
Séminaire de Master 2ème année

Sous la direction de Thomas Blossier

Cédric Milliet — 1er décembre 2004

Extending partial isomorphisms
of finite graphs

Abstract : This paper aims at proving a theorem given in [4] by
Hrushovski concerning finite graphs, and gives a generalization (with-
out any proof) of this theorem for a finite structure in a finite relational
language. Hrushovski ’s therorem is the following : any finite graph G
embeds in a finite supergraph H so that any local isomorphism of G
extends to an automorphism of H.
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Introduction

In this paper, we call finite graph (G, R) any finite structure G with one
binary symmetric reflexive relation R (that is ∀x ∈ G xRx and ∀x, y xRy =⇒
yRx). We call vertex of such a graph any point of G, and edge, any couple
(x, y) such that xRy. Geometrically, a finite graph (G, R) is simply a finite
set of points, some of them being linked by edges (see picture 1 ). A subgraph
(F,R′) of (G, R) is any subset F of G along with the binary relation R′ induced
by R on F .
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Picture 1 — A graph (G, R) and a subgraph (F,R′) of (G, R).

We call isomorphism between two graphs (G, R) and (G′, R′) any bijection
that preserves the binary relations, that is, any bijection σ that sends an edge
on an edge along with σ−1. If (G, R) = (G′, R′), then such a σ is called an
automorphism of (G, R). A local isomorphism of (G, R) is an isomorphism
between two subgraphs of (G, R).

Let us give another example of graph :

Definition — Let X be a finite set and n a positive integer. We denote by
G(X, n) the graph the vertices of which are the n−elements subsets of X, with
the binary relation R defined by xRy if and only if x ∩ y 6= ∅.
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Picture 2 — The graphs G({1, 2, 3}, 2) and G({1, 2, 3, 4}, 2).

These graphs are quite interesting for two reasons : their vertices are kind
of symmetric as each of them has the same number of neighbours. Moreover,
they have plenty of automorphisms : any permutation α of X induces a natural
automorphism on G(X, n) that we will denote α∗.

2



1 Extending local isomorphisms to the graph

Let us consider a finite graph (G, R) and a local isomorphism σ of this
graph. It is natural to wonder whether there is a way to extend σ to an
automorphism of the whole graph G. The answer is clearly negative : just
consider the graph ({0, 1, 2}, R = (1, 2)), and the application σ that sends {2}
on {0} (see picture 3 ). As {0} is part of no edge, there is no way to define
σ({1}) so as to maintain an edge between the images of (1, 2).
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Picture 3 — The graph ({0, 1, 2}, R = (1, 2)) and a local isomorphism σ.

So, generally speaking, there is no way to extend a local isomorphism
to an automorphism of the graph. However, are there some special local
isomorphisms that could be easily extended to an automorphism? It would
be convenient for G to have a large amount of automorphisms, so as to have
better chances to extend σ.

We are now going to try to find a family F of subgraphs of G(X, n)
where any isomorphism between two elements of F could be extended to
an automorphism of G(X, n), the advantage of G(X, n) being that it has
plenty of automorphisms : namely, any permutation α of X induces a natural
automorphism α∗.

Definition — A subgraph G0 of G(X, n) is said to be poor if any couple
x 6= y in G0 has one element in common in X at most, and any x ∈ X belongs
to two different elements of G0 at most.

This definition has been built to have the following Proposition :

Proposition 1 — Any isomorphism between two poor subgraphs F1 and F2

of G(X, n) extends to an automorphism of G(X, n).

Proof — Let σ : F1 → F2 be an isomorphism between F1 and F2. We build a
permutation α of X such that α∗ extends σ. Let x ∈ X. There are three cases :

(i) Either x belongs to two elements f and f ′ in F1. Then there is nothing
but one choice for α1(x) : it has to be the unique element of σ(f) ∩ σ(f ′).

(ii) Or x belongs to just one element f in F1. Then let αf be a bijection
between those x in f and the y being just in σ(f).

(iii)Or x is in none of the elements of F1. Let α2 be a bijection between
those x and the y in none of the σ(f).

Then, the union α =
⋃

αi defines a permutation of X.
�
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2 Extending the graph to a supergraph

As we generally fail to extend a local isomorphism to an automorphism of
the graph, the next natural question is : can we extend the graph G to a larger
graph H so that each local isomorphism of G extends to an automorphism of H?

Let us have a new look at the graph ({0, 1, 2}, R = (1, 2)) of picture 3, and
the application σ : {2} 7→ {0}. There is no way to extend σ because {2} and
{0} do not have the same number of neighbours (points in relation with them).
But there is a way to solve this problem, namely by adding a fourth point {3}
to the graph so that {0}R{3} (see picture 4 ). Then σ extends in a natural way.
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Picture 4 — Extending the graph ({0, 1, 2}, R = (1, 2)).

We have just seen that a necessary condition for H is that every vertex of G
should have the same valency in H, that is, the same number of neighbours in H:

Proposition 2 — Any finite graph (G, R) is a subgraph of a graph (H,R′)
with uniform valency.

Proof — Let n be the maximum valency of G. One can suppose n odd (or
replace n by n + 1). Around each vertex g of G, let’s add as many new vertices
linked to g so that g is surrounded by n neighbours. So, in this new graph, each
vertex has valency n or 1. Let’s put these new vertices of valency 1 on a circle,
and link each of them with the (n−1)/2 previous and next
ones on the circle (on the picture, n = 5). Then each new
vertex has 1+2(n−1)/2 = n neighbours. A problem arises
when the (n− 1)/2 previous and next ones on the circle
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are not distinct. This happens when there is less than n points on the circle.
But one can always add n new vertices of valency 1 linked to another one. �

But, such a graph H with uniform valency embeds in a G(X, n), which is
quite interesting as we saw that those G(X, n) do have plenty of automorphisms.
Just take X as the set of all the edges of H and n as the valency of each
vertex of H (the application that sends a vertex x of H on the set of n edges
adjacent to x is a local isomorphism from H to G(X, n)). And the image of H
in G(X, n) is poor! Therefore :

Proposition 3 — Any graph with uniform valency n > 2 is isomorphic to a
poor subgraph of G(X, n).

Then any finite graph G embeds in a poor subgraph G0. Noting that a
subgraph of a poor graph is poor, we have answered our second question :

4



Theorem (Hrushovski) — Any finite graph G embeds in a finite supergraph
H so that any local isomorphism of G extends to an automorphism of H.

3 Example, and generalization

Let’s give a simple example of the preceding construction. Take the following
graph (G, R) : r r r r

The maximum valency of the vertices is 2, so first build a supergraph (H,R′)
of (G, R) with uniform valency 2 as shown in picture 5. (H,R′) has 5 edges so
embeds in G({1, 2, 3, 4, 5}, 2), which is the supergraph we’re looking for. In
fact, as this is a fairly simple example, the graph (H,R′) would be big enough
to extend any local isomorphisms of (G, R).
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Picture 5 — Extending (G, R) to G({1, 2, 3, 4, 5}, 2).

A graph is nothing but a structure in the language L = {R} in the theory
of a symmetric, reflexive relation. Whenever the language L should have more
than one binary relation, we would speak of multi-colored graphs.

In fact, the theorem we have just given a proof of, not only extends to
any multi-colored graph (with a finite number of colors), but also to any finite
structure with a finite relational language :

Theorem (Herwig) — LetM be a finite structure in a finite relational language
L, and σ a local isomorphism of M. Then there exists a finite superstructure
N and an automorphism f of N extending σ.
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