllF(x) - F(z')|| < M|glll|lz — 2|

On vient de prouver que @ o F' est lipschitzienne.

(b) On souhaite établir la réciproque de l’énoncé précédent ; on suppose que poF est lipschitzienne
pour tout p € Y*.

i

ii.

iii.

Pour x1 # x2 € X on considére Uapplication Ty, »,: Y — R, définie par

gpoF(:L’l)—tpoF(Jig)
T1‘171‘2(90) = Hxl _ xQH

Montrer que pour tout ¢ € Y™ l'ensemble {1y, »,(p): 1 # x2 € X} est borné dans R.
Soit ¢ € Y. Puisque @ o F est lipschitzienne, il existe K tel que

Ve, r0 € X |poF(x1) —po F(a)| < K|z — a2 .

On en conclut que {1y, »,(p): 1 # 2 € X} est contenu dans [—K, KJ.
Montrer qu’il existe une constante M telle que pour tout x1,x9 € X et tout p € Y™ on
att

[po F(z1) — o Fxz)| < Mllg|[lz1 — 2.
Chaque application T, 4, est une application linéaire continue de Y dans R. De plus
Y™ est complet, comme tout espace dual; et on vient d’établir & la question précédente
que {7}y, 2,: 1 # 22 € X} est ponctuellement borné.
On peut donc appliquer le théoreme de Banach—Steinhaus pour obtenir qu’il existe M €
R tel que || Ty, 2, ]| < M pour tout z1 # z2 € X, ce qui correspond a 'inégalité attendue
par ’énoncé.
Conclure.
Fixons une constante M comme a la question précédente ; en utilisant le fait (conséquence
du théoréme de Hahn—-Banach) que, pour tout y € Y, on a

|yl = sup{|¢(v)|: v € By+}



on obtient que
Vr1 # x2 € X |[F(21) — F(22)|| £ M2y — 2o

Cette inégalité est bien sfir vraie aussi quand z; = x2, et on vient d’établir que F' est
M-lipschitzienne.

Exercice 4.

1. Soit X un espace vectoriel normé, et Y un sous-espace vectoriel fermé. On considére l’espace
quotient XY, c’est-a-dire ’ensemble des classes d’équivalence sur X pour la relation d’équivalence
~ telle que x1 ~ xg ssixy —x2 €Y ; on note [x] = x+Y la classe d’équivalence de x. On rappelle
que, par définition, pour tout A € R et tout x1,22 € X on a

Az1] + [z2] = [Az1 + 22] .

On note m: x — [x] Uapplication quotient, qui est linéaire.

On pose

(a)

[z]|| = nf{]lz +yl[: y € Y}

Montrer que || - || est une norme sur X/Y, et que m est continue.

On a ||0|| = ||[0]]] = 0 puisque 0 € Y. Réciproquement, si ||[z]|| = 0 alors il existe une suite
(Yn)nen €Y telle que ||z + yn|| tend vers 0; autrement dit (—yy)nen converge vers x, donc
x €Y puisque —y, € Y pour tout n et Y est fermé. Par conséquent si ||[z]|| = 0 alors z € Y,
ou encore [z] = 0. On vient d’établir la propriété de séparation.

Pour A € R* et A C R on a inf{|Ma: a € A} = |\|inf A, et on en déduit (en utilisant que
AY =Y si A #0) que || A[z]|| = |Al]][x]|| pour tout A € R*. Cette égalité est vraie aussi pour
A=0.

Soit x1,z9 € X, et € > 0. Par définition d’une borne inférieure, il existe y1,y2 € Y tels que
lz1 +y1l] < |[[z1]]] + € et [|xa + vl < ||[x2]|| + €. 1 s’ensuit que

21 + 22 + 91 + gall < [lfza]ll + [[fz2]l] + 26 .

Comme y1 +y2 € Y, et € > 0 est quelconque, on en conclut que ||[z1 + z2]|| < ||[z1]]| + [|[z2]]]-
On vient d’établir que || - || satisfait I'inégalité triangulaire.

Par définition de la norme quotient on a ||7(x)| < ||z| pour tout z € X (parce que 0 € Y)
et m est linéaire par définition, donc elle est continue.

On suppose que X est un espace de Banach. Soit (zp)nen une suite dans X/Y telle que
Z llzn|l converge. Montrer qu’il existe une suite (xy,)nen dans X telle que w(xy,) = z, pour
tout n € N et Z |xn|| converge.

Pour tout n € N il existe u,, € X tel que z, = 7(uy,). Par définition d’une borne inférieure,
pour tout n € N on peut trouver y,, € Y tel que ||un+yn| < [|2n]|+27". Posons z,, = u, +yn.
Alors 7(xy,) = m(uy) = 2y, pour tout n € N, et ||z, || < ||zn] + 27" donc Z ||y || converge.
Montrer que (X/Y,||-||) est un espace de Banach.

Soit (zn)nen une suite d’éléments de X/Y telle que Z ||zn|| converge. D’apres le résultat
qu’on vient d’établir, on peut trouver (x,)nen telle que 7(zy,) = z, pour tout n et Z e
soit convergente.

Comme X est complet, on sait que Z T, est convergente ; comme 7 est linéaire et continue

cela entraine que Z m(xy) = Z zp, est convergente. Cela prouve que X/Y, muni de la norme
quotient, est un espace de Banach.

2. Soit E,F deux espaces de Banach et T: E — F wune application linéaire continue et surjective.
On consideére l'espace quotient X = E/ker(T'), muni de la norme quotient définie d la question
précédente. Comme précédemment on note [e] = e + ker(T') la classe d’équivalence de e € E, et

m(e)

= [e].



(a)

Montrer qu’il existe une unique application linéaire continue T: X — F telle que
Vee E T(TF(€)) =T(e) .

Par définition, 7(e1) = m(ea) si, et seulement si, e; — ey € ker(T'), autrement dit si, et
seulement si, T'(e1) = T'(e2). On peut donc bien poser T(7(e)) = T'(e) pour tout e € E ; reste
a montrer que T est linéaire et continue.

A nouveau, la linéarité est claire : soit 21,22 € X et A € R. Alors il existe e;,es € E tel que

x1 =m(e1), x2 = w(ez) donc Az + x9 = w(Aey + e2) et
T()\xl =+ .TQ) = T()\el + 62) = )\T(el) + T(ez) = )\T(l‘l) + T(xg) .

Pour vérifier la continuité de 7', notons que ||T'(e)|| < ||T||||e/| pour tout e € E ; par conséquent
|T(x)|| < ||T|l|le]| pour tout e tel que m(e) = z. Puisque ||z = inf{||e||: 7(e) = =} on obtient
|T(z)|| < || T||||z||. Comme T est linéaire, cela établit sa linéarité.

Montrer que T est bijective et que son inverse est continu.

Soit f € F. Puisque T est surjective, il existe e € E tel que T(e) = f, donc T(n(e)) = f.
Ceci prouve que T est surjective.

Soit = € ker(T); soit e tel que w(e) = x. Alors T(xz) = 0 = T(e) donc e € ker(T), d’ott
x = 7(e) = 0. Donc T est injective.

Finalement, T est une bijection linéaire continue de X sur F; comme X et F sont tous les
deux des espaces de Banach, on peut appliquer le théoréme d’isomorphisme de Banach pour
conclure que l'inverse de T est continu.



