Mesure, Intégration, €léments d'@Analyse
Fonctionnelle

Université Claude Bernard Lyon 1
Licence de mathématiques troisiéme année

Parcours Mathématiques générales et applications

Petru Mironescu

2025-2026






Guide de lecture

A. Ce document sert de support aux cours « Mesure et intégration » et « Elé-
ments d’analyse fonctionnelle », destinés aux étudiants en troisiéme année de
la licence de mathématiques de 1'Université Claude Bernard Lyon 1, parcours
Mathématiques générales et applications. Malgré le caractére introductif de
ces cours, les outils présentés permettent de s’attaquer a de nombreux pro-
blemes concrets.

Le texte donne un apercu de la partie élémentaire de la théorie abstraite et
concrete de la mesure et de l'intégrale, avec quelques premiéres applications
aux espaces de fonctions, aux séries de Fourier et a la transformée de Fourier.
Historiquement, les objets et résultats présentés refletent les efforts des ma-
thématiciens du début du vingtieme siécle pour étendre et conceptualiser la
théorie de l'intégration « de Riemann », afin de corriger quelques-unes de ses
faiblesses et d’étendre le théoreme de Leibniz-Newton au-dela du cadre des
fonctions continues.

B. Le texte a été congu comme un compagnon des cours magistraux. Il n’a pas
été rédigé dans 'optique d'un usage en compléte autonomie. Afin de garder
une longueur raisonnable du manuscrit, certains éléments de preuve, géné-
ralement parmi les plus faciles, ont été omis. Ces omissions sont repérables
grace aux injonctions « vérifier! » ou «justifier! », auxquelles le lecteur qui
veut dépasser une utilisation superficielle du manuscrit est encouragé a obéir.

Afin d’alléger le texte, dans certaines sections nous faisons des hypotheses
qui sont implicitement supposées satisfaites dans tous les énoncés. Situation
typique : dans le chapitre 3, nous nous donnons une tribu 7 sur X, mais
dans les énoncés de ce chapitre la tribu n’y figure pas toujours. Le lecteur est
vivement encouragé a lire les hypotheéses des résultats dans cette perspective,
et si nécessaire a compléter les énoncés en rajoutant les hypotheses implicites.

C. La partie élémentaire du volet « théorique » de la théorie de la mesure repose
sur deux piliers.

1. La théorie axiomatique de la mesure : ce que veut dire mesure, comment
définir l'intégrale et quelles sont ses principales propriétés. Cette partie
inclut les grands théoremes les plus utilisés en calcul intégral (théoremes
de convergence monotone et de convergence dominée, lemme de Fatou,
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théoremes de Fubini et Tonelli), faciles & comprendre et montrer, mais dont
l"utilisation pose souvent probleme a 1’analyste débutant.

2. La construction concrete de mesures. La théorie de la mesure et de I'inté-
gration ne vaut pas grand-chose sans ses applications, qui exigent d’avoir
sous la main des mesures et des fonctions a intégrer par rapport a ces me-
sures. La difficulté principale de la théorie consiste précisément a constru-
ire de bonnes mesures et a établir leurs propriétés. La mesure la plus uti-
lisée, celle de Lebesgue dans R", n’est pas facile a construire. Elle a des
propriétés spécifiques, qui vont au-dela des propriétés générales des me-
sures, qui la rendent tres utile et qui sont de nature géométrique. Le théo-
réeme du changement de variables est une conséquence fondamentale de
ces propriétés.

D. Conformément au programme en vigueur, sont admis les résultats fondamen-
taux suivants : existence de la mesure de Lebesgue, existence de la mesure
produit et les théoremes de Fubini et Tonelli, théoreme du changement de
variables. Néanmoins, les preuves de ces résultats apparaissent dans le texte.
Les parcourir sera utile au lecteur qui veut poursuivre dans la voie de I’ana-
lyse : elles reposent sur un bon nombre de raisonnements fondamentaux et
récurrents en analyse, raisonnements qu’il convient de maftriser.

1. Il y a deux fagons classiques de construire la mesure de Lebesgue.

a) « A la main », en montrant pour commencer qu’elle est nécessairement
donnée par une formule assez explicite. La difficulté consiste alors a
montrer que cette formule définit effectivement une mesure. La mé-
thode pour y arriver, due a Lebesgue, est celle que nous suivons.

b) Obtenir son existence a travers l’existence de l'intégrale de Riemann
combinée avec le théoreme de représentation de Riesz, théoréme qui
dépasse largement le cadre d’un premier cours (voir Rudin [19, Cha-
pitre 2]) — voie plus élégante, mais difficile a comprendre en premiere
lecture.

2. La construction de la mesure produit et les théoremes de Tonelli et Fubini
sont de belles illustrations de la puissance de la construction axiomatique
de la théorie de la mesure, en particulier de 'utilisation des classes mono-
tones. Les démonstrations s’écrivent toutes seules!

3. Pour le changement de variables, la preuve présentée est naturelle, mais
quelque peu laborieuse. On peut procéder de maniére plus élégante, en
utilisant un théoreme moins élémentaire, celui de Radon-Nikodym (voir
Rudin [19, Chapitre 7]), mais cette approche convient plus en deuxiéme
lecture, lorsqu’on s’intéresse aux aspects plus avancés de la théorie de la
mesure. Il y a également une voie rapide et relativement élémentaire pour
y arriver, en passant par une réduction au cas de la dimension un (voir
Gramain [10, Section X.3]). Elle releve néanmoins trop d"une astuce pour
étre vraiment instructive et utile dans d’autres circonstances.
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E. Dans la perspective des évaluations liées a ce cours et de l'utilisation de la
théorie de la mesure dans des cours ultérieurs et « dans la vraie vie », les
objectifs minimaux sont les suivants.

1. Montrer qu'un ensemble est a. p. d.

2. Montrer qu'une fonction ou un ensemble sont mesurables.

3. Faire le lien entre intégrale habituelle (de Riemann) et intégrale de Le-
besgue.

4. Utiliser les propriétés de la mesure de Lebesgue et de la mesure de comp-
tage.

5. Utiliser correctement, notamment pour la mesure de Lebesgue, les théo-
remes fondamentaux (convergence monotone, convergence dominée, lem-
me de Fatou, intégrales a parametres, Fubini, Tonelli, changement de va-
riables). Ce sont notamment l'existence d’'une majorante intégrable et le
théoreme de Fubini qui posent le plus de problemes dans la pratique.

6. Manipuler les espaces .7 (inégalités de Holder, Minkowski et Young).

7. Manipuler les théoremes fondamentaux concernant les séries de Fourier
(Dirichlet, Fejér, Parseval) et la transformée de Fourier (formule d’inver-
sion, théoreme de Plancherel).

8. Manipuler les séries orthogonales dans un espace de Hilbert, et en particu-
lier le développement d'un vecteur dans une base hilbertienne.

Y arriver, c’est déja bien!

Dans cette optique, les notes de cours offrent les bases théoriques nécessaires
a la résolution des questions proposées en TD; la maitrise des objectifs ci-
dessus passe par la résolution des problémes. Les quelques exercices présents
dans le texte ont pour but uniquement d’illustrer les propos théoriques, voire
de déléguer au lecteur la vérification de quelques propriétés faciles.

F. La théorie de probabilités utilise de maniére intensive la théorie de la mesure
et de 'intégrale. Un trés beau premier texte sur ce sujet est Barbe et Ledoux
[3]. Plusieurs notions et résultats basiques en théorie des probabilités (mesure
image, formule de transfert, v. a. i., etc.) seront traités en TD.

G. En tant qu’étudiant, quels objectifs se donner pour ces UE? J'utiliserais une
métaphore bureautique. Pour un traitement de texte ou un tableur, il y a les
utilisateurs, les utilisateurs experts et les développeurs ou concepteurs. Les
premiers maitrisent les bases et savent éventuellement utiliser les tutoriels.
Les deuxiemes congoivent les tutoriels. Et les troisiemes développent le logi-
ciel.

Pour valider les UE, maitriser les compétences minimales énoncées en début
de chaque chapitre devrait suffire. Pour continuer en master de mathéma-
tiques, le bon objectif est de viser le niveau utilisateur expert : en plus des
compétences minimales, comprendre les énoncés, la structure des preuves les
plus courantes, savoir adapter ces preuves. Pour attendre le troisiéme niveau,
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il faudrait s’attaquer aux exercices avancés, lire les sections « pour aller plus
loin » et, pourquoi pas, lire en parallele (le début de) I'un des textes cités dans
cette introduction, ou d’autres textes plus récents et accessibles comme Taylor
[21] ou (le début de) Lieb et Loss [16].

Pour aller plus loin

H. Un théoreme d’analyse s’utilise rarement dans la forme qui apparait dans les
textes (monographies ou cours). On a souvent besoin d’une variante qui se
montre en suivant les grandes lignes de la preuve du théoreme standard. Un
exemple typique est celui de la continuité d'une intégrale par rapport aux
parametres. C’est pourquoi il est important, pour ceux qui vont continuer
a utiliser I'analyse, d’avoir au moins une idée des preuves des principaux
résultats de ce cours.

I. La théorie de Lebesgue est née du besoin d’étudier la validité de 1’égalité
b

f() — fla) = f f'(x) dx lorsque f n’est plus de classe C'. La réponse est

connue, mais dé}%asse le cadre de ce cours. Quelques résultats en ce sens sont
mentionnés sans preuve. D’autres résultats avancés, significatifs pour la théo-
rie de la mesure et de 'intégration, sont mentionnés ici et 1a, dans les sections
«Pour aller plus loin ».

J. Pour aller au-dela de ce cours, plusieurs directions accessibles sont envisa-
geables.

1. La théorie « abstraite » : construction axiomatique des mesures par Cara-
théodory, théoréme de Radon-Nikodym-Lebesgue, mesures signées et vec-
torielles (théoremes de Hahn et Jordan, intégrale de Bochner), etc. Quelques
références a ce sujet : Halmos [11, Chapitre 6], Rudin [19, Chapitre 7] et,
pour une preuve trés élégante du théoréme de Radon-Nikodym-Lebesgue,
Taylor [21, Chapter 4]. Et un trés beau livre qui donne un panorama de
la théorie de la mesure : Bogachev [4]. Cette référence contient aussi un
nombre important de reperes historiques, liés aux travaux des grands noms
de la théorie (Lebesgue, Borel, Carathéodory, etc.). Une référence s’il n’en
fallait quune : le mémoire de 1904 de Lebesgue [15], qui contient sa théorie
de l'intégration, développée entre 1901 et 1904. Lebesgue avait 26 ans en
1901!

2. Les espaces L? traités du point de vue de I’analyse fonctionnelle; voir Bre-
zis [5, Chapitre 4].

3. Les mesures « concretes » et leurs applications. Nous traitons ici la mesure
de Lebesgue (dans R? : le volume), mais d’autres mesures ont une significa-
tion géométrique dans R? : la longueur des courbes, l'aire des surfaces. Une
facon unifiée de traiter ces notions est donnée par les mesures de Haus-
dorff, que nous nous contentons ici de définir. Nous expliquons aussi la
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démarche, due a Carathéodory et inspirée par la construction de la mesure
de Lebesgue, qui permet de montrer leurs propriétés. L'étude approfondie
de ces mesures meéne vers des formules géométriques, 1'étude des proprié-
tés fines des fonctions et une branche de 1’analyse, en plein développe-
ment, la « théorie géométrique de la mesure ». A son tour, la théorie géo-
métrique de la mesure est indispensable au traitement mathématique de
certains problemes concrets (traitement d’images, micro-structures, etc.).
Quelques références, de la plus élémentaire a la plus avancée : Evans et
Gariepy [7, Chapitres 2 et 3], Federer [8, Section 2.10], a nouveau Evans et
Gariepy [7, Chapitres 4, 5 et 6], Ziemer [23, Chapitre 3].

Guide pratique

1.

Pour faciliter la lecture, les définitions et résultats essentiels sont encadrés. Au
début de chaque chapitre sont fixés des objectifs minimaux de compréhension
et savoir-faire.

. Une autre aide a la lecture est le découpage des parties « au programme » en

texte principal (explications, définitions, énoncés), exercices, démonstrations.

. Les démonstrations prendront une place trés importante dans ce cours. Apres

deux premieres années universitaires passées principalement a apprendre les
énoncés des théorémes et a apprendre a s’en servir, nouvel objectif cette année :
comprendre les théoremes, et avoir un apercu de quelques théories (comme
celle de la mesure) accessibles a ce niveau.

Les principes de preuves jouent un role fondamental en analyse. C’est pour-
quoi j'ai privilégié des preuves moldues, qui évitent la magie, tout en reposant
sur des arguments qui servent souvent.

Les preuves sont souvent plus longues que dans d’autres textes. La raison
principale est qu’elles contiennent en général tous les détails.

Les parties « hors programme » (comme les sections « Pour aller plus loin », ou
le chapitre 5) sont rédigées comme des textes a lire en autonomie, et 1’ordre est
celui habituel d’un texte mathématique.

. Le manuscrit doit encore contenir des erreurs. Si vous en trouvez, merci de

m’en faire part a l’adresse mironescu@math.univ-1lyonl. fr

Remerciements
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Les feuilles d’exercices, bien plus riches que ce qui pourra étre traité en classe,
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Vue d’ensemble

Ce texte est une introduction détaillée aux aspects les plus basiques de la théorie de
Lebesgue de la mesure et de I'intégration.

On peut comprendre les briques de cette théorie a partir du calcul de I'inté-
b

grale de Riemann I := J f(x) dz. Rappelons que, du moins si f est continue par

a
morceaux sur [a, b] et positive, I s'interpréte comme 'aire du domaine D compris
entre le graphe de f et I'axe Oz. De maniere théorique, pour calculer / nous com-
mencons par le cas ou f est une fonction en escalier, ¢’est-a-dire une fonction de la
forme

a;, sixrel

as, sixel

fla) =4 )
Gn, Sixel,,

avec les I; intervalles disjoints dont l'union est [a, b].

Dans ce cas, D est une union de rectangles disjoints, de base /; et de hauteur
a;j, et nous posons, « naturellement »,

b n
| r@rdei= 3 amity), @)

avec m(I;) la longueur, ou encore la mesure de I;.

Dans le cas général, nous « approchons » f par des fonctions en escalier, et
son intégrale par les intégrales de ces fonctions en escalier (ceci sera brievement
rappelé dans la section 6.5).

La généralisation de cette approche nécessite :

a) De pouvoir mesurer des ensembles. (Dans le cas d"une fonction en escalier, il
s’agit de mesurer les intervalles /;.)

b) De définir I'intégrale des fonctions « simples » (du type fonctions en escalier).
Dans la théorie de l'intégration, leur nom est fonctions étagées.
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c) De définir un procédé d’approximation des fonctions « générales » par des
fonctions étagées. Les fonctions approchables sont les fonctions mesurables.

d) De définir 'intégrale des fonctions mesurables.

Si tout ce programme est achevé, ce n’est que le début... Il reste encore a établir
e) Les propriétés de l'intégrale ainsi définie. Ainsi, on s’attend a ce que l'inté-
grale soit linéaire, qu’elle vérifie I'inégalité triangulaire, et autres propriétés
fondamentales de 'intégrale de Riemann.
f) Des méthodes concretes de calcul des intégrales : intégration par parties, chan-
gement de variable, calcul d’'intégrales multiples a partir d’'intégrales itérées
(théoreme de Fubini), etc.

g) Et (surtout!) d'illustrer, par des applications, l'utilité de la théorie.

Ce programme (minimal, dans la mesure ot la théorie de la mesure et de
I'intégration est bien plus riche que ce que nous verrons) sera mis en place dans
ce qui suit. Et encore : I'intégration par parties (formule de Stokes) ne sera pas vue.

En bref

1. Le chapitre 1 n’est pas directement lié a la théorie de la mesure. Il traite
quelque notions auxiliaires comme sup, inf, les limites des suites et le dé-
nombrement des ensembles.

2. Dans le chapitre 2, nous rencontrons un objet fondamental, la tribu, et étu-
dions quelques-unes de ces propriétés. A posteriori, la tribu est la collection
7 des tous les ensembles que nous saurons mesurer. En accord avec cette
philosophie, un élément de .7 (c’est-a-dire, un ensemble A € .7) est un
ensemble mesurable.

Pour que la théorie soit vraiment utile, .7 doit avoir des propriétés algé-
briques encodées dans sa définition (par exemple, si nous savons mesurer
A et B, nous savons également mesurer A n B). La propriété fondamentale
qui fait la force de la théorie de la mesure est que si nous savons mesurer
Ag, A1, Ag, ... (suite infinie), alors nous savons mesurer Ay U A; U Ay U ...

3. Le chapitre 3 est dédié aux fonctions qui, a posteriori, seront intégrées. Le
début se devine facilement : une fonction étagée est une fonction de la forme,
analogue a (1),

a1, sireA;
as, six € A2
flz) = (3)

a,, sizeA,,

avec chaque A; mesurable et les A; deux a deux disjoints.
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Pour passer des fonctions étagées aux fonctions mesurables, le choix de
I'approximation est crucial : une fonction mesurable est une limite simple de
fonctions étagées.

Il reste a établir les principales propriétés des fonctions mesurables. Comme
pour les fonctions continues, avec lesquelles elles partagent des caractéris-
tiques communes, la somme ou le produit de fonctions mesurables est me-
surable, etc.

4. Le chapitre 4 est dédié aux mesures. Une mesure p est un « procédé » pour
associer a chaque ensemble mesurable A € .7 sa mesure, ((A), qui est un
nombre positif (ou +00; penser a la longueur d"un intervalle infini). La pro-
priété fondamentale de la mesure (qui fait la force de la théorie de la mesure)
est que, si Ao, A, Ay, ... (suite infinie) sont des ensembles mesurables disjoints,
alors

(Ao u Ay U A U ) = u(Ag) + u(Ar) + u(As) + -+

C’est cette propriété qui permet de passer a la limite dans les intégrales; or, le
passage a la limite est 1’essence de ’analyse.

5. Le chapitre 5 a la fois sort du programme décrit plus haut et lui donne de
la valeur. La théorie de Lebesgue de l'intégration est née pour améliorer
celle de Riemann; elle doit donc la contenir. Ceci est vrai, et la preuve passe
par l'existence d'une mesure qui généralise la longueur des intervalles. Le
résultat fondamental du chapitre est I’existence de la mesure de Lebesgue (sur
R), plus précisément d"une tribu .7 contenant tous les intervalles, et d'une
mesure 4 sur .7 telle que (1) = m([) si I est un intervalle.

6. Le chapitre 6 est consacré a la construction de 1'intégrale « abstraite ». Comme
attendu, si f est une fonction étagée positive comme dans (3), nous posons,
«naturellement », par analogie avec (2),

ff = 2%’ p(A;)-

Le cas ou f est mesurable positive est traité par approximation, mais la défini-
tion de l'intégrale J f dans ce cas n’est pas trés intuitive. Le cas ot f est tout

simplement mesurable (mais pas nécessairement positive) est plus délicat :
en général, l'intégrale n’existe pas.

Toujours dans ce chapitre, nous rencontrons le premier théoreme permet-
tant de « permuter » lim et |, le théoreme de convergence monotone (théoréme

de Beppo Levi), qui affirme que si (f,), est une suite croissante de fonctions
mesurables positives, alors

1?thﬁyh. (4)
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10.

La suite du chapitre fait le lien entre intégrale par rapport a la mesure de
Lebesgue et intégrale de Riemann, respectivement la sommation des séries
et l'intégration. Ceci permet de s’apercevoir que la théorie de l'intégration
est un cadre général qui permet de traiter des problémes d’apparence diffé-
rente; d’autres illustrations de ce fait apparaissent dans les chapitres 10-13.
L'égalité (4) est cruciale dans les applications, et a elle seule justifierait 1'im-
portance de la théorie de l'intégration. Dans le chapitre 7, nous étudions
le célebre théoreme de convergence dominée de Lebesgue qui permet d’obtenir
(4) sans hypothése de positivité ou convergence monotone, et surtout ses
conséquences concernant I'étude des intégrales a parametre. Ces intégrales
sont omniprésentes en théorie des probabilités, physique mathématique,
étude des équations différentielles, etc.

. Le chapitre 8 met les bases du calcul des intégrales multiples. Vous avez déja

utilisé sans preuve une égalité du type

Lb <Ldf(x,y) dy) dr = Ld <Lb f(x,y) dx) dy. (5)

La théorie développée dans ce chapitre donne des outils pour vérifier la
validité de formules du style (5) (théoreme de Tonelli, théoreme de Fubini) et
d’interpréter les intégrales doubles ou itérées de (5) comme une seule inté-
grale dans la variable (z,y) par rapport a la mesure produit. Cette notion,
trés intuitive, est un avatar des regles habituelles pour le calcul des aires et
volumes (l'aire d’un rectangle I x J est le produit des longueurs m(/) et
m(J), etc.).

. Le chapitre 9 donne une autre méthode de calcul d’intégrales : le changement

de variable(s). Dans les applications les plus courantes (coordonnées polaires,
cylindriques, sphériques), le changement de variables n’en est pas tout a
fait un, et il faudra établir un théoréme du presque changement de variables
adapté a ces cas.

Le chapitre 10 est dédié a I'étude de certains espaces de fonctions. En topo-
logie et calcul différentiel, les fonctions les plus étudiées sont les fonctions
continues, dérivables (ou différentiables), de classe C!, etc. En théorie de
I'intégration, nous avons déja mentionné les fonctions mesurables. Dans les
applications, les espaces les plus populaires sont les espaces de Lebesgue -£7,
avec 1 < p < oo. IIs donnent un cadre naturel a la formulation mathéma-
tique de nombreux problemes concrets, par exemple issus de la physique.

Pour 1 < p < o, leur définition est
LP = {f; f est mesurable et J|f|p < oo} )

Nous donnerons dans le chapitre 10 quelques propriétés fondamentales de
ces espaces.
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11.

12.

13.

Dans le chapitre 11, nous introduisons la convolution. En langage moderne,
c’est 'opération qui associe a deux fonctions sur R (ou R"), f et g, la nou-
velle fonctions

Teo@) = [ 56— gw)dy ©)

Des expressions du type (6) apparaissent naturellement dans la résolution
des équations; ceci était déja connu au 18¢ siecle (Euler, d’Alembert). Elles
sont également utilisées en théorie de I'image et du signal.

Dans le chapitre 11, nous nous contentons de donner quelques applications
de (6) a la théorie des espaces .Z”.

Le chapitre 12 est consacré aux séries de Fourier. A nouveau, elles appa-
raissent naturellement dans la résolution des équations différentielles, et de
grands mathématiciens du 18¢ siecle (d’Alembert, Euler, Lagrange) se sont
demandsés si « toute fonction » était une superposition de (co)sinusoides. En
langage moderne, si on pouvait écrire une fonction 27-périodique f comme

f(z) =co+ Z (ay, cos (nxz) + by, sin (nx)) ; (7)

n=1
Co, Gn, by, sont les coefficients de Fourier de f.

Fourier y a cru, et a utilisé (7) pour résoudre des probléemes physiques. La
justification rigoureuse de (7) a été une locomotive de 1’analyse au 19¢ siécle
(et au-dela). Nous donnons, dans le chapitre 12, quelques théoremes en lien
avec la validité de (7) : théoréme de Dirichlet, théoreme de Fejér, théoreme de
Fatou, égalité de Parseval et théoréme de Riesz-Fischer.

Dans le chapitre 13, nous introduisons 1’analogue continu des coefficients
de Fourier : la transformée de Fourier

7i) = f e f () da. ®)

—00

Son importance, notamment dans la théorie des probabilités et dans la théo-
rie des équations différentielles, est immense.

Pour la transformée de Fourier, ’analogue de (7) est la formule d'inversion de
Fourier

f(z) = — f e 7o) de. ©)

T o .

Dans le chapitre 13, nous étudions la validité de (9), ainsi que la possibilité
de définir f méme quand (8) n’a pas de sens (théoreme de Plancherel).
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Vue d’ensemble

14. Le chapitre 14 est une piece rapportée a ce texte, qui rend compte du chan-

gement de programme de la licence. Nous y présentons les résultats les
plus basiques de la théorie des espaces de Hilbert, notamment 1’existence d'une
base hilbertienne dans un espace de Hilbert séparable. Ceci permet notam-
ment de voir la théorie L? des séries de Fourier comme un cas particulier de
construction d"une base hilbertienne, et d'interpréter 1" inégalité de Bessel et
'égalité de Parseval (obtenues pour les séries de Fourier) dans le cadre plus
général d'un espace de Hilbert. L’autre résultat significatif de ce chapitre est
V'existence d’une projection sur un convexe fermé et son corollaire, le théoreme de
Riesz caractérisant les formes linéaires continues sur un espace de Hilbert.

Afin de rendre la lecture plus fluide, ce chapitre apparait a la fin (méme s’il
est enseigné avant le chapitre 12).

Et apres?

1.

La théorie des probabilités utilise naturellement le cadre de la théorie de la
mesure et de l'intégration. En plus de la théorie abstraite (chapitres 2 a 6), le
produit de convolution et la transformée de Fourier seront particulierement
utiles.

L'étude des espaces .£” sera reprise et amplifiée en analyse fonctionnelle.

Les séries de Fourier et la transformée de Fourier seront étudiées de maniere
plus approfondie en analyse fonctionnelle.

Le produit de convolution et la transformée de Fourier seront des outils
essentiels dans 'étude des équations aux dérivées partielles.

A Lyon, le 30 janvier 2023
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Chapitre 1

Notations, rappels, premieres
définitions

1.0 Apercu

La théorie de l'intégration repose de maniére cruciale sur les inégalités, en
particulier sur des inégalités faisant intervenir sup et inf.

Un autre élément fondamental est le passage a la limite le long d’une suite.
Une suite n’a pas nécessairement une limite ; elle a néanmoins toujours une lim sup
et une liminf, qui sont de bons substituts de la lim. Ces notions sont rappelées
dans la section 1.1.

Un autre concept crucial en intégration est celui de famille dénombrable ou,
plus généralement, au plus dénombrable. Ces notions seront introduites dans la
section 1.2.

Enfin, nous verrons dans la section 1.3 les premiers objets fondamentaux en
théorie de la mesure : les clans, les tribus et les classes monotones (qui sont des
ensembles d’ensembles!) et les mesures.

Dans cette méme section, nous verrons quelques opérations internes a un clan
¢, ou tribu 7. Une propriété typique :si A, B € ¢, alors A\B € €.
Compétences minimales attendues.

a) Calculer le sup et I'inf d’un ensemble.
b) Calculer la lim sup et la lim inf d"une suite.

c) Montrer qu'un ensemble est (ou n’est pas) a. p. d. 3
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Notations, rappels, premiéres définitions 1.1 Limite supérieure, limite inférieure

1.1 Limite supérieure, limite inférieure

La théorie de la mesure exige de travailler avec les « nombres » —co et o0, donc
sur la droite réelle étendue R := R u {—0, w0}.

1.1 Définition (sup, inf). Si A < R est non vide (mais pas nécessairement
borné),

sup A := le plus petit majorant M € R de A,

inf A := le plus grand minorant m € R de A.

Ces quantités ont essentiellement les mémes propriétés que dans le cas des
ensembles bornés, comme le montre 'exercice 1.7.

Une autre notion fondamentale est celle de limsup (limite supérieure) d"une
suite. Nous savons qu'une suite réelle n’a pas nécessairement une limite. Elle a,
en revanche, foujours une limite supérieure lim sup et une limite inférieure lim inf.

Pour définir ces notions, précisons quelques notations.

1.2 Notations.
a) Sitous les termes de la suite (z,), appartiennent al’ensemble A, nous écrirons (zy,), <
Al

b) En regle générale, la notation sup z; désigne sup{z;; i € I}.
i€l
De méme, sup f(x) désigne sup{f(z); x € A}.
zeA

Notations similaires pour inf. o

1.3 Définition (lim sup, liminf). Si (z,), < R, alors

limsup x,, := lim sup zy, (1.1)
n n=0 p>n

liminf z, := lim inf x;. (1.2)
n n—oo k>n

1.4 Remarque. Considérons foutes les suites (z,, ), extraites de (x,,), qui ont
une limite.

Notons A = R I’ensemble de toutes les limites obtenues de cette facon.

Le nombre lim sup,, z,, est le plus grand élément de A, et liminf, z,, est le
plus petit élément de A.

t. Donc (7,,),=0 = A se substitue a la notation « officielle » (z,,),,=0 € AN.
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Petru Mironescu Mesure, intégration, éléments d’analyse fonctionnelle

La remarque 1.4 est une conséquence des items c) et d) de la proposition 1.6
(qui suit). Elle donne une caractérisation de lim sup,, z,, et liminf,, z,, — caractérisa-
tion qui constitue une définition alternative de ces limites.

Quelques rappels utiles pour comprendre 1'énoncé de la proposition 1.6.

1.5 Rappels.
a) Lasomme x + y avec z,y € R, est définie a I'exception du cas oti z = o0 ety = —x.
b) En analyse, le produit tx, t € R, x € R, est défini saufsit = 0 et v = +o0. o

1.6 Proposition.

a) Les limites définies dans (1.1)—(1.2) existent.
b) Onalimsup,(tz,) = tlimsup, z, et limsup, (—tx,) = —tliminf, z,, Vt €]0, oo|.
Formules analogues pour lim inf.

c) Si(xn, )k est une suite extraite de la suite (z,,), telle que z,,, — ¢, alors liminf z,, <
n

¢ < lim sup z,,.

d) II existe une suite extraite (z,, ); telle que z,, — limsup z,. De méme pour
n
lim inf z,,.
n
e) Si z, — {, alors { = liminfz, = limsupx,. Réciproquement, si liminfz, =
n n n

lim sup z,, = ¢, alors x,, — /.
n

f) Sila quantité lim sup,, z,, + tlimsup,, y,, a un sens, alors

limsup (z,, + ty,) < limsup x,, + tlimsupy,, Vt €]0, .

n n n

Formules analogues pour lim inf (z,, + ty,,), limsup (z,, — ty,), iminf (z,, —ty,).

n

g) Six, — (etsilaquantité ¢ + limsup, y,, a un sens, alors

limsup (z,, + y,,) = £ + lim sup y,,.

n

De méme pour liminf,,. o

Exercices

1.7 Exercice. Soient A, B des parties non vides de R. Montrer que :

a) M = sup A si et seulement si M est un majorant de A et il existe une suite (z,), < A
telle que x,, — M. Caractérisation analogue de inf A.

1. L'impossibilité de définir utilement le produit ¢tz vient du calcul des limites. Dans le cadre de
la théorie de I'intégration, nous verrons que 0 - 00 = 0.

21



Notations, rappels, premiéres définitions 1.1 Limite supérieure, limite inférieure

b) A admetsup A €] — 0, o] etinf A € [—o0, 0].

c) sup A et inf A sont uniques.

d) Nous avons sup (—tA) = —tinf A, V¢ €]0,00[. Formules analogues pour sup (tA),
inf (tA), inf (—tA).

e) Nous avons sup(A + B) = sup A + sup B et inf(A + B) = inf A + inf B.

f) Si A c B,alorsinf B < inf A < sup A < sup B.

g) Si (zn)n>n, < R est une suite croissante, alors

lim x,, = sup{x,; n > ng} = sup z,.
n n>ng

Enoncé analogue pour une suite décroissante.
h) Sisup A > x € R, alorsil existe un y € A tel que y > z. o

1.8 Exercice. Que devient ce qui précede si nous considérons des parties non vides A, B <
R? o

1.9 Exercice.

a) Siliminfz, > limsup z,, alors z,, — limsup,, z,, = lim inf,, x,,.
n n

b) Sia <z, <b,¥n = ny, alors a < liminf, z,, <limsup,, x, <.

¢) Sixy = a,Vn = ngetlimsup, z, < a, alors z,, — a. o
1.10 Exercice. Calculer lim sup xz,, et lim inf z,, pour les suites données par :
n

a) Tp = (_1)n’.

b) z, = (—=1)"+/n. o

1.11 Exercice. Montrer que [z, < yp, Vn > ng] = limsup z,, < limsup yy. o

Démonstrations

Démonstration de la proposition 1.6. Nous utilisons les items de I'exercice 1.7. Nous faisons les
raisonnements uniquement pour lim sup. Posons

X, := supxy et £ := limsup x,.
k>n n

a) La suite (X,,), décroit avec n (item f)). Elle a donc une limite. Ceci prouve l'existence
de ¢ = lim,, X,,, et aussi que ¢ < X,,, Vn.

b) Calculons par exemple lim sup,, (—tz,). Nous avons sup (—txy) = —t ]inf x, (item d)),
k>n =n
d’ou
lim sup (—tx,,) = limsup (—tzy) = lim (—t inf xk) = —tlim inf z;, = —tliminf z,,.
n N psn n k=n n k>n n

c) Nous avons x,,, < X,,, ¥ k. En passant a la limite sur k, nous obtenons ¢ < /.
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d)

f)

g

1

d/

Soit (My)g une suite telle que My, < £ et My, — ¢. Comme ¢ = lim,, X,, > My, Vk,
pour tour k il existe un rang my, tel que X,, > My, ¥n > my. Il s’ensuit que pour tout
ket n > my, il existe un m = m(n,k) > n (m dépend de n et k) tel que z,,, > Mj,
(item h)). Posons n; := m(m1, 1) et, par récurrence, N, := max (ng, my) + 1 et ng4q :=
m(Ng, k + 1). Nous avons ny, < ngy; et x,, > My, Yk (vérifier). La suite extraite
(xn, )k satisfait donc M;, < z,, < X,,. En faisant k& — oo et en utilisant le théoreme
des gendarmes, nous obtenons z,, — ‘.

Soit (2, ) telle que z,,, — ¢. Nous avons z,,, — £, d’ou ¢ = .

Réciproquement, supposons que hm inf x,, = lim SUp Ty = L. Soit Y, := gnf xy. Nous
>n

avons Y,, < z, < X, etY, — ¢, X — (. Le theoreme des gendarmes permet de
conclure.
Montrons I'inégalité pour lim sup,, (x,, — ty,). Nous avons (en utilisant les items d) et
e) de l'exercice)

sup (x,, — tyn) < sup x, + sup (—ty,) = supx, —t 1nf Un.-

k>n k>n k>n k>n

En passant a la limite dans I'inégalité ci-dessus, nous obtenons

lim sup (x,, — ty,) < limsup x,, — ¢ lim inf y,,.

n n n
Soit (yn, )i telle que vy, — limsup,, y,. Nous avons z, + yn, — ¢+ limsup,, y,. L'item
c) de cette proposition implique (*) £ + lim sup y,, < limsup,, (z,, + yn).

En particulier, nous avons avons « = » si £ + lim sup,, ¥, = o0 ou si limsup,, (x, +yp) =
—o0. Nous pouvons donc supposer que £+ lim sup y, < oo (et donc, en particulier, que
¢ < ) et que limsup,, (xy, + yn) > —0.

Par ailleurs, soit (z,, + yn, )r telle que x,, + yn, — limsup,, (z, + y»). Nous avons
Yn,, — limsup,, (z, +yp)—¥ (vérifier que lim sup,, (z, +yn) — ¥ existe bien!). A nouveau
l'item c) donne (**) lim sup,, (z, + yn) — £ < lim sup yy,.

Nous concluons grace a (*) et (**) (vérifier!). CQFD

.2 Dénombrement

En théorie de la mesure, nous travaillons souvent avec des familles (A;);cs
ensembles, avec / fini ou pouvant s’écrire comme une suite : dans ce qui suit,

un tel I est désigné comme au plus dénombrable. La question que nous abordons
ici est comment montrer qu'un ensemble est au plus dénombrable.

1.12 Définition (a. p. d.).

a) Un ensemble est dénombrable s’il est en correspondance bijective avec N
(autrement dit : si on peut écrire tous les éléments de A, sans répétition,
comme une suite).
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b) Un ensemble est au plus dénombrable (a. p. d.) s’il est soit fini, soit dénom-
brable.

L’outil le plus commode pour vérifier quun ensemble est dénombrable est le
suivant.

1.13 Proposition.

a) Une partie d'un ensemble a. p. d. est a. p. d.
b) Une union a. p. d. d’ensembles a. p. d. est a. p. d.
¢) Un produit cartésien fini d’ensembles a. p. d. est a. p. d.

d) Un ensemble a. p. d. qui contient une infinité d’éléments distincts est dé-
nombrable.

e) Un ensemble qui contient une partie qui n’est pas a. p. d. n’est pas a. p. d.
f) Si A et B sont en correspondance bijective et B est a. p. d., alors A est a. p.

d.

Exercices

1.14 Exercice. a) N*,7Z, Q, Z™, Q" sont dénombrables.
b) L'ensemble des parties finies de N est dénombrable.
¢) [0, 1], R ne sont pas dénombrables. o

Démonstrations

Pour la preuve de la proposition 1.13, voir la section 1.4.

1.3 Clans, tribus, classes monotones, mesures

Les premiers objets importants de la théorie de la mesure sont les ensembles.
Nous définissons ici les ensembles d’ensembles ™ qui jouent un role central dans la
théorie : les clans et les tribus.

1.15 Notations.
a) Z(X) est'ensemble de toutes les parties de X, c’est-a-dire : Z(X) := {A; A < X}.

b) Si A est une partie de X, le complémentaire de A dans X est noté X\ A. S’il est clair
qui est X, on notera ce complémentaire par A°. o

t. Donc un clan (ou une tribu) est un ensemble dont les éléments sont eux-mémes des en-
sembles...
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1.16 Définition (Clan). Un clan dans X (ou clan tout court, s’il est clair qui est
X) est un ensemble ¢ dont les éléments sont des parties de X" tel que :

i) Jge?;
ii) si A€ ¢, alors A€ ¢;
iii) Si A, Be €,alors Au Be%.

1.17 Remarque. La définition d’un clan demande qu'une union de deux ensembles de ¢’
soit encore dans €. Nous verrons plus loin (exercice 1.38) qu’une union consistant en un
nombre fini d’ensembles de € appartient a €.

En général, une union consistant en un nombre infini d’ensembles de € n’appartient pas
a’.

Le raisonnement « chaque A; (avec i € I) est dans ¢, d'olt U;c1A; € € » nest pas
valide, a moins de savoir que ! est fini. o

Voici un exemple fondamental de clan.

1.18 Proposition. L'ensemble %] des unions finies d’intervalles de R est un clan.
o

1.19 Définition (Tribu). Une tribu dans X (ou tribu tout court, s’il est clair qui
est X)) est un ensemble .7 dont les éléments sont des parties de X, tel que :
i) JeT;
ii) si Ae .7,alors A°e .7 ;
iii) Si Ay,...,A,,...€ J,alors u,_A, € 7.
Si une partie A de X appartient a .7, on dit que A est un ensemble .7-

mesurable (ou ensemble mesurable ou mesurable tout court, quand il est clair qui
est 7).

1.20 Remarque. La question « A < X est-il mesurable? » n’a pas de sens. La réponse
dépend de 7. o

1.21 Remarque. La définition d"une tribu demande qu'une union dénombrable d’ensembles
de .7 soit encore dans .7. L'exercice 1.38 montre que ceci encore vrai pour une union 4.
p. d.

En général, une union quelconque d’ensembles de .7 n’est pas dans .7
Le raisonnement « chaque A; (avec i € I) est dans .7, d’out u;c14; € 7 » n'est pas

valide, a moins de savoir que I est a. p. d. o

1.22 Dictionnaire.

t. Donc % ¢ 2(X).
1. Situation analogue en topologie : la question « U est-il ouvert? » n’a pas de sens sans
connaitre la topologie 7.
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a) Clan=algebre=(en anglais) algebra.
b) Tribu=c-algébre=(en anglais) o-algebra. o

Quelques propriétés fondamentales (et simples) des clans et tribus :

1.23 Proposition. Soit € un clan. Nous avons :

a) X e&.

b) SiA,Be%,alors An Be%.

c) SiA, Be %, alors A\Be%.

d) SiAy,...,A, €%, alors Ul_AjeCetn]_AjeC.

1.24 Proposition. Soit .7 une tribu. Nous avons :

a) Xe 7.

b) SiA,Be Z,alors AnBe 7.

c) SiA, Be Z,alors A\Be 7.

d) SiAy,...,A,e T,alors UY_ A, € Tetni_ A, € 7.

e) SiA,....,A,, ...€ ,alors n,A, € .7. o

Voici un troisiéme type d’ensembles d’ensembles qui jouent un role impor-
tant, notamment au niveau des preuves : les classes monotones.

Pour commencer, deux définitions naturelles.

1.25 Définition. Une suite (4,,), de parties de X est:

a) croissante si A,, = A, ;1 pour tout n;

b) décroissante si A,, > A, pour tout n.

1.26 Remarque. La définition qui va suivre est celle de la littérature anglophone. La dé-
finition admise dans la communauté francophone est différente. Ceci explique pourquoi
le résultat fondamental qui fait intervenir les classes monotones, le théoreme 2.9 («de la
classe monotone »), a un énoncé différent de celui que 1’on trouve dans d’autres textes en
frangais. o

1.27 Définition (Classe monotone). Une classe monotone (dans X) est un en-
semble .Z de parties de X tel que :

i) Si (A,), © 4 est une suite croissante, alors U, A, € 4 ;

ii) Si (A,), < # est une suite décroissante, alors N, A, € ..

Dernier objet fondamental de cette section : la mesure. Dans les applications :
(i) la tribu (parfois le clan) est la collection des ensembles « que 1’on peut (ou que
'on sait) mesurer »; (ii) la mesure est la fonction qui associe a un ensemble de la
tribu sa «longueur », son « aire », son « volume », bref... sa mesure.
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1.28 Définition. Une famille d’ensembles (A;)c; est d. d. d. (acronyme pour deux
a deux disjoints) si A; n A; = (&,Vi,j € I aveci # j. o

1.29 Notation. Il sera commode d’utiliser la notation « L1 » pour des unions d. d. d. :
UierA; dénote 1'union d’une famille (A;);e; d’ensembles d. d. d. o

1.30 Définition (Mesure). Si ¢ est un clan, une mesure positive sur ¢ (ou me-
sure tout court) est une application p : € — [0, 0] telle que :

i) u() =0;
ii) Si (A,), < € est une suite d. d. d. et si U, A, € ¥, alors pu(u,A4,) =

2 1(An).

1.31 Remarque.

a) La propriété ii) est la o-additivité.
b) Dans le cas particulier ot1 ¢ est une tribu, I'hypotheése U, A,, € € est automatiquement
satisfaite. o

1.32 Définition (Espace mesurable, mesuré).

a) Un espace mesurable est un couple (X, .7), avec .7 tribu dans X.

b) Un espace mesuré est un triplet (X, .7, ), avec 7 tribu dans X et ; mesure
sur 7.

Nous concluons cette section avec quelques définitions et notations utiles.
1.33 Notation. AAB := (A\B) u (B\A) désigne la différence symétrique de A,B < X. o

1.34 Notations.
a) A, /" Asignifie que la suite (A;,),, est croissante et A = U, A,,.
b) A, \, A signifie que la suite (A,,),, est décroissante et A = N, A,,. o

1.35 Définition (Fonction caractéristique). Si A < X, la fonction caractéristique de
Aest xa: X — {0,1}, définie par

(z) 1, size A .
xXr) .= .
x4 0, size X\A

Exercices

1.36 Exercice (Exemples fondamentaux de clans).

a) Soit I < R un intervalle. L'ensemble %" des unions finies d’intervalles contenus dans
I est un clan (sur 1).

b) Un pavé de R" est un ensemble de la forme P = Iy x Iy x --- x I, avec chaque I}
intervalle de R. L'ensemble %, des unions finies de pavés de R™ est un clan.
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c) Tout élément de %), est une union finie de pavés de R™ deux a deux disjoints. o

1.37 Exercice.

a) Soit ¢ un clan sur X. Soit Y ¢ X. Montrer que 6y := {AnY ; A€ €} estun clan sur
Y.

De méme pour une tribu 7.

¢y (respectivement .%y) est le clan induit par ¢ sur Y (respectivement la tribu induite
par 7 surY).

b) SiY e %, alors 6y = {A; Ae €, AcY}. o
1.38 Exercice. Montrer que si ¢ est unclanet A;,..., A4, € €,alors A; u... U A, € €.
De méme si on remplace clan par tribu. o

1.39 Exercice.
a) Z(X) estune tribu.
b) Si X = {1,2,3},alors ¢ = {J, X, {1}, {2, 3}} est une tribu. o

1.40 Exercice. Si X est fini, alors tout clan est une tribu. o

1.41 Exercice.

a) Montrer que A,, / A si et seulement si : la suite de fonctions (x4, )» est croissante et
converge simplement vers x .

b) De méme, A, \, A si et seulement si : la suite de fonctions (x4, )» est décroissante et
converge simplement vers x 4. o

1.42 Exercice.

a) Toute tribu est un clan.
b) Toute tribu est une classe monotone. o

1.43 Exercice. Soit 1 : € — [0,0] (avec ¢ clan) une application qui vérifie I'axiome
ii) d'une mesure. Montrer que : (i) ou bien x est une mesure; (ii) ou bien pu(A) = oo,
VAe®@. o

Les deux exercices suivants donnent des exemples basiques de mesures.

1.44 Exercice. Soit a € X. Soit §, : Z(X) — [0, 0],

5a(A) i 1, siae A
o, siag A

Montrer que J, est une mesure. C’est la mesure de Dirac en a (ou masse de Dirac en
a). o

1.45 Exercice. Soit X un ensemble. Montrer que 'application p : (X)) — [0, 0],

card A, si A est fini
n(A) = {

0, sinon

est une mesure sur (X ). C'est la mesure de comptage. o
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Démonstrations

Démonstration de la proposition 1.18. Les axiomes (i) et (iii) sont clairement satisfaits. Il reste a
vérifier (ii). Si J < R est un intervalle, alors J¢ est un intervalle ou 1'union de deux in-
tervalles, d’ou J¢ = L y U Ly 5, avec Ly j et Lo j intervalles (éventuellement I'un d’entre
eux vide). Si A € €1, on peut écrire A = U1 <y<pJy, avec chaque Jy intervalle, d’ott

Cc
A° = (U1<e<nJo)® = N1<e<n(J0) = N1<e<n(L1,, U La,j,)
= Uiy, ine{1,2} N<t<nli, j, € €1,

ol la conclusion finale utilise le fait qu’un intersection (méme arbitraire...) d'intervalles
est un intervalle. CQFD

Démonstration de la proposition 1.23.

a) Ona X = g°.

b) découle de l'identité A n B = (A U B°)“.

c) suitdeb)etde A\B = A n B°.

d) se montre par récurrence sur n. CQFD

Démonstration de la proposition 1.24.
a)-d) sont une conséquence de la proposition 1.23, car une tribu est un clan (exercice
1.42).

e) découle de l'identité N, A,, = (U, AS)C. CQFD

1.4 Pour aller plus loin

Dans cette section, nous démontrons la proposition 1.13 (et un peu plus). Pour
faciliter la compréhension, les outils utilisés dans la preuve ont été énoncés et
prouvés séparément, comme des lemmes. ' Un ingrédient important de la preuve
est le théoreme de Cantor-Bernstein 1.51, que nous prouvons uniquement dans le
cas simple qui sert a la preuve de la proposition 1.13.

1.46 Lemme. Toute partie infinie A de N est dénombrable. o

Démonstration du lemme1.46. Soient xp := min A et Ay := A\{zo}. Notons que Ay # &
(sinon A serait fini).

Par récurrence, soient ,,1 := min A, et A,+1 := A,\{zn+1}. Alors A, est non vide,
V n, sinon A serait fini, et x,,+1 > x,,, ¥ n (vérifier par récurrence sur n).

La suite (zy,),, d’entiers est donc strictement croissante, d’ott z,, — c0.

11 suffit de montrer que A = {xo,z1,...}. (En effet, si tel est le cas, alors f : N — A4,
f(n) := xy, Vn, est une bijection.) Preuve par 'absurde. Supposons qu’il existe = € A tel

t. Pour lemme, voir https://fr.wikipedia.org/wiki/Lemme_ (mathAl’matiques).
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que = # x, pour tout n. On a x > xy, par choix de zp, d'ott x € Ag. Comme x # x1, on
trouve x > x. Par récurrence, z € A,, et x > x4 pour tout n. En passant a la limite,
x > limx,,1 = 00, absurde. CQFD

1.47 Lemme. Si A c B avec B a. p. d., alors Aesta. p. d.

Par contraposée, si A © Bet An’est pasa. p.d., alors Bn'estpasa.p.d. ¢

Démonstration du lemme1.47. Si A ou B est fini, c’est clair. Supposons A et B infinis.

Soit f : B — N une bijection. La restriction g de f & A est une bijection entre A et
C = f(A).

C est infini, sinon A serait fini.

Le lemme précédent montre qu’il existe une bijection h : C' — N.

Il s’ensuit que h o g : A — N est une bijection. CQFD

1.48 Lemme. S'il existe une injection f de A vers N, alors A est a. p. d. La réci-
proque est vraie. o

Démonstration du lemme 1.48. A est en bijection avec B := f(A) < N.
Si B est fini, alors A ’est aussi.
Si B est infini, alors B est en bijection avec N (lemme 1.46), donc A 'est aussi.
Réciproquement, supposons A a. p. d. Si A est infini, alors A est en bijection avec N.
Si A est fini, alors on peut écrire A = {zy,..., 2z}, et la fonction A 5 z,, — n € Nest

injective. CQFD

1.49 Corollaire. ' Si A est infini et s’il existe une injection f de A vers N, alors A
est dénombrable. o

Démonstration du corollaire 1.49. Exercice! CQFD

1.50 Lemme. Si B est a. p. d. et s'il existe une injection f : A — B, alors A est a.
p-d. o

Démonstration du lemme1.50. L'ensemble C' := f(A) est une partie de B, donc (grace au

lemme 1.47) C est a. p. d.

A est en bijection avec C, donc A est a. p. d. CQFD

1.51 Théoréme (Théoréme de Cantor-Bernstein; cas particulier). S'il existe une
injection f : A — N et une injection g : N — A, alors A est dénombrable. o

Démonstration du théoréme 1.51. A est en bijection avec f(A) < N, donc A esta. p. d.
Par ailleurs, A n’est pas fini, car il contient la suite d’éléments distincts g(0), g(1), .. ..

Il s’ensuit (grace au corollaire 1.49) que A est dénombrable. CQFD

t. Corollaire : cas particulier ou conséquence immédiate d'un résultat déja montré.
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1.52 Remarque. L'énoncé intuitif du théoreme (général) de Cantor-Bernstein est le suivant :
Soient A, B deux ensembles tels que : (i) B a plus d’éléments que A; (ii) A a plus d’élé-
ments que B. Alors A et B ont autant d’éléments.

L’énoncé rigoureux est : Soient A, B deux ensembles tels qu’il existe f : A — B injec-
tiveet g : B — Ainjective. Alors il existe h : A — B bijective.

De maniére équivalente, sil existe f : A — B injective et k : A — B surjective, alors
il existe h : A — B bijective.

Voirhttps://fr.wikipedia.org/wiki/ThAl’ orAlme_de_Cantor-Bernstein.
(Notamment la preuve Konig du théoreme). o

1.53 Lemme. N2 est dénombrable. o

Démonstration du lemme1.53. N? est infini, car il contient la suite ((n,0)),cy, dont les élé-
ments sont distincts.

1l suffit donc de construire une application injective f : N> — N. (Le corollaire 1.49
permet alors de conclure.) Soit f : N2> — N, f(m,n) := 2™ 3". L'unicité de la décomposi-
tion d’un entier en facteurs premiers montre que f est injective. CQFD

Le résultat précédent implique qu’il existe une bijection entre N? et N. En voici
une explicite.

1
1.54 Exercice. Soit f : N> — N, f(m,n) := m ¢ n)(T;L rnrd

bijective. o

+ n. Montrer que f est

Les résultats suivants completent la preuve de la proposition 1.13.

1.55 Lemme. Un produit cartésien fini d’ensembles a. p. d. est a. p. d. o

Démonstration du lemme1.55. 11 suffit de montrer le résultat quand il y a deux facteurs; le cas
général s’obtient par récurrence sur le nombre de facteurs dans le produit.

Soient A1, A2 deux ensembles a. p. d. Du lemme 1.48, il existe f; : A; — N injective,
j =1,2.Soit g : N2 — N bijective (c¢f lemme 1.53). Alors
h: Ay x Ay — N, h(ay,az) := g(f(a1), f(az)), Va1 € A1, az € Aa,

est injective (vérifier!), d’ot1 la conclusion (grace au lemme 1.48). CQFD

1.56 Lemme. Une union a. p. d. d’ensembles a. p. d. est a. p. d. o

Démonstration du lemme1.56. Soient A,, n < [, avecl = N* U {0}, des ensembles a. p. d.

Posons By := Agpet,pour1 <n <, B, := An\(uz;(l)Ak). Alors les B,, sontd. d. d. et
UnBn = UnAn.

Comme A, est a. p. d. et B, < A,, 'ensemble B,, est a. p. d. (lemme 1.50). Nous
pouvons donc écrire B,, = {z]' ; i < l,}, avec l,, € N U {00}, d’ou tout élément de A :=

7 )
UnA, s’écrit de maniére unique z} pour unn € Net pour uni € N.
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L'application 4 3 27 > (n, i) € N? est donc injective.

Comme dans la preuve du lemme 1.55, il s’ensuit que A = U, A,, esta. p. d. CQFD
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Chapitre 2

Tribus, clans, classes monotones

2.0 Apercu

Rappelons que les clans, tribus, classes monotones sont des ensembles dont
les éléments sont eux-mémes des ensembles. Toute collection </ d’ensemble en-
gendre un clan, tribu ou classe monotone, au sens ot il existe une plus petite collec-
tion d’ensembles, contenant <7, et qui soit un clan, ou tribu, ou classe monotone
(section 2.1). Cette propriété est un parent d’autres propriétés du méme type : par
exemple, toute partie ' d'un espace vectoriel engendre un espace Vect (F).

Dans la section 2.2, nous montrons le premier résultat important de ce cours,
le théoreme de la classe monotone. Son importance est plutot théorique : le théoreme de
la classe monotone permet de montrer facilement qu'une propriété vraie (et, souvent,
évidente) pour une famille o/ d’ensembles, reste vraie pour la tribu engendrée par
</ . Deux applications fondamentales de ce théoréeme seront vues dans ce cours :
I"unicité de la mesure de Lebesgue (section 4.5) et les propriétés des coupes des
ensembles (section 8.1). Bien d’autres applications seront vues dans le cours de
probabilités.

Enfin, dans la section 2.3, nous introduisons la plus importante des tribus, la
tribu borélienne (du nom du mathématicien francais Emile Borel). Elle est engen-
drée par les ouverts d"un espace métrique.

Compétences minimales attendues.
a) Montrer qu'un ensemble appartient a un clan ot a une tribu.
b) Plus particulierement, montrer qu'un ensemble est borélien. o

2.1 Structures engendrées

« Engendré » est ici analogue a ce que nous avons rencontré avec d’autres
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structures : espace vectoriel engendré par une famille de vecteurs (contenus dans
un espace vectoriel), sous-groupe engendré par une partie d'un groupe, etc.

2.1 Proposition. Si o/ < Z(X), alors il existe un plus petit clan (ou tribu, ou
classe monotone) % contenant .7

En d’autres termes, il existe # tel que :

i) 4 soit un clan (ou tribu, ou classe monotone).
ii) & < A.
iii) Si Z est un clan (ou tribu, ou classe monotone) contenant <7, alors # < Z.

% est le clan (ou tribu, ou classe monotone) engendré par o/ et est noté respec-
tivement ¢ (&), 7 () ou M (). o

Comparons les trois structures engendrées par une famille ..

2.2 Proposition. Ona ¢ («) ¢ T (). o
2.3 Proposition. Ona .# () ¢ T (). 3
2.4 Proposition. Un clan ¢ qui est aussi une classe monotone est une tribu. ¢
Exercices

2.5 Exercice. Si (% );es est une famille telle que & < Z(X), Vi € I, et si chaque %
est un clan (ou tribu, ou classe monotone), alors ;797 est un clan (ou tribu, ou classe
monotone). o

2.6 Exercice. Si X := {1,2,3} et & := {{1}}, alors:

a) le clan (et la tribu) engendré par <7 est {F, X, {1},{2,3}};
b) la classe monotone engendrée par <7 est .<7. o

2.7 Exercice (Une source de contre-exemples). Soient X := Net o/ := {{n}; n € N}.
Montrer que :

a) 7(o)=2N);
b) ¢(«/) = {A < N; Afini ou A€ fini}.
c) M(A)=d.
d) En déduire que:
(i) Engénéral, 7 () # € (), T () # M () et C () # M ().
(ii) Si€ estunclanet(A,)y,>0 < €, alors en général U,>0A, ¢ € et Np>0An ¢ 6. ©
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Démonstrations

Démonstration de la proposition 2.1. Nous faisons la preuve pour les clans; preuve identique
dans les autres cas.

Soit # :={Z ;.9 < P et Z estun clan}.

La famille .# est non vide; elle contient & (X).

Sion pose % := Ngez Y, alors % est un clan contenant .« (voir l'exercice 2.5).

Par définition de .%, tout clan Z contenant &/ appartient a .7, donc (par définition de

A) contient A. CQFD

2.8 Remarque. C’est la méme preuve que celle qui donne 'existence du sous-espace
engendré par une partie d'un espace vectoriel, ou I’existence d'un sous-groupe engendré
par une partie d"un groupe, etc. o

Démonstration de la proposition 2.2. Avec .# comme ci-dessus et
G :={9; o < Jet P tribu},

nous avons .% D ¥, etdonc ¢ () = Ngeg? < Ngey? = T (). CQFD

Démonstration de la proposition 2.3. Preuve analogue a celle de la proposition 2.2, en rempla-
¢ant « clan » par « classe monotone ». CQFD

Démonstration de la proposition 2.4. Nous devons montrer que, si (A, )n>0 < €, alors Up=0A,
€%.

Soit B, := u}_,Ak, Vn. Nous avons B, / UpAy et B, € ¢,V n (car ¢ est un clan).

& étant une classe monotone, nous trouvons U, Ay = U, B, € €. CQFD

2.2 Théoréme de la classe monotone

Cette section est consacrée a la preuve du premier résultat important que nous
rencontrons :

2.9 Théoreme (Théoreme de la classe monotone). € clan =— #Z (%) =

T(€).

Ou encore : la classe monotone engendrée par un clan est la tribu engen-
drée par le clan.

En particulier, toute classe monotone qui contient 4" contient également
T(€).

2.10 Remarque. Voir la remarque 1.26! o

35



Tribus, clans, classes monotones 2.2 Théoréme de la classe monotone

2.11 Remarque. Concretement, le théoreme de la classe monotone est utilisé pour établir
«pour pas cher » que, pour une propriété (P) et une tribu .7, nous avons

Ae T = A satisfait (P). (2.1)

Le schéma « abstrait » est le suivant. Si :
i) € estun clan qui engendre .7, c’est-a-dire tel que .7 (%) = 7.
ii) (P) est vraie pour tout A € €.
iii) {A c X ; A satisfait (P)} est un classe monotone,
alors nous avons (2.1).

Ce schéma est intéressant notamment lorsque la propriété ii) est évidente; ceci est par
exemple le cas dans la preuve des propositions 4.24 et 8.8. o

Exercices

2.12 Exercice.
a) Si/ < B,alors € (o) < €(B), # () M(B)et T ()< T(B).
b) Nous avons ¢ (¢ («)) = € ().
Propriété analogue pour la classe monotone et la tribu engendrées. o

Démonstrations

Démonstration du théoréme 2.9. Au vu de la proposition 2.3, il suffit de montrer que (*) .# :=
M (€) contient .7 (¥).

Par définition de la tribu engendrée, (*) est vraie si .# est une tribu. Pour mon-
trer que .# est une tribu, il suffit de montrer que (**) .# est un clan, car « clan+classe
monotone==tribu » (proposition 2.4). Ainsi, le théoréme 2.9 est ramené a la propriété
suivante, que nous allons prouver dans ce qui suit : la classe monotone engendrée par un
clan est un clan.

Posons, pour A ¢ X fixé, #4 := {B e .# ; Au B e #}. Alors .44 est une classe
monotone. En effet, soit (B,,), < .#4 une suite croissante. Alors A U U, B, = U,(A U
By,) € #, car la suite (A U B,), < . est croissante. De méme, si (B,,), < .#4 est une
suite décroissante, alors A U N, B, = N, (AU B,) € 4.

Si A e €, alors #4 o ¢ et donc, de ce qui précede, .#Z4 est une classe monotone
qui contient . Il s’ensuit que .#4 > .# (justifier). Comme, par ailleurs, .#4 < .#, nous
avons 4 = # . Autrement dit, 'union d’un élément de ¥ et d’un élément de .# est un
élément de ./ .

Par conséquent, si A € .#, alors .#4 > ¢ .1l s’ensuit que .#4 = .#. Donc, (***) si
A, Be . #,alors Au Be . Z.

Enfin, soit A" := {A € .4 ; A € .#}. Alors ./ est une classe monotone. En effet, si
(Bn)n < A est une suite croissante, alors (U, By)¢ = N, BS € A, car (B,), < A estune
suite décroissante. Il s’ensuit que v, B, € .A4".
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De méme, si (By,),, < -4 est une suite décroissante, alors N, B,, € 4.

Donc 4 est en effet une classe monotone. Comme .4 contient ¢, nous trouvons
N = . Autrement dit, (****)si A e .#,alors A° e .#.

(**) découle de (***), de (****) et de I'observation que J € .# (car J € F). CQFD

2.3 La tribu borélienne

Dans cette section, nous définissons la tribu la plus importante pour les appli-
cations : la tribu borélienne.

Soit (X, d) un espace métrique.”

2.13 Définition (Tribu borélienne). La tribu borélienne #x sur X est la tribu
engendrée par les ouverts de X.

Ou encore : Bx := 7 ({U ; U ouvert de X}).

Si on désigne par 7 la topologie de X (=l'ensemble des ouverts de X),
alors Bx = 7 (7).

Les ensembles de cette tribu sont les boréliens de X .

2.14 Remarque. Donné X, la question « A est-il un borélien? » n’a pas de sens, car la
tribu borélienne dépend de la distance sur X. C’est la situation rencontrée en topologie a
propos de la question « A est-il un ouvert? ».

Néanmoins, il y a un abus fréquent de langage : « A — R" est borélien » sous-entend
que R™ est muni d'une norme. o
2.15 Remarque. Il est souvent utile d’avoir un systeme de générateurs d’une tribu .7, c’est-
a-dire une famille </ (simple a décrire) telle que 7 (&) = 7.

Une telle famille permet de mettre en ceuvre un mécanisme similaire a celui de la
remarque 2.11. Si:

i) (o) =27.
ii) (P) est vraie pour tout A € &/.
iii) {A < X ; A satisfait (P)} est une tribu,

alors

Ae T = A satisfait (P). o

La proposition suivante donne quelques systemes importants de générateurs.

t. Plus généralement, nous pouvons considérer, au lieu d'un espace métrique, un espace to-
pologique (X, 7). Néanmoins, pour les applications usuelles en théorie de 'intégration, le cadre
des espaces métriques est suffisant.
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2.16 Proposition.

a) Hx estla tribu engendrée par les fermés de X.
b) g est la tribu engendrée par :

(i) les intervalles de R

ou
(ii) les intervalles de la forme |a, o0].

c) PBrn est engendrée par les pavés ouverts de R", c’est-a-dire les ensembles P
de la forme P = I; x I, x --- x I, avec I; intervalle ouvert, V j.

2.17 Remarque (Les ensembles « usuels » sont boréliens). Si on munit R” d’une norme,
il existe des parties de R™ qui ne sont pas boréliennes (un exemple, assez difficile, sera
examiné dans le chapitre 4).

Ce qu'il faut retenir est que tous les ensembles ne sont pas nécessairement boréliens.
En revanche, tous les ensembles « usuels » sont boréliens. o

Exercices

2.18 Exercice. On munit R de la métrique usuelle. Les intervalles, les fermés et les ouverts
(de R) sont boréliens. o

2.19 Exercice. Soit (X, d) un espace métrique. Soit Y < X, muni de la métrique induite
par X. Montrer que #y = {BnY ; Be %Bx}.

De maniere équivalente, %y coincide avec la tribu induite par Zx sur Y. o

2.20 Exercice. Soient (X, d), (Y, ) deux espaces métriques. Soit ® : X — Y un homéomor-
phisme.t Si A = X, alors A € B si et seulement si ®(A) € By

Symétriquement, si B c Y, alors B € Py si et seulement si ~1(B) e Bx.

Si nous supposons uniquement ® continue, alors nous avons B € By = & }(B) e
P . o

2.21 Exercice.

a) Soient A € HBrn et B € Brm. Montrer que A x B € Brn+m.

b) Plus généralement, si (X, d) et (Y, J) sont des espaces métriques et si nous munissons
X x Y d’une métrique produit, alors Bx x By < Bxxy. o

2.22 Remarque. Nous reprenons le cadre et la conclusion de l'exercice 2.21. Si (X, d) et
(Y, d) sont des espaces métriques et si nous munissons X x Y d’une métrique produit,
alors Bx x By < Bxy.Dans des situations usuelles, nous avons 'égalité Bx x By =
Bx xy (voir I'exercice de synthese # 19, partie II f)). Néanmoins, en général, cette inclusion
est stricte (pathologie de Nedoma [18]). Voici (sans preuve) un exemple : si X = Y =

1. Un homéomorphisme est une application ® : X — Y, avec X, Y espaces métriques (ou
topologiques), continue, bijective, et avec ! continue.
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L s

Z(R), muni de la métrique discrete d(z,y) := O’ S% v y’ alors la diagonale A, :=
, siz =y

{(z,z); x € X} appartient & Bxgx, mais pas a Bx @ HBx. o

Démonstrations

Dans la preuve de la proposition 2.16, nous utiliserons les deux faits suivants.

2.23 Rappels.

a) Tout ouvert de R est une union a. p. d. d’intervalles ouverts d. d. d.

b) Si on munit R" d"une norme, tout point de R" est la limite d"une suite de points ayant
toutes les coordonnées rationnelles. o

Démonstration de la proposition 2.16. Notons, dans chaque cas, 7 I'ensemble des ouverts, et ./
I'ensemble des parties de X données par 1'énoncé (fermés, intervalles, etc).

Dans chaque cas, nous avons &/ < %Ay, etdonc I () < T (#x) = PBx.ll reste donc
a montrer l'inclusion inverse .7 (&) > %x.

Pour cela, il suffit de montrer que 7 < .7 (), car si tel est le cas alors nous avons
Bx = T (1) c T(T()) = T(&). En conclusion, il suffit de montrer que U € .7 (&)
pour tout ouvert U.

Soit U un ouvert.
a) Nousavons U¢ e &7, d'ouU = (U € T ().
b) (i) U estune union a. p. d. d’intervalles ouverts I; (voir le rappel 2.23 a)).

Comme chaque I; est dans <7, nous avons U € .7 («/).

(ii) De ce qui précede, il suffit de montrer que tout intervalle ouvert I =]a, b[ est
dans .7 ().

SiaeRetb= oo, cestclair.

Si I =R, nousavons I = Upen| — n,0[e T ().

Il reste le cas b € R.

Pour tout ¢ € R, nous avons |a, c|] =]a, o0[n]c, 0[€ T ().
Il s’ensuit que |a, b[= Upen+]a,b—1/n] € T ().

c) Les ouverts de R", donc la tribu borélienne, ne dépendent pas de la norme choisie.
Nous prenons comme norme ||| o.

Soit € := {B(x,r) ; x € Q",r € Q}. Alors € < 4/ et € est a. p. d. (En effet, la
fonction B(z,r) — (x,r) € Q" x Q est injective et Q" x Q est dénombrable.) Il suffit
donc de montrer que U est I'union d"une famille de boules de ¢’; cette union sera
automatiquement a. p. d.

Posons & := {B(x,r) € ¢ ; B(x,r) < U}. Nous allons montrer I'égalité

UB(:c,r)EQB(xvr) =U. (22)
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Dans (2.2), I'inclusion « c » est claire.

Montrons, dans (2.2), « © ». Soit y € U. Nous allons trouver une boule B(z, r) telle que
B(z,r)e P ety e B(x,r).

Il existe un R > 0 tel que B(y, R) < U. Quitte a diminuer R, nous pouvons supposer
ReqQ.

Soit x € Q" tel que ||z — Y| < 7 := R/2. (L'existence de y découle du rappel 2.23
b).) On vérifie aisément que y € B(z,r) et B(z,r) < B(y,R); d'ou B(z,r) < U.
Finalement, nous avons bien B(z,r) € Y ety € B(z,r). CQFD
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Chapitre 3

Fonctions mesurables

3.0 Apercu

La topologie travaille avec des ensembles, dont les plus importants sont les
ouverts, et des fonctions, dont les plus importantes sont les fonctions continues.
Nous avons rencontré, dans le chapitre précédent, des analogues des ouverts en
théorie de la mesure : il s’agit, dans un cas particulier, de boréliens, et dans le cas
général d’ensembles mesurables, c’est-a-dire les éléments d"une tribu.

Dans ce chapitre, nous définissons les analogues des fonctions continues, qui
sont les fonctions mesurables. Au vu de la définition d’une fonction continue,
une définition naturelle serait

f : X — R est mesurable
- a0 (3.1)
< f7(B) est mesurable, V B — R borélienne.

La propriété (3.1) apparait en effet dans de nombreux textes, notamment
en théorie des probabilités, comme définition d’une fonction mesurable. Pour
des raisons de déroulement naturel des preuves, nous ne partirons pas de
cette définition, mais d’une définition équivalente (la définition 3.3 ci-dessous),’
et (3.1) n’est plus la définition, mais une caractérisation des fonctions mesu-
rables.

Comme pour les fonctions continues, les opérations usuelles (somme, pro-
duit, etc.) transforment les fonctions mesurables en fonctions mesurables; ceci
sera prouvé dans les sections 3.2 et 3.3. Nous apprendrons au passage un slogan

t. Une raison plus profonde que le déroulement des preuves, raison qui dépasse largement le
cadre de ce cours, de préférer la définition 3.3 a la définition (3.1) est que, pour des fonctions a4
valeurs vectorielles, (3.1) et la définition 3.3 ne sont plus équivalentes. Dans ce cadre, la « bonne »
définition est 3.3.
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tres important : borélien o mesurable = mesurable, qui est le pendant de continu o
continu = continu.

Une propriété qui distingue les fonctions mesurables des fonctions continues
est qu'une limite simple de fonctions mesurables est mesurable; rappelons qu’en
général ceci est faux pour les fonctions continues.

Compétences minimales attendues.

a) Vérifier qu’une fonction concrete est mesurable, en particulier via 1’exercice
3.18.

b) Utiliser les fonctions mesurables pour montrer que des ensembles sont mesu-
rables. o

3.1 Définition. Caractérisation

Dans cette section, nous définissons les fonctions mesurables et donnons des
caractérisations (qui peuvent étre vues comme des définitions alternatives) de
celles-ci. Le point de départ est celui des fonctions étagées.

3.1 Notations.
a) Sif: X »>YetBcY,alors f1(B):={re X; f(z) e B}.

b) Pour alléger I'écriture, si B := {y}, nous écrivons f~1(y) au lieu de f~!({y}). Ainsi,

fHy) ={ze X; f(z) =y} o

3.2 Définition (Fonction étagée). Une fonction étagée est une fonction f : X —
R dela forme f = > a;xa,, ol :

i) La somme a un nombre fini de termes.

ii) a; e R, Vi.
iii) A; e 7, Vi.

3.3 Définition (Fonction mesurable). Une fonction f : X — R est mesurable s'il
existe une suite (f,,), de fonctions étagées telle que f, — f simplement.

Dans le cas particulier ot (XX, d) est un espace métrique et .7 est la tribu
borélienne, f est une fonction borélienne.

Dans le cas particulier de 1’'espace (R",.7,), f est une fonction Lebesgue
mesurable. T

3.4 Remarque.

t. &, estla tribu de Lebesgue, qui sera introduite dans la définition 4.36.
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a) La question « f est-elle mesurable? » n’a pas de sens si .7 n’est pas précisée; la ré-
ponse dépend de .7. Voir la remarque 1.20.

b) Dans le cas particulier ot X < R", sauf spécification contraire, la tribu considérée est
la tribu borélienne induite par %y~ sur X, c’est-a-dire Zx = {Bn X ; B € HBgn} (voir
’exercice 2.19). Donc lorsque X < R", « mesurable = borélien ». o

Comme expliqué dans I’aperqu, les fonctions mesurables peuvent étre décrites
en termes d’images réciproques.

3.5 Théoreme (Caractérisation des fonctions mesurables). f : X — R est
mesurable si et seulement si les trois conditions suivantes sont satisfaites :

i) f (o) e 7.
i) f~}(—w)e 7.
iii) f~'(B) € J pour tout B € By.

3.6 Remarque. Supposons f : X — R (c’est-a-dire, f ne prend pas les valeurs +o0). Dans
ce cas, la condition de mesurabilité devient f *1(B) € I,V B € $p. Cette condition est
précisément a (3.1). Donc, comme annoncé dans 1'introduction, pour des fonctions finies
(3.1) est une caractérisation de la mesurabilité. o

La preuve du théoreme 3.5 (mais pas son énoncé) mene a la conclusion sui-
vante.

3.7 Corollaire. Toute fonction mesurable positive est la limite d'une suite
croissante de fonctions étagées positives.

Voici une autre caractérisation des fonctions mesurables, plus utilisée dans la
pratique que le théoréme 3.5. Son énoncé est a mettre en rapport avec les systemes
de générateurs (remarque 2.15 et propriété 2.16).

3.8 Proposition. f : X — R est mesurable si et seulement si nous avons

{reX; f(z)>a} = f'(Ja,»]) € 7 pourtouta e R.

En particulier, f : X — R est mesurable si et seulement si nous avons

f*(Ja,c[) € 7 pour tout a € R. o

Le résultat suivant est un théoreme-définition : si f : X — R”, nous pouvons
prendre chacune des propriétés équivalentes 1 et 2 comme définition de la me-
surabilité. A mettre en parallele avec I'équivalence (avec cette fois-ci X espace
métrique)

f=(f,...,fn): X > R" continue < f; continue, Vi € [1, n].
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3.9 Théoreme. Soit f = (fi, fo,..., fn) : X — R™. Les propriétés suivantes sont
équivalentes.

1. Chaque f; est mesurable, i € [1,n].
2. Pour tout B € %gn, f1(B) e 7.

Sil'une de ces deux conditions est satisfaite, f est appelée mesurable.

Cas particulier: f : X — C estmesurable<— Re f et Im f sont mesurables. <

Les fonctions ne sont pas toujours définies sur 1’espace entier X, mais unique-
ment sur une partie A de celui-ci. Nous définissons ici la notion de mesurabilité
dans ce cas. Ce n’est pas la seule définition possible ; une autre définition, qui n’est
pas équivalente a celle-ci, est suggérée dans la remarque 3.12.

3.10 Définition. Si A c X etsi f : A — R, alors f est mesurable si et seulement si :

i) A est mesurable.
ii) f étendue par la valeur 0 sur A° est mesurable.

Méme définitionsi f : A — R 7
(Reformulation de l'item ii) : la fonction y 4 f, définie sur X a valeurs dans R
ou R", est mesurable.) o

L’énoncé qui suit est I’analogue des théoremes 3.5 et 3.9 et de la proposition
3.8 pour des fonctions définies uniquement sur A < X.
3.11 Proposition. Soit A — X mesurable.

a) f: A — R est mesurable si et seulement si les trois conditions suivantes sont
satisfaites :

i) f7(0)e 7.
ii) f~i(~w)e 7.
iii) f~'(B) € J pour tout B € By.

b) Une autre caractérisation : f : A — R est mesurable si et seulement si
f*(Ja, o)) e T, VaeR.

c) f: A— R"est mesurable si et seulementsi f~'(B) € 7,V B € HBgn. o

3.12 Remarque. En utilisant la proposition 3.11, nous pouvons déduire facilement que la
mesurabilité de f (au sens de la définition 3.10) est équivalente a: f : A — R (ou R") est
mesurable par rapport a la tribu induite 74 = {Bn A; Be J}.

Cette équivalence n’est vraie que si A est mesurable. o

t. Si f est a valeurs dans R, alors 0 est le nombre réel 0. Si f est a valeurs dans R", alors 0 est

le vecteur Ogn.
_ dans A
1. Rappelons que,si f : A — R, alors fx4 := {g: dZEZ s
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Exercices
3.13 Exercice. Soit f : X — R une fonction étagée. Montrer que f~1(B) e 7,YBcR. o

3.14 Exercice. Soient f, g : X — R fonction étagées et A € R. Montrer que f + g et A\f sont
étagées. o

L’exercice qui suit explique pourquoi dans la propriété (3.1) on pourrait étre
moins exigeants et considérer uniquement des ouverts.

3.15 Exercice. Soit f : X — R. Montrer que

fYB)e 7,YBe By «— fYU)e 7,VYU < Rouvert. o

L'exercice qui suit sera utilisé dans la preuve du théoréme 3.5.
3.16 Exercice. Soit (z,,), < R une suite ayant une limite. Nous avons

limz, >aeR <= 3keN*" ImeNtelsquez, >a+1/k, Vn=m. o
n

3.17 Exercice. Soit A — X. Alors x 4 est mesurable si et seulement si A ’est. o

L’exercice qui suit est fondamental (notamment l'item f)). Il offre une boite a
outils efficace pour montrer qu’un fonction est mesurable. '

3.18 Exercice. Soit (X, d) un espace métrique.
a) Soient A € #Bx et f : A — R continue. Alors f est borélienne.

En particulier, toute fonction continue f : X — R est borélienne.

b) Plus généralement, si f est continue en dehors d’une partie finie de X, alors f est
borélienne.

¢) Encore plus généralement. Soient Ay, As, ..., boréliens d. d. d. tels que X = L, Ay.
Pour chaque Ay, soit f;, : A, — R une fonction continue. Soit f : X — R définie par
f(x) := fr(z) siz € Ag. Alors f est borélienne.

d) De méme si, dans le point précédent, on remplace « fj continue » par « fj, borélienne »
(voir également le point f)).

e) De méme pour des fonctions a valeurs dans R".

f) Soit (X,.7) un espace mesurable. Soient A;, As, ..., mesurables d. d. d. tels que X =
L Ag. Pour chaque Ay, soit f : Ay — R une fonction mesurable. Soit f : X — R
définie par f(z) := fix(z) si x € A. Alors f est mesurable.

g) Montrer que les items a)—e) sont des cas particuliers de l'item f). o

t. Dans le cas particulier ot X est un espace métrique, cet exercice permet donc de montrer
qu’une fonction est borélienne.
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Démonstrations

Le résultat qui suit sera utilisé dans la preuve du théoreme 3.5; il sera utile
dans d’autres circonstances.

3.19 Proposition. Soit f : X — Y etsoit <7 une famille de partiesde Y. Si f~!(A) €
T pour tout A € o7, alors f~!(A) € F pour tout A € T (). o

Démonstration de la proposition 3.19. Soit 2 := {Ac Y ; f~1(A) e T}.

Nous avons 2 S /. Par ailleurs, Z est une tribu. En effet, si (4,,), < 2, alors
FHUnAy) = unf~Y(Ay) € T ; vérification analogue des autres propriétés de la tribu.

Il s’ensuit que ¥ > 7 (). CQFD
Démonstration du théoréme 3.5 .
«==» Soit ( f,) une suite de fonctions étagées telle que f,, — f.

Soient a € R, n € N. Posons A, 4 := (f) " !(Ja, 00[), qui appartient a .7 (exercice 3.13).

Nous avons (en utilisant I’exercice 3.16)

f(z) > a<= 3 keN* ImeNtels que f,(z) > a+ 1/k pour n > m.

En d’autres termes,
f(x)>a<==3keN" ImeNtelsquez € Np>mAy, i1k
<= T € UkeN* UmeN NnzmAnari/k € T
(justifier 'appartenance a .7).

Donc
f_l(]a> OO]) = {SL’ eX ; f(JL') > a} = UkeN* UmeN ngmAn,a-‘rl/k € ya VaeR.

Il s’ensuit que f~1(00) = N, f~1(]n, ]) € 7.
Par conséquent, f~(Ja,0[) = f~1(Ja,0])\f 1 (x0) e 7.

La proposition 3.19 combinée avec la partie b) ii) de la proposition 2.16 montre que
fYB)e 7,V B e %.

Enfin, f~!(—w0) = X\(f"}Y(R) u f~}(w0)) € 7.
_on s f(z) < —2n

«<=»Soit,pourn € N, f,(z) := < 2", si f(x) =27 ;ici, k est un entier

kj2n, sik/2™ < f(x) < (k+1)/2"
relatif compris entre —4" et 4" — 1.

Formule équivalente pour f : si nous posons
An = fTH([=00,=2"]), B = (2", 0]) et G := F7H([K/2", (k +1)/2"]),
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alors
a1y
k=—4n
Chaque f, est une fonction étagée (vérifier) et nous avons f,, — f (vérifier). CQFD

Démonstration du corollaire 3.7. Dans le cas particulier ol f est positive, la suite ( f,,), construite,
dans la preuve du théoréme 3.5, pour montrer I'implication « <= », est croissante. cqQrp

Démonstration de la proposition 3.8.
« == » Implication vue dans la preuve du théoreme 3.5.

« <==» Nous avons f~1(®) = nuenf1(]n, ®]) € 7.
1l s’ensuit que f~1(Ja,[) = f~!(Ja,0])\f"!(w0) € F, Va € R. La proposition 3.19
combinée avec la partie b) ii) de la proposition 2.16 implique f~1(B) € 7,V B € %g.
Enfin, f~1(—o0) = X\(f1(R) U f~1(w0)) e 7. CQFD

Démonstration du théoréme 3.9.
«1.=2.»Si I, Is,...,I, sont des intervalles ouverts, alors (f;)~(I;) € 7.

lls’ensuitque f~1(Iy x Iy x ... x I,,) = n(fi) "' (L;) € 7.
La proposition 3.19 combinée avec la partie c) de la proposition 2.16 montre que
f~Y(B)e 7,V B e PByn.

«2=1.»Si I =]a, o[, alors (f;)"*(I) = fY (R x I x R*" V) e T. CQFD

Démonstration de la proposition 3.11.
a) «=>»
i) Posons g := fxa. Nous avons (*) f~1(w) = g~ }(0) e 7.
ii) Méme raisonnement que pour i).
iii) 1 suffit de noter que f~1(B) = ¢g7'(B) n A,V B € %g.
« <= » De (*), nous avons g~ (w) € .7 ; de méme, g~} (—o) € J.
Si B € %, alors : soit 0 ¢ B, etalors g~1(B) = f~1(B) € 7, s0it 0 € B, et dans ce cas
g YB)=fYB)uAce 7.
Les conditions i)-iii) du théoreme 3.5 sont donc satisfaites par g; il s’ensuit que g est
mesurable, donc (définition 3.10) f 1’est également.
b) Il suffit de répéter la preuve de la proposition 3.8.

¢) Nous pouvons reprendre les arguments de I'item a) :
«==»Si B € %Bgn,alors f1(B) =g ' (B)nAe J.
«<==»Si B € %gn, alors : soit 0 ¢ B, etalors g~ (B) = f~1(B) € 7,s0it0 € B, et
danscecas g }(B) = f}{(B)u A°e 7. CQFD
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3.2 Opérations avec les fonctions mesurables

Dans cette section et la suivante, nous décrivons plusieurs mécanismes qui
permettent de construire des fonctions mesurables a partir de fonctions mesu-
rables. Par exemple, comme pour les fonctions continues, un produit de fonctions
mesurables est une fonction mesurable.

Nous travaillons dans un espace mesurable (X, .7).

3.20 Proposition. Une limite simple de fonctions mesurables est une fonction
mesurable.

3.21 Proposition. Si g : R" — R* est borélienne et si f : X — R" est mesurable,
alors go f : X — R¥ est mesurable.

f Rn g9 Rk — X fog ]Rk ;

mesurable borélienne mesurable

3.22 Remarque. A retenir sous la forme : borélienne o mesurable = mesurable. o

Le plus souvent, la proposition 3.21 est utilisée avec g continue, cas particulier
couvert par le corollaire suivant.

3.23 Corollaire. Si g : R” — R* est continue et si f : X — R" est mesurable,
alors go f : X — R¥ est mesurable.

Avant de démontrer qu'une somme ou produit de fonctions mesurables est
une fonction mesurable (proposition 3.25), revenons sur les opérations faisant
intervenir +o0.

3.24 Convention. En théorie de la mesure et de l'intégration, nous adoptons la convention
suivante : 0 - (+0) = (£00) -0 = 0.

En particulier, si f,g: X — R, alors le produit fg est défini en tout point.

Néanmoins, les sommes o0+ (—20) et —o0+ 00 ne sont toujours pas définies. La somme
f + g est définie uniquement dans le complémentaire de l'ensemble

{xeX; f(z)=twetg(x) =—f(x)}. o

3.25 Proposition.

a) Si f,g : X — R sont mesurables, alors fg et (si cela a un sens) f + ¢ sont
mesurables.

(On peut définir f + g s’il n’y a pas de point z € X tel que f(z) = +oo et
g(x) = —f(2).)

De méme pour f — g.
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b) Si A € R, alors \f est mesurable.

Exercices

1/x, sixz#0

3.26 Exercice. Soitg: R — R, g(z) := . .
0, siz=0

a) Montrer que g est borélienne.

b) En déduire que, si f : X — R est mesurable et f # 0, alors 1/f est mesurable.

c) Montrer que, si f : X — R est mesurable et f # 0, alors 1/f est mesurable. o

Démonstrations

Démonstration de la proposition 3.20. 1l suffit de copier la preuve du théoreme 3.5 « = ».
Cette fois-ci, la mesurabilité des A,, , est donnée non pas par le fait que les f,, sont étagées,
mais par le théoreme 3.5. CQFD

Démonstration de la proposition 3.21. Si B € Py, alors (go f)"1(B) = f1(¢7Y(B)) € 7, car
91 (B) € Bgn. CQFD

Démonstration de la proposition 3.25.

a) f + g est mesurable. Supposons que f + g ait un sens.

Si fi, gn sont des fonctions étagées telles que f, — f, g, — g, alors f, + g, est étagée
(exercice 3.14) et f, + gn — [ + g.

Preuve similaire pour f — g.
fa(x), sif(x)#0

0, si f(z)=0
tion équivalente : si A := f~1(0), alors F,, = f,xAc-

fg est mesurable. Soit F,,(z) := { ; on définit de méme G,,. Défini-

La fonction F,, est étagée et nous avons F,, — f (vérifier). La fonction F;,G,, est étagée
(exercice 3.14) et F,,G,, — fg (vérifier).

b) Nous avons Af, — Af.

Dans tous les cas, nous concluons gréce a la proposition 3.20. CQFD

3.27 Remarque. Si f,g : X — R, nous pouvons raisonner différemment. Nous avons
f+g=2®(fg),avec ®(z,y) := z +v. (f,g) : X — R? est mesurable, car chacune des
ses coordonnées l'est (théoreme 3.9). ® étant continue (donc borélienne), la proposition
3.21 permet de conclure. De méme pour fg. Voir la remarque 3.35 pour un raisonnement
similaire. o
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3.3 Autres opérations

Dans cette partie, nous travaillons dans un espace mesurable (X, .7). Toutes
les fonctions considérées sont définies sur X a valeurs dans R et sont supposées
mesurables.

3.28 Proposition. max (f, g) et min (f, g) sont mesurables. o
3.29 Corollaire. max (fo, ..., f,) et min (fy, ..., f,) sont mesurables. o
3.30 Notations.

a) Site R, ty := {f): zii i 3 est la partie positive de t, et t_ := {(it, zii i 8 est la

partie négative de t.

f(z), sif(x)=0

est la partie positive de f, et f_ =
0, sif(z) <o APAHEP fretf

b) Si f est une fonction, f,(x) := {

0 s% J(x)=0 est la partie négative de f. o
—f(x), sif(z)<0
3.31 Corollaire. f,, f_ et|f| sont mesurables. o
3.32 Proposition. sup,, f, et inf,, f,, sont mesurables. o

3.33 Proposition. liminf, f, etlimsup,, f, sont mesurables.

3.34 Proposition. Soit
A= {z € X ; lasuite (f,(z)), a une limite dans R}.

Nous avons les propriétés suivantes :
a) A est mesurable.
b) Sinous posons, pour x € A, f(z) := lim, f,(z), alors f : A — R est mesurable.

lim, f,(z), silim f,(z) existe

c) Soit I : X — R, définie par F(z) := { . Alors F

0, sinon
est mesurable. o

Démonstrations

Démonstration de la proposition 3.28. Nous considérons deux suites, (f,)n et (gn)n, de fonc-
tions étagées, avec f, — f, g» — ¢. Nous avons h,, — max (f,g) et k, — min (f,g), out
hy := max (fy, gn) et ky := min (f,,, g,); vérifier, en utilisant les formules

a+b+la—0b .

> , min(a, b) = LM.

b) —
max(a, b) 5

(3.2)

Au vu de la proposition 3.20, il suffit donc de montrer que h,, et k,, sont mesurables,
ce qui découle de (3.2). CQFD
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3.35 Remarque. Si f,g : X — R, nous pouvons raisonner différemment. Nous avons
max (f,g) = ®(f,g), avec ®(z,y) := max (z,y). (f,g) : X — R? est mesurable, car cha-
cune des ses coordonnées 1’est (théoreme 3.9). ® est continue (donc borélienne); ceci dé-
coule de (3.2). La proposition 3.21 permet de conclure. De méme pour min (f, g). Voir
aussi la remarque 3.27. o

Démonstration du corollaire 3.29. Par récurrence, via la proposition 3.28 (vérifier!). CQFD

Démonstration du corollaire 3.31. Nous avons f. = max(f,0), f- = fy — fet|f| = f+ + f-

(vérifier). Nous concluons grace aux propositions 3.28 et 3.25. CQFD
Démonstration de la proposition 3.32. Nous avons sup,, f, = lim, o max(fo,..., f,), donc la
fonction sup,, f,, est limite d’une suite de fonctions mesurables. Preuve similaire pour
inf. CQFD

Démonstration de la proposition 3.33. Considérons la lim inf ; preuve similaire pour la lim sup.

Soit g, := inf,,>, fm, qui est mesurable. Il suffit alors de se rappeler que lim inf,, f,, =
lim,,— gn, et d’appliquer la proposition 3.32. CQFD

Démonstration de la proposition 3.34. Soient g := liminf,, f,,, h := limsup,, f,, toutes les deux
mesurables.

Posons B := g~ !(0), C := h™'(—=®), k := (h — g)X(Buc)e, qui sont mesurables (véri-
fier).
a) Nousavons A = k71(0) U B U C (justifier) et donc A € 7.

b) et c) Sur A, nous avons f = g, et donc F' = fxa = gxa, la derniere fonction étant
mesurable. Il s’ensuit que f et F' le sont (voir la définition 3.10). CQFD
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Chapitre 4

Mesures

4.0 Apercu

L’objet d’étude de ce chapitre est la mesure. Dans la section 4.1, nous en établis-
sons quelques propriétés simples, mais fondamentales (monotonie, sous-additivité,
etc.).

Les sections 4.2 et 4.3 sont dédiées aux ensembles qui sont suffisamment « pe-
tits » pour qu’ils soient « oubliés » dans les calculs : il s’agit d’ensembles négli-
geables, qui en théorie de la mesure et de l'intégration sont comme leur nom l'in-
dique. A 'opposé du négligeable, nous avons la notion de presque partout.

A partir de la section 4.4, nous nous intéressons a des mesures particuliéres :
finies, o-finies, de Radon. Comme dans d’autres circonstances, plus les définitions
sont contraignantes, plus les objets ont des propriétés intéressantes. ¥ En particu-
lier, nous verrons que pour une mesure de Radon, la mesure des ouverts déter-
mine la mesure de tous les autres boréliens (corollaire 4.27).

Dans la section 4.5, nous définissons la (célebre) mesure de Lebesgue dans R™,
en donnant quelques-unes de ses propriétés. Sa construction dans R, * qui est hors
programme mais tres instructive, fera 1'objet du chapitre 5. Curieusement, sa
construction dans R", n > 2, est bien plus facile (corollaire 8.11 dans la section
8.2)... a condition d’admettre 1'existence de la mesure de Lebesgue dans R.

A défaut de pouvoir montrer son existence, nous montrerons l'unicité de la
mesure de Lebesgue (proposition 4.38).

La section 4.6 releve de la culture générale. Dans la section 4.6.1, nous donnons
un apercu de la nécessité des axiomes qui définissent la mesure de Lebesgue, ce

1. Un espace euclidien a plus de propriétés remarquables qu'un espace normé, et un espace
normé en a plus qu'un espace vectoriel.
1. Autrement dit, la preuve de son existence.
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qui est quelque peu marginal en théorie de la mesure, mais a intéressé de grands
mathématiciens dans la premiére moitié du 20%siecle... et fait réver (paradoxe de
Banach-Tarski, théoreme 4.43).

Bien plus important (en particulier pour la théorie des probabilités) est le su-
jet abordé dans la section 4.6.2 : la convergence des suites de fonctions. En par-
ticulier, le théoréme d’Egoroff (Egorov) 4.46 fait un lien inattendu entre convergence
simple et convergence uniforme.*

Compétences minimales attendues.

a) Utiliser les propriétés générales des mesures (propositions 4.1 et 4.2).
b) Reconnaitre et utiliser les ensembles négligeables.

c) Connaitre et utiliser les propriétés de la mesure de Lebesgue, notamment dans
R. o

4.1 Propriétés générales

Dans cette partie, (X, .7, 1) est un espace mesuré, et toutes les parties de X
considérées (A, B, A;,...) appartiennent a .7 .

Toutes les propriétés démontrées restent valables si on a une mesure sur un
clan, a condition que les unions et intersections considérées soient encore dans le
clan.

4.1 Proposition. Nous avons

a) Si A < B, alors u(A) < u(B). (Cest la propriété de monotonie de y.)
Si, de plus, u(B) < o, alors u(A) = p(B) — u(B\A) et p(B\A) = u(B) —
p(A).

b) u(Ag U ... U Ay) < F_ u(A,). Siles A, sont d. d. d., alors I'inégalité
devient égalité. Cette derniere propriété est 1'additivité de s.

o) p(UP A,) < 37 w(Ay). Clest la propriété de sous-additivité de p.

d) u(Au B)+ pu(An B) = u(A) + p(B). En particulier, si (A n B) < oo, alors
u(A v B) = u(A) + p(B) — w(A n B).

4.2 Proposition. Nous avons

a) (Théoreme de la suite croissante). Si A,, " A, alors u(A,) — u(A).
b) (Théoreme de la suite décroissante). Si A,, \, A et si, de plus, u(Ay) < o,

1. Rappelons l'implication « convergence uniforme — convergence simple ». Le théoréeme
d’Egoroff donne « presque » I'implication opposée.
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alors p(A,) — p(A).

Exercices
4.3 Exercice. Soit x la mesure de comptage sur #(N). Si A, := {m ; m > n}, alors
Ay N, @, mais u(Ay) 4> (D).

Conclusion? o

4.4 Exercice.

a) Montrer que, si u(A; v Ay U ... U A,) < oo, alors

M(AluAgu...uAn)zZ(—l)j+l Z p(Ay Ao Ayg).
j=1

1<iy<ig<-<ij<n
b) Que devient cette formule dans le cas particulier de la mesure de comptage? o

4.5 Exercice. Soient p une mesure sur le clan (ou la tribu) ¥ et A € %.

a) La fonction py : € — [0,0], ua(B) := u(A n B),V B € €, est une mesure sur % .

b) Soit €4 le clan induit par € sur A (voir I'exercice 1.37). Montrer que la restriction de
14 a €4 est une mesure. o

4.6 Exercice (La limite d"une suite croissante de mesures est une mesure). Soit (y;); une
suite de mesures sur le méme clan €. Supposons que p;(A) < p+1(A4),Vj,VAe €.
Posons pi(A) :=limp;(A),VAe €.

Montrer que p est une mesure sur 4. o

Démonstrations

Démonstration de la proposition 4.1.

a) Nousavons B=Au (B\A)uZu...udu...,dot u(B) = u(A) + u(B\A) > u(A).
Dans le cas particulier out (B) < o0, nous avons également ;(B\A) < oo (justifier),
d’ot u(A) = u(B) — u(B\A). De méme, p(B\A) = u(B) — p(A).

b) Posons By := Aget,pourl <n <k, B, :== A,\(Apu ... U A,_1). Les B, sontd. d. d.
et, de plus, B,, ¢ A, et U, A,, = L, B,,. Il s’ensuit que

k k
wAgu...UAL) =pu(Bou...uByuZu...uFu...) = Z,U,(Bn)é ZM(A")'
n=0 n=0

Dans le cas particulier ot les A,, sont d. d. d., nous avons B, = A,, et l'inégalité
devient égalité.
¢) Méme preuve que pour l'item b), sauf qu’il n’y a plus besoin d’ajouter des .
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d) Sipu(A) = o, alors (A U B) = w, et I'égalité est claire.
Supposons p1(A) < oo, ce qui entraine p(A N B) < oo (justifier).

Nous avons
n(A) = u((A\B) U (A~ B)) = p(A\B) + (A~ B),

d’ott 1(A\B) = p(A) — p(A n B).

En utilisant cette derniere égalité, nous obtenons
(A B) = u((A\B) u B) = u(A\B) + u(B) = u(A) — (A n B) + u(B),
ce qui donne I'égalité désirée. CQFD

Démonstration de la proposition 4.2.
a) Posons By := Ag et, pourn > 1, B, := A,\A,_1. Alors les B, sontd. d.d. et u,B,, =
A.

Par ailleurs, nous avons 4, = By u ... u B,,.

Par conséquent,

p(A) = > u(By) = = lim Z (Br) = limpu(Bo u ... 1 By) = lim p(Ay).
k>0 k=0

b) Nous avons (Ap\4,) /" (Ap\A), d’ott lim,, u(Ao\A,,) = p(Ap\A).

Ceci donne (via la proposition 4.1 a)) u(Ag) — p(Arn) — 1(Ao) — p(A), d’ott la conclu-
sion. CQFD

4.2 Mesure complétée

Dans cette partie, nous nous donnons un espace mesuré (X, .7, 11). Les par-
ties A de X considérées ci-dessous ne sont pas nécessairement dans 7. Nous in-
troduisons la notion d’ensemble négligeable et montrons comment « rajouter » ces
ensembles a une tribu donnée. Contrairement a la notion d’ensemble mesurable,
qui repose sur une tribu, celle d’ensemble négligeable est relative a une tribu et une
mesure.

4.7 Définition (Ensemble négligeable). Un ensemble A — X est négligeable sil
existe B € .7 tel que A < Bet u(B) = 0.

S’il n’est pas clair qui est 4, on précise : A est u-négligeable.

4.8 Remarque. La question « A est-il négligeable? » n’a pas de sens si on ne connait pas
- la réponse dépend de pi. Voir les remarques 1.20 et 3.4 a). o
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4.9 Définition (Tribu complétée). La tribu complétée engendrée par 7 et u est
la tribu .7 engendrée par .7 et les parties négligeables de X.

Donc

T = 7({A; Ae T ou Anégligeable}).

4.10 Remarque. 7 dépend a la fois de .7 et de p. o

Le résultat suivant décrit tous les éléments de 7.

4.11 Proposition. Nous avons

?z{AcX;HBA,CAeﬂtelsque

4.1
Byc Ac Cyetu(Cy\Ba) = 0}. <>( )

Dans ce qui suit, nous montrons que la mesure y, définie sur .7, a une exten-
sion unique a .7

4.12 Définition (Tribu complete). Une tribu . est compléte par rapport a une
mesure v si A v-négligeable =— A € ..

Symétriquement, si la propriété ci-dessus est satisfaite alors v est compleéte par
rapporta .. o

4.13 Définition (Extension d"une mesure). Soient 111, ;12 des mesures sur les tribus
(ou clans) 71, %. usy est une extension de juq si :

i) 7 < .
i) p2(A) = i (A),VAe 7. ©

4.14 Proposition. ; admet une unique extension i a 7.

1t est la complétée de 11 et est donnée par 'une des formules 7i(A) = p(Ba) ou
i(A) = p(Ca). o

Exercices
4.15 Exercice. Soit A € .7. Montrer que
A est négligeable < pu(A) = 0. o

Cet exercice est fondamental; il donne une boite a outils pour montrer qu'un
ensemble est négligeable.

4.16 Exercice (Opérations avec les ensembles négligeables).

a) Une partie d'un ensemble négligeable est négligeable.
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b) Une union a. p. d. d’ensembles négligeables est négligeable. o

4.17 Exercice.

a) Nous avons 1 = [ et 7 =7.

b) 7 est complete par rapport a 7.

¢) Une partie de X est y-négligeable si et seulement si elle est i-négligeable. o

Démonstrations

Démonstration de la proposition 4.11. Donnée une partie A de X, nous allons noter (s"ils existent)
B, et C4 deux ensembles de .7 tels que By < A < Cy et u(Ca\Ba) = 0.

Soit % le membre de droite de I'égalité a montrer, (4.1).

«D>»Si Ae %,alors A = Ba v (A\Ba), avec B4 € 7 et A\By (qui est contenu dans
C4\Bj) négligeable; d'ou A e 7.

« < » Il suffit (pourquoi?) de vérifier que % est une tribu qui contient .7 et les ensembles
négligeables.

Si A € 7, il suffit de prendre By = C4 := A. Si A est négligeable, nous pouvons
prendre By := et Cy € T tel que A < Cy et u(Cy) = 0. Ceci montre que % contient
T et les ensembles négligeables. Il reste & montrer que % est une tribu.

i) Nous avons (J € 7, etdonc ¢ € % .

ii) Soit A € % . Nous avons (C4)¢ < A < (Ba)¢, avec u((Ba)\(Ca)¢) = u(C4\Ba) =0
(vérifier). Il s’ensuit que A° e % .
iii) Soit (A,)n=0 < % . Nous avons

Un>0B4, © Un=04n € Un=0Ca,,,

et

n>0

(vérifier). Il s’ensuit que Uy,>0A, € % .

De i)-iii), % est une tribu. CQFD

Démonstration de la proposition 4.14. Notons d’abord que p(Csa) = pu(Ba)+1(Ca\Ba), et donc
w(Ba) = p(Ca).

Montrons ensuite que la formule de I'énoncé ne dépend pas du choix de B4 et C4.
En effet, si Bi‘ c Ac C’i‘, avec B’ ,C’il e Tetp (Cg\Bﬁ) =0,j=1,2, alors B,14 c C’Z,
d’ou

u(Ch) = u(BY) < u(C3) = u(BR).
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En permutant les indices, nous trouvons u(CY) = u(BY) = u(B%) = n(C?).

Si 7z existe, nous devons avoir p(Ba) < 1i(A) < u(Cya), doui(A) = u(By) = p(Ca).
Ceci montre a la fois 1'unicité de 1z et le fait que 7z est donnée par les formules de 1’énoncé.

Il reste & montrer que ces formules définissent une extension de f.

Notons d’abord que, si A, Ay € T et Ay c Ay, alors By, € Ay < Ay = Cy,, dol
(A1) = u(Ba,) < p(Ca,) = fi(Az). Il s’ensuit que @ est monotone.

i) Si A € 7, alors nous pouvons prendre By = C4 = A, et donc i(A) = pu(A).
Il s’ensuit que f est une extension de 1, et qu’en particulier nous avons () = 0.
ii) Enfin, si (A4,,), est une suited. d. d. de 7, alors nous avons (en utilisant la monotonie
de 12)
Zﬁ(An) = Z w(Ba,) = p(unBa,) = fi(unBa,) < i(undy),

A(undn) < (UpCa,) = p(unCa,) < ZN(CAn) = Zﬁ(An)'

Des items i)-ii), 7z est une extension de p et est une mesure. CQFD

4.3 Presque partout

Dans cette section, nous introduisons la notion de presque partout et étudions
ses liens avec la tribu et mesure complétées.

4.18 Définition (Presque partout; p. p.). Une propriété P(x) est vraie presque
partout (par rapport a 4, ou encore u-presque partout, ou encore p. p. ou ji-p.
p.) sil’ensemble des x € X tel que P(z) soit fausse est p-négligeable.

4.19 Proposition.

a) f: X — R est .7-mesurable si et seulement s’il existe une fonction g : X — R
7 -mesurable telle que f = g u-p. p.

De méme, f : X — R" est .7-mesurable si et seulement s'il existe une fonction
g: X — R" J-mesurable telle que f = g u-p. p.

b) Soient f,g : X — R telles que f = g u-p. p. Alors f est 7-mesurable si et
seulement si g I’est.

De mémesi f,g: X — R™. o

Le résultat suivant donne un apergu de 1'utilité des tribus complétées.

4.20 Proposition. Si f,, f : X — R, chaque f, est 7 -mesurable, et f, — f U-p- p-,
alors f est .7-mesurable. o
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Exercices

4.21 Exercice. Pour la mesure de comptage, presque partout équivaut a partout. ©

4.22 Exercice. Pour des fonctions f, g définies sur X a valeurs dans R ou R", la relation
f~g< f =g pp.p.est une équivalence. o

Démonstrations

Démonstration de la proposition 4.19. Nous considérons uniquement le cas des fonctions a va-
leurs dans R. L'autre cas est similaire.

Commencons par établir une propriété des fonctions 7 -étagées. Soit f une fonction
T -étagée. Donc f = > anxa,, avec A, € 7, a, € R, la somme comportant un nombre
fini de termes.

Soit B,, © A, B, € 7, tel que A,,\ B, soit u-négligeable (justifier I’existence de B,, en
utilisant la proposition 4.11). Avec g := > anXpB,, nous avons f — g = >, anXa,\B,- 1l
s’ensuit que f = g en dehors de I’ensemble u,,(A,,\B,,), qui est u-négligeable (vérifier).

Conclusion : donnée une fonction f .7 -étagée, il existe une fonction .7-étagée g telle
que f = g en dehors d'un ensemble p-négligeable C'.

a) «==» Soit f,, une suite de fonctions .7 -étagées telle que f, — f.Soient g,, T -étagées
et C), p-négligeables tels que f,, = g, en dehors de C,.

En dehors de I'ensemble p-négligeable u,,C;,, nous avons g, = f, — f.

En définissant
A:={x€ X ; (gn(7)), a une limite dans R}

et g := xalim, g,, nous avons que g est .7-mesurable (voir la proposition 3.34) et
g = f en dehors de I'ensemble p-négligeable u,,C),.

« <= » Soit C' un ensemble pi-négligeable tel que f = g en dehors de C'. Alors
g H(0)\C < f7H (o) = g7 H(o) v C,

ce qui montre que f~(x0) € 7 = 7.
De méme, f~!(—w0) e T et f~1(B) € 7 si B € %y (vérifier). Donc f est .7-mesurable
(théoreme 3.5).

b) Nous avons (via l’exercice 4.22) f .7-mesurable<— 3 h J -mesurable telle que f = h
p-p. p-<== 3 h 7 -mesurable telle que g = h p-p. p.<= g .7 -mesurable. CQFD

Démonstration de la proposition 4.20. Soit A € 7 négligeable tel que f,,(z) — f(z), Vo ¢ A.
Alors fpxac — fxae. Il s’ensuit que fx4c est 7 -mesurable, et donc f l'est (proposition
4.19 b)). CQFD
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4.4 Classes particuliéres de mesures

Dans cette section, nous introduisons les principales classes de mesures : fi-
nies, o-finies, boréliennes, de Radon, et donnons quelques-unes de leurs propriétés
fondamentales.

4.23 Définition. Une mesure p définie sur un clan (ou tribu) % est :

a) finie si pu(X) < oo (et alors p(A) < oo pour tout A € ¥).
b) o-finie s’il existe une suite (A4,),>0 < € telle que:

i) X = Ups0dn.

i) p(A,) <o, ¥n.
c) de probabilité (ou probabilité tout court) si p(X) = 1.

Les mesures o-finies joueront un role important entre autres dans le chapitre
8 (mesures produit et leur utilisation). Une premiere illustration de leur utilité est
le résultat suivant d"unicité.
4.24 Proposition. Soient % un clan dans X et y;, s deux mesures sur 7 (%). Si :
i) p1(A) = pe(A) pour tout A € %.
ii) Il existe une suite (A4, ),>0 < % telle que 111(A,) < 0,V n, et Uy=04, = X,
alors 1 = pio. o

4.25 Définition. Soit (X, d) est un espace métrique.

a) Une mesure borélienne est une mesure i : Bx — |0, 0] sur les boréliens de
X.

b) Une mesure de Radon dans R" est une mesure borélienne p dans R” telle
que u(K) < w0, ¥ K compact.

Méme définition pour une mesure sur X, avec X < R" ouvert ou fermé.

Si une mesure est a la fois borélienne et a des propriétés de finitude (voir les
hypotheses du théoreme 4.26), alors nous disposons de formules « explicites »
pour calculer la mesure d"un borélien. Ceci est expliqué dans le résultat suivant,
dont a la fois I'énoncé et la preuve sont relativement complexes.

4.26 Théoreme. Soient (X, d) un espace métrique et ;1 une mesure borélienne sur
X.

a) Si p est finie, alors
pu(A) = sup{u(F); F fermé et F' — A}
= inf{u(U); U ouvertet U o> A}, VY A € Ay,
1(A) = sup{u(F); F fermé et [' — A}
= inf{u(U); UouvertetU > A}, VAe Bx.

(4.2)

(4.3)
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b) Si i est o-finie, alors
u(A) = sup{u(F); F ferméet F' — A}, VA € Hx, (4.4)
T(A) = sup{u(F); F ferméet F c A}, YA e By. (4.5)

c) S’il existe une suite (U,,),~o d’ouverts de X telle que X = u,>oU, et u(U,) <
o0, ¥ n, alors nous avons (4.2)—(4.3).

d) S'il existe une suite (K,,),>o de compacts telle que X = u, >0/, et une suite
(Un)n=0 d’ouverts de X telle que X = u,>oU, et u(U,) < «©, Vn, alors
p(A) = sup{u(K); K compactet K < A}
= inf{u(U); U ouvertet U > A}, VA e Ay,
1(A) = sup{u(K); K compactet K < A}
= inf{u(U); U ouvertet U o A}, YA e By.

(4.6)
o (4.7)

Un cas particulier important du théoreme 4.26 est celui des mesures de Radon
dans R"; il s’applique en particulier a la mesure de Lebesgue v,.

4.27 Corollaire. Si i est une mesure de Radon dans R™, alors

p(A) = sup{u(K); K compactet K < A}

= inf{u(U); U ouvertet U > A}, VA € HBgn,
1(A) = sup{u(K); K compactet K < A}

= inf{u(U); U ouvertet U > A}, YV A € Bgn.

(4.8)

(4.9)

Enoncé analogue si nous remplagons R™ par un ouvert de R".

Une conséquence immédiate du théoreme 4.26 est le résultat suivant d"unicité.

4.28 Corollaire. Si ji;, j12 sont deux mesures de Radon dans R™ telles que i1 (K) =
p2(K) pour tout compact K < R™, alors 3 = pio.

Enoncé analogue si nous remplacons R" par un ouvert de R". o

Exercices

4.29 Exercice. Si i est o-finie, alors X est une union a. p. d. d’ensembles d. d. d. de mesure
finie. o

4.30 Exercice. La mesure de comptage sur N n’est pas finie, mais est o-finie. o

L’exercice suivant permet de mettre en place un raisonnement du type : «si

une propriété P est vraie pour les mesures finies, alors elle I’est pour les mesures
o-finies ».
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4.31 Exercice (Une mesure o-finie est limite de mesures finies). Soit ;; une mesure o-finie
sur la tribu .7 de X. Soit (X,)n>0 < 7 avec u(X,) < o, Vnet X = u,X,. Posons
pn(A) = pu(An(Xi1u...uX,)),YVAe 7. Alors:

a) i, est une mesure finie, V n.

b) puyn  p (c’est-a-dire p, (A) /' u(A),VAe 7). o

L’exercice qui suit sera utilisé dans la preuve du théoreme 4.26.
4.32 Exercice. Soit (X, d) un espace métrique. Soit F' un fermé de X. Soit

Up:={xeX;dx F)<1/n}, VneN*

Alors U, est un ouvert et U, \, F. o

Démonstrations

Démonstration de la proposition 4.24. Soit (A, )n=0 < € telle que p1(A,) < 0,Vn, et Up=0A4, =
X. En remplagant si nécessaire les A,, par B, := Ap U ... U A,, nous pouvons supposer
que 4, / X.

Dans un premier temps, réduisons le probleme au cas des mesures finies.

Comme dans l'exercice 4.31, posons i (A) 1= puj(An Ay), Ae 7(¢),j=1,2neN.
Pour tout n € N, u7 et uf vérifient les hypothéses i) et ii) de la proposition 4.24 (justifier)
et, de plus, ] et 5 sont finies (vérifier). Supposons montrée 1'égalité ;' = p5. Grace au
théoreme de la suite croissante, nous obtenons p; = lim, pff, j = 1,2 (justifier), et donc
1 = p2.

Ainsi, pour conclure il suffit de montrer que ;11 = o sous '’hypothese i), si, de plus,
11, (o sont finies.

Soient (11, o deux mesures finies sur ¢, vérifiant i). Soit

U ={Ae T(%); m(A) = p2(A)}.

Nous avons ¥ < % . Pour conclure, il suffit de montrer que % est une classe mo-
notone (et d’invoquer le théoréme de la classe monotone). Ceci résulte en appliquant a
wj, 3 = 1,2, le théoreme de la suite croissante, respectivement le théoreme de la suite
décroissante. (Vérifier 'application de ces deux théoremes, notamment dans le cas de la
suite décroissante). CQFD

Démonstration du théoréme 4.26.

a) Posons, pour A c X,
p! (A) := sup{u(F); F fermé et F — A} = sup{fi(F); F fermé et F — A},
u(A) ;== inf{u(U); U ouvertet U o A} = inf{fz(U) ; U ouvertet U > A}.
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Nous avons (vérifier)
p! (A) < T(A) < pu°(A), Y A € By, eten particulier

i (A) < u(A) < j°(A4),¥ A e By (410

Nous devons montrer que (*) fi(A) = u/(A) = u°(A), ¥V A € Bx et en particulier (**)
w(A) = pf (A) = u°(A), ¥ A € Bx. 1l suffit en fait de montrer (**). En effet, admettons
(**). Donné A € Bx, soient By,Cq € Bx tels que By = A = Cy et u(Ca\B4) = 0
(dott u(Ba) = n(Ca) = i(A)). Grace a (**) (supposée vraie), nous avons

i(A) = p! (A) = p! (Ba) = u(Ba) = A(A),

A(A) < p°(A) < p®(Ca) = p(Ca) = p(A),
ce qui implique (¥).
Il reste donc a montrer (**). Soit  := {A € PBx; (**) est vraie}. Pour établir (**), il
suffit de montrer que % est une tribu contenant les fermés (vérifier).

L’axiome i) de la tribu est clair (justifier). Vérifions I’axiome ii). Pour commencer, no-
tons que, si A € P, alors (justifier chaque égalité)

p! (A€) = sup{u(F); F fermé et F — A%}
=sup{u(U°); U ouvert et U° ¢ A}
=sup{u(U°); U ouvertet U > A}
=sup{u(X) — uw(U); U ouvertet U o A}
=u(X) — inf{u(U); U ouvertet U o A} = u(X) — u°(A),

et, de méme, u°(A°) = u(X) — u/(A).
Il s’ensuit que, si A € %, alors

! (A9) = p(X) — p°(A) = p(X) — u(A) = p(A°),
et de méme ;°(A°) = p(A°), d’or A° € % . L'axiome ii) d"une tribu est vérifié pour % .

Soit maintenant une suite (A,,),>1 € % . Soite > 0. Comme A,, € %, il existe un fermé
F, e etun ouvert U, . avec

Fn,s < An < Un,aa :U'(Fn,ﬁ) > M(An) - 8/2n+1 et :U’(Un,f) < :UJ(A'II> + 5/2n+17
d’ou
wW(ANE, ) < e/2" et u(Un\Ap) < g/27h

Posons U® := Up>1Up - (qui est un ouvert) et FNe = u _1Fn.c (qui est un fermé pour

tout N). Nous avons
1 (undn) < p(U°) = p(US\ Un An) + p(Undn)

(( UnUne)\(Undn)) + p(Undn)

( nE\A )+ﬂ(UnAn)

|/\

IA

>1

e+ pu(undn);

A
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b)

au passage, nous avons utilisé 1'inclusion (a justifier)
(VierBi) \ (VierCi) < Vier(Bi\Ci).

En faisant ¢ — 0 dans (4.11) et en utilisant (4.10), nous obtenons (***) u°(u,A4,) =
,U(UnAn)-

De maniére analogue au calcul précédent, nous avons ju((UN_; A,)\FV¥) < g, ce qui
implique

! (Undn) 2 p(FY) = p(UnlyAn) = p((UnZy An)\FY)

N (4.12)
> p(uy,_14,) — &, VN eN* Ve > 0.
En faisant, dans (4.12), d’abord € — 0, puis N — o0, nous obtenons, grace au théoréeme

de la suite croissante, p/ (U, A,) > p(U,Ay). En utilisant (4.10), nous concluons a
légalité (***) uf (UnA,) = u(UnAy).

De (***) et (****), nous déduisons que % vérifie I'axiome iii) d'une tribu, De ce qui
précede, % est une tribu.

Pour compléter a), il reste a montrer que les fermés sont dans % . Soit F' un fermé.
Nous avons p/ (F) = u(F), d’ot p/ (F) = u(F).

Par ailleurs, soit (U, ), la suite de I'exercice 4.32. Nous avons p°(F') < u(Uy,), ¥n,d ot
pl(F) < lim p, (Uy,) = p(F) (car w est finie, ce qui nous permet d’utiliser le théoreme
de la suite décroissante).

Comme expliqué au point précédent, il suffit de montrer que p/ (A) > u(A),V A € Bx.
Soit (An)n=0 € #x avec Up=o A, = X et pu(Ay) < 0, ¥n. Quitte & remplacer A,, par
B, := A1 u...uU A,, nous pouvons supposer que A, " X.

Posons i, (A) := u(AnA,),V Ae $Bx,Vn.Lamesure p, est finie (vérifier) et p,, (A) /
wu(A),VAe Bx (théoreme de la suite croissante). Grace au point a), nous avons

p (A) = pf (A) = pn(A), YA e Bx, Vn e N*, (4.13)
En faisant n — oo dans (4.13), nous obtenons i/ (A) > p(A), comme désiré.

w étant o-finie, nous avons la conclusion du b). I suffit donc de montrer que ;°(A) <
1(A), ¥ A e Bx.Quitte a remplacer U, par V;, := Uy u...uU,, nous pouvons supposer
que U, / X.

Posons i, (A) := p(A n Uy), ¥n, qui est une mesure finie. Posons W; := U; et, pour
n > 2, Wy, := U,\U,,—1, de sorte que les W, sontd. d. d., X = w,>oW, et W,, c U,,
vV n.

Soit A e $Bx.Soit A, := AnW,,Vn.Les A, sontd. d.d.et A= 1,>0A4,. Par ailleurs,
nous avons A,, < Uy, d’ott pn(Ayn) = 11(Ap). Il s’ensuit que pu(A) = >, pn(An).

Soit ¢ > 0. De a), il existe un ouvert V,, . tel que V,,. 2 A, et pun, (Vo) < pn(An) +
g/2"+1. L'ensemble Whe := Vie n U, est un ouvert contenant A,,. Par ailleurs nous
avons fin(Vie) = p(Wh ).
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Finalement, nous avons

HO(A) < p(UnWae) < D p(Wae) < O (in(An) + /2741 w1
n n>0 .

= u(A) +¢e,Ve>D0.

Nous concluons en faisant ¢ — 0 dans (4.14).

d) Soit u¢(A) := sup{u(K); K compactet K < A}. Tenant compte du point c) et en
raisonnant comme pour les points précédents, il s’agit de montrer que p“(A4) > p(A),
VAe A X

Nous pouvons supposer K,, /" X (justifier).

Dans un premier temps, montrons que p“(F) > p(F) pour tout fermé F. Pour ce
faire, posons L,, := F' n K, Vn. Alors L,, est un compact et L,, / F'; en particulier,
w(Ly) /" p(F). Par ailleurs, nous avons p°(F') > u(Ly), Vn. En passant cette inégalité
a la limite sur n, nous obtenons (justifier) u°(F) > pu(F).

Soit maintenant A € #x. Si F est un fermé et F' < A, alors u¢(A) > p(F) > u(F).
En prenant le sup sur F et en utilisant le point c), nous obtenons u¢(A) > u/(A) =

w(A). CQFD

4.33 Remarque. Le schéma de la preuve du théoreme 4.26 a)—c) est typique pour les rai-
sonnements en théorie de la mesure. Le ceeur de la preuve consiste a montrer les propriétés
des mesures finies. Pour ce faire, il est commode d’utiliser le théoréme de la classe monotone. Des
hypotheses du type o-finitude permettent par la suite de s’affranchir, a peu de frais, de

I'hypothése de finitude de la mesure. o
Démonstration du corollaire4.27. Posons K; := B(0,j) et U; := B(0,j), Vj € N*. Alors
Uj=1K; = uj>1U; = R". Comme U; < Kj, nous avons u(U;) < pu(K;) < oo. Nous
concluons grace au théoreme 4.26 d). CQFD

Démonstration du corollaire 4.28. Vérifier! CQFD

4.5 La mesure de Lebesgue

Dans cette section, nous définissons la mesure la plus importante, celle de Le-
besgue, sans avoir, pour l'instant, les moyens de vérifier son existence.

4.34 Définition (Pavé de R"). Un pavé de R™ est un ensemble de la forme
P =1 x I x --- x I, avec chaque [ intervalle.

De maniere intuitive, si P est un pavé on définit la mesure (« volume ») m(P)
de P comme le produit des longueurs des I, (avec la convention 0 - oo = 0).
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4.35 Théoréme (Existence et propriétés de la mesure de Lebesgue). Dans R",
il existe une unique mesure borélienne v, telle que, pour chaque pavé P, on
ait v,(P) = m(P).

Cette mesure est la mesure de Lebesgue sur les boréliens de R".

De plus, v, a les propriétés suivantes :

a) v, est donnée, pour tout borélien A, par la formule

vn(A) = inf {2 m(P;); PjestunpavédeR", Vj, Ac ujzon} .

7=0

b) (Invariance par isométries) Si Z est une isométrie de R"," alors, pour A €
PBrn,on a v, (Z(A)) = vp(A).
c) Si A€ Pgn et Be Bgm,alors v, m(A x B) = v,(A) - v (B).

4.36 Définition (Tribu de Lebesgue).

a) La mesure de Lebesgue dans R™ est la complétée de v,,. Elle est notée \,,.

b) La tribu de Lebesgue dans R™ est la tribu complétée de Hr~» par rapport a v,.
Elle est notée .Z,.

Notons la forme particuliere que prend la proposition 4.19 dans le cas de la
mesure de Lebesgue.

4.37 Corollaire. Une fonction f : R* — R. Alors f est Lebesgue mesurable
si et seulement si il existe une fonction borélienne g : R — R telle que f = ¢

Un-P- P-

De mémesi f: A — R, avec A € Byn.

Le chapitre 5 est consacré a la construction de la mesure de Lebesgue ;. Nous
y établirons aussi quelques-unes de ces propriétés; des propriétés de v, n > 2,
seront obtenues dans le chapitre 8. Nous nous contentons ici de montrer quelques
propriétés simples de v,.
4.38 Proposition.
a) v, est o-finie.
b) v, est une mesure de Radon.
c) vy est unique.
d) v, est invariante par translations, c’est-a-dire v, ({z} + A) = v,(A), VA € HBgn,
VxeR"

t. Isométrie de R" : application Z : R" — R" telle que |Z(x) — Z(y)|l2 = |z —y|2, V x,y € R™.
De maniere équivalente, il existe U matrice orthogonale et a € R™ tels que Z(x) = Uz+a, Vz € R™.
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e) v, est donnée par la formule

Vl(A) = inf {Z(b] — Clj) ; Ac uj]aj,bj[} N VAe %R~ < (415)

J
Exercices

4.39 Exercice. Soit U un ouvert non vide de R".
a) Montrer que v,(U) > 0.

b) Soient f,g : U — R deux fonctions continues telles que f = g v,-p. p. Montrer que
=g o

4.40 Exercice.

a) A\, est o-finie.

b) A, est1’'unique mesure sur .Z, telle que A, (P) = m(P) pour tout pavé de R".
¢) A1 est donnée par la formule

)\1(14) = inf {Z(bj—aj); Ac uj]aj,bj[}, VAEQR. o
J

4.41 Exercice (Exemple d’ensemble non borélien — et non Lebesgue mesurable). Définis-

sons, pour z,y € [0,1], la relation z ~ y si et seulement siz —y € Q.

a) Montrer que ~ est une relation d’équivalence.

Nous pouvons donc écrire [0, 1] comme ["union de classes d’équivalence C;, qui sont
d.d.d.: [0, 1] = ‘—‘z’e]Ci-

Prenons, pour chaque 7, un élément et un seul z; € C; et définissons A := {z;; i € I}.
Posons A, := {q} + A,Vqe Q n [-1,1].

b) Montrer que A; N A, = Fsiq #r.

c) Montrer que [0, 1] € Ugegn[—1,114¢ < [-1,2].

d) En supposant A Lebesgue mesurable, calculer \;(A,) en fonction de A\ (A).

e) En déduire que 1 < 0 - \(A) < 3.

f) Conclusion : A n’est pas Lebesgue mesurable. En particulier, A n’est pas borélien.

g) (On ne peut pas bien mesurer toutes les parties de R) Si o : Z(R) — [0, 0] est une
mesure invariante par translations, alors soit ¢ = 0, soit ;(I) = oo pour tout intervalle

non dégénéré I — R. o
Démonstrations
Démonstration du corollaire 4.37. Exercice! CQFD

Démonstration de la proposition 4.38.
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a)
b)

<)

d)

Nous avons R" = U2, [—j, j]|", et vy ([, j]") = (2))" < 0.

Si K est un compact de R", alors il existe M > 0 tel que |z||x < M,Vz € K; d’ou
K < [-M,M]". 1l s’ensuit que vy, (K) < v, ([—M, M]") = 2M)" < ©

Soit €, I'ensemble des unions finies de pavés de R". Alors %, est un clan et, de plus,
tout élément de €, s’écrit comme une union d. d. d. de pavés de R™ (exercice 1.36). Si
w est une mesure borélienne telle que p(P) = m(P) pour tout pavé, alors, de ce qui
précede, 1 = v, sur G,

Nous avons clairement 4,, < %gn. Par ailleurs, ¢, contient les pavés ouverts, qui
engendrent Zrn (proposition 2.16 c)). Il s’ensuit que 7 (%,,) > %Brn, d'ott T (6,) =
«@Rn.

La mesure v,, étant o-finie, nous obtenons de ce qui précede et de la proposition 4.24
que i = vy, et donc que v, est unique.

Notons d’abord que A c R" est borélien si et seulement si {x} + A I'est; ceci s’obtient
de l'exercice 2.20 appliqué a ’homéomorphisme ¢ : R” — R", ®(y) := = + .

Posons p(A) := v,({z} + A), VY A € Brn. Alors p est une mesure borélienne (vérifier)
et ;1(P) = v, (P) pour tout pavé. Nous concluons comme au point c).

«<»SiAe BretAc ujlaj, b, alors

vi(A) < vi(Ujlag, b)) < > (g, b)) = Y m(lag, bil) = D (b5 — ay),
J J J
d’ot1 « < » dans (4.15).

«>» Soit ¢ le membre de droite de (4.15). Soit U un ouvert de R. Rappelons que U
est une union a. p. d. d’intervalles ouverts d. d. d. |a;, b;[ (exercice 2.23). Nous avons
donc lll(U) = Zj(bj — aj).

Si, de plus, U o A, nous déduisons de ce qui précede que v;(U) > (. En utilisant ce
fait et le corollaire 4.27, nous obtenons

vi(A) = inf {v1(U); U ouvertet U o A} > (. CQFD

4.6 Pour aller plus loin

4.6.1 Mesures invariantes par isométries

Il s’ensuit de I'exercice 4.41 qu’il n’est pas possible de construire sur #(R) une

mesure y invariante par translations telle que la mesure de chaque intervalle non
dégénéré et borné soit un nombre dans |0, o0[. De méme, il n’est pas possible de
construire sur & (R") une mesure invariante par isométries telle que la mesure de
chaque ouvert non vide et borné soit un nombre dans |0, o[. Pour pouvoir espérer
obtenir cette propriété, il faut donc exiger moins de p. Les exigences minimales
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sont :

p:{AcR"; Aborné} — [0, 0l (
wWAu B) =pu(A)+u(B)siAn B =, YA, Bbornés. (4.17)
wW#(A)) = u(A), Y Aborné, V% isométrie. (
Il existe un A borné tel que p(A) > 0. (

Nous avons les résultats suivants.

4.42 Théoreme.
a) (Banach [2]) Pourn = 1, n = 2, il existe une fonction p satisfaisant (4.16)—(4.19).
b) (Hausdorff [12]) Pour n > 3, il n’existe pas une telle p. o

La partie b) du théoréme 4.42 est devenue célébre grace au résultat suivant,
hautement contre-intuitif, qui 'implique.

4.43 Théoreme (Paradoxe de Banach-Tarski [1]). Soit B une boule dans R", avec
n > 3. Soit C' une translatée de B telle que B n C' = (.

Il existe k¥ € N*, une partition B = B; u ... u B, de B et des isometries
R, ..., % deR" telles que : Z1(By) L ... u%(By) = Bu C. o

Démonstration de « théoréme 4.43 —> théoréme 4.42b) ». Soit n > 3. Supposons, par 1’absurde,
I'existence de o satisfaisant (4.16)—(4.19). Notons que si p satisfait (4.16) — (4.17), alors
p(Arv. . .UAR) < X5 u(Aj), avec égalité siles ensembles bornés A; sont d. d. d. (vérifier).
Soit A < R” tel que 0 < u(A) < w et soit B une boule contenant A Soit C une translatée
de B telle que B n C = (J. Avec les notations du paradoxe, nous avons

0 < 2u(A) <2u(B) = u(B) + u(C) = p(B v C) = p(j_1 %;(B;))
k
= XL W B) = BB = (aBy) = u(B) < o0
j=1 j=1
ce qui est impossible. CQFD

4.6.2 Convergences d’une suite de fonctions

Nous discutons ici, sans donner les démonstrations, les relations entre conver-
gence simple, convergence uniforme et convergence « en mesure » d'une suite de
fonctions. Sur ce sujet, une bonne référence est Halmos [11, Section 22].

Le cadre est celui des fonctions mesurables f,, f : X — R, avec (X, .7, u) un
espace mesuré.’

t. Pour simplifier les énoncés, nous supposons que les fonctions sont finies en tout point.
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4.44 Définition.

a) f, — f en mesure si pour tout ¢ > 0 nous avons
lim p({a € X [fula) = f(@)] = £}) = 0.
b) La suite (f,,), est de Cauchy en mesure si pour tout € > 0 nous avons

lim_p({e < X |fule) = fulo)] = €)= 0. :

m

4.45 Définition.

a) f, — f presque uniformément si pour tout ¢ > 0 il existe un ensemble A = A, €
T tel que u(A) < e et f, — f uniformément sur X\A.

b) La suite (f,), est de Cauchy presque uniforme si pour tout ¢ > 0 il existe un
ensemble A = A, € 7 tel que u(A) < cet

Jim sup ({1£,(2) = (o) 2 € X\4} = 0, °

Le théoreme d’Egoroff est a premieére vue étonnant; a comparer a l'implication
classique « convergence uniforme — convergence simple ».
4.46 Théoreme (Théoreme d’Egoroff). Soit 1 finie.
a) Si f, — fp.p. alors f, — f presque uniformément.

En particulier, « convergence simple = convergence presque uniforme » (si
u est finie).
b) Si f, — f p. p., alors (f,), est de Cauchy presque uniforme. 3

Les implications opposées a celles données par le théoreme d’Egoroff sont
également vraies.
4.47 Proposition. Soit p finie.

a) Si f, — f presque uniformément, alors f,, — f p. p.
b) Si (f,). est une suite de Cauchy presque uniforme, alors il existe f telle que
fn — f p- p- et presque uniformément. o

En combinant les deux résultats précédents, nous obtenons dong, si p est finie,
I"équivalence :

convergence p. p. <= convergence presque uniforme.

De méme, si 1 est finie, alors nous avons, cette fois -ci « a une sous-suite pres », t
I’équivalence entre convergence en mesure et convergence presque uniforme.

1. Nous rencontrerons une situation similaire pour le théoréme de convergence dominée 7.2 et sa
«réciproque », théoreme 7.5, qui nécessite de passer a une sous-suite.
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4.48 Proposition. Soit y finie.

a) Si f, — f presque uniformément, alors f,, — f en mesure.

b) Réciproquement, si f, — f en mesure, alors il existe une sous-suite (f,, ) telle
que f,, — f p. p. et presque uniformément. o

Dans l'esprit du théoréme d’Egoroff, qui affirme que la convergence simple est
« presqu’équivalente » a la convergence uniforme pour les mesures finies, notons
la « presqu’équivalence » entre mesurabilité et continuité dans le cas des mesures
boréliennes finies.

4.49 Théoreme (Théoreme de Vitali). Soit 1 une mesure borélienne finie sur un
espace métrique X.

a) (Théoreéme de Vitali) ¥ Soit f : X — R une fonction borélienne.

Pour tout € > 0 il existe un borélien A = A. tel que p(A) < ¢, avec f continue
sur X\ A.

b) «Réciproquement », soit f : X — R telle que pour tout ¢ > 0 il existe un
borélien A = A, tel que ;(A) < ¢, avec f continue sur X\A. Alors il existe une
fonction borélienne g : X — R telle que f = g p. p. o

Démonstration.

a) Nous allons montrer I'existence de A d’abord pour f fonction caractéristique, puis pour f éta-
gée, ensuite pour f borélienne bornée et enfin pour f borélienne quelconque. '

Soient B € 7, f := xpete > 0. Comme u(X) < oo, il existe F' fermé, U ouvert tels que
F c B c Uetu(U\F) < ¢ (théoréme 4.26). Posons A := U\F'. Nous avons p(A4) < e.
Par ailleurs, y g est continue sur les fermés F' et X \U (vérifier), donc sur X\A = F 1 (X\U)
(justifier).

Soit f étagée, f = >, bjxp,. Soit Aj € T satisfaisant u(A;) < g/27*! et xp; continue sur
X\A;.SiA:= UjAj,alors u(A) < e et f est continue sur X\ A (vérifier).

Soit f borélienne bornée. Soit ( f;); une suite de fonctions étagées telle que f; — f unifor-
mément. ¥ Soit A; € T avec ju(A;) < /277! et f; continue sur X\A4;. Si A := U;A;, alors
p(A) < e etchaque f; est continue sur X'\ A. Par convergence uniforme, f est continue sur
X\A.

Enfin, soit f : X — R borélienne. Soit g := arctan f : X —] — 7/2,7/2[. La fonction
g est borélienne bornée. Soit A € .7 tel que u(A) < ¢, avec g continue sur X\ A. Comme
f =tang, f estcontinue sur X\ A.

1. Plutdt connu comme théoréeme de Lusin (Louzine). Prouvé par Vitali, il fut redécouvert par
Lusin sous la forme suivante (sur [0,1]) : si f : [0,1] — R est borélienne et ¢ > 0, alors il existe
g :[0,1] — R continue et A < [0, 1] borélien tels que 11 (A) < e et f = g sur [0, 1]\A.

t. Sans le nommer, nous faisons un raisonnement par classes monotones, version fonctions au
lieu d’ensembles. Pour I'analogue du théoreme de la classe monotone dans ce contexte, voir par
exemple Barbe et Ledoux [3, Théoréme 1.3.5].

1. Pour justifier 1'existence de la suite (f;);, il faut examiner la preuve du théoréme 3.5.
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b) Soit A; tel que u(A;) < 1/(j+1), avec f continue sur X\ A;. Posons f; := fix\a, : 4; = R,

f(z), size X\A4
A:=njAj, g(x) = {0 Gized

Lensemble A est borélien et ;1(A) = 0 (vérifier), d'ott f = g p. p. Comme
X\A = X\ nj Aj = v (X\4),
nous avons, pour tout B € By tel que 0 ¢ B,

g '(B) ={reX;g(x)e B} = {z e X\A; g(z) € B}
{r e uj(X\4)); g(z) € B} = uj{z e X\A;; g(z) € B}
ui(f)TH(B).

I

De méme, si 0 € B, alors
9 '(B) = Auu;(f)) (B).

Dans les deux cas, nous avons g~ (B) € %y (vérifier), et donc g est borélienne. CQFD
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Chapitre 5

Constructions de mesures

5.0 Apercu

La section 5.1 est consacrée a la construction de la mesure de Lebesgue dans R.
Comme nous allons le voir, le coeur de la preuve consiste a construire la mesure
de Lebesgue sur |0, 1[; le reste est « automatique ». La construction est celle « his-
torique »; les constructions plus conceptuelles présentes souvent dans les textes
reposent sur la notion de mesure extérieure et les théoremes de Carathéodory (section
5.2.2), qui sont une relecture de la preuve de Lebesgue.

Pour le « méme prix » que la construction de la mesure de Lebesgue, nous
obtenons les mesures de Stieltjes (section 5.2.1), que nous n’utiliserons pas dans ce
texte, mais qui sont tres utilisées en théorie des probabilités, théorie du signal ou
théorie analytique des nombres.

Enfin, nous évoquons (sans détails) dans la section 5.2.3 la belle idée de Haus-
dorff, consistant a décrire, par une méme formule, la longueur, 1'aire, le volume,
et bien plus (les mesures fractionnaires).

5.1 Construction de la mesure de Lebesgue

Nous cherchons a montrer l'existence de la mesure v,, comme dans le théoréme
4.35. Rappelons que son unicité est acquise, voir la proposition 4.38 c). Comme
nous l’avons remarqué, il est commode de travailler dans un premier temps avec
des mesures finies, puis de s’affranchir de la finitude. Nous allons donc construire
la mesure de Lebesgue d’abord sur un pavé borné P. Plus spécifiquement :

1. Nous allons construire la mesure de Lebesgue sur |0, 1{". La construction sera
analogue sur toute autre pavé.
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Constructions de mesures 5.1 Construction de la mesure de Lebesgue

2. La mesure de Lebesgue sur les pavés permet de construire la mesure de Le-
besgue sur R".

Il est commode — mais pas indispensable — d’utiliser des propriétés élémen-
taires de I'intégrale de Riemann lors de 1’étape 1. Afin de ne pas perdre en chemin
le lecteur qui connait I'intégrale de Riemann dans R, mais pas dans R" avecn > 2,
nous allons prendre uniquement n = 1 dans ce qui suit. Une fois construite la me-
sure de Lebesgue dans R, son existence dans R" est démontrée dans le chapitre
8. Il est néanmoins possible de se passer de la technologie développée dans le
chapitre 8 et de montrer l'existence de p,, en adaptant aux dimensions > 2 les
preuves présentées dans la section 5.1.4 (voir par exemple Stein et Shakarchi [20,
Chapitre 1]).

5.1.1 Construction de la mesure de Lebesgue sur |0, 1|

Posons, pout tout intervalle I d’extrémités a < b, m(I) := b — a. Nous avons
vu (proposition 4.38, exercice 4.40) que, si la mesure de Lebesgue \; existe, alors
elle est donnée par la formule

A (A) = inf {Z m(1;); I; intervalle ouvert, V j, A ujlj} , VA e Br.
J

Posons, pour A |0, 1],

m*(A) := inf {Z m(1;); I; intervalle ouvert, V j, A ujlj} : (5.1)
J

Nous devons montrer que m* = \; sur la tribu de Lebesgue (de ]0, 1[). Mais
il se trouve que l'existence de cette tribu repose sur l’existence de la mesure de
Lebesgue, dont l'existence n’est pas encore acquise!

L’idée suivante, due a Lebesgue, permet d’identifier les candidats aux mem-
bres de la tribu. Si m* = v, = m sur les intervalles et si A est Lebesgue mesurable,
alors A¢ =)0, 1[\A I'est aussi, d’otu m*(A) + m*(A¢) = m*(]0,1]) = m(]0,1]) = 1.
Posons alors

T = {A <]0,1[; m*(A) + m*(A°) = 1}. (5.2)

Nous avons alors le résultat suivant.

5.1 Théoreme (Lebesgue).

a) 7 estune tribu.
b) 7 contient % 1.
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¢) La restriction de m* a .7 est une mesure.
d) m*(I) = m(I) pour tout intervalle I |0, 1].
e) .7 estla complétée de #), ;| par rapport a m*.

En particulier, la restriction de m* a %y 1 est une mesure borélienne telle que
m*(I) = m(I) pour tout intervalle / <0, 1]. o

Nous admettons pour l'instant ce théoreme.

5.1.2 Construction de la mesure de Lebesgue sur R

Soit 11; la mesure borélienne qui vérifie ’analogue du théoréme 5.1 sur | —j, j|,
j € N*. Posons &;(A) := pu;j(An]—4,7]), Vj, VA e Br. La mesure ¢; est borélienne,
et elle coincide avec m pour les intervalles de | — j, j[ (vérifier).

Par unicité de la mesure de Lebesgue sur | — j, j[, nous avons 1,1 (A) = 11;(A),
VAe #)_;; Il s’ensuit que

Eii1(A) =pj1(An] =5 — 1,5+ 1) = pj1(An] — 4, 4])
Ainsi, nous pouvons définir

1(A) = li;néj(A) = 1i§n/wj(z40] —3,40), VA € S,

qui est une mesure (exercice 4.6).

5.2 Proposition. ;. est la mesure de Lebesgue v, sur %g. o

Démonstration. 1l suffit de montrer que p(I) = m([I) pour tout intervalle I (justifier). Si I est
borné, alors I | — j, j[ pour j suffisamment grand, et donc &;(I) = p;(I) = m(I) pour un
tel j;dott (1) = m([). SiI est nonborné, alors pu(I) > p(J) = m(J) pour tout J borné avec
J < I. En prenant le sup sur tous ces .J, nous obtenons p(I) = o0 = m([). CQFD

A partir de v;, nous obtenons la tribu complétée .Z] et la mesure complétée
A1. Le lien avec les y; est le suivant.

5.3 Exercice. Soit 7 la complétée de %)_; ;| par rapport a p;.
Soit A R. Nous avons A€ .4, < An]|—j,jle 75, Vj=>1 o

5.1.3 Construction de la mesure de Lebesgue sur R"
La mesure de Lebesgue v, est o-finie et satisfait 14 (/) = m(I) pour tout in-
tervalle I. Il existe alors une et une seule mesure borélienne v,, sur R” telle que

v(ly x -+ x I,) =m(ly)...m(1,),VI,..., I, intervalles dans R (voir chapitre 8).
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Constructions de mesures 5.1 Construction de la mesure de Lebesgue

5.1.4 Démonstration du théoréme 5.1

Pour faciliter la lecture, la preuve est découpée en petites étapes préliminaires
(lemmes), faciles a montrer et comprendre. Elles seront « assemblées » lors de la
preuve proprement dite du théoreme.

Les ingrédients les plus importants de la preuve sont les lemmes 5.6 (qui re-
pose sur un argument topologique : les intervalles fermés bornés sont compacts)
et5.11.

Nous allons travailler ici uniquement avec des parties A, B . .. de |0, 1[. Les notions
de fermé et complémentaire s’entendent par rapport a 0, 1].

Notons que, si A < u;lj, alors A < u;(I;n]0, 1]). Par ailleurs, nous avons
> m(I;n]0,1[) < > m(I;). Il s’ensuit que, dans (5.1), il suffit de considérer des
intervalles I; |0, 1] (justifier).

5.4 Lemme.

a) m*(g) = 0.

b) m* est monotone, c’est-a-dire m*(A) < m*(B), VA < B.

c) m*(u;A4;) < >, m*(4;), pour toute suite (4;) <]0, 1[.

d) m*(A) <1,VA. o

Démonstration. Les propriétés a), b), d) sont claires (vérifier).

¢) Soite > 0. Pour chaque j > 1, il existe une suite d’intervalles ouverts (I ,]C) pavec Aj C U kI/,jc
et

D im(I]) < m*(4;) + /27
k

La famille (/: ,i) ;. estdénombrable (proposition 1.13). Sinous la listons sous la forme (L, )n>0,
alors pour toute somme finie nous avons

N
m(Ln) < ) (m*(4)) + /2,

n=0 i
dott

Dim(Ln) <) m*(4) +e.

n>0 J
Comme U;jA;j © UnxoLy, nous obtenons m*(u;A4;) < >3, m*(A;) + e. Nous concluons en
faisante — 0. CQFD

5.5 Lemme. m*(A) = inf{m*(U); U ouvertet A c U}. o
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Démonstration.
« < » est clair, car m*(A) < m*(U) pour tout U comme ci-dessus.

«>» Soit e > 0 et soient I; ouverts avec A < u;l; et >}, m(l;) < m*(A4) +¢e.Soit U :=
u;l;. Alors U est ouvert, A — U et (du point c) du lemme 5.4)

m*(U) = m*(u;I;) < Zm(Ij) <m*(A) +e. CQED

Le premier résultat clé dans la preuve du théoreme 5.1 est le suivant.

5.6 Lemme. Si (Lj);, est une famille a. p. d. d’intervalles d. d. d., alors m* (L, L) =
2 m( L)

En particulier, si I <]0, 1] est un intervalle, alors m*(I) = m([).

Cas particuliers : m*(J) = 0 et m*(]0, 1]) = 1. o

Démonstration. Quitte a rajouter de intervalles vides, nous pouvons supposer quil y a une infi-
nité (dénombrable) d’intervalles, indexés (L )x>1-

« < » Pour chaque intervalle borné L et chaque e > 0, il existe un intervalle ouvert J avec L. < J et
m(J) < m(L) + e (vérifier). Considérons, pour chaque k, un intervalle ouvert Iy tel que L, < I,
et m(Ik) < m(Lk) + €/2k+1. Alors Ugps>1Lp © Ups11j et Zkzl m(Ik) < Zkzl m(Lk) +¢,dou
(en faisant e — 0) m*(Ug>1Ly) < D poq m(Li).

«>» Il suffit de montrer cette inégalité pour un nombre fini d’intervalles compacts dans |0, 1[. En
effet, supposons cette inégalité établie pour les unions finies d’intervalles compacts. Pour chaque
intervalle L et chaque ¢ > 0, il existe un intervalle compact C avec L > C et m(C) > m(L) —
€ (vérifier). ' Considérons, pour tout k, un intervalle compact Cy avec Ly > Cj et m(Cy) >
m(Ly) — /281,

Pour tout n fini, nous avons alors (grice a I'inégalité « > », supposée vraie pour les Cy)

n

n
m* (Lg=1Lk) = m* (LP_1Ck) = Z ) > Z m(Lg) — €.
k=1

En faisantn — oo ete — 0, nous obtenons « > ».

Nous avons donc réduit le lemme a I'inégalité suivante : si C1, ..., C), sont des intervalles
compacts d. d. d., alors (*) m*(L}_,C%) = > p_; m(C).

Soit C' := C1 u ... u Cy. Soient I}, j > 1, des intervalles ouverts tels que C < u;I;. Pour
obtenir (), il suffit de montrer (**) 33 _; m(Cy) < >3, m(I;) (justifier).

C' étant compact, il existe N tel que C' < u " 1. Il Sensuit (vérifier) que

N

Yixe = xe < DX, (5.3)
k=1

=1

t. Rappelons que nous travaillons dans |0, 1], et que L est borné.
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Notons que, pour tout intervalle I <]0, 1] la fonction caractéristique y s est continue par mor-
ceaux sur R, donc intégrable Riemann sur [0, 1]. Par ailleurs, nous avons

1
J x1(x)dx =m(I). (5.4)
0
En utilisant (5.3), (5.4) et les propriétés de I'intégrale de Riemann, nous obtenons
n 1 1 N 1
Z m(Cg) = Z f xc, (z) dx = f xo(z)dx < Z X1, (z) dz
k=1 k=170 0 j=170
N
=Y m(ly) < Y m(),
j=1 j>1
d’ott (**) et la conclusion du lemme. CQFD

Notons une conséquence immédiate du lemme. Comme tout ouvert U s’écrit
comme une union a. p. d. d'intervalles ouverts d. d. d. L;, nous avons m*(U) =

2 (L)
5.7 Lemme. Soient U,,, U des ouverts avec U,, ,/ U. Alors m*(U,,) / m*(U). <
Démonstration. Nous avons clairement m*(Uy,,) /" et m*(U,) < m*(U), Vn (vérifier), dott
lim,, m*(U,) < m*(U).

Pour I'inégalité opposée, soite > 0.

Ecrivons U = w;l;, avec I; intervalle ouvert, V j, et Zj m(l;) = m*(U) < oo (justifier).
Il existe N tel que >,y m(I;) < /2. Il existe également des intervalles compacts C; < I;,

j=1,...,N,avec Z;V:I m(C;) > Z;V:I m(1;) — /2 (vérifier).

Soit C' = uévlej, qui est compact. Comme U,, / U > C, il existe ng avec C' < Uy,
(justifier). Il S’ensuit que

N
limm*(Uy) = m*(Uyy) = m*(C) = Y. m(C))
j=1

n

N CQFD
> Z m(l;) —e/2 > Z m(I;) —e =m*(U) —e.
j=1 j=1
5.8 Lemme. Soient U, V' des ouverts. Nous avons
m* (U v V)+m*(UnV)=m"(U)+m*(V). o

Démonstration. Quitte a rajouter des intervalles vides, nous pouvons écrire U = 11> /et V =
uj>1L;, avec I;, L; intervalles ouverts.

Posons Uy, := u_ I;, V,, := i L. Alors U,, /" U ; propriétés analoguesde V,,, U,, u V,
et U,, n V,, (vérifier).
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Un, Vo, Uy UV, et U, NV, étant des unions finies et d. d. d. d’intervalles, il s’ensuit que I'éga-
1

lit¢ m*(A) = | xa(zx)dx est vraie pour chacun de ces ensembles (justifier, a l'aide du lemme

0
5.6). En combinant ce fait avec I'identité (a justifier)

XU’VLUV!L + XUann = XUn + XVyN

nous obtenons que

m* (U, v Vo) + m*(Up 0 V) = m*(U,) + m*(Vy,). (5.5)

Nous concluons grice aulemme 5.7, en faisant n — oo dans (5.5). CQFD

Une conséquence immédiate des lemmes 5.5 et 5.8 est la suivante.

5.9 Lemme. Si A, B |0, 1|, alors

m*(Au B) + m*(An B) <m*(A) + m*(B). o (5.6)

Démonstration. Soient U, V ouvertstelsque A ¢ Uet B ¢ V.Alors Au B < U u Vet
An B cUnYV,dou(en utilisant les lemme 5.5 et 5.8)

m*(AuB)+m*(AnB) <m*(UuV)+m*(UnV)=m*U)+m*(V). (5.7)

En prenant, dans (5.7), l'inf sur U et V, et en utilisant a nouveau le lemme 5.5, nous obtenons
(5.6). CQFD

Posons, conformément a la discussion heuristique du début du chapitre,
T = {AcC]0,1[; m*(A) + m*(A°) = 1}. (5.8)
Notons que
1 =m*(]0,1]) = m*(Au A°) < m*(A) + m*(A°)
(lemme 5.4 ¢)), et donc une définition équivalente de .7 est
T ={Ac]0,1[; m*(A) + m*(A°) < 1}
Le lemme suivant donne les premiers exemples concrets d’ensembles dans .7

5.10 Lemme. Si U est un ouvert, alors U € 7. o
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Démonstration. Supposons d’abord que U = wi7/_, I}, avec I; intervalles ouverts. Alors U* est
une union finie d’intervalles, et donc (en utilisant le lemme 5.6 et les propriétés de I'intégrale de

1
Riemann) m*(U¢) = J Xve(x) dx; de méme pour U. Il s’ensuit que
0

1 1 1
m*(U) + m*(U®) = L xv(z) dz —i—fo xue(x)dx = fo ldx = 1.

Soit maintenant U un ouvert quelconque. Nous pouvons donc écrire U = Li;>11;, avec chaque
I; intervalle ouvert. Posons Uy, := w}_, ;. De ce qui précede et dulemme 5.7,

m*(U) = liTILn m*(U,) = lirrln(l —m*((U,)9)) <1 —m*(U°).

Il s’ensuit que m*(U) + m*(U¢) < 1,douU € 7. CQFD

Le deuxiéme résultat clé est le suivant.

5.11 Lemme. Les propriétés suivantes sont équivalentes.

1. Ae 7.
2. Pour tout € > 0, il existe un ouvert U tel que m*(AAU) < e. o

Démonstration.
«1 = 2» Soient V, W des ouverts tels que A < V, A° ¢ W, m*(V) < m*(A) + ¢/2,
m*(W) <m*(A°) + /2. Alors V. .u W =]0, 1] (vérifier), et donc (lemme 5.8)

m* (VW) =
<

V)+m* (W) —=m*(VoW)=m*(V)+m*(W) -1
(A) +m*(A°) +e—1=c¢.

m*
m*
Prenons U := V. Nous avons
AAU =V\A=V nA°cV W,

d'ott m*(AAU) <m*(Vn W) <e.

«2 == 1»Nousavons A c Uu(AAU) (vérifier), d’ ot (lemme 5.4 c)) m*(A) < m*(U)+e.
De méme, A° < U¢u (A°AU®) = U° U (AAU) (vérifier), d’'ou m*(A) < m*(U°) + e. Grace
au lemme 5.10, il s’ensuit que

m*(A) + m*(A°) <m*(U) + m*(U°) +2e =1+ 2.
En faisant ¢ — 0, nous obtenons A € 7. CQFD

Démonstration du théoreme 5.1.
Etape 1. T est une tribu qui contient la tribu borélienne. Par définition de .7, si A € 7 alors
Ae 7.

Par ailleurs, m* () = 0 et m*(]0, 1[) = 1 (lemme 5.6), d’ott J € 7.
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Considérons maintenant une suite (A,),>1 < 7. Pour chaque n > 1, soit U, un
ouvert tel que m*(A,AU,) < ¢/2""! (lemme 5.11). Posons U := U,>1U,, qui est un
ouvert. Nous avons (Up>14,)A(Up>1Un,) © Uns1(4,AU,) (Vérifier), d’ot (lemme 5.4 ¢))

m* ((Un=14n)AU) < Y m*(A,AU,) < €

n>1

Le lemme 5.11 donne u,>14, € 7.

7 est donc une tribu. Cette tribu contient les ouverts (lemme 5.10), donc la tribu
borélienne.

Etape 2. m* restreinte @ 7 est une mesure, et restreinte i B[ est la mesure de Lebesgue. Le
fait que m* restreinte a %o 1| soit la mesure de Lebesgue suit du lemme 5.6 et de l'unicité
de la mesure de Lebesgue (proposition 4.38 c)).

Pour montrer que m* est une mesure sur .7, notons d’abord que m*(f) = 0 (lemme
5.6). Il reste a montrer que, si (4;); © 7 est une suite d. d. d., alors

Aj) = Y m*(4)). (5.9)
J

L'inégalité « < » suit du lemme 5.4 c). Pour I'inégalité opposée, il suffit de montrer

m*(Au B) +m*(An B) >m*(A)+m*(B), VA,Be 7. (5.10)

En effet, admettons (5.10) pour 'instant. En utilisant cette propriété et le lemme 5.9,
nous obtenons que

m*(Au B) =m*(A)+ m*(B), VA,Be 7 telsque An B = (, (5.11)

puis, par récurrence sur n,

m* (L], Aj) = Z ¥, V(A < Z7d.d.d (5.12)

En utilisant (5.12) et la monotonie de m™* (lemme 5.4 b)), nous obtenons
m*(Lj=14;) > A = Z , ¥, V(Aj)=1 € 7 d.d.d, (5.13)

d’ou, en faisant n — oo dans (5.13),

*(uj=145) = > m* Aj)j=1 c 7 d.d.d (5.14)
j=>1

Comme, par ailleurs, I'inégalité opposée a (5.14) est toujours vraie (lemme (5.4) c)),
nous obtenons que 'axiome ii) de la mesure est vérifié.
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Il reste donc a montrer (5.10). Du lemme 5.9, la définition (5.8) de .7 et le fait que .7
est une tribu (étape 1), nous obtenons (justifier)

m* (AuB)+m*(AnB)=1—m*"((Au B))+1—m*((An B)°)
=2—[m*(A° n B°) + m*(A° U BY)]
> 2 — [m*(A°) + m*(B)] = m*(A) + m*(B).

Etape 3. 7 est la complétée de PBlo,1[ par rapport a la mesure de Lebesgue sur %), 1. Montrons
dans un premier temps que m* restreinte a .7 est compleéte. Soit A un ensemble négli-
geable par rapport a cette mesure. Il existe donc un B € .7 tel que A < B et m*(B) = 0.
Pour tout € > 0, il existe U ouvert tel que B < U et m*(U) < € (lemme 5.5). Il s’ensuit que
m*(AAU) = m*(U\A) < m*(U) < e. Grace au lemme 5.11, nous déduisons que A € 7.
m* restreinte a .7 est donc une mesure complete.

Enfin, montrons que 7 est la complétée de %), ;| par rapport a la mesure de Lebesgue
sur %), (donc de m* sur Hjg ). Notons @]071[ cette complétée. De ce qui précede,
%071[ < 7 (justifier, en utilisant %5 ;1 < 7 et la complétude de m™). Inversement,
soit A € .7. Du lemme 5.5, il existe une suite (Uy,)n>0 d’ouverts telle que A < U,,, Vn, et
m*(U,) — m*(A). De méme, il existe une suite (V},),>0 d’ouverts tells que A° < V,,, Vn,
et m*(V,,) — m*(A°). Nous avons alors (V,,)¢ < A, Vn, et m*((V,,)¢) — m*(A) (justifier).
Posons B := uy (V)¢ C := n,U,. Nous avons (justifier)

B,Ce B etBc AcC. (5.15)

Par ailleurs, nous avons (V;,)¢ < B, Vn, d’ou (justifier)

m*(B) = lim m*((Vy,)°) = m*(A). (5.16)

De maniére similaire, C < U,,, Vn, d’oll

m*(C) < lirrln m*(U,) = m*(A). (5.17)

De (5.15)—(5.17) et la monotonie de m* (lemme 5.4 b)), nous avons m*(B) = m*(A) =

m*(C). 1l s’ensuit (justifier) que m*(C\B) = 0, d’ot1 (propositions 4.11 et 4.14) A € % 1
et m*(A) est la mesure (de Lebesgue complétée) de A. CQFD

5.2 Pour aller plus loin

5.2.1 Mesures de Stieltjes

Soit F' : R — R, F(z) := z, V2 € R. La mesure de Lebesgue sur les boréliens
de R est I'unique mesure borélienne 1 telle que p(]a, b[) = F(b) — F(a) pour tout
intervalle ouvert borné |a, b|.

Considérons plus généralement une fonction croissante /' : R — R. Rappe-
lons que F' a des limites latérales F'(z+) et F'(x—) en tout point. Nous avons la
généralisation suivante de la mesure de Lebesgue.
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5.12 Théoréme. Soit F' : R — R une fonction croissante. Alors il existe une
unique mesure borélienne ; sur By telle que p(]a, b[) = F(b—) — F(a+) pour
tout intervalle ouvert borné |a, b|.

5.13 Définition (Mesure de Stieltjes). La mesure ;1 du théoreme 5.12 est la
mesure de Stieltjes associée a F'.

Si F est dérivable avec F’ Riemann intégrable sur tout intervalle borné (par
exemple si F' € C?), alors nous pouvons obtenir ce résultat en copiant la preuve
du théoréme 5.1. En général, I’ n’est pas dérivable; elle peut par exemple étre
discontinue. Dans ce cas, il est encore possible de suivre la preuve du théoréme
5.1, mais il faut éviter 'utilisation de l'intégrale de Riemann dans les preuves
des lemmes 5.4, 5.8 et 5.10; voir Bogachev [4, section 1.8]. Comme nous l'avons
noté, 1'utilisation de l'intégrale de Riemann dans la preuve est commode, mais
pas indispensable.

5.2.2 La construction de Carathéodory
Commengons par une définition liée au lemme 5.4.

5.14 Définition (Mesure extérieure). Une mesure extérieure sur X est une fonction
m*: 2(X) — [O o] telle que :

() =
11) *(A)s ( )siAc B.
m*(u;A;) < X, m*(A;), pour toute suite (4;); = X. o

*

iii)

Dans 1’esprit de la construction de la mesure de Lebesgue, une fagon simple
de construire des mesures extérieures est la suivante.

5.15 Proposition. Soit &7 une famille de parties de X telle que:

i) Il existe une suite (X,,),, < & avec U, X,, = X.
i) Jed.
Soit m : & — [0, 0] telle que m(J) = 0. Posons

m*( 1nf{2m A€, VjetAquA],}.

Alors m* est une mesure extérieure. o
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En poursuivant I’analogie avec la mesure de Lebesgue, il est tentant de consi-
dérer la classe

T = {Ac X;m"(A) +m*(A) = m*(X)}

et de montrer que m* restreinte a .7 est une mesure. Cette approche marche uni-
quement si m*(X) < co. La clé pour s’attaquer au cas général est indiquée par
le résultat suivant (avec m* et 7 comme dans la construction de la mesure de
Lebesgue).

5.16 Lemme. Soit A |0, 1[. Alors

Ae T —= m"(AnE)+m*(A°n E)=m*(E), VE c|0,1]. o

En nous inspirant du lemme 5.16, posons, pour X et m* généraux,

T ={Ac X m*(AnE)+m*(A°nE)=m*(E), VE c X}. (5.18)

Nous avons alors le résultat suivant.

5.17 Théoréme (Théoréeme de Carathéodory). Soit m* une mesure extérieure sur
X et soit .7 comme dans (5.18). Alors
a) 7 estune tribu.

b) m* restreinte a .7 est une mesure complete. o

L'inconvénient de ce résultat abstrait est qu’il ne donne aucun renseignement
sur .7 ; par conséquent, il ne permet pas de décider si un ensemble concret est me-
surable. Considérons le cas particulier ot X est un espace métrique. Rappelons
que dans ce cas les ensembles « usuels » sont boréliens. Il est donc intéressant de
décider si .7 contient les boréliens. Dans ce contexte, nous avons le complément
suivant du théoreme précédent.

5.18 Théoréme (Théoreme de Carathéodory). Soient m* et .7 comme dans le
théoreme précédent. Si X est un espace métrique et si m* a la propriété

m*(Au B) =m*(A) + m*(B), VA, B c X tels que dist (4, B) >0, (5.19)

alors 7 contient les boréliens de X. o

Pour les résultats dans cette section, voir par exemple Halmos [11, chapitre
IIT], Evans et Gariepy [7, chapitre 1], Bogachev [4, section 1.11].
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5.2.3 Les mesures de Hausdorff

Une conséquence importante de la méthode de la Carathéodory concerne les
mesures de Hausdorff. Dans ce qui suit, nous nous donnons un s € [0, %[. A un
tel s, nous associons une constante 3(s) €]0, »|. La formule de 3(s) est explicite,
mais elle ne sera pas utile pour la compréhension de ce qui suit; voir Evans et
Gariepy [7, chapitre 2] et Bogachev [4, section 3. 10 (iii)] pour la valeur de f3(s) et
les résultats présentés dans cette section.

Pour § > 0, s € [0, 0] et A = R", posons

57 (A) := B(s) inf {Z(diamAj)s; diamA; <6, Vj, et Ac ujAj} ,
J

H(A) = éng 7°(A) (mesure de Hausdorff s-dimensionnelle).

Ici, diam A est le diametre de A, diam A := sup{|z — y|2; =,y € A}.

Les résultats de la section précédente impliquent facilement le résultat sui-
vant.

5.19 Proposition.

a) J¢° et ° sont des mesures extérieures.
b) Elles satisfont le critere de Carathéodory (5.19).
c) Restreintes aux boréliens, J7;° et 77° sont des mesures. o

Par abus de notation, désignons encore par 77;° et .77° les mesures associées
aux mesures extérieures J7;° et 7°° par la construction de Carathéodory. L'utilité
des mesures de Hausdorff vient de leur interprétation géométrique, du moins
pour s entier.

5.20 Théoréme.

a) Dans R", nous avons J¢" = ), (la mesure de Lebesgue).

b) Sin > 2 etsi C est une courbe lisse paramétrée dans R", alors .#’'(C) est la
longueur de C.

c) Sin > 3etsiS estune surface lisse paramétrée dans R?, alors 7#%(S) est laire
de S.

d) Etc. o

C’est dans ce théoreme qu’interviennent les valeurs précises de /(s).

Poursuivons I'exemple de la courbe paramétrée C' < R™. Il est possible de
montrer que J7°(C') = wsis < 1 et que 7#°(C) = 0sis > 1. Le changement
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s’opere pour s = 1, qui correspond a la dimension (géométrique) de C'. De ma-
niére générale, nous pouvons considérer le nombre

dim A :=inf{s > 0; #°(A) = 0}.

Pour une partie A de R" de mesure de Lebesgue > 0, nous avons dim A = n.
Pour une surface lisse paramétrée S dans R”, n > 3, nous avons dimS = 2.
En général, dim A n’est pas un entier, mais il est néanmoins interprété comme la
« dimension de A ». Par exemple, 1'ensemble de Cantor maigre (voir 1’exercice 6.58)

In2
a la dimension 1n_3 (voir Taylor [21, Proposition 12.17]).
n
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Chapitre 6

Intégrale

6.0 Apercu

Dans ce chapitre, nous définissons l'intégrale * d’une fonction mesurable f, dans
un espace mesuré (X, .7, pu), et donnons ses premieres propriétés. Les plus simples
fonctions mesurables sont les fonctions caractéristiques f = x4, avec A € .7, et dans

ce cas nous posons naturellement f x4 1= p(A). Dans le cas des fonctions étagées,
la définition se fait « par linéarité », en posant JZ axa, ‘= 2 a; j(A;), maisilya
) i

déja une premiere difficulté : pour que la derniere somme soit bien définie, il faut
supposer par exemple a; > 0, Vi. Cette définition permet de définir l'intégrale
d’une fonction étagée positive. L'étape suivante consiste a définir 1'intégrale d"une
fonction mesurable positive f. La définition 6.5 :

Jf = sup {Ju, 0<u<f, u étagée} (6.1)

n’est pas trés intuitive; une définition plus naturelle serait

ff = limffn, ou f, étagée positive, Vn, et f,, /" f; (6.2)

une telle définition ressemblerait au calcul de 'intégrale de Riemann en utilisant
des sommes de Darboux inférieures. Il se trouve que (6.2) est en effet équivalente
a la définition 6.5, mais que la preuve de cette équivalence n’est pas immédiate
(voir le corollaire 6.19).

t. Intégrale de Lebesgue, au sens d’intégrale calculée dans le cadre de la théorie de I'intégration
que nous présentons ici, due a Lebesgue. Je ne vais pas employer la terminologie intégrale de
Lebesgue dans le cadre général, la réservant au cas de 'intégrale d’une fonction par rapport a la
mesure de Lebesgue v,, ou A, dans R".
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La définition de l'intégrale d'une fonction mesurable quelconque est I'une des fai-
blesses de la théorie de l'intégration : en général, une fonction mesurable n’a pas d'inté-
grale. La définition rigoureuse en est donnée dans la section 6.2.

La section 6.3 nous permet de rencontrer un résultat important d’intégration :
le théoréme de convergence monotone 6.18 (ou théoreme de Beppo Levi). C’est le pre-

mier résultat permettant de permuter lim et f Il affirme que si

0< fn / f = hmfn:

avec f, mesurable, V n, alors

flignfn - 1i£nffn.

Ce résultat a un nombre incalculable de conséquences, dont certaines seront
vues dans la section 6.4. L'une d’elles est la linéarité de 1'intégrale (proposition
6.21), dont a la fois 1’énoncé et la preuve ne sont pas évidentes. ' Une autre consé-
quence est encore un résultat de permutation, cette fois-ci entre somme d'une série et
intégrale, dont la conclusion est (sous des hypotheses appropriées)

f;m=;fn

(théoreme 6.26).

La section 6.5 fait le lien entre 1'intégrale et les intégrales déja connues, de Rie-
mann et généralisée. Pour simplifier, nous considérons uniquement des fonctions
continues (ce qui n’est pas essentiel). Un résultat simple a énoncer (proposition
6.34) est que, si f : [a,b] — R est continue, alors son intégrale de Riemann et son inté-
grale par rapport a la mesure de Lebesgue vy coincident. Les propositions 6.34 et 6.35
sont fondamentales, dans la mesure ot elles permettent de traiter une méme inté-
grale tant6t comme intégrale de Lebesgue, tant6t comme intégrale de Riemann
(ou généralisée) et d’utiliser dans les calculs des résultats spécifiques a chacune
de ces intégrales.

La section 6.6 est inattendue par rapport au schéma «intégrale = généralisa-
tion de l'intégrale de Riemann », car elle traite de séries, et explique comment
celles-ci peuvent étre vues comme des intégrales par rapport a la mesure de
comptage.

t. Faut-il vraiment connaitre cette preuve? Lieb et Loss justifient ainsi ’absence de la théorie
de l'intégration dans leur livre Analysis [16] : “We all know the tremendously important fact that

J( f+9) = J f+ Jg, and we can use it happily without remembering the proof (which actually

requires some thought).”
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Ainsi, la théorie de l'intégration permet, entre autres, de traiter de maniére
unitaire 'intégrale de Riemann (et, dans une moindre mesure, l'intégrale généra-
lisée) et les séries.

Dans la section 6.7, nous examinons le lien entre intégrales par rapport a . et
par rapport a la mesure complétée i, la conclusion informelle étant que le passage
de p & 1w n’affecte pas l'existence des intégrales et leur valeur.

La section 6.8 présente brievement quelques triomphes de la théorie de I'inté-
gration. Il s’agit de trois résultats, tous dus a Lebesgue :

a) La caractérisation des fonctions Riemann intégrables (critére de Lebesgue, théo-
réeme 6.53).

b) Une forme faible du théoréme de Leibniz-Newton lorsque l'intégrande  n’est
plus continue, mais seulement intégrable (théoréeme de différentiabilité de Le-
besgue 6.56).

c) Une généralisation du théoreme de Leibniz-Newton (théoreme 6.57).

Compétences minimales attendues.

a) Comprendre quelles fonctions possédent une intégrale.

b) Savoir calculer I'intégrale d’une fonction étagée positive.

c) Manipuler les propriétés basiques de l'intégrale (monotonie, inégalité trian-
gulaire, linéarité).

d) Savoir utiliser le théoreme de convergence monotone (théoreme 6.18) et le
théoreme sur l'intégrale d"une série (théoreme 6.26).

e) Comprendre et utiliser les liens entre intégrale de Lebesgue, de Riemann et
généralisée.

f) Comprendre et utiliser le lien entre séries et intégrales par rapport a la mesure
de comptage.

g) Maitriser les arguments liés aux ensembles négligeables. o

Dans tout ce chapitre, nous travaillons dans un espace mesuré (X, .7, it). Sauf
mention contraire, les fonctions considérées sont mesurables. Je ne vérifierai
pas toujours la mesurabilité des fonctions construites a partir de fonctions
données (par exemple, lim, f,, avec chaque f,, mesurable). Le lecteur est en-
couragé a le faire; ceci fait partie de I'apprentissage de la théorie de la mesure.

1

t. Intégrande : fonction que I’on intégre. Exemple : dans l'intégrale f cos x dx, I'intégrande est
0
2 +— cos . Mot non reconnu par I’Académie, mais d'usage courant en mathématiques.
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6.1 Fonctions étagées positives

Rappelons le cadre général : nous travaillons dans un espace mesuré (X, .7, p).
Dans cette section, toutes les fonctions sont supposées étagées.

Rappelons qu'une fonction étagée est de la forme (*) f = > | a;x4,, avec un
nombre arbitraire mais fini, n, de termes, a; € R et A; € .7, Vi. Introduisons des
définitions qui ne serviront que dans cette section :

6.1 Définition. La représentation (*) est :
a) Canonique si les A; sont d. d. d. et non vides et si les a; sont distincts et non
nuls.

b) Dans le cas particulier ou f > 0, la représentation (*) est admissible si les a; sont
positifs. o

6.2 Proposition. Une fonction étagée admet une représentation canonique. Celle-
ci est unique modulo une permutation des termes de la somme.

Dans le cas particulier ou f est positive, la représentation canonique est ad-
missible. 3

L’unicité, a une permutation de termes pres, de la représentation canonique
montre que la définition qui suit est correcte (pourquoi?).

6.3 Définition (Intégrale d’une fonction étagée positive). Si f est étagée et >
0, de représentation canonique f = ) a;xa,, alors l'intégrale de f (par rapport
a ) est

| r@d@ = [ rau=[ra-|1=% (40

6.4 Proposition. Soient f, g : X — [0, o[ étagées positives.

a) Si f = Z;”Zl bjx B, est une représentation admissible de f, alors

| 7= b)), (6.3)
b) Six\zo,alorsj(f+/\g):ff+)\fg. o

Démonstrations

Démonstration de la proposition 6.2.
Unicité. Si (**) f = D", aixa, = Z;”Zl bjx B, sont des représentations canoniques de f,
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alors f a, comme valeurs non nulles, précisémentles ay, . . ., a,, ; de méme, ses valeurs non
nulles sont by, ..., by,. Il s’ensuit que m = n et que les b; s’obtiennent en permutant les
a;. Quitte a faire une permutation dans la deuxiéme somme, nous avons f = >\ | a;xc;,
ou les C; sont les B; écrits dans un ordre différent. Comme f “(a;) = A; = C;, nous
trouvons que la deuxieme somme de (**) est une permutation de la premiere.

Existence. Soient a1, ...,a, les valeurs distinctes et non nulles prises par f. Si A4; :=
f7Y(a;), alors f = Y | a;xa, est une représentation canonique de f.

Sif=>0etsif=23",a;xa, estlareprésentation canonique de f, alors les valeurs de
fsontay,...,an, et éventuellement 0. Il s’ensuit que les a; sont > 0. CQFD

Démonstration de la proposition 6.4.

a) Commencons par le cas ot les B; sont d. d. d. Nous pouvons supposer B; # J et
b; # 0,V j; sinon, nous effagons les termes correspondants de la représentation, sans
affecter la valeur de ] b;u(B;).

Par construction, tous les b; sont > 0. Soit A := {b1,...,by}. Alors A = f(X)\{0}
et, si f = X', aixa, est la représentation canonique de f, alors nous avons A =

{a,...,an}.

Avec
M;:={j; bj =a;} = {j; Bj A},

nous avons A; = f~(a;) = wjen, Bj, d’ott pu(A;) = 2 jem; M(Bj). 1l s’ensuit que

Jf =Zam(Ai) =>ai >, u(By) =D > bju(By) ZijM(Bj)-

Conclusion : (6.3) est vraie si les B; sont d. d. d.

Soit maintenant f = >77"; b;ju(B;) une représentation admissible. Nous allons prouver
(6.3) par récurrence sur m.

Pour m = 0 c’est clair. Passage de m — 1 a m : nous pouvons représenter canonique-
ment Z;”:_ll bjXB; = X.; @iXA,, et nous avons (par hypothese de récurrence)

m—1

m—1
J D bixs, = Y. biu(B)) = > ain(A).
=1 =1 5
Par ailleurs,
f=210iXa0B, + D@ + bm)XAinBr + DX B0,

est une représentation de f utilisant des ensembles d. d. d. (justifier).
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Nous avons dong, en utilisant la premiére partie de la preuve (vérifier)
ff = Z aipt(Ai\Bm) + Z(ai + b )1(Ai 0 Biy) + b pu( B\ Ui Ai)
—Ea, (Ai\Bpn) +/1,(B N Ai)) + b Z + (B Li Ay))

=p(Bm)
d’ou Jf Zazﬂ ) + bmp(B Zb]ﬂ

b) Si f = >, aixa, etg = Zj bjxp; sont des représentations canoniques, alors la repré-
sentation f + \g = >}, a;xa, + 2, ; AbjXB; est admissible. Il s’ensuit que

Jf‘f‘/\g Zazﬂ +Z)\bju ff—i-)\f CQFD

6.2 Fonctions mesurables

Rappelons le cadre général : nous travaillons dans un espace mesuré (X, .7, u1).
Dans cette section, toutes les fonctions sont supposées mesurables.

6.5 Définition (Intégrale d'une fonction mesurable positive). Si f : X —
[0, ], alors I'intégrale de f est

Lf(x)du(x) - Lfdu - [ rau= [

: = sup {fu ; u étagée et positive et u < f} :

[ est intégrable si son intégrale est finie.

6.6 Remarque. Une généralisation doit étre « rétro-compatible ».

Dans notre cas : nous avons d’abord défini 1'intégrale des fonctions éta-
gées positives (définition 6.3), puis celle des fonctions mesurables positives
(définition 6.5).

Les fonctions étagées positives étant des cas particuliers de fonctions me-
surables positives, il faut vérifier que, pour une fonction étagée positive, 1'in-
tégrale donnée par la définition 6.5 est la méme que celle donnée par la défi-
nition 6.3.

Nous allons effectuer une démarche similaire pour chaque généralisation.

6.7 Proposition. Si f est étagée positive, les définitions 6.3 et 6.5 donnent la méme
intégrale. o
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La définition de l'intégrale d"une fonction mesurable (pas nécessairement po-
sitive) repose sur l'identité

f=fe—f1 (6.4)

6.8 Définition (Intégrale d'une fonction mesurable). f : X — Ra une intégrale

si J f+ — | f- aunsens, et dans ce cas son intégrale (de Lebesgue) est

| r@ @ = [ rau=[ran=|s=[r.-]r

Si f, et f_ sont intégrables, alors f est intégrable. Donc

f intégrable < f a une intégrale finie

(:)lff+<ooetjf_<oo]<:>f|f|<oo.¢

6.9 Remarque. L'hypothése « J f+— f f- aunsens » équivaut a « J fret J f-
ne valent pas en méme temps oo ».

En particulier, cette hypothese est satisfaite lorsque f > 0, car dans ce cas

nous avons f_ = 0, et donc f fo=0.

6.10 Remarque (Rétro-compatibilité). Dans le cas ott f > 0, nousavons f. = fet f_ =0;
la «nouvelle » intégrale vaut donc

Jro=fr=[r=]o=]x

et nous retrouvons |« ancienne » intégrale. o

6.11 Définition (Intégrale d'une fonction vectorielle). Soit f = (fi,..., f,) :
X — R" mesurable. L'intégrale de f est définie uniquement si chaque f; est
intégrable, et si tel est le cas

Jr=(5),. = (5] 5)

t. Rappelons (voir la notation 3.30) que f; := max(f,0) et f_ := —min(f,0).
1. La derniere équivalence sera justifiée dans la section 6.4.
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‘ Si f: X — C, nous identifions J f avec JRe f+ zJIm f.

Par analogie avec l'intégrale de Riemann, la premiere propriété attendue de
I'intégrale de Lebesgue est sa linéarité. Ceci est vrai (proposition 6.21), mais pas
immédiat. Pour l'instant, montrons la partie facile de la linéarité.

6.12 Proposition. Si f a une intégrale et si A € R, alors A\ f a une intégrale et nous

avonsf)\f:/\Jf. o

Une autre propriété attendue est la monotonie.

6.13 Proposition. Si f < g etsi f, g ont une intégrale, alors f f=< J g. o

Si f est définie sur une partie A mesurable de X, la définition de J f estla

. A
sulvante.

6.14 Définition. Si A€ 7 et f : A — R est mesurable, alors f a une intégrale
si et seulement si fx 4 en a une," et dans ce cas nous posons

Lfdu _ Lf - L Fxa = L Fxady.

Le résultat (tres utile) qui suit explique en quoi les ensembles négligeables le
sont.

6.15 Proposition.
a) Si A € 7 estnégligeable, alors pour toute fonction mesurable f : A — R nous

avons | f=0.
A

b) Si f : X — R est mesurable et f = 0 p. p., alors f est intégrable et Jf =0. o

Exercices

Méme cadre que ci-dessus : nous travaillons dans (X, .7, i) et toutes les fonc-
tions sont mesurables.

6.16 Exercice. Si 0 < f < g, alors Jf < fg. o

f, dans A

. R 1 osif:A— R, al = .
appelons que, si f alors fxa {07 dans A°
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6.17 Exercice. Soient A € 7 et f : A — R. Montrer que la définition 6.14 de j [ est
A

équivalente a :

f est (si elle existe) I'intégrale de f par rapport a 'espace mesuré (A, T4, j14), ot
A
Ty ={BeT;Bc Aletua(B):=u(B),VBe T4. o

Démonstrations

Démonstration de la proposition 6.7. Notons f f l'ancienne intégrale et I la nouvelle. Nous
avons f < f, d’ou (justifier) f f<l1

Par ailleurs, si 0 < u < f est étagée, alors f = u + (f —u), avec f — u étagée positive.
Nous avons donc (proposition 6.4 b))

ff:Ju—l—J(f—u)ZJu. (6.5)

En prenant, dans (6.5), le sup sur u, nous trouvons f f=1 CQFD

Démonstration de la proposition 6.12. Si A = 0, c’est clair. Si A = —1, il suffit de remarquer que
(—f)+ = f-et(—=f)— = f+ (vérifier ces identités).

Pour compléter la preuve, il suffit de montrer 1’égalité pour A > 0 (justifier). Or, pour
A > 0 nous avons :

a) (A\f)+=Af+.

b) uestétagéeet) < u < fi <= luestétagée et 0 < \u < Af4 (justifier).

En utilisant la proposition 6.4 et I'item b) ci-dessus, nous obtenons
A J fr =Asup {Ju ; u étagée et positive, u < fi}
= sup {f Au; A étagée et positive, du < A fi}

= sup {JU; v étagée et positive, v < )\f+} = f)\er,
ce qui implique (détailler) I'égalité A J f= JA f CQFD

Démonstration de la proposition 6.13. Si f, g sont > 0, I'inégalité s’obtient & partir de la défini-
tion 6.5 (exercice 6.16).

Pour f, g quelconques, notons 1'implication
f<g = [f+ <g+etf =g],
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Intégrale 6.3 Théoréme de convergence monotone

qui implique a son tour

f<g = Hf;sfmetffzfg]; (6.6)

pour conclure, il suffit de soustraire ces deux derniéres inégalités. CQFD

Démonstration de la proposition 6.15.

~

a) Posons f := fxa. Nous devons montrer que f f
X

0.

Nous avons (justifier la derniere égalité)
F=fxa=Ffixa—Ffxa=Fi—F.

Il suffit donc de montrer le résultat pour f+, qui sont des fonctions mesurables posi-
tives.

Soit f : A — [0, o] une fonction mesurable positive. Par définition de 1'intégrale de 7,
il suffit de montrer que, si g : X — [0, co[ est une fonction étagée telle que g < f, alors

ngO.
X

Sig = Y, aixa, est une représentation admissible de g, alors
g = (justifier) = gxa = > aixa, x4 = ), aixa,n4
i i

est une autre représentation admissible de g. Comme p(A4; N A) < p(A) = 0, nous
obtenons (proposition 6.4 a))

fXg = Zi]ai,u(Ai N A) =0.

b) se montre en notant qu’il existe A € .7 tel que f = 0 en dehors de Aetdonc f = f x4
(justifier) et en utilisant la premiére partie. CQFD

6.3 Théoréme de convergence monotone

Le cadre général est celui d'un espace mesuré (X, .7, 11). Toutes les fonctions
de cette partie sont mesurables.

6.18 Théoreme (Théoréme de convergence monotone). t Soit (fn)n une suite

croissante de fonctions mesurables positives. Si f, — f,} alors f fn— J f.

Ou encore : lim J i = flim fn-
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6.19 Corollaire. Soit f > 0. Pour toute suite croissante (f,),, de fonctions étagées

positives telle que f,, — f, nous avons J f =lim f f- o

Démonstrations

La preuve du théoreme de convergence monotone repose sur un lemme facile.

6.20 Lemme. Soit u une fonction étagée positive. L'application

v: 7 —[0,0], v(A) :=J uzf uxa, VAe I,
A X
est une mesure. o

Démonstration. Notons que v est bien définie, car ux 4 est étagée et positive.

Siu = )}, a;Xxa, est une représentation admissible de u, alors ux4 = >, aix4,~a est une
représentation admissible de ux 4 (voir la preuve de la proposition 6.15 a)), d’oit

v(A) = JUXA = JZaiXAmA = Zam(Ai nA).

A partir de cette formule, 'exercice 4.5 a) montre que v est une mesure (vérifier). CQFD

Démonstration du théoréme 6.18. [ est mesurable (proposition 3.20) et positive; de plus, nous
avons 0 < f,, < f pour tout n.

L'exercice 6.16 donne f fn < f f,¥n, etimplique que la suite (J fn) est croissante.

En particulier, cette suite a une limite et nous avons lim | f, < | f.
n

Il reste & montrer 1'inégalité opposée

ninf fo = f f. 6.7)

Notons qu’il suffit de montrer I'inégalité

limffn > (1 —s)fu, V0 <e <1, Vuétagée telleque 0 < u < f. (6.8)

1. Ou encore théoreme de Beppo Levi.
1. La convergence f, — f est simple. Dans les théoremes les plus importants en théorie de
I'intégration, il s’agit de convergence simple, soit partout, soit presque partout.
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Intégrale 6.4 Conséquences du théoreme de convergence monotone

En effet, si (6.8) est vraie, alors, en faisant ¢ — 0+, nous obtenons (en utilisant le fait
que l'intégrale de u est positive)

limffn > fu, Vu étagée telleque 0 < u < f. (6.9)

De (6.9) et la définition 6.5, nous obtenons (6.7).

Montrons (6.8). Soit By, := {z ; fu(x) = (1 — ¢)u(x)}. Comme lim,, f,, = f > u, nous
avons u, B, = X (vérifiez que x € U, B,, Vz € X, en considérant respectivement les cas
u(z) = 0etu(z) > 0).

Par ailleurs, nous avons B, = (f,, — (1—¢)u) ([0, 0]), d’ott B,, € 7, etla suite (B,,),
est croissante (justifier, en utilisant la monotonie de la suite (f;,)).

Avec v ]la mesure du lemme précédent, nous trouvons, grace au théoréme de la suite

croissante, que v(B,,) — v(X) = f u.

Par ailleurs, nous avons (en utilisant a nouveau l'exercice 6.16)

[ = [ foxm, = [0 - opunn, = (1= o),

d’ot limffn >(1—¢) fu CQFD

6.4 Conséquences du théoréme de convergence mo-
notone

Le cadre général est celui d"un espace mesuré (X, .7, i1). Toutes les fonctions
de cette partie sont mesurables.

Grace au théoréme de convergence monotone, nous pouvons (enfin!) montrer
la linéarité de I'intégrale.

6.21 Proposition. Si f, g ont une intégrale, A € R, et si les sommes f + \g et
J f+ /\J g sont bien définies, alors f + Ag a une intégrale et J( f+Ag) =

[14a]a

En particulier, si 1'une des fonctions f, g prend uniquement des valeurs

finies, si f est intégrable et g a une intégrale (ou l'inverse), alors J( f+XAg) =

[14a]a

6.22 Remarque. Expliquons les hypotheses de la proposition.
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[ + Ag est bien définie si et seulement si il n’existe pas de point z € X tel que f(z) =
+o0 et Ag(z) = —f(z). En particulier, cette hypothése est satisfaite si f (ou g) est finie en
tout point.

Si f et g ont une intégrale, alors J f+ /\f g est bien définie si et seulement si nous

n’avons pas en méme temps J f=fwetA f g=— f f. En particulier, cette hypothese

est satisfaite si f (ou g) est intégrable. o

Le résultat suivant donne plusieurs formes de l'inégalité triangulaire, qui dans

ff‘SJIf!-
Jf £f|f|-

b) Si|f| < g et g est intégrable, alors f est intégrable.
< 191+ [1gl

Avant d’énoncer la tres utile inégalité de Markov, introduisons une notation
pratique.

le cas des intégrales prend la forme

6.23 Proposition.

a) Si f a une intégrale, alors

¢) Si f + g a une intégrale, alors J( f+9)

6.24 Notation. L'ensemble des points z satisfaisant une propriété P(x) sera noté [P].
Exemples :

[f=0]:={re X; f(z) =0}, [[f[>t]:={zeX;[f(x)] > 1},

[feAl:={ereX: fx)e A}, [f <t]:={zreX; f(z) <t}, etc. ¢
6.25 Proposition (Inégalité de Markov). ™ Sit > 0, alors
(i1 > ) < ¢ [ 191 (6.10)
Plus généralement, si1 < p < wett > 0, alors
I o (6.11)

Le résultat suivant permet de permuter série et intégrale.

t. Dans la littérature anglophone, connue plutét comme l'inégalité de Ichebychev.
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6.26 Théoreme (Intégrale d'une série). Si f,,, n > 0, sont positives, alors

Les résultats suivants sont des variantes de la relation de Chasles
b c c
J f(z)dx +f f(z)de = J f(z)dx.
a b a

Le lien de la proposition 6.27 b) avec la relation de Chasles pourra étre compris
une fois établis les résultats de la section 6.5.

6.27 Proposition. On suppose que f : X — R a une intégrale.

a) Si Ae 7, alors f4 a une intégrale.

b) SiX:AuB,oﬁA,Beﬂ,alorsffzf f+f f1
A B

¢) Plus généralement, si X = w1, A4, avec A,, € .7, Vn, alors J f= Z L f.

d) SiAneﬂ,Vn,etAn/'X,alorst:limJ f.
n A,

Exercices

Le théoreme de la suite croissante pour les ensembles s’accompagne du théo-
réme de la suite décroissante (voir la proposition 4.2). Voici le compagnon dé-
croissant du théoreme de convergence monotone 6.18 (qui, rappelons-le, porte
sur une suite croissante).

6.28 Exercice (Théoreme de convergence décroissante). Soit (X, .7, u) un espace mesuré.
Soit ( f,,), une suite de fonctions mesurables et positives sur X telle que f,, ™\, f.

a) Si ff() < o0, montrer que an — Jf.

b) Montrer que, si J fo = o0, alors nous n’avons pas nécessairement J fn— f f. o

1. Rappelons que les fonctions f,, sont implicitement supposées mesurables. Pas la fonction
f =2, fn-Le théoreme affirme donc : que f est mesurable, que f a une intégrale, que chaque f,
a une intégrale, et que 1'égalité (6.12) est vraie.
t. Chacune des intégrales | f, J f existe, d’apres I'item a). Entre autres, I'item b) affirme que
A JB

la somme J

f+ J f existe. Remarque analogue concernant l'item c).
A B
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Voici un exercice facile une fois montrée la proposition 6.21. Il est instructif
d’essayer de le prouver (méme pour n = 2) sans faire appel a cette proposition.

6.29 Exercice. Soit f une fonction étagée, de représentation f = >\ | a;xa,. Si u(4;) < ©
n

pour tout ¢, alors f a une intégrale et dans ce cas nous avons J f= Z a;p(A;). o
i=1

L’exercice suivant est fondamental en théorie des probabilités. C’est une consé-
quence facile de la proposition 6.27.

6.30 Exercice (Mesure a densité). Soit (X, .7, u) un espace mesuré. Soit f : X — [0, 0]
une fonction mesurable positive.

Soit
v(A) = f fdu, VAe 7. (6.13)
A
Montrer que v est une mesure sur .7. o

6.31 Définition (Mesure a densité). La mesure v définie par (6.13) est une mesure
a densité f par rapport a p. o

Démonstrations

La ot cela n’est pas fait, vérifier, grace aux outils des sections 3.2 et 3.3, la me-
surabilité de toutes les fonctions qui interviennent dans les preuves qui suivent.

Démonstration de la proposition 6.21. Prenons A = 1. Le cas ot A est quelconque s’obtient en
combinant le cas A = 1 avec la proposition 6.12 (vérifier).

Commencons par le cas f, g > 0. Soient (fy,)n, (9n)n deux suites de fonctions étagées
positives telles que f, ,/ fetg, / g. Alors f, + g, / f + g et donc (en utilisant la
proposition 6.4 b) et le corollaire 6.19)

Jr+0=tim [0 =t ([ £+ [ ) =t [ £t [ g
1 fa
Dans le cas général, nous avons
(f+9)+—(f+9)-=f+g9=fr —f-+9+—9-,
d’ou
(fH9)++f-F9-=([+9)-+ [+ +9+.
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I s’ensuit que

oo+ [s o= |wra-+ [+ ]an (6.14)

Si ff, Jg et Jf + Jg ont un sens, alors f(f +9)+ — j(f + g)— a un sens (vérifier,

en examinant par exemple le cas ot | f = o0) et (6.14) donne

oo [tra=[r-[r+[o-]o (6.15)

Jora=[uroi-[¢ro-=[r-[r+]a-]s
oo

I est important de retenir le principe de la preuve de la proposition 6.21, que
nous résumons dans la remarque suivante.

d’ot

CQFD

6.32 Remarque. Pour montrer une propriété des fonctions intégrables (ou qui
ont une intégrale) f, g, etc. :

1. Nous commencons par les fonctions positives f4, g+, etc.

2. Les hypotheéses sur f, g, etc., permettent de retrancher les formules obte-
nues.

3. Sinécessaire, pour montrer, dans le cas des fonctions positives, les proprié-
tés demandées, il faut commencer par considérer des fonctions étagées et
de passer a la limite en utilisant le théoreme de convergence monotone ou
sa conséquence, le corollaire 6.19.

4. Dans le cas des fonctions étagées, les propriétés demandées sont évidentes
ou relativement simples a montrer.

Ce schéma permet de ramener la preuve au cas plus facile des fonctions
étagées positives et de la compléter de maniere automatique en utilisant les étapes
ci-dessus.

Démonstration de la proposition 6.23.

a) découle, via la proposition 6.21, de

[ =\[ 5= 5| [res [ 2= [ = in

b) Nousavons 0 < f < |f| = f+ + f- < g,dou in < o0. (Conclure!)
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¢) En utilisant I'inégalité |f + g| < |f| + |g| et'item a) (pour f + g), nous obtenons

U(f+g)‘ < [1r+al < [ar1+10 = [ 151+ [ 1ol caro

Démonstration de la proposition 6.25. Soit A := [|f| > t] = {x € X ; |f(z)| > t}. Alors |f|P >
tPxa, d’ou J |fIP = jthA = tPu(A). CQFD

Démonstration du théoréme 6.26. Posons g, := fo + f1 + ...+ fn = 0. Nous avons 0 < g, /
Don fn,d’olt Y, fr est mesurable. Par convergence monotone, nous trouvons

Janzfliygnzligngn=li7£n<ff0+ff1+...ffn>=2an. CQFD

Démonstration de la proposition 6.27. f ayant une intégrale, nous avons soit J f+ < oo, soit

f f- < o0. Supposons, par exemple, que f f- < .
SiAe 7,posons fa:= fxa.

a) Nous avons f4 mesurable et 0 < (f4)+ < f+. Nous trouvons que J( fa)— < oo (justi-
fier), et donc J fa= L f aun sens (justifier).

b) Nous avons (fa)+ + (f)+ = f+, d’ol (justifier)

Jf+ = J(fA)+ + J(fB)-i- = L fe+ jB fes

nous obtenons la conclusion en retranchant les deux égalités ainsi obtenues.

¢) Il suffit de prouver I'égalité pour f+ a la place de f (justifier); ainsi, nous pouvons
supposer f > 0.

Posons B, := Ag u Ay u...u A, Alors B, / X, B, € Jet0 < fg, / f.Nous
trouvons (justifier, en particulier en utilisant le théoréme de convergence monotone
6.18)

[ 7= [ o, =tim [, =t [(Fay + f+oo £

:117g1<fon+JfA1+...+ijn> =) Anf.

d) C’est compris dans le calcul précédent. CQFD
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6.5 Lien avec les intégrales habituelles

Comme expliqué dans l'introduction générale de ce texte, l'intégrale par rap-
port a la mesure de Lebesque dans R a été construite pour généraliser 1'intégrale de
Riemann. Dans cette section, nous allons nous convaincre qu’il s’agit bien d’une
généralisation, du moins lorsque la fonction a intégrer est continue.

6.33 Définition (Fonction Lebesgue intégrable). Une fonction f : A — R est
Lebesgue intégrable si :

i) A < R" est Lebesgue mesurable, c’est-a-dire A € .Z,.
ii) f estintégrable par rapport a la mesure de Lebesgue \,,.

Définition analogue pour « f a une intégrale de Lebesgue ».

Dans cette section, nous travaillons dans (R, &g, 11), avec des fonctions conti-
nues sur un intervalle I. Une fonction continue étant borélienne, nous avons

LfdAI - Lfdul,

au sens ol l'une des intégrales existent si et seulement si ’autre existe, et dans ce
cas elles sont égales (ceci découle de I'exercice 3.18 a) et de la proposition 6.43).

6.34 Proposition (Intégrale de Riemann et intégrale de Lebesgue). Si [a, b] est

un intervalle compact et f : [a,b] — R est une fonction continue, alors f est
Lebesgue intégrable sur [a, b] et

b
fd\ = fdv, = f f(z)dz, (6.16)
| a

[a,b] [a,b

la derniere intégrale étant I'intégrale usuelle (de Riemann).

Une autre intégrale couramment utilisée est l'intégrale généralisée. Le cas le
plus simple, que nous considérons ici, est celui d’une fonction continue sur un
intervalle non compact /. Dans ce cas, l'intégrale généralisée se définit en ap-

prochant / par des intervalles compacts. Exemple typique : si f :]0,1] — R est
continue, alors

1 1
J f(z)dx = lir(])nJr f f(z) dx (sous réserve d’existence de la limite).
0 e €

Le résultat suivant fait le lien entre intégrales généralisées et de Lebesgue.
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6.35 Proposition (Intégrale généralisée et intégrale de Lebesgue). Soit I un
intervalle non compact d’extrémités a et b. Soit f : I — R une fonction continue.
Nous avons :

b
a) Si f est positive, alors J fdv, = J f(x)dz.t

1 a
b) f est Lebesgue intégrable sur I si et seulement si l'intégrale généralisée

b b
f f(x) dx converge absolument, et dans ce cas f fdv = f f(z) dx.
a I a

b
f duv, existe, alors I'intégrale généralisée f f(z)

a

c) Sil'intégrale de Lebesgue J

I

dx existe et est égale a f fduv.
I

b
d) Si l'intégrale généralisée f f(z) dz existe, alors l'intégrale de Lebesgue

J f dvy n’existe pas nécessairement.
I

6.36 Convention (Abus de notation pour l'intégrale de Lebesgue). Si I < R est un
intervalle, si f : I — R a une intégrale de Lebesgue et s’il n’y a pas de risque de

confusion, nous écrivons J f(z) dz a la place de f fdviou | fd).
I I I

Exercices

6.37 Exercice. Soit f, : R — R, f,,(z) := —(z + n)_. Montrer que :

a) J fn dvy existe, V n.
b) fn /0.
Q) an dvy 4 deul.

d) Comparer cet exemple aux hypotheses et a la conclusion du théoreme de convergence
monotone. ©
Démonstrations

Démonstration de la proposition 6.34. Quitte a remplacer f par fi, nous pouvons supposer
f = 0 (justifier).

1. Cette égalité comprend l'existence des deux intégrales.
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Soit o une division de [a, b], déterminée par les points a = z9 < 21 < ... < z, = b.
Nous associons a cette division la somme de Darboux inférieure

Sg 1= Z(atj —xj_1) inf f.

i [zj—1,2]

Si nous définissons

n—1

foila,b] >R, foi= > inf IXtayoast + Xz

j=1 [Ij—lvxj] Tn—1,Tn

alors clairement f,; est étagée et

So = Jodvy = f fo X[a,b] dvy.
[a,b] R

Rappelons les résultats suivants, rencontrés dans la construction de I'intégrale de Rie-
mann :
a) SiT est «plus fine » que o,Falors s, < s, et fo < fr.
b) Si nous prenons une suite (0,), de divisions de plus en plus fines et telles que les
normes des divisions,t ||o,, |, tendent vers 0, alors f,, — f uniformément sur [a, b].

¢) Nous avons
b
lims,, = J f(x)dx.

Si nous posons g, = fo, X[a,b]/ alors les g,, sont des fonctions étagée positives telles
que 0 < gn /" fX[a,]- Nous en déduisons (justifier) que

b
fduv = jlimgn dvy = limfgn dvy =lims,, = f f(x) dx. CQFD
[a,b] n n n a

Démonstration de la proposition 6.35. Nous prenons I := [0, o[ ; les arguments ci-dessous s’a-
daptent facilement a tous les autres types d’intervalles non compacts.
a) Posons f, = fX[on), de sorte que f,  f (sur I). Avec la notation g := gxr, nous

avons aussi f, / f (sur R). Nous trouvons, en combinant le théoréme de convergence
monotone, la proposition 6.34 et la définition de I'intégrale généralisée,

ffdylzf fdylzf limfndmzlimf ﬁldulzlim fdu
I R R " mJRr n

[0.n]
zliinfo f(ar)d:czfo f(z)dx.

t. 7 est plus fine que o si les points qui déterminent 7 contiennent ceux qui déterminent o.
1. La norme d’une division ¢ déterminée par les points a = 29 < 21 < ... < 2, = bestla
longueur du plus grand intervalle [z,;_1,z,] : |o| = max;_1, . n(z; — xj—1).
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b) Nous avons (justifier, en utilisant I'item a) et les propriétés des intégrales généralisées)

f Lebesgue intégrable sur I < f frdry < ooet J fodv < 0 =
I I

joo fr(x)dr < o et foo f-(z)dr < 0 <= Joo(f+(:c) + fo(z))dr <
0 0 0

Q0 Q0
f |f(x)|dx < 00 < J f(z) dz converge absolument.
0 0

Si ces conditions équivalentes sont satisfaites, alors (justifier)

Lfdul=Lf+du1—f[f_du1=wa+(x>da:—f:of_<m>dx
~ [ - = [ s

0
¢) Si f auneintégrale, alors J f+dv — J f- dvy aun sens. Il s’ensuit que J f(z)dx —
I I 0

0
f-(z) dx a également un sens. Nous obtenons 1’égalité des deux intégrales comme

d%ms I'item b).

d) Il suffit de trouver un contre-exemple. Nous définissons f : [0, 0[— R de la maniere
suivante. Pour k € N, f(4k) :=0, f(4dk + 1) :=1/(k+ 1), f(4k + 2) := 0, f(4k + 3) :=
—1/(k + 1). Ceci définit f sur N. Nous définissons f sur [0, 0[c N en exigeant qu’elle
soit affine sur chaque intervalle [n,n + 1] avecn € N.

Soit E() la partie entiere de z. Nous vérifions aisément que ¥

O<Jf x/4) , Vo >0,

et donc f a une intégrale généralisée, qui vaut J f(x)dx = 0.
0

Par ailleurs, nous avons
f fr(@)de =141/2+ ...+ 1/k, Vk € N¥,
[0,4k]

d’otu (justifier)

LerdVl

t. Tracer le graphe de f sur [0, 8], pour avoir l'intuition de son allure.

J fi(x)de = lim fi(z)dx

k=0 Ji0,4k]
lim (1+1/2+...+1/k) =
k—0o0

4k

1. Indication. Ecrire # = 4k + r, avec k € N et 0 < r < 4, et montrer que f(t)dt = 0etque
0

4k+r
1
Je(r) == Lk f)dt < a1 Cette deuxieme propriété se vérifie graphiquement en notant que

1
la plus grande valeur de Jj(r) s’obtient pour r = 1, et vaut TR
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De méme, J f-dvy = 0. Il s’ensuit que f n’a pas d’'intégrale (de Lebesgue). CQFD
I

6.6 Lien avec les séries

Le théme général de cette section est que la somme d’une série peut étre in-
terprétée comme une intégrale par rapport a la mesure de comptage.

Soit X un ensemble quelconque. Nous considérons sur X la tribu Z(X) et,
sur Z(X), la mesure de comptage .. Dans ce cadre, toute fonction f : X — R
est mesurable, et toute partie de X est mesurable. Nous n’allons donc pas nous
intéresser a la mesurabilité dans ce qui suit.

6.6.1 X estfini

Dans ce cas, toute fonction est une fonction étagée. Nous avons donc :
a) Si f>0,alors f = _ f(x)x{s) est une représentation admissible. Il s’ensuit
que Jf = Z f(z).

reX
b) Si f est de signe quelconque, alors f a une intégrale si et seulement si f ne

prend pas en méme temps les valeurs +c0, et dans ce cas J f= Z f(x) (justi-

zeX
fier, en partant de f = f, — f_).

c) f estintégrable si et seulement si f n’a que des valeurs finies (justifier).

6.62 X =N

Dans ce cas, nous pouvons identifier une fonction f : N — R a une suite
(an)nZO-

Le résultat qui suit fait echo a la proposition 6.35.

6.38 Proposition.
a) Si f > O,alorsff = Zan.

b) f est intégrable si et seulement si ), a, est absolument convergente, et

dans ce cas ff = Zan.

c) Si f a une intégrale, alors ), a, existe et J f= Z Q-

n
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‘ d) Si), a, existe, alors f n’a pas nécessairement une intégrale.

Démonstrations

Démonstration de la proposition 6.38.

a) Soit A, := {0,...,n} / N. Nous avons (justifier, en utilisant la proposition 6.27 d) et
la section 6.6.1)

Jf—limj f:limZaj:Zan.
"JA, " 7=0 n
b) Nous avons

f estintégrable<=les intégrales de f. sont finies<=1les séries Z(an)i

n

sont convergentes<— la série Z lan| = Z((an)+ + (an)—) est convergente.

n n

Si tel est le cas, alors

Jr=[#-]s- D)+ = Xlan)- = Fllan)+ = (an)-] = an

n n

c) Si f a une intégrale, alors 1'une des intégrales f [+ est finie. Supposons par exemple

J f— <. Alors ), (a,)- < o0, ce qui justifie 1’égalité

Don = Sfan) = Naw- = [ 1o~ [ 1= [

n

d) Posons a, := (=1)"/(n + 1). Alors }  a, converge (série alternée), alors que

Z(an)Jr = Z(an), =

n n

(vérifier). Par conséquent, f n’a pas d’intégrale (justifier). CQFD

6.6.3 X est dénombrable

Dans ce cas, il existe une bijection ® : N — X. Posons g := fo®: N — R.

6.39 Proposition. L'intégrale J [ existe si et seulement si l'intégrale J g existe.
X N

En cas d’existence, nousavons | f= | g= Z f(@(n)). o
N n
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Démonstrations
Démonstration de la proposition 6.39. 1l suffit de montrer 'égalité des intégrales dans le cas ot
f = 0 (justifier).

Soient A,, := {0,...,n}, B, := ®(A,). Alors A,, /' Net, de plus, B,, ,/* X (vérifier),
d’ou1 (justifier, comme dans la proposition 6.38)

(el o g et 5 o o-

T€B), keAn

La deuxiéme égalité de 1'énoncé découle de la proposition 6.38 c). CQFD

6.6.4 Sommation par paquets et convergence commutative

Dans cette partie, X est dénombrable et ® : N — X est une bijection. Nous
supposons toujours que f : X — R a une intégrale.

Nous considérons une partition de X, X = 1,4, avecles A4, d. d. d. (chaque
A, est un « paquet »).

6.40 Proposition (Sommation par paquets).

a) Nous avons JX f= 2 JA f.

b) Sichaque A, est fini, nous avons J f= Z Z fx).t
X n xeA,

¢) Dans le cas particulier X = N?, nous avons

. £ duton, ) - i(men>:i<if<m,n>>. 5

m=0

6.41 Définition (Série commutativement convergente). Une série », a,, est com-
mutativement convergente si, pour toute bijection ¢ : N — N, la somme de la série
> Gp(n) €Xiste et est égalea Y, a,.F o

6.42 Proposition (Série commutativement convergente).

a) Une série a termes positifs est commutativement convergente.

b) Une série absolument convergente est commutativement convergente. o

t. Cette égalité implique que « la somme de sommes» >, >, _, f(z) existe.
1. Iln’est pas demandé que la série soit convergente.
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Démonstrations

Démonstration de la proposition 6.40. 11 suffit de considérer le cas ot f > 0 (justifier).

a) est un cas particulier de la proposition 6.27 c).
b) découle de la section 6.6.1.

¢) Justifions, par exemple, la premiere égalité.

Soit A, := {(m,n); m € N}. Alors N? = 1, 4,,. Nous trouvons (proposition 6.40 a))

m,n m,n) = . 17
LS duon =3 [ g 617)

A n fixé, soit By, := {(j,n); 0 < j < m}. Alors B, / A, et f|a,, a une intégrale, d’ou
(proposition 6.27 d))

J f= limf f=1m > f(G,n) = > f(m,n). (6.18)
An ™ JBm =0 m
Nous concluons en combinant (6.17) et (6.18). CQFD

Démonstration de la proposition 6.42.

a) La proposition 6.39 donne J f= f fop. Nous concluons grace a la proposition 6.38.
N N

b) découle de a) (justifier). CQED

6.7 P.p.etpassage a la mesure complétée

Le cadre général est celui d'un espace mesuré (X, 7, 1) et de son espace com-
plété (X, .7, ).

Dans un premier temps, nous examinons le lien entre intégrale par rapport a
la mesure y et celle par rapport a zz. La philosophie générale des résultats est que
les intégrales par rapport a i et fi sont égales, et qu’en modifiant une fonction sur
un ensemble négligeable, la nature de son intégrale (n’existe pas, existe, existe et
est finie) ne change pas.

Dans une direction voisine, nous montrons qu’un théoréme « partout pour j »
a des compagnon naturels « presque partout » et/ou « pour fi ». Il est important
de retenir le principe de preuve associé; nous n’allons pas y revenir dans les autres
chapitres, ou un énoncé presque partout et/ou pour ji sera suivi d’une preuve partout et

pour fu.

6.43 Proposition. Soit f : X — R .7-mesurable.
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‘ J f du existe si et seulement si J f dp existe, et dans ce cas J fdp = f fdu. ‘

6.44 Proposition. Soit f : X — R .7-mesurable.

Rappelons qu'il existe g : X — R .7 -mesurable telle que f = g u-p. p. (propo-
sition 4.19).

J f dpi existe si et seulement si Jg du existe, et dans ce cas J fdn= Jg dpu.
Cas particulier : f est p-intégrable si et seulement si g est p-intégrable. o
6.45 Corollaire. Si f,g : X — R sont .7-mesurables et f = g u-p. p., alors J f

existe si et seulement si Jg existe, et dans ce cas J f= J g. o

En combinant les propositions 6.15, 6.43, 6.44 et le corollaire 6.45, nous obte-
nons les regles suivantes de calcul, trés utiles dans la pratique.

6.46 Corollaire. Soient f,g: X — Ret A, B ¢ X. Supposons :

(i) f est 7-mesurable et g est 7-mesurable. (En particulier, g peut étre 7 -
mesurable.)

(il)) Ae T etu(A) =0.
(iii) Be 7 etn(B) = 0.
(iv) f =gdans X\(Au B).

Considérons les quatre intégrales suivantes : f fdu, fdu, f gdf,
X X\A X

J g dp. Sil'une d’entre elle existe, alors les trois autres existent également,
X\B

et nous avons

ffdu= fdu=f gdﬁ=J o (6.19)
X X\A X X\B

L |f —gldm = 0. (6.20)

6.47 Remarque. La proposition 6.48, qui suit, montre que, donnée une fonction intégrable
f, nous pouvons changer sa définition sur un ensemble négligeable de sorte que son
intégrale ne change pas et que la nouvelle fonction ne prenne que des valeurs finies.

Pour cette raison, pour montrer certaines propriétés des fonctions intégrables nous
pouvons parfois remplacer f par g et supposer ainsi que f est finie en tout point. o

6.48 Proposition. Soit f : X — R p-intégrable. Soient A := f~1(0), B := f~1(—).
a) Nous avons p(A) = u(B) = 0.
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flx), sif(x)eR -
0, si f(x) = +o0" alorsf]f gl =0

et[£- s 5

6.49 Remarque. Revenons a la définition 6.11. Nous aurions pu considérer la situation
plus générale ou f; : X — R (au lieu de f; : X — R). La proposition 6.48 montre qu’on
peut remplacer les f; par des fonctions g; : X — R, sans changer 'intégrale. o

b) Sinous posonsg: X — R, g(x) := {

La proposition 6.50, qui suit, est une variante du résultat suivant, bien connu :

1
{f continue et positive sur [0, 1], J f(z)dx = 0] = f=0.
0

6.50 Proposition.
a) SiszetJf=O,alorsf =0p.p.
b) Sif|f| =0, alors f = 0 p. p.

c) Plus généralement, si g, h sont intégrables, g < h et f g = Jh, alors g = h
P-P-

Nous concluons cette section par une illustration concréte du principe chaque
théoreme « partout pour p » a des analogues « p. p. pour (i ou i ».

6.51 Théoreme (Théoreme de convergence monotone, variante p. p.). Soit (f,,),
une suite croissante p. p. de fonctions positives p. p. convergeant p. p. vers f.

Alors hmf fodp = J fdn. o

Démonstrations

Démonstration de la proposition 6.43. Notons que f est 7 -mesurable. Il suffit de montrer 1'éga-
lité des deux intégrales si f > 0 (justifier). Cette égalité est claire si f est .7-étagée. Le cas
général s’obtient en considérant une suite (f,), de fonctions .7-étagées positives telle
que f, /" f (suite dont I'existence découle du corollaire 3.7) et le corollaire 6.19 (véri-
fier). CQFD

Démonstration de la proposition 6.44. Nous avons fi = g+ p-p. p. (vérifier). Il suffit donc de
montrer que | f+ di = | g+ dp. Comme f+, g+ sont mesurables et positives, il suffit donc

de montrer la proposition pour des fonctions positives.

t. De maniere équivalente, g := fx(auB)e-
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Soient f,g > 0 comme dans 1’énoncé. Alors j fdiet f g du existent. Soit A € 7 tel
que u(A) = 0 et f = g en dehors de A. Soit B := X\A € .7, de sorte que X = A u B.
Comme p(A) = (A) = 0, nous avons (proposition 6.15) f fdm =0et J gdu = 0. Par
ailleurs, fxp = gxp et donc (proposition 6.43) 4 4

fe o=

Nous obtenons (en utilisant la linéarité de 1'intégrale, voir la proposition 6.21)

| an={as rxmydn = | fxadn +ffdeu=Lfdu+fodu

=f fdu=f gdu=f gdu+J gdu=fgdu,
B B A B

d’ot1 la conclusion de la proposition. CQFD

Démonstration de la proposition 6.48. Rappelons que A, B € 7 (théoréme 3.5).
a) Montrons, par exemple, la premiere égalité. Nous avons f, > nx4, Vn e N, d’ou

nu(A):JnXA£Jf+<oo. (6.21)

En faisant n — oo dans (6.21), nous trouvons p(A) = 0.
b) Nous avons |f — g| = wwxaup. A U B € 7 étant négligeable, nous obtenons que

J’f — g| = 0 (proposition 6.15).
L'égalité J f= fg suit du corollaire 6.45. CQED

Démonstration de la proposition 6.50. Montrons d’abord que c) implique a) et b).
«¢) = a) ». Il suffit de prendre g := O et h := f.

«c) = b) ». En prenant g := 0 et h := | f|, nous obtenons | f| = 0 p. p. Soit A € .7 tel que
u(A) =0et|f| = 0sur X\A. Alors f = 0 sur X\ A4, etdonc f = 0 p. p.

c) Soient A := [|f| = ], B :=[|g| = ], C := A u B. Grace a la proposition 6.48, nous
avons A, B,C € J et u(A) = u(B) = p(C) = 0 (justifier).

Posons g := gxx\c. b= hxx\c, de sorte que g et h sont finies en tout pointet g < h.

Le corollaire 6.46 donne

Jﬁ—fngh—fﬁ (6.22)

En combinant (6.22) avec la proposition 6.21, nous obtenons
f(% -9 =0 (6.23)
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Posons k := h — g > 0. L'inégalité de Markov (6.10) combinée avec (6.23) donne
u([k > t]) =0,Vt > 0.Soit D := [k # 0] € . Comme D = u, [k > 27"] (justifier),
nous obtenons p(D) = 0 (justifier).

Enfin, notons que, sur X\(C'u D), nous avons g = § = h=h (vérifier). Comme C' U D
est négligeable (justifier), nous obtenons que g = h p. p. CQFD

Démonstration du théoréme 6.51. La fonction f est 7 -mesurable (proposition 4.20). Soient A,,,
A € 7 négligeables tels que f,(z) > 0,Vz ¢ Ay, et f(x) / f(x), Vo ¢ A. Soit B :=
A v upA, € 7, qui est négligeable. Le corollaire 6.46 et le théoreme de convergence
monotone donnent

f fdp = fdi =lim fndu = limf fndpu. CQFD
X X\B " JX\B LND ¢

6.52 Remarque. Retenir le principe de preuve du théoreme 6.51, qui permet
de remplacer des hypotheses satisfaites partout par des hypotheses satisfaites
presque partout : (i) on se place d’abord dans le complémentaire d"un en-
semble négligeable, ot nous sommes dans le cadre du théoréme « partout »;
(i) nous concluons grace au corollaire 6.46.

6.8 Pour aller plus loin

6.8.1 Caractérisation des fonctions Riemann intégrables

Nous avons investigué dans la section 6.5 le lien entre l'intégrale de Riemann
ou généralisée d"une fonction continue et son intégrale par rapport a la mesure
de Lebesgue v.

L’intégrale de Riemann est définie pour des fonctions qui ne sont pas néces-
sairement continues. Dans ce cadre, nous avons le résultat suivant.
6.53 Théoreme (Critere de Lebesgue). Soit f : [a,b] — R. Nous avons :
a) f est Riemann intégrable sur [a, ] si et seulement si :

1. f est bornée.
2. L'ensemble de points de discontinuité de f est v;-négligeable.

b) Si f est Riemann intégrable, alors f est A\;-intégrable sur [a,b] et fd\ =
[a,0]
b
f(z) dz. (Dong, en particulier, une fonction Riemann-intégrable est Lebesgue-

a
mesurable.) o
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Rappelons que A est la complétée de la mesure de Lebesgue 1.
Pour la preuve complete de ce théoreme, voir Natanson [17, section V.4]; voir
également Taylor [21, Proposition 3.10]. Nous montrons ici une partie de celui-ci :

6.54 Proposition. Si f : [a,b] — R est une fonction Riemann intégrable, alors f est

b
Lebesgue intégrable et fdx = J f(z)dx. o
[a,b] a

Démonstration. Nous pouvons supposer f > 0. En effet, si f est Riemann intégrable, alors f est
bornée et il suffit de montrer I'égalité des deux intégrales pour la fonction f — m > 0, avec m
minorant de f (justifier).

Nous utilisons les notations de la preuve de la proposition 6.34. Soit o une division de [a, b]
et soit s7 la somme de Darboux supérieure

n
s7 = Z(atj —xj_1) sup f.
j=1

[25—1,%;]

Nous associons a s la fonction

n—1
fa : [a’ b] - Rv fU = 2 sup fX[m]-_l,a:j[ + sup fX[a:nfl,mnb
j=1 [zj—1,25] [Tn—1,2n]
de sorte que
s7 = fodv = f I X[ap) A1 = f f7 X[ap) A1
[a,b] R R

Par ailleurs, nous avons alors 0 < f, < f < f°.

Rappelons que, si (0, ), est une suite de divisions de plus en plus fines et telles que | o, | — 0,
alors :

b b
a) So, J f(x)dxet s N\ f f(z)dx.
b) fa'n /'etfa'n \'
Posons g := lim, f,, et h := lim, f7". De ce qui précéde, g et h sont boréliennes, 0 <

g < f < het(enutilisant le théoréeme de convergence monotone et I'exercice 6.28) f fo, dN1

Jg d\1, Jf"" dX 1\, jh d)\. 1l sensuit que

b
f gdii = f hd = f F(z) dz < 0. (6.24)
[avb] a b] a

)

Commeg < h etJ (h —g) d\1 = 0, nous obtenons que g = h A\;-p. p. sur [a, b] (proposi-
[a.b]
tion 6.50). Soit A € £, A  [a,b], telque \;(A) = 0etg = hsur[a,b]\A. Comme g < f < h,
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nous obtenons que f = g = h sur [a, b]\A et en particulier f = g A\;-p. p. Il s’ensuit que f est
A1-mesurable (proposition 4.19 a)).

Par ailleurs, comme f = g A;-p. p. et 'intégrale J g d\ existe, il s’ensuit que I'intégrale

[a,b]
f d); existe et que fd\ = J g dA1 (proposition 6.44 c)).
[a,b] [a,b] [a,b]
Finalement, en utilisant ce qui précéde et (6.24), nous obtenons que f d)\ est finie et
a,b
) [a,b]
est égale a J f(z)dx. CQFD

La réciproque de cette proposition est fausse : méme pour une fonction bor-
née, I'intégrabilité au sens de Lebesgue n’entraine pas celle au sens de Riemann;
voir l'exercice, classique, qui suit.

6.55 Exercice. Soit f : [0,1] = R, f := xgn[0,1]-

a) Montrer que f est bornée et intégrable par rapport a v; (et donc \p).

b) Soit o une division de [0, 1]. Montrer que s, = 0 et s7 = 1.

c) En déduire que f n’est pas intégrable au sens de Riemann. o

6.8.2 De l'intégrale vers la dérivée

T

Si f : [a,b] — R est continue et si nous posons F(x) := J ft)dt, Vo €

[a, b] (intégrale de Riemann ou Lebesgue), alors, d’apres le théoreme de Leibniz-
Newton, F est dérivable et F” = f.Si f n’est plus continue, nous avons le résultat
suivant.

6.56 Théoreme (Théoreme de différentiation de Lebesgue). Soit f : [a,b] — R
Lebesgue intégrable. Posons F'(z) := f f(t)dt, ¥V x € [a,b] (intégrale de Lebesgue).
Nous avons : ‘

a) I est dérivable v;-p. p.
b) En v;-presque tout point de dérivabilité nous avons F'(z) = f(x). o

Voir par exemple Stein et Shakarchi [20, section 3.1].

6.8.3 De la dérivée vers l'intégrale

Un corollaire du théoréme de Leibniz-Newton est que si F' est dérivable avec

f = F’ continue, alors (*) F'(z) = F(a) + Jz f(t)dt, vz e |a,b].
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Pour généraliser (*), nous pouvons affaiblir la condition sur f en demandant
que F soit dérivable p. p. (par rapport a la mesure de Lebesgue) et que sa dérivée
f soit Lebesgue intégrable.

Sous ces hypotheses, (*) n’est pas nécessairement vraie. Prenons, par exemple,

0, si0<x<1/2
F(z):=<" S? z<1/ . Alors F' est dérivable sauf en 1/2 et sa dérivée vaut
1, sil2<z<1

0 p. p., mais (*) n’est pas satisfaite (vérifier). Plus généralement, (*) est fausse si F'
n’est pas continue (car le membre de droite de (*) l'est).

)

Méme en ajoutant la condition de continuité de F', les hypothéses sur F” sont
trop faibles. En effet, il existe une fonction continue F' : [0,1] — R telle que
F(0) =0, F(1) = 1l et F'(x) = 0 pour presque tout z. Pour l'existence d'une telle
fonction F' («1’escalier du diable » ou « escalier de Cantor »), voir ’exercice 6.58.

En revanche, si nous imposons la condition plus forte de dérivabilité partout,
alors nous avons le résultat suivant, dt a Lebesgue.

6.57 Théoreme (Théoreme de Leibniz-Newton généralisée). Soit F' : [a,b] — R
continue sur [a, b] et dérivable en tout point de |a, b|. Si F’ est Lebesgue intégrable,

alors F(z) = F(a) + Jx F'(t)dt,V x € [a,b]. o

a

Rappelons que, si F' est dérivable, alors F” est borélienne et donc Lebesgue
mesurable. Pour la preuve du théoréme 6.57, voir Natanson [17, section IX.7] et
Rudin [19, Theorem 7.21].

6.58 Exercice (Ensemble de Cantor maigre et escalier du diable). Si I = [a,b] est un

intervalle compact de R, alors nous notons T ’'union des deux intervalles obtenus en
enlevant de I l'intervalle ouvert qui a le méme centre que I et dont la longueur est un

tiers de celle de I. Exemple : si I = [—3, 3] (de centre 0), alors I = [—3,—1] u [1, 3].
De maniere équivalente, si I = [a, b] alors I:=[a,a+ (b—a)/3] ufa+2(b—a)/3,b].
Nous construisons par récurrence une suite (C}),>o décroissante d’ensembles comme
suit :
1. Cp:=10,1].
2. Si Cj s’écrit comme une union finie d’intervalles fermés d. d. d. : C; = u}" 1y, alors
Cj4+1 est défini comme Cj 1 := uj 1.
Notons que, par construction, C; [0, 1] est un compact non vide et que C;1 < Cj.

a) Posons U; := [0, 1]\C;. Montrer que C; est une union de 2/ intervalles compacts d. d.
d. et que Uj est union de 27 — 1 intervalles ouverts d. d. d.

b) Calculer v1(C}), j € N.
¢) Posons C := n;>¢C;. Montrer que C est non vide et calculer v, (C).

Pour j > 1 fixé, notons, dans 'ordre de gauche a droite, les intervalles compacts
de la question a) qui donnent C; : C; = [a1,b1] L ... U [ags, bys]. Nous avons donc
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Uj =]b1,a2[u. .. u]byi_q,a9[. Nous définissons F} : [0,1] — R par récurrence sur j,
comme suit :
(i) Fo(z):==z,Yxel0,1].
(11) Ej(l‘) = (ijl(bg) + Fj,l(ag+1))/2 size [bg, ag+1], Ve=1,... ,2j — 1.
(iii) F;(0) = 0 et Fj(1) = 1.
(iv) Fj est affine sur [ag, be], V0 =1,... 20 — 1.
d) Montrer que |Fji1(z) — Fj(z)] < 1/(3 -2/, Va € [0,1], Vj = 0. En déduire qu’il
existe F': [0,1] — [0, 1] telle que F; — F' uniformément.
e) Montrer que F'(0) = 0et F(1) = 1.
f) Posons U := [0,1]\C. Si I < U est un intervalle ouvert, montrer que F' est constante
sur [.
g) En déduire :

i) Que F est continue sur [0, 1] et dérivable sur U.
ii) Que F n’est pas constante, mais que F’(z) = 0 pour v;-presque tout z € [0,1]. ©
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Chapitre 7

Les grands théorémes

7.0 Apercu

Nous travaillons dans un espace mesuré, avec des fonctions mesurables.

Le théeme général de ce chapitre est la permutation de lim et J sous des hy-

potheses plus faibles que celles du théoréme de convergence monotone, qui sont
0 < f, /" f.Lebut ultime étant de ne supposer ni la positivité, ni la monotonie.

En ne supposant plus la convergence monotone, donc uniquement sous les
hypotheses f,, > 0 et f,, — f, nous n’avons plus 'égalité hmJ fn = J lim f,,, mais
n n

uniquement 1'inégalité

Jliin fo < limninff fof (7.1)

C’est inégalité est un cas particulier du lemme de Fatou, théoreme 7.1. L'impor-
tance de ce résultat est en premier lieu théorique : il permet d’obtenir sans effort

les principaux résultats de permutation entre lim et f , dont le plus célébre est le

théoreme de convergence dominée (de Lebesgue) 7.2.

A son tour, le théoreme de convergence dominée permet d’étudier les pro-
priétés des intégrales a parametre(s). Pour prendre un exemple concret, soit

Flt) = JOO sin (t2) .

o 1+a2

t. La limite lim f fn N'existe pas, en général; c’est la raison de l'apparition de la lim inf dans
(7.1).
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C’est une intégrale dont ¢ est le parametre. Les questions basiques sont si F' est

continue ou dérivable; elles seront étudiées dans les sections 7.2, respectivement
7.3.

Dans la section 7.4, nous reprenons 1’étude de 'égalité J Z fn = Z J fn, cette

fois-ci sans hypothese de positivité (théoreme 7.18).

Comme cela a été vu avec le théoreme 6.51 et sa preuve, et avec la remarque
6.52, si les résultats qui suivent ont des hypotheses satisfaites p. p., nous pouvons traiter
dans la preuve directement le cas oil les hypothéses sont satisfaites partout.

Compétences minimales attendues.

a) Savoir utiliser le théoréme de convergence dominée 7.2.

b) Savoir étudier les intégrales a parametre, via les théorémes 7.10, 7.14, le corol-
laire 7.15.

c) La compétence principale a acquérir est de savoir majorer convenablement
une fonction a parametre. Typiquement, pour pouvoir appliquer le théoréme
de convergence dominée il faut trouver une bonne majoration de la forme

[fu(2)] < g(z), VneN, Vre X,

avec g indépendante de n et aussi petite que possible. Y arriver sera 1'une des dif-
ficultés pratiques majeures de 1'apprentissage. En partie, I'analyse est I'art d’ob-
tenir de bonnes inégalités. o

Dans tout ce chapitre, nous travaillons dans un espace mesuré (X, .7, u). Sauf
mention contraire, les fonctions considérées sont mesurables. Je ne vérifierai pas
toujours la mesurabilité des fonctions construites a partir de fonctions données
(par exemple, lim,, f,, avec chaque f,, mesurable). Le lecteur est encouragé a le faire;
ceci fait partie de I'apprentissage de la théorie de la mesure.

7.1 Lemme de Fatou, théoreme de convergence domi-
née

7.1 Théoreme (Lemme de Fatou). Soit (f,,), une suite de fonctions positives

p. p., et soit f := liminf, f,. Alors ff < liminfffn.

Ou encore :

Jlim inf f,, < liminf j fn- (7.2)
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Méme en ajoutant au lemme de Fatou I'hypothese f,, — f, 1'inégalité (7.2) ne
se transforme pas, en général, en égalité (voir 1'exercice 7.8). Le résultat suivant
donne une condition raisonnable et relativement facile a vérifier pour permuter

lim et J

7.2 Théoréme (Théoreme de convergence dominée (de Lebesgue)). Soient f,,,
J:X — R telles que :
(i) II existe une fonction intégrable g telle que, pour tout n, |f,(z)| < g(z)
12519
(i) fo(x) = f(z) p. p-

Nous avons :

a) f estintégrable.
b) [1a =510

C) an — ff, ou encore hinff” = JliTan fn-

7.3 Remarque. Comme énoncé, le théoreme a comme hypothese la mesurabilité de f, en plus
de celle des f,.

1. Sil’hypothese (ii) est satisfaite partout et si chaque f,, est mesurable, alors f 'est; dans
ce cas particulier, la mesurabilité de f n’a donc pas a figurer parmi les hypotheses.

2. Un autre cas ou la mesurabilité de f découle de celle des f, est celui des mesures
completes; ceci est une conséquence de la proposition 4.20.

3. Néanmoins, dans le cas général, la mesurabilité de f ne suit pas des autres hypo-
theses. En revanche, f est .7-mesurable (proposition 4.20) et nous avons les conclu-
sions suivantes, qui font echo aux conclusions a)—c) ci-dessus : a’) f est fi-intégrable;

b’)J]fn—f]duao;c’)ffnduajfdu. o

7.4 Remarque. La plus petite fonction g vérifiant (i) est g := sup,, | f»|. Donc nous pou-
vons remplacer (i) par la condition, plus faible, que sup,, | f,| est intégrable.

Ceci donne le schéma suivant pour appliquer le théoréme :
1. Vérifier que ( f,,), converge p. p.
2. Calculer g := sup,, | fn|-
3. Vérifier que g est fi-intégrable. '
Dans la pratique, sup,, | f,,| peut étre difficile a calculer, et la formulation ci-dessus du
théoreme est plus convenable. o

Le résultat suivant a une grande importance théorique. Conceptuellement, il
affirme que les hypotheses du théoreme de convergence dominée sont nécessaires, du
moins le long d"une sous-suite.

1. C’est-a-dire que son intégrale, qui existe car g est mesurable et positive, est finie.
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Les grands théorémes 7.1 Lemme de Fatou, théoréme de convergence dominée

7.5 Théoreme (Réciproque du théoreme de convergence dominée). Soient f,,, f
intégrables telles que f| fn — f| — 0. Alors il existe une sous-suite (f,, ), et une

fonction intégrable g telles que :
@) [furl <9, VE

(i) fo, — fp-p- o
Exercices

Les exercices qui suivent ont pour but d’illustrer la nécessité des hypotheses
ou l'optimalité des conclusions des théorémes de cette section.

7.6 Exercice. En considérant les fonctions f,, : R — R, f,(z) := —(z +n)_, Vn € N,
Vz € R, montrer que I'hypotheése f,, > 0 est essentielle pour avoir la conclusion du
lemme de Fatou. o

7.7 Exercice. A l'aidede f, : R — R, f, = X[n,n+1[, montrer que ’hypothese (i) du
théoréme de convergence dominée 7.2 est nécessaire. o

7.8 Exercice. Sim,n € N* et m? < n < (m + 1)?, posons
Ay = [(n—m?)/2m+1),(n+1—m?)/(2m +1)]
et fn 1= X4, +1/(n + 1)X[nt1,n42)- Montrer que :

) f|fn|du1 -0,

b) Il n’existe pas g intégrable telle que | f,| < g, Vn.
¢) Pour tout z € [0, 1], nous avons f,(x) 4 0.

En déduire qu’en général, dans la réciproque du théoreme de convergence dominée
7.5, il faut passer a une sous-suite afin d’avoir (i) et (ii’). o

Démonstrations

Démonstration du théoréme 7.1. Nous pouvons supposer que f, > 0 et f,, / partout (voir la
preuve du théoreme 6.51 et la remarque 6.52).

Soit gy, := inf,,>y fm, qui est mesurable, positive et < f,,. Nous avons 0 < g, / f,
dou | f = lim | g, < liminf | f, (justifier, en utilisant le théoreme de convergence
n n

monotone 6.18 et la monotonie de I'intégrale). CQFD

Démonstration du théoreme 7.2. Soit A,, € .7 négligeable tel que |f,(z)| < g(z) siz ¢ A,.
Soit B € 7 négligeable tel que f,(z) — f(z)siz ¢ B.Soit A := Bu uyA4, € 7, qui
est négligeable. En remplacant les intégrales sur X par des intégrales sur X\ A (grace au
corollaire 6.46), nous pouvons travailler dans X\ A au lieu de X et supposer, ainsi, que
les hypotheses (i) et (ii) sont satisfaites partout au lieu de presque partout (détailler).
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Nous avons f mesurable et | f| < g, ce qui montre que f est intégrable (justifier).

Soit B := g~(—0) U g~ 1(c0), qui est négligeable (justifier). Si h := hype, il suffit de
prouver la conclusion avec f,, f, galaplacede f,, f, g (justifier, en utilisant la proposition
6.48). Ainsi, nous pouvons supposer f,, f, g finies.

Posons ¢, := 29 — |f — fn], qui est mesurable et positive (vérifier). Nous avons
lim,, g, = 2g, ce qui entraine, via le lemme de Fatou,

2fg - J2g < limninffgn - limnian(Zg— If — ful) = 2fg—hmnsupff—fny,

d’ott lim supf |f — fn] < 0. Ceci implique (justifier) lim J |f — fu]l =0.

Pour la deuxiéme partie, nous utilisons 'inégalité triangulaire

fifs

(justifier, via les propositions 6.21 et 6.23). CQFD

< [1r=fl =0

Démonstration du théoreme 7.5. Posons, pour g, h intégrables, d(g, h) := f lg — h|, qui vérifie

l'inégalité triangulaire et est donc une « pseudométrique »." L'hypothese est d(f,,, f) — 0,
et elle implique que (f,,),, est une suite de Cauchy pour la pseudométrique d.

1l existe donc une sous-suite ( f,,, )x telle que d(fy,, fn,) < 1/2F 1 sik < £

Posons

k>0

Alors g est mesurable, | f,,,| < g et

k—1
< faol + D [ fneer = frel <9, V= 1.
£=0

k—1
fno + Z(fneﬂ - fne)

=0

|fnk| =

Par ailleurs, nous avons (justifier)

Jg = ffnol + 2, J|fnk+1 = ful < f|f%| + Y12k

k>0 k>0 (7‘4)
=ffn0|+1 < o0,

t. Une pseudométrique vérifie toutes les propriétés de la métrique (distance) sauf d(z,y) =
0 = z=uy.

1. Rappelons que, si (z,,), est une suite de Cauchy pour une distance (ou pseudométrique) d,
et si (ay)y est une suite de nombres strictement positifs, alors il existe une sous-suite (x,,, ) telle
que d(zp,, Tn,) < ag, Yk < L.
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Les grands théorémes 7.2 Intégrales dépendant d’'un parametre : continuité

Soit B := g~ !(w0) € 7, qui vérifie u(B) = 0 (justifier). Pout tout z € B¢, la série

Fao(@) + 35 (farss (@) = f (7))

k>0

est absolument convergente (ceci découle de (7.3) et de la définition de 'ensemble B),
donc convergente. Notons h(z) la somme de cette série, de sorte que h(z) = limy fp, ()
(pourquoi?).

Posons, pour toute fonction u, @ := uype. Nous avons fnk — het |fnk\ < g. Nous
trouvons, par convergence dominée, f \fnk - E\ — 0 (justifier, en utilisant (7.4)). Le corol-

laire 6.46 implique
[1r =31 = (17 =T < [17 = Bl + [ 1o =
:J\f—fnkﬁf\ﬁ%—%\—’o’

dou f =h p. p., ou encore f,, — f p.p. (justifier). CQFD

7.2 Intégrales dépendant d’un parametre : continuité

Soit A une partie d'un espace métrique (Y, d).

7.9 Notation. Soit f : X x A - R, f = f(z, \).
a) Lanotation f(-, ) désigne la fonction partielle

fGN): X >R, X 22— f(x,)\), de variable z, obtenue en fixant \.
b) De méme, f(x,-) désigne la fonction partielle

flxz,:): A >R, A>3 X~ f(x,\), de variable ), obtenue en fixant z. o

7.10 Théoreme (Continuité des intégrales a parametre). Soit

f: X xA-R, f=f(z,N).

Supposons :
(i) La fonction f(-, \) est mesurable pour tout A € A.
(ii) La fonction f(x,-) est continue pour presque tout x € X.

(iii) Pour tout Ay € A, il existe r > 0 et une fonction intégrable g = g(x) :
X — [0, 0] telle que, pour tout A € B(XAg,7) N A,

|f(z,\)| < g(z), pour presque tout z € X.
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Alors la fonction
F:A—R FQ)) = L £ ) dpt = L £, X) du(z),

est continue.

7.11 Remarque.

1. Comme pour le théoreme de convergence dominée, I'hypotheése clé dans le théo-
reme 7.10 est ’existence de la fonction g vérifiant (iii).

2. Dans des situations tres simples (voir, par exemple, I’exercice 7.12), on trouve une
fonction ¢ intégrable telle que |f(x, )| < g(x) pour tout x € X et pour tout \ € A,
et donc il n’est pas nécessaire de trouver un rayon r dépendant de \p € A; r = ©
convient pour tous les A\g. Néanmoins, dans la plupart des situations 1'existence
d’une majorante intégrable g repose sur un bon choix du rayon r (voir, par exemple,
I'exercice 7.13 et 'item suivant).

3. Dans de nombreuses applications, A est un ouvert, et tout » > 0 tel que B(X\o,7) ©
A convient.

4. Dans le théoréme 7.10, ainsi que dans le théoréme 7.14 et le corollaire 7.15, la
fonction g dépend, en principe, de la boule B()\¢,), mais pas de A dans la boule
E()\(), ’l"). &

Exercices

7.12 Exercice. Soit f : R — R Lebesgue intégrable. Montrer que la transformée de Fourier
de f, définie par

o0
1) = f e~ F () d () = f e~ f () da, Vi € R,
R —
est une fonction continue et bornée sur R. o

7.13 Exercice. Si s > 1, soit ((s) := >} -, 1/n° la fonction zéta de Riemann. Montrer que
¢ :]1, 0[— R est continue. o

Démonstrations
Démonstration du théoréme 7.10. Soient (A, )n>1 < A, Ao € A tels que A, — Ao. Soit ng tel que

An € B(Xo,7), Vn = ng. Posons hy,(z) := f(z,\n), h(z) := f(x,\). Alors |h,| < g p. p. si
n > ng (grace a I'hypothese (iii)) et b, — h p. p. (grace a 'hypothese (ii)). En utilisant le

théoreme 7.2, nous obtenons F'(\,) = Jh" — Jh = F()\). CQFD
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7.3 Intégrales dépendant d’un parametre : dérivabi-
lité

Dans cette partie, A est un ouvert de R™ muni d’une norme. Nous notons 0; :=

A

62\ . Plus généralement, 0“ désigne une dérivée partielle par rapport a \.
J

7.14 Théoreme (Dérivabilité d"une intégrale a parametre). Soit

f: X xA-R, f=f(z,N).

Soit j € {1,...,n}. Supposons :
(i) La fonction f(-, \) est intégrable pour tout A € A. (La fonction F'(\) :=
J f(-, A) du est alors bien définie.)

(ii) Il existe 0;f(x, -) pour presque tout x € X.

(iii) Pour toute boule B(\g,7) © A, il existe une fonction intégrable g = g()
sur X telle que pour tout A € B(\g, ) onait |0; f(z, )| < g(x) pour presque

tout v € X.
Alors :
a) La dérivée partielle 0, F existe et est donnée par
of
J

Ou encore : la dérivée de l'intégrale est l'intégrale de la dérivée.

b) Si, de plus, 0;f(x,-) est continue pour presque tout z, alors ¢;F est conti-
nue.

Une récurrence basée sur le théoreme 7.14 donne le résultat suivant pour les
dérivées partielles d’ordre supérieur.

7.15 Corollaire. Soit f : X x A - R, f = f(x, \). Soit k € N*. Supposons :
(i) Pourtout A € A, la fonction f(-, \) est intégrable (donc F'(\) = Jf(-, ) dp

est bien définie).
(ii) La fonction f(z,-) est de classe C* pour presque tout = € X.

(iii) Pour toute dérivée partielle 0> d’ordre < k et pour toute boule B(\g, ) <
A, il existe une fonction intégrable g = g(z) sur X telle que pour tout
A € B(Xo,7) on ait [0“f(z, \)| < g(z) pour presque tout x € X.
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Alors F € C* et, pour tout a d’ordre < k, nous avons

PF(\) = faa f(@, 2) ds(z).

Exercices

7.16 Exercice. Montrer que la fonction zéta de Riemann de I'exercice 7.13 est de classe
C*. o

7.17 Exercice (Difficile). Supposons A connexe. Montrer nous pouvons, dans le théoreme
7.14, remplacer ’hypothese (i) par '’hypothese plus faible

(i") pour tout A € A, la fonction f(-, \) est mesurable et il existe un \g € A tel que f(-, \o)
soit intégrable. ©

Démonstrations

Démonstration du théoréme 7.14. Nous pouvons supposer les hypotheses (ii) et (iii) satisfaites
pour tout x € X (voir la remarque 6.52).

a) Fixons A € A. Soit r > 0 tel que B(\,r) = A. Pour ¢ € R tel que |¢| < r, posons

h(z,t) = (flz, X +tey) — f(z, \)/t, sit#0
0 f(x,N), sit=0"

de sorte que :
() A x fixé, h(zx,-) est continue.

Gj) At fixé, h(-,t) est mesurable (justifier, en considérant d’abord le cas t # 0, puis
en faisant t — 0).

Gii) |h(-,t)] < g (justifier, en utilisant le théoréme des accroissements finis).

I s’ensuit que

tig FOID =L i [ty = [0y die = [ 03702 di

d’ot1 la conclusion.

b) Dans le cas particulier o1 J; f(z, ) est continue pour presque tout = € X, le théoreme
7.10 assure la continuité de 0; F'. CQFD

7.4 Intégrale d'une série

Cette section fait écho au théoréme 6.26. Rappelons la philosophie générale
de ce chapitre : donner des versions des théoremes du chapitre 6 (basés sur la
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convergence monotone des fonctions positives) sans supposer la monotonie ou
la positivité.

Commengons par rappeler que, si ( f,),, est une suite de fonctions mesurables,

. lim,, f,(z), silim, f,(x) existe
alors la fonction donnée par f(x) = Jal@) Jal@) , est mesu-

0, sinon
rable (proposition 3.34).

7.18 Théoreéme (Intégrale d'une série). Soit (f,,),, une suite de fonctions me-

surables telle que Z f | fn| < c0. Nous avons :

n

a) Pour presque tout z, la série ), f,(z) converge.

Do fulx), si), fo(x)existe

i , alors f est inté-
0, sinon

b) Si nous posons f(z) := {

grable et J f= ijn.

Ou encore (si ), f, existe en tout point) :

f;n=;fn

(I'intégrale de la somme est la somme des intégrales).

Démonstrations

Démonstration du théoréme 7.18.
a) Soit g := > |fn|, qui est positive et mesurable. Nous avons (justifier)

J9=J;UM=;JMA<®

d’ou g est intégrable.

Il s’ensuit que 'ensemble A := g~1(c0) € 7 est négligeable (justifier). Pour z € A°, la
série ) fn(x) est absolument convergente, donc convergente. Ceci donne a).

b) Soit B := {z € X ; ), fn(x)n’existe pas}, de sorte que B € .7, B < A. (Justifier
pourquoi B € .7, par exemple en montrant que B¢ € .7.) Soit g,, := > ;. _,, fuxBe. Alors
gn — [, gn est mesurable et |g,| < 3, |fr| < g. Le théoreme de convergence dominée

donne Jgn — jf. Par ailleurs, nous avons g, = >}, _, fx p. p., d’ot jgn = Z Jfk

k<n
(justifier). Nous obtenons

fleirrlnjgn:h}lrnZ

k<n

ffk :;ffk- CQFD
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Chapitre 8

Mesures produit

8.0 Apercu

Le volume vol (C') d"un cylindre (plein) droit C' est le produit de sa hauteur
h et de 'aire aire (B) de sa base B. De maniere équivalente, si C' = [a, ] x B,

vol ([a,b] x B) = (b— a) x aire (B) = v1([a, b]) x aire (B). (8.1)

A travers cette formule, nous voyons qu’a partir de la mesure (A) d"un en-
semble A et de la mesure v(B) d'un ensemble B, nous pouvons « naturellement »
définir la mesure de 'ensemble A x B comme le produit p(A) x v(B).

Dans ce chapitre, nous allons généraliser cette approche, en construisant la me-
sure produit Qv de deux mesures i et v (section 8.2). Le principe de la construction
est celui de Cavalieri™ : pour calculer le volume vol(S) d’un solide S, nous calcu-
lons 'aire aire(S™) de sa section, a chaque hauteur h, et nous obtenons

vol (S) = Jaire (S™) dh,

ce qui peut également s’écrire comme

v3(S) = f ( Lh dz/2> dr (). (8.2)

Au préalable, il faudra construire la tribu que mesure 1 ® v : il s’agit de la
tribu produit 7 ® . de deux tribus 7 et ., dont nous donnons la définition et
quelques propriétés fondamentales dans la section 8.1.

t. Cavalieri était un mathématicien italien du 17¢ siecle. Mais ce principe est déja énoncé au 3¢
siecle par le mathématicien Liu Hui. Voir https://fr.wikipedia.org/wiki/Liu_Hui.
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Mesures produit 8.0 Apercu

L’exemple introductif (les aires et les volumes) est cohérent avec cette dé-
marche générale : le produit de la mesure de longueur v, et de la mesure d’aire
5 est bien la mesure de volume v5 (corollaire 8.16). Au passage, nous pourrons
(enfin) prouver l'existence de la mesure de Lebesgue v,,, n > 2, en admettant
I'existence de v, (corollaire 8.11).

La section 8.3 traite le cas des produits a plusieurs facteurs, qui repose sur des
récurrences immédiates a partir du cas de deux facteurs.

Dans la section 8.4, nous étudions le passage aux mesures complétées dans les
produits.

Les sections 8.5 et 8.6 sont dédiées aux intégrales itérées, c’est-a-dire aux éga-
lités du style (8.2)

[ semansvian - [ ([ 1) avw

- [ ([ vt dute)

Le prototype de cette égalité est la sommation des éléments d"un tableau. En
sommant

(8.3)

1. tous les éléments du tableau;
2. les éléments de chaque colonne, puis en sommant les résultats obtenus;
3. les éléments de chaque ligne, puis en sommant les résultats obtenus,

nous obtenons a chaque fois le méme résultat, si le tableau est fini.

Pour les tableaux infinis, et plus généralement, pours les intégrales, la validité
de (8.3) est plus délicate. (8.3) est vraie si f est positive (théoréme de Tonelli) ou si f
est intégrable (théoreme de Fubini).

Compétences minimales attendues.

a) Savoir déterminer les coupes des ensembles et utiliser leurs propriétés de me-
surabilité.

b) Savoir utiliser le théoreme de Tonelli.

c) Savoir utiliser le théoréme de Fubini, notamment vérifier I'intégrabilité de l'inté-
grande.® o

Dans ce chapitre, nous travaillons dans deux espaces mesurés, (X, .7, u) et
(Y, .7, v).

t. L’application correcte du théoreme de Fubini sera un défi majeur.
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8.1 Tribu produit

Dans cette section, nous définissons la tribu produit 7 ® . des tribus .7 et
. A posteriori, les éléments de .7 ® . seront mesurés par la mesure produit.
Cependant, la définition de la tribu produit n’exige pas l’existence des mesures.

8.1 Définition (Pavé, ensemble élémentaire).

a) Unpavéde X xY est un ensemble de la forme Ax B,avec Ae T et B e 7.

b) Un ensemble élémentaire est une partie de X x Y qui s’écrit comme une
union finie de pavés.

8.2 Définition (Tribu produit). La tribu produit (de 7 et .’) est la tribu (sur
X x Y)engendrée par les pavés de X x Y.

Elle est notée 7 ® .¥.

Le résultat suivant donne un exemple fondamental et explicite de tribu pro-
duit.

8.3 Proposition. Nous avons %gn @ Brm = Bgn+m.

Les deux résultats suivants « se voient » facilement sur un dessin et joueront
un role important dans la preuve de 1'existence et de I'unicité de la mesure pro-
duit.

8.4 Lemme. Soit ¥ la collection des ensembles élémentaires.

a) ¢ estunclansur X x Y.
b) Nous avons .7 (¢) = 7 ® 7. o

8.5 Lemme. Tout ensemble I € ¥ s’écrit comme une union finie de la forme
E = uj;A; x Bj,avec:

(1) Aje ﬁetBjEY,Vj.
(if) Sij # ¢, alors soit A; n Ay = &, soit B; n By = . o

Exercices

Voici un autre exemple explicite de tribu produit.

8.6 Exercice. Si X et Y sonta. p.d., alors Z(X)® Z(Y) = (X xY). o

Démonstrations

Démonstration de la proposition 8.3.
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Mesures produit 8.1 Tribu produit

«D» SiP = I xIyx---xI,,m, avec I; intervalle ouvert, V j, est un pavé ouvert de R"*",

alors P = P; x Pp,ou Py := I; x --- x I, respectivement Py := I;,11 X -+ X I,
sont des ouverts de R", respectivement R™." P appartient donc & Zgn x Brm (et
d’autant plus a ZBrn ® Brm). Il s’ensuit que la tribu engendrée par ces pavés (c’est-
a-dire HBgn+m, voir la proposition 2.16 c)) est contenue dans Brn @ Brm.

«c» Soit & := {A € Brn ; A X R™ € Brnim}. Alors o7 contient les pavés ouverts (car,

dans ce cas, A x R™ est un pavé ouvert). Par ailleurs, comme (A x R")¢ = A¢ x R™
et (UjA;) x R™ = u;A; x R™, nous obtenons que </ est une tribu.

Il s’ensuit que <7 contient la tribu engendrée par les pavés ouverts, c’est-a-dire
PBrn.

Conclusion : nous avons A x R € Bgn+m pour tout A € Brn. De méme, R" x B e
PBrn+m pour tout B € Brn.

SiAe PBrnetBe Brm,alors A x B=(AxR") N (R" x B) € Brn+m. 1l s’ensuit
que Zgn+m contient la tribu engendrée par les A x B, avec A € Brn et B € Brm,
c’est-a-dire Brn ® Brm. CQFD

Démonstration du lemme 8.4.

a)

b)

Clairement, ¢ est stable par union finie et contient .

En notant que (A x B) n (C x D) = (An C) x (B n D), nous obtenons facilement que
¢ est stable par intersection (vérifier).

Soit £ = U}_; A, x By ¢,avec A, € T, B e ., Y1 <k <n.Alors
E° = V(A x Br)® = [ ) ([(A0)° x Y] U [X x (Bi)°]).
k=1 k=1

Ainsi, E° est intersection finie d’éléments de €', donc appartient a &

Il s’ensuit que ¢ est un clan.
Nous avons clairement ¢ ¢ 7 ® ./, d’ou 7 (¢) € T ® <.

Par ailleurs, les pavés sont dans &, et donc la tribu engendrée par les pavés est conte-
nue dans celle engendrée par ¢, ou encore J ® . < 7 (¥).

Finalement, nous avons, par double inclusion, 7 ® . = .7 (%). CQFD

Démonstration du lemme 8.5. Soit E = U}l_,C}, x Dy, avec Cy, € 7, Dy, € ./, V k. Nous prou-
vons le lemme par récurrence sur n, le cas n = 1 étant clair.

Supposons le lemme vrai pour n — 1 et soit £ comme ci-dessus.

Nous avons X x Y = Fj u Fy u Es u Eq, ou Ey := Cy, X Dy, Ey := (C,)¢ x D,,

E3 :=Cy, x (Dy)¢, Eq := (Cy)¢ x (Dy,)¢ (vérifier).

Il s’ensuit que £ = u?zl(E N E;). En posant F; := En E;, i = 1,...,4, les F; sont

d.d.d. et F} = C, x D,. Par ailleurs, nous avons E; n (C,, x D) = &, 1 = 2,3,4,d’ou

t. Ne pas confondre pavé de R™ x R™ (définition 8.1) et pavé de R"*™ (définition 4.34).
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F;, = u?;ll[(C'j x Dj) n E;], i = 2,3,4. Chaque ensemble (C; x D;) n E; étant de la forme
AxB,avec Ae 7, B € .7, I'’hypothese de récurrence appliquée aux F;, i = 2,3, 4, permet
d’écrire chaque F;, 7 = 1,2, 3,4, comme une union finie de produits A;- x Bj satisfaisant
(i) et (ii) (a ¢ fixé). Si i # k, alors pour tout j et £ nous avons soit Aé- N A}? = (J, soit
B; N Bé“ = (J (vérifier, en utilisant le fait que Aé. c E; et la définition explicite des E;). Il
s’ensuit que la collection de tous les pavés A% x B: (indexés sur j et ) satisfait (i) et (ii).
Par ailleurs, son union est E. CQFD

8.2 Mesure produit

Cette section est consacrée a la construction de la mesure produit. Ce sera 1’oc-
casion d’apprécier 'utilité du théoreme de la classe monotone 2.9.

8.7 Définition (Coupe). Soit £ € . ® .. La coupe de E en z € X est

E,:={yeY; z=(x,y) € E}.

De méme, la coupe de Eeny € Y est

FY:={reX; z=(x,y) € E}.

Une propriété fondamentale des éléments £ de .7 ® . est que leurs coupes sont
mesurables. Cette propriété permet la mise en ceuvre du principe de Cavalieri et
la construction de la mesure produit.

8.8 Proposition. Soit £ € .7 ® .7.
Pour tout z € X, nous avons E, € .¥.

De méme, pour tout y € Y, nous avons EY € 7. o

Une autre propriété indispensable a la mise en pratique du principe de Cava-
lieri est la suivante.

8.9 Théoreme. Supposons v o-finie.
Pour tout £ € .7 ® .7, I'application X 3 z — v(FE,) est 7 -mesurable.

De méme, si y est o-finie, 'application Y 5 y — p(EY) est .#-mesurable. o
La proposition 8.8 et le théoréme 8.9 donnent un sens a l’application
TR >5E— J v(E,) du(x) € [0, o],
X

qui, selon le principe de Cavalieri, doit permettre de calculer le « volume » de E.
Ceci est formalisé dans le résultat central de cette section :
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Mesures produit 8.2 Mesure produit

8.10 Théoreme (Définition de la mesure produit).

a) Supposons p ou v o-finie. Il existe sur .7 ® . une mesure ¢ telle que
E(Ax B)=puA)v(B),VAe I, Be S (*)

b) Supposons p et v o-finies. La mesure £ ci-dessus est unique. Elle est notée
1 ® v et est la mesure produit de 1 et v.

Nous pouvons maintenant (enfin!) justifier I'existence de la mesure de Le-
besgue dans R", n > 2.

8.11 Corollaire (Existence et unicité de la mesure de Lebesgue v,,). Il existe
une unique mesure borélienne v, dans R" telle que, pour chaque pavé’

P=1I x---x1,

de R"” on a

Exercices

En plus de la mesure de Lebesgue, voici un autre exemple de mesure produit.

8.12 Exercice. Si X, Y sont a. p. d. et si p, v sont les mesures de comptage sur X, Y, alors
1 ® v est la mesure de comptage sur X x Y. o

Démonstrations

Démonstration de la proposition 8.8. Faisons la preuve pour E,. Soit z € X arbitraire, fixé.

Notons .7 := {E € T ®.7; E, € 7}. Alors </ contient les pavés A x B,avec A€ 7,
B e ., car dans ce cas F, est soit B (si x € A), soit J (si x ¢ A).

De plus, </ contient €, carsi E = U}_; Ay x By € €, alors E, = U}_, (A x B)y € .
(détailler).

Par ailleurs, </ est une classe monotone : si (E,), < <« et E, / FE, alors E, =
(UnEn)e = Un(En)s € 7. De méme, si E, \, E, alors E, = n,(E,), € .7 (justifier, en
combinant le lemme 8.4 a) et le théoréme de la classe monotone 2.9).

Il s’ensuit que <7 contient la classe monotone engendrée par ¢, quiest 7 ® .7.

t. Rappelons (définition 4.34) qu'un pavé de R™ est un produit de la forme P = I} x --- x I,,,
avec chaque I; intervalle.

138



Petru Mironescu Mesure, intégration, éléments d’analyse fonctionnelle

Conclusion : pour tout £ € .7 ® ., nous avons E € &/, et donc E, € . (pour tout
r e X). CQFD

Démonstration du théoréme 8.9. Nous faisons la preuve lorsque v est o-finie.

Soit, pour F € I ® .7,

f=fe:X—>[0,0], f(z) :=v(E;), Vo e X.

Soit

o ={FEe.7®.Y; fest 7 —mesurable}.

Nous voulons montrer que & = . ® ..

Etape 1. Preuve du théoréme si v est finie. Soit d’abord E € €. Nous écrivons F = Li;A; x Bj,
comme dans le lemme 8.5. Nous avons alors (justifier)

E, = UxEAij = ‘—‘xeAij7
d’ou

fle) = " v(B)) =), xa, (@) v(B)).
j

SCEAJ'

De maniére équivalente, nous avons f = >}, v(B;) x4, d’ou f est mesurable. Ainsi,
Ccd.

Pour conclure, il suffit de montrer que &/ est une classe monotone (et d’invoquer le
lemme 8.4 a) et le théoreme de la classe monotone 2.9).

Soit d’abord (E,), © < une suite croissant vers E. Le théoreme de la suite crois-
sante donne v(E;) = lim, v((E,);) (vérifier). Ainsi, f est une limite de fonctions .7-
mesurables, donc .7 -mesurable.

Dans le cas d’"une suite décroissante, nous pouvons appliquer le théoreme de la suite
décroissante (car v est supposée finie) pour obtenir a nouveau f mesurable (détailler).

Etape 2. Preuve du théoreme si v est o-finie. Soit (Y;,),, < . une suite telle que Y,, /' Y et
v(Y,) < oo, ¥ n. Si nous posons v,(B) := v(B nY,), VB € .7, alors v, est une mesure
finie (car v, (B) < v(Y,) < ) et v(B) = lim, v,(B) (théoréme de la suite croissante).
Nous avons

flx) =v(E,) =limy,(E,), VEe T ®.,VreX.
Chaque fonction z — v, (E,) étant .7 -mesurable (étape 1), f 1'est également. CQFD

Démonstration du théoréme 8.10.
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a)

b)

Supposons, par exemple, v o-finie. Pour £ € .7 ® ./, posons, avec f = fg comme
dans la preuve du théoreme 8.9,

E(E) = fX fdu= JX fedu = JX v(Ey)du(z), VEe T ®.7. (8.4)

Alors ¢ satisfait (*) (vérifier). En particulier, () = 0.

Il reste a vérifier I’axiome ii) d'une mesure. Soit (E,,), € 7 ® . une suite d. d. d. Soit
E := u,E,. Sinous posons f,(z) := pu((Epn)z), Vn,alors f =Y, fn,car B, = L(Ey)s
(vérifier). Nous obtenons (justifier)

) = [ fin= [ S gudn =2 | face = YeE)

¢ est donc une mesure satisfaisant (*).

Soit A une mesure avec les mémes propriétés que £. Soient (Cy,), < 7, (Dyp)n < 7
des suites telles que u,,C,, = X, u,D, =Y, pu(Cy,) < ©, v(Dy) < ®, Yn. Alors
§(Cp x Dyp) <wetX xY =u,C, x D,

Par ailleurs, nous avons A\(E) = £(F), V E € €. En effet, nous pouvons écrire, comme
dans le lemme 8.5, ' = Li;A; x Bj,avec A; € 7, Bj € ./, ¥V j. Nous obtenons

ME) = MujAj x Bj) = ZM(AJ‘)V(BJ') = {(ujA4; x Bj) = {(E). (8.5)

La proposition 4.24 combinée avec (8.5) donne A = &. CQFD

Si p et v sont o-finies, nous pouvons également définir la mesure

n(E) = L/ pw(EY)dv(y), VE e T ® %,

qui, par symétrie, a les mémes propriétés que £. L'unicité prouvée dans 'item b)
a alors la conséquence suivante.

8.13 Corollaire. Si v et i sont o-finies, alors nous avons

pU(E) = JV(Ex) du(zr) = fu(Ey) dv(y), VE e T ® . (8.6)

Démonstration du corollaire 8.11. L'unicité a été montrée dans la proposition 4.38 c).

Pour l'existence, faisons la preuve par récurrence sur n. Le cas n = 1 a été traité

dans le chapitre 5 (théoréme 5.1). Soit n > 2. Supposons l'existence de v, acquise. v et
vp—1 étant o-finies (justifier), nous pouvons définir 11 ® v,—1, qui a la propriété requise
(justifier, en utilisant la proposition 8.3 et le théoréme 8.10). CQFD
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8.3 Produits itérés

Plus généralement, nous pouvons considérer des espaces mesurés (X, .7, 11;),
j=1,...,k avec k = 3,4, ..., et construire (a priori) plusieurs tribus et mesures
sur X; x --- x Xj. Par exemple, si k = 3, nous pouvons considérer les tribus
(N ® %) ® T30u 7 Q(F® T3) et les mesures (1 @ fiz) ® i3 0U 1y @ (12 @ p3)-
Le résultat est le méme, quel que soit I'ordre des opérations. Nous en donnons la
preuve pour k = 3; le cas général s’obtient par récurrence.

8.14 Proposition. Nous avons (71®.%)® .75 = 71Q(%® ;) =la tribu engendrée
par les produits de la forme A; x Ay x A3, avec A; € F;,j =1,2,3. o

8.15 Proposition. Siles mesures y; sont o-finies, j = 1,2, 3, alors (11 ® pa) ® s
11 ® (pe ® ps)=l"unique mesure A telle que A\(A; x Ay x A3) = (A1) po(As) ps(As
pour A; € 7,5 =1,2,3.

Grace a l'associativité du produit, nous pouvons définir sans ambiguité les
produits 71 ® % ®...Q T, et 11 Qa2 ®. .. @ . Nous noterons ces produits QY .7,
respectivement &y 1.

Une conséquence immédiate des propositions 8.14 et 8.15 est la propriété sui-
vante de la mesure de Lebesgue.

8.16 Corollaire. Si v, est la mesure de Lebesgue sur %g», alors v, ® v, = Vp 1, €t,

L2 k .
plus généralement, ®v,, = v Eny 3

Les résultats des sections suivantes seront prouvés pour k = 2. Néanmoins, ils
ont des variantes pour k > 3, que nous allons énoncer sans preuve. Les preuves
de ces variantes sont dans 1’esprit de celles des propositions 8.14 et 8.15.

Démonstrations

Démonstration de la proposition 8.14. Notons .7, j = 1,2, 3, les trois tribus de I’énoncé. Mon-
trons par exemple que .| = .73.

«D>»SiAje T, 5 =1,23 alors A; x Ay x A3 = (A1 x Ap) x A3 € . (justifier), d’out
3 < S (justifier).

«c » Il suffit de montrer que £ x Az € .#3si E € 71® % et A3 € 73 (justifier). Nous fixons
As e Z3.50it & == {E € 1R F; E x Az € /3}. Clairement, &7 est une classe monotone.
De plus, elle contient le clan 4" engendré par les produits A; x Ay, avec A1 € 71, A € F.
Donc &7 contient .7 (¢) = 71 ® J; (justifier). CQFD
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Démonstration de la proposition 8.15. Pour A; € .7}, j = 1,2,3, nous avons

(111 @ p2) @ p3(Ar x Az x Az) = (11 ® p2) @ pa((Ar x Az) x As)
= 1 @ p2(Ar x Ag) u3(As)
= p1(A1) p2(As2) p3(As)
= p1(A1) (p2 @ p3) (A2 x Az) (87)
= p1(A1) @ (p2 @ p3) (A2 ® Az)
= p1 ® (H2 ® p3) (A1 x (A2 x A3))
= 11 ® (2 @ p3) (A1 x Az x Ag).

Comme dans la preuve du théoreme 8.10 b), nous concluons grace a (8.7) et a la pro-
position 4.24. CQFD

Démonstration du corollaire 8.16. Soit n := Z§=1 n;.

Notons d’abord que les produits sont bien définis, car la mesure de Lebesgue v;,; est
o-finie (proposition 4.38). Par ailleurs, en utilisant la proposition 8.3, nous obtenons, par
récurrence sur k, 'égalité @} Bypn; = PBgn. 1l s’ensuit que les mesures ®’fynj et v, sont
définies sur la méme tribu, Zgn.

Nous avons ®’funj (P) = vp(P) = m(P) si P est un pavé de R" (vérifier). Nous
concluons grace au théoreme 4.35. CQFD

8.4 Passage aux mesures complétées

Nous pouvons, a partir de (X, .7, i) et (Y,.,v), compléter les tribus et me-
sures comme suit.

Procédé 1. Compléter .7 ® . par rapport a 1 ® v. Nous obtenons de cette facon
la tribu complétée 7 ® . et la mesure complétée 1 Q v .

Procédé 2. Compléter d’abog T , <, w, v, puis considérer la tribu et la mesure
produit. Ceci donne la tribu .7 ® . et la mesure t ® 7.

Puis compléter la tribu et la mesure ainsi construites. Nous obtenons ainsi la
tribu .7 ® .7 et la mesure i @ .

Clairement, la tribu du procédé 2 contient celle obtenue par le procédé 1 et la
mesure obtenue par le procédé étend celle obtenue par le procédé 1. Il se trouve
que le procédé 2 n’apporte rien de plus que le procédé 1.

8.17 Théoreme. Si ji, v sont o-finies, alors les procédés 1 et 2 donnent les mémes
tribus, respectivement mesures. o

Par conséquent, il sufit de compléter les tribus apres avoir fait leur produit.
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Nous donnons plus bas la preuve du théoreme 8.17, mais pas celle, similaire,
du théoreme 8.18.

8.18 Théoreme. Si les mesures u; sont o-finies, i = 1,...,n, alors nous avons

®1T: = @) T et @i = ;. o

Pour la mesure de Lebesgue, ces théoremes se traduisent de la maniere sui-
vante.

8.19 Corollaire. Nous avons .%, ® %, = Lnim et A\, ® Ay = Mg

De méme, nous avons ®7.%] = .7, et QA = A,..

Exercices
8.20 Exercice. Nous savons que
TRSCITRS cTR.L.
a) Montrer qu’en général les deux inclusions sont strictes. Plus spécifiquement, montrer

que, pour le produit de (R, Zg, 1) avec lui-méme, nous avons une double inclusion
stricte, et que ceci revient a

PBr2 AR S L.

b) En déduire que A\; ® A1 # Aa. o

Démonstrations

Démonstration du théoréme 8.17. Clairement, nous avons .7 < 7, .Y < L et pQ@v =i Q®@v
sur 7 ®.7,dou 7 @7 ¢ 7 Q.7 et i ® v est une extension de i @ v (justifier).

Il reste a montrer que

TRScITRLetn@u(E)=u@v(E),VEe 7Q.7. (8.8)

Soit E € 7 ®.7. Pour un tel E, il existe E1,F2 € 7 ® . telsque E; « E < Fs et
R®UV(EX\E) = 0.

De plus, nous avons (pourquoi ?)

®T(E) = i@ U(EY) = E@T(Ey).

=

Nous allons montrer la propriété suivante : (¥) il existe F1,Fy € . ® .7 tels que
Fy c By c Ec Eyc Fyet pu®u(F\F1) = 0. Admettons pour l'instant la validité de (*).

143
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De (%), il s’ensuit a la fois que £ € . ® .¥ et que (justifier)

A®V(E) =a®v(E) > n
=[aQU(F) >q

< > ~ 1@ u(F)) = TOV(E) = n® v(F)

U
QU

Au passage, nous aurons montré que £ € .7 ® .7 (premiere partie de (8.8)) et que
LRV(E) = p®v(FE) (deuxieme partie de (8.8)).

Il reste a montrer (*). J'affirme qu'’il suffit de montrer : (**) pour tout G € 7 ® .7, il
existe G1,G2 € 7 ® . telsque G1 < G < Ga et u® v(G2\G1) = 0.

En effet, si (**) est vraie, alors il existe Hy, Hy, 1, [ €  ® . tels que H; < E; < Hy,
Il = E2 = _[2, ,U,® I/(HQ\Hl) = 0, ,U,® I/(IQ\Il) = (. Posons alors F1 = Hl, F2 = _[2, de
sorte que Fy ¢ Ey < Ey < Fy. De plus, nous avons (vérifier)

p@v(I\F1) =p @ v(F2\F1) = pn@v((I12\E2) 1 (E2\E1) u (E1\H)))
p@v(I\E2) + p@v(Ex\Er) + p @ v(E1\H))
p@v(I\I) + p@v(Ex\Ey) + @ v(Hz\H)

1] 12\11)+,LL®I/(E2\E1)+/L®Z/(H2\H1) =0,

IA

Qv(
Qv(
ce qui donne (¥).

Prouvons donc (**). Soit

={G e T ®.; (+*) est vraie pour G}.

Clairement, &/ est une classe monotone. En effet, si, par exemple, GF / G, avec
G* € o7,V k, soient Gf, G5 € 7 ® .7 tels que GY = GF = GE et u@V(GE\GY) =0,V k.

Nous avons (justifier)

UkG]f cGc UkGlg

et

n®@v(UrGE\ Uk G) < p@v(Ur(G5\GY)) Zu@v G3\GY) =

Une inégalité analogue est vraie si G* \| G et si nous remplagons les unions par des
intersections.

Par ailleurs, &/ contient le clan 4 engendré par les produits A x B, avec A € 7,
B € . En effet, si G € €, alors nous pouvons écrire G = ;A7 x BJ, avec A7 € 7,
BJ € Z,1'union étant d. d. d. et finie (pourquoi?). Si A{,Aj e, Bl,BJ e . sont tels
que A] ¢ Al ¢ A}, Bl « B/ c B}, u(A)\A%) = 0, v(BJ\B]) = 0, alors les A7 x B sontd.
d.d. et ujA{ X B{ cGc UjA‘; X Bg.

De plus, nous avons
(g x BY\(LjA] x BY) < u(45\A}) x By u 4} x (B)\BY)),
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d’ott
n®v((UjA x BHO\(UA] x BY)) <) p@v((45\A]) x BY)
J
+ 2,1 @v(Ag x (B3\BY)) = 0,
J
ce qui montre que G € 7.

Pour résumer, .« est une classe monotone qui contient %. Il s’ensuit que & = 7 ® .7
(justifier), d’ot1 la conclusion. CQFD

Démonstration du corollaire 8.19. Prouvons par exemple les deux premieres propriétés. Par
définition, nous avons \,, := 7, et ., := PBrn. Compte tenu du fait que v, ® vy, = Vpim
(corollaire 8.16), nous obtenons (via la proposition 8.3)

gn ®Zm == %Rn ® %Rm == %Rn ® %Rm == %Rn+m = gn_t,_m.

De plUS, M@ =V @V = Vn QUi = Unim = Anym- CQFD

8.5 Les grands théoremes pour y ® v

Dans cette section, nous supposons que p et v sont o-finies et nous munissons
X xY dela tribu produit 7 ® . et de la mesure produit ;1 ® v. Nous étudions la
validité de la double égalité

[ famauevien - [ ([ @) ww

- [ ([ vt dute;

lI'interprétation intuitive de cette formule a été présentée dans la section 8.0.

(8.9)

Sous des hypotheses de mesurabilité, cette égalité est vraie si f est positive
(théoreme de Tonelli 8.24) ou, reformulée correctement, si f est intégrable (théoreme
de Fubini 8.27).

8.21 Remarque. L'hypothéese que p et v sont o-finies peut-étre affaiblie, mais le prix a
payer est que nous n’aurons plus que des « demi-énoncés ». Comme observé dans la sec-
tion 8.2, nous pouvons définir une mesure « type mesure produit » si p ou v sont o-finies;
mais dans la définition de cette mesure 1 et v ne jouent pas le méme role. Nous obtenons,
sous cette hypothese plus générale, « la moitié » des énoncés qui suivent. Par exemple, si
nous supposons uniquement v o-finie (sans hypothese sur p), alors la conclusion de la
proposition 8.22 ci-dessous devient : f, est .”-mesurable, V2 € X. Lorsque les deux me-
sures sont o-finies, les énoncés deviennent plus symétriques et sont souvent plus utiles
dans les applications. Nous laissons au lecteur le soin de formuler les variantes « ou » des
résultats « et » de cette section. o
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8.22 Proposition. Soit £ € 7 ® .. Soit f : E — R une fonction 7 ® .-
mesurable.

Pour tout z € X, la fonction partielle

f:v : E:Jc - R7 fx<y) = f(xvy>7 vy € E:L"?

est .#-mesurable.

De méme, pour tout y € Y, la fonction partielle

est .7 -mesurable.

Cas particulier : si f : X x Y — Rest .7 ® .”-mesurable, alors les fonctions
partielles

fo: Y =R, fu(y) = f(x,y), Yy ey,
fY: X >R, fY(z) = f(x,y), Vo e X,

sont .”-mesurable, respectivement .7 -mesurable.

8.23 Remarque. De méme, si nous considérons un produit de plusieurs facteurs, les ap-
plications partielles obtenues en figeant une partie des variables d'une fonction mesu-
rable f sont mesurables. Par exemple : si f : I[le X; — R est ®!J;-mesurable, alors
I'application f;, 2, := f(z1,22,-,-) : X3 x X4 — Rest 73 ® Jj-mesurable. o

8.24 Théoreme (Théoreme de Tonelli). Soit £ € .7 ® .. Soit f : E — [0, 0]
une fonction 7 & ./-mesurable positive. Alors :

a) LafonctionY sy — f(z,y) du(x) est .#-mesurable.
Ev
b) Nous avons

[ raner=[ (] swwin) aw).

c) Soitmy (E) :={yeY; EY # &}.Simy(F) € .#, alors

L fdu®@v = Ly(E) < . f(z,y) du(x)) dv(y).

Enoncé analogue en échangeant les roles de z et y.
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Cas particulier : si f : X x T'— [0, »0] est .7 ® .-mesurable positive, alors

ny fap®v = L (L fz,y) dﬂ(ﬂﬂ)) dv(y).

8.25 Corollaire. Soit £ € .7 ®.7.Si f : E — R est 7 ® .#-mesurable, alors f
est ;1 @ v-intégrable si et seulement si

.

L (J |f<$ay)ldv<y)> uil) <= 2.

Cas particulier : si f : X x Y — Rest 7 ® .-mesurable, alors f est u ® v-
intégrable si et seulement si

L (L @) CW)) dv(y) < o

L ( L |f (@, )l dV(y)> ) = o,

8.26 Remarque. L'ensemble 7y (E) n’est pas toujours .”-mesurable. Lebesgue avait affirmé
en 1905 que 7y (E) était foujours mesurable, du moins lorsqu’il s’agit des boréliens de R?.
Cette erreur célebre a donné naissance a une branche de 1’analyse, la théorie descriptive des
ensembles, sous I'impulsion initiale de Souslin, qui a repéré en 1916 I’erreur de Lebesgue
https://fr.wikipedia.org/wiki/ThAl’ orie_descriptive_des_ensembles.

ou

ou

Néanmoins, dans les cas concrets que nous allons rencontrer, 7y (E) est mesurable.
C’est le pendant de la remarque 2.17. o

8.27 Théoréme (Théoreme de Fubini). Soit £ € .7 ® .. Soit f : E — R
intégrable. Alors :

a) Pour v-presque tout y, la fonction f¥ = f(-, y) est u-intégrable sur Ev.

x,y)du(x), sicette intégrale existe
b) Sinous posons g(y) := < Jgv f(@,y) du(z) & , alors

0, sinon
g est v-intégrable.
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¢) Nous avons
J fdp®v = f 9(y) dv(y).
E Y
d) Soit 7y (F):={yeY; EY # &}.Simy(FE) € ., alors

JE fdp®v = Ly(E) 9(y) dv(y).

Enoncé analogue en échangeant les roles de x et .

Cas particulier:si f: X x Y — R est intégrable, alors £Y = X, VyeY, et

nyfdl@v = f 9(y) dv(y).

Y

8.28 Remarque. L'hypothese fondamentale du théoreme de Fubini est 1'intégrabilité de f :
JE If(z,9)|du®@v(z,y) < 0.

Concretement, cette condition est souvent vérifiée a I’aide du corollaire 8.25. o

8.29 Remarque. Pour comprendre le rdle des hypotheses (et de la nécessité d’introduire
la fonction auxiliaire g dans le cas du théoréeme de Fubini), examinons ces deux théorémes
dans le cas particulier ou la mesure v est la mesure de comptage sur N (et, dans ce cas,
I'intégration devient sommation, voir la section 6.6.2).

1. Si X = N muni de la mesure de comptage, le théoréme de Tonelli 8.24 est un cousin
du théoreme 6.26. Notons tout de méme que le théoréme 6.26 garde tout son intérét,
car p n'est pas supposée o-finie dans ce théoréme. ¥

2. Si X = N muni de la mesure de comptage, le théoréeme de Fubini 8.27 est un cousin
du théoréme 7.18.

A nouveau, ce théoréme est vrai méme sans I’hypothése 1 o-finie.

(a) Notons que la fonction f dans I'énoncé du théoreme 7.18 joue le rdle de g dans
le théoreme de Fubini.

(b) Examinons 'hypothese 2 J |fn| < oo dans le théoreme 7.18. En utilisant le co-

rollaire 8.25 et I'interprétation de la somme comme intégrale par rapport a la me-
sure de comptage, nous obtenons que cette condition équivaut (si i est o-finie) a

J |fn(z)|dp @ v(z,n) < 0, qui est précisément I’hypothéese fondamentale du
X xN

théoréme de Fubini. o

1. Comme noté dans la remarque 8.21, le théoréme 6.26 est le demi-théoreme correspondant
au théoreme 8.24, dans le contexte ot la mesure de comptage sur N est o-finie, alors que y ne l’est
pas nécessairement.
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8.30 Remarque. Les théorémes de Tonelli et Fubini ont des variantes relatives a des pro-
duits de plusieurs facteurs. Exemple : si f : R™ — [0, 0] est borélienne et positive, alors
les fonctions

(z2,...,xp) — JR flxy, e, ... xy) dvi(x1),

(@5, 1) JR URf(xl,xg,xg,...,xn)dyl(xl)> dv (22),

etc., sont boréliennes, et nous avons

| rav,
_ JR ( (fR (fR f(ml,xg,...,xn)dul(:zrl)> du1($2)> > dvy ().

8.31 Convention (Abus de notation pour l'intégrale de Lebesgue). Si {2 = R™ est un
borélien, si f = f(x) : 2 — R a une intégrale par rapport a la mesure de Lebesgue
An et s’iln’y a pas de risque de confusion,

o (8.10)

la notation J f(z) dx désigne 'intégrale de Lebesque j fdAn.
Q Q

Avec cette notation, I'égalité (8.10) devient

 f@)do - fR < (fR (JR f(xl,xg,...,:vn)dw1> d@) ) dzn.

De méme,

la notation f f(z)dzidxs . . . dx,, désigne l'intégrale de Lebesgue J fd\,.
Q 0

Notation alternative, par exemple pour n = 2:

j £() d(z,y) ou f f(z,y) dedy.
Q Q

Exercices

Ces exercices sont cruciaux en vue des applications.

8.32 Exercice. « Traduire » les théoremes de Tonelli et Fubini lorsque les espaces mesurés
sont (R", Bgn, vy,) et (R™, Brm, vp,). o

8.33 Exercice.

a) Soit d une droite du plan. Montrer que v»(d) = 0.
b) Soit H un hyperplan de R". Montrer que v,,(H) = 0. o
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Démonstrations

Démonstration de la proposition 8.22. Commengons par le cas ot £ = X x Y. Il suffit de mon-
trer le résultat quand f est étagée. Le cas général s’obtient par passage a la limite, en
utilisant :

a) Le fait que toute fonction mesurable est limite simple de fonctions étagées.
b) Le fait qu'une limite simple de fonctions mesurables est mesurable.

Par linéarité des appplications f — f,, respectivement f — fY, il suffit de considérer
le cas ot f = x4, avec A € .7 ® .. Dans ce cas, nous avons f, = x4, et fY = yav etla
conclusion suit de la proposition 8.8.

Le cas général ¥ € .7 ® . s’obtient en appliquant le cas particulier ci-dessus a la
fonction fx g et en utilisant la proposition 8.8 et la définition 3.10 (détailler). CQFD

8.34 Remarque. Le principe de la preuve de la proposition 8.22 est important
a retenir.

Pour obtenir des propriétés de mesurabilité ou intégrabilité des fonctions
« générales », il est souvent suffisant de raisonner sur des fonctions caracté-
ristiques; le reste est « automatique ».

Démonstration du théoréme 8.24. A nouveau, c’est une preuve « automatique ». On peut sup-
poser £ = X x Y. (Raisonner comme dans la preuve de la proposition 8.22.)

Si f est une fonction caractéristique mesurable, f = x4, avec A € .7 ® ./, alors la .7-
mesurabilité de

Y — f f(z,y) dp(x) = v(AY) (justifier 1'égalité)
b's

suit du théoreme 8.9, et 1’égalité des intégrales est donnée par le corollaire 8.13.

Par linéarité de l'intégrale des fonctions positives, le théoréme est vrai si f est étagée et
positive (vérifier).

Pour f quelconque, nous considérons une suite ( f;,), de fonctions étagées telle que
fn =0, fr, /" f. Par convergence monotone, nous trouvons, pour chaque y € Y :

f fule, ) du(z) — f f(y) du(),
X X

d'ouy — J f(z,y) dp(x) est -mesurable (comme limite simple de fonctions .’-mesu-
rables).

A nouveau par convergence monotone, nous obtenons :

f fdp®v =lim fndu®u=limf <J fn(@,y) du(w)> dv(y)
XxY noJXxY n Jy \JUX

— L <JX f(z,y) du(m)> dv(y),
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ce qui acheve la démonstration. CQFD

Démonstration du covollaire 8.25. Nous pouvons supposer que £ = X x Y.

Le théoreme de Tonelli donne

[ tawey = ([ i) aw). caro

Démonstration du théoreme 8.27. Nous pouvons supposer que . = X x Y.

Notons que f; et f_ sont intégrables (justifier).

Nous appliquons le théoreme de Tonelli 8.24 aux fonctions mesurables positives et
intégrables f, et f_. Nous obtenons que les fonctions y — f fr(z,y)du(z) sont v-
X

intégrables, donc finies v-p. p. (justifier). Si
B - {y Y [ flwmdnte) = wet | 1 (o) dute) - oo} ,

alors B € ., v(B) = 0 (justifier) et J f(-,y) du existe si et seulement si y ¢ B.
b's
Par ailleurs, nous avons
o) = xet) [ 1 aut) = [ 1@ auto)

(vérifier), d’ou1 g est mesurable (justifier).

Comme ;1 ® v(X x B) = 0 (pourquoi?), nous avons (justifier)

JY\B <JX fe(@,9) du(x)) dv(y) = JXX(Y\B) Jrdu®v

(8.11)
= J frdu®v < .
XxY

En additionnant les deux égalités (8.11), nous obtenons

JY\B l9(u)ldviy) < L\B (JX(er(w,y) + f-(z,9)) d“(x)> dv(y) < oo,

d’ol g est intégrable sur Y\ B, donc sur Y (justifier).

En particulier, ¢ est finie v-presque partout, c’est-a-dire f(-,y) est intégrable pour v-
presque tout y.

Enfin, en retranchant les deux égalités (8.11) nous obtenons

[ o- L\Bg - L\B ([ eten = r-aaut)) o)

—f fdu®V—J fdu®@uv.
Xx(Y\B) XxY
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8.6 Les grands théoremes pour ;1 ® v

Les résultats de la section précédente ne s’appliquent pas a la mesure de Le-
besgue A, .., qui n’est pas le produit de )\, et de )\, (exercice 8.20).

Dans cette section, nous allons néanmoins obtenir des résultats du type théo-
reme de Tonelli ou théoréeme de Fubini pour la mesure 1 ® v. Le « prix » a payer
est que certaines propriétés, vraies partout dans les sections précédentes, sont va-
lides uniquement presque partout; comparer par exemple les propositions 8.22
et 8.35.

8.35 Proposition. Soit £ € .7 ®.7. Soit f : E x Y — R une fonction .7 ® .7-
mesurable.

Pour p-presque tout = € X, nous avons E, € .7 et la fonction partielle f, :
E, — R est .-mesurable.

Enoncé analogue en échangeant les roles de z et y. o

La remarque suivante propose des conventions utiles et mene a la définition
8.37.

8.36 Remarque. Si \ est une mesure compléte sur (T, o/) et g une fonction définie A\-p. p. sur
T, alors nous pouvons donner un sens naturel a la mesurabilité de g (méme si elle n’est
pas définie en tout point).

En effet, soit h un prolongement arbitraire de g a T' tout entier (par exemple, le prolon-
gement par la valeur 0). Si h est «/-mesurable, alors tout autre prolongement de g est
o/ -mesurable, car égal a h A-p. p. (proposition 4.19 b)). Ainsi, il y a équivalence entre :

1. g a un prolongement mesurable.
2. Tout prolongement de g est mesurable.
De méme, si un prolongement i de g a une intégrale, alors tout autre prolongement k

de g a une intégrale (car dans ce cas nous avons k = g A-p. p., et nous pouvons appliquer
le corollaire 6.45). ©

Cette remarque montre que les définitions suivantes sont correctes (au sens
ou elles ne dépendent pas de h).

8.37 Définition (Mesurabilité et intégrale d’une fonction définie p. p.). Soit
A une mesure complete sur (1, .o/). Soit g une fonction réelle définie A\-presque
partout sur T'.

a) (Mesurabilité d"une fonction définie p. p.) g est &/ -mesurable si g admet un
prolongement h : X — R .&/-mesurable.

b) (Intégrale d'une fonction définie p. p.) g a une intégrale si g admet un pro-
longement / : X — R qui a une intégrale, et dans ce cas nous définissons
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I'intégrale de g par

fo- o= fo

Avec ces conventions, la conclusion du théoreme de Fubini 8.27 s’écrit plus
simplement

[ ravsv =] ([ sewan) anto 812)

a comparer a la conclusion

[ raner=[ ([ stwin) aw) (3.13)

du théoréme de Tonelli 8.24.

Les formules (8.12)—(8.13) permettent de mieux comprendre le role du passage
aux mesures complétées, illustré dans les théoremes 8.38 et 8.39.

8.38 Théoreme (Théoreme de Tonelli). Soit £ € .7 ® .. Soit f : E — [0, 0] une
fonction .7 ® .-mesurable.

Alors :
a) L'application Y sy — | f(z,y) dfi(z) est définie v-p. p. et est .”-mesurable.

FEY
b) Nous avons

[ rawv- ([ rewa@) v

Enoncé analogue en échangeant les roles de z et de y. o

8.39 Théoréeme (Théoréeme de Fubini). Soit £ € .7 ®.7. Soit f : E — R une
fonction ;1 ® v-intégrable.

Alors :
a) Pour v-presque tout y, f¥ = f(-,y) est p-intégrable sur EY.

b) Si nous posons ¢(y) := f(z,y)dpi(x), alors g (qui est définie v-p. p.) est
v-intégrable. v
¢) Nous avons

L fdu®v = L 9(y) dv(y).
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Enoncé analogue en échangeant les roles de z et y. o

Nous allons démontrer uniquement le théoreme 8.38; la preuve du théoreme
8.39 est similaire et laissée au lecteur.

8.40 Remarque. Ces théorémes ont des variantes pour des produits a trois facteurs ou
plus, que le lecteur énoncera facilement. o

Exercices

Les deux exercices suivants permettent de compléter la preuve des théoremes
8.38 et 8.39. Pour les montrer, on pourra s’inspirer de la preuve de la proposition
8.35.

Le cadre est celui de la définition 8.37. Les p. p. s’entendent par rapport a la
mesure )\, et la mesurabilité par rapport a <7

8.41 Exercice. Soient hi, ..., h, des fonctions réelles positives définies p. p.
a) Montrer que h := hy + - - - + h,, est définie p. p.
b) Si chaque h;, est mesurable, alors :

) h est mesurable.
fh = Z Jhk o
k=1

8.42 Exercice. Soient h,,, h des fonctions réelles définies p. p., telles que :
(i) hy,, est mesurable, V n.
(ii) hp, — hp.p.

a) Montrer que h est mesurable.

b) Sihn20p.p.,ethn/'hp.p.,alorsfhn—>Jh. o

Démonstrations

Démonstration de la proposition 8.35. Montrons par exemple le résultat pour f,.

Etape 1. Preuvesi E = X xY et f = xa, avec Ae T ®.7. Il existe A1,As € T ® . tels
que A; c Ac As et p®v(A2\A1) = 0. Soit B := As\A;. A x fixé, nous avons

(141):C C Az C (Ag)w = (Al LJ B)w = (Al):c L B:C7
d’ott
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Par ailleurs, le corollaire 8.13 donne
0= n@u(B) = | V(B du(o)
X

d’ot1 (proposition 6.50 a)) v(B;) = 0 u-p. p.
Soit C € .7 tel que u(C) = O0etv(B;) =0, Vo e C°.
Soit = € C°. Alors il existe D < . tel que v(D) = 0 et B, < D. Nous avons

XB,(y) =0, Vye D (8.15)

De (8.14) et (8.15), nous avons f; = x4, dans D¢ et donc f, = xa, v-p. p. Comme A,
est .“-mesurable (proposition 8.8), il s’ensuit que x4, 'est également, et donc (justifier)
fz est S-mesurable.

Conclusion : pour tout x € C¢, f, est .7-mesurable, et donc f, est .#-mesurable pour
p-presque tout .

Etape 2. Preuve pour une fonction étagée. Soit f = >%_, ar x4,,avecay e Ret Ay e 7 ®.7,
Ap < E, Y k. Soit, pour chaque k, By, € 7 un ensemble pi-négligeable tel que x4, (z) soit
-mesurable, V z € (By)®. (L'existence de By, découle de la premiere étape.)

Soit B := U}_, By, qui appartient a .7 est et y-négligeable (justifier). Alors f, est .-
mesurable, V¥ x € B¢ (justifier, en utilisant la définition 3.10), et donc, pour p-presque tout
x, f, est /-mesurable.

Etape 3. Preuve dans le cas général. Soit f : E — R une fonction .7 ® .#-mesurable. Soit
(fn)n une suite de fonctions étagées telles que f, — f. Soit, pour chaque n, 4,, € 7 un
ensemble p-négligeable tel que (f,), soit .#-mesurable, ¥z € (A,)¢. (L'existence de A,
découle de la deuxieme étape.)

Soit A := U, Aj, qui appartient & .7 est et u-négligeable (justifier). Pour tout z, nous
avons f, = lim,(fy)z. Si x € A€, alors chaque fonction (f,,) est .-mesurable, et donc f;
l'est (justifier). Par conséquent, pour p-presque tout z, f, est.”-mesurable. CQFD

8.43 Remarque. Lors de la premiere étape de la preuve de la proposition 8.35, nous avons
montré le fait suivant, qui nous servira dans la preuve du théoreme 8.38.Si A € 7 ® .7,
alors il existe A1 € 7 ® .7 tel que :

a) A1 c A.
b) H®U(A) = p®v(Ar).
c) 7(Az) = v((A1)z) pour p-presque tout z € X. o

Démonstration du théoréme 8.38.

Etape 1. PreuvesiE = X xY et f =xa,avec Ae T ® .. Nous avons :

i) Pour v-presque touty € Y,

j f(y) da(z) = f (&) dii(x) = P(AY) = v((Ar)?)
X X

(via la remarque 8.43 c)).
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ii) y — v((A1)Y) est S-mesurable (théoreme 8.9), d'ott y — J f(z,y) dii(z) est .7-
X
mesurable (item i) et définition 8.37 a)).
iii) Enfin,

J, UX Jey) d#@)) an(y) = | man)arty) = | (a0 doty)

- L p((AD)Y)) di(y) = p® v(Ar) = T@V(A)

—f fdu®v
XxY

(en utilisant successivement l'item i), la remarque 8.43 c), l'item ii) et la définition
8.37b), le théoreme de Tonelli 8.24 appliqué a la fonction x 4, et la remarque 8.43 b)).

Ceci prouve le théoréme si f = x 4.

Etape 2. Preuve pour une fonction étagée. Soit f = >7_, apxa,, avec aj € [0,00[ et Ay €
T ®7, A, < E,VEk. Soit, pour chaque k, By € .7 un ensemble p-négligeable tel que
X4, () soit .#-mesurable, V x € (By)¢. (L'existence de By, découle de la proposition 8.35.)

Soit B := u}_, B, qui appartient 2 .7 et est u-négligeable. Alors f, est.”-mesurable,
Vx € B¢ (justifier), et donc, pour p-presque tout z, f, est -mesurable.

La premiere étape et la linéarité de 'intégrale (proposition 6.21) impliquent (justifier
chaque égalité, en utilisant en particulier 1'exercice 8.41)

L < o fz,y) dﬁ(:ﬁ)) dv(y) = L <L i ak XAy (T, ) du(;,;)> o (y)

k=1

- Y wr@ia) - | faier.

k=1

Etape 3. Preuve dans le cas général. Soit f : E — [0, 0] une fonction .7 ® .#-mesurable. Soit
(fn)n une suite de fonctions étagées positives telles que f,, ,/ f. Posons

In(y) == | falz,y)dpy), 9(y) == |  f(x,y) da(y).
EY Ev

Alors g, est définie lorsque (f,,)Y est 7 -mesurable, donc pour v-presque tout y (pro-
position 8.35). De méme, g est définie v-p. p.

Soit, pour chaque n, B, € . un ensemble v-négligeable tel que (f,,)Y soit .Z-mesurable,
Vy € (By,)C. Soit C € . un ensemble v-négligeable tel que fY soit .”-mesurable, V y € C°.
SiB:=C u u,B,, alors (justifier ce qui suit, en utilisant en particulier I'exercice 8.42 b))
B est v-négligeable, et pour tout y € B¢,

0<gnly) /" 9(y). (8.16)
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En particulier, (8.16) et la définition 8.37 a) impliquent que y — f f(z,y) da(x) est
EY
./-mesurable.

En utilisant le théoreme de convergence monotone 6.18, la deuxieme étape, (8.16) et
a nouveau l'exercice 8.42 b), nous obtenons (justifier)

JE f i @v = lim fE fudir@v = lim fy (L ful@,y) du(fv)) a(y)
~tnn [ antant) = [ awav = [ ([ s dnta)) vt

ce qui donne la conclusion du théoréme dans le cas général. CQFD
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Chapitre 9

Changements de variables

9.0 Apercu

L'un des outils les plus utiles pour calculer des intégrales définies est le théo-
reme du changement de variable : si ® : [a,b] — [c, d] est une fonction bijective de
classe C', alors

d ®=1(d)
J f(z)de = L>—1( ) f(®(y) P (y)dy, V [ : [e,d] = R, f continue. 9.1)

Dans ce chapitre, nous nous intéressons a des variantes de (9.1) pour des fonc-
tions de plusieurs variables. Incidemment, méme pour une fonction d"une seule
variable, nous allons donner une formulation du théoreme dont la forme (mais
pas le fond) est différente de (9.1).

Le théoreme principal est le théoréme du changement de variable(s) 9.14, qui fait
intervenir un changement de variable(s)

®:U — V, avec U, V ouverts de R".

L’égalité centrale du théoreme 9.14 est

fv f(z) d = f (@) [aly) dy;* 9.2)

les hypotheses sur f et ®, ainsi que le sens de cette égalité, seront précisés dans le
théoreme 9.14.

La preuve du théoreme s’étale sur six sections (9.1 a 9.6). Il est possible de
faire bien plus court, en utilisant des résultats plus avancés. La preuve donnée

t. J, est la matrice jacobienne de ®. Par convention, |Jg| est la valeur absolue du déterminant de
Js.
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Changements de variables 9.0 Apercu

ici est longue, mais trés naturelle; par ailleurs, les sections 9.1 et 9.3 contiennent
des rappels d’algebre linéaire ou calcul différentiel, et la section 9.6 ne fait qu’as-
sembler les piéces du puzzle. Les sections 9.2, 9.4 et 9.5 constitue le cceur de la
preuve.

La structure de ces sections est la suivante :

1. Section 9.1 : rappels d’algébre linéaire (décomposition d"une matrice en ma-
trices élémentaires).

2. Section 9.2 : preuve du théoréme 9.14 lorsque ¢ est une application linéaire
(ou affine).

3. Section 9.3 : rappels de topologie (recouvrement d"un ensemble avec des cubes).

4. Section 9.4 : argument de «localisation » : lorsque U est un « petit cube », esti-
mation de I'erreur que l'on fait en remplagant ¢ par une application linéaire.

5. Section 9.5 : c’est la section clé de la preuve : preuve de la proposition 9.12, qui
donne une inégalité entre deux mesures.

6. Section 9.6 : conclusion.

Malgré son importance en général, le théoreme 9.14 ne s’applique pas aux
changements de variables les plus courants (passage en coordonnées polaires,
sphériques ou cylindriques). Pour inclure ces applications dans la théorie, nous
donnons dans la section 9.8 le théoreme du presque changement de variables 9.21. La
section 9.7 donne les résultats préliminaires utilisés dans la preuve du théoreme
9.21. Dans la section 9.9, nous montrons comment 1’appliquer aux changements
mentionnés ci-dessus.

Une fois n’est pas coutume, la section « Pour aller plus loin » 9.11 contient
une autre version du théoréme du changement de variables, le théoreme 9.23,
que nous utiliserons sans I'avoir prouvée.

Enfin, la section 9.10 contient une liste d’intégrales de référence, qui jouent,
pour la mesure de Lebesgue v, dans R”, le role des intégrale de Riemann ou de
Bertrand pour les intégrales généralisées sur |0, 1] et 1, oof.

Compétences minimales attendues.

a) Utiliser le théoreme du changement de variables.

b) Comprendre ce qu’est une égalité au sens du théoreme du changement de variables
et savoir s’en servir.

c) Utiliser de maniére justifiée les passages en coordonnées polaires, sphériques,
cylindriques, sphériques généralisées.

d) Savoir ramener, par changement de variables, le calcul d’intégrales a une ap-
plication des théorémes de Tonelli ou Fubini. o
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9.1 Un peu d’algebre linéaire

Soit A € M, (R) une matrice inversible. Nous pouvons ramener A a l'identité
par la méthode du pivot de Gauss (en ligne ou colonne). Chaque étape de la
méthode de Gauss en ligne est l'une des suivantes :

a) Permutation de deux colonnes de A (a la recherche d'un pivot).
b) L'une des colonnes de A est multipliée par une constante ¢ # 0, puis est re-
tranchée d"une autre colonne (afin de faire un zéro dans la ligne).

Sinous écrivons ces opérations en termes matriciels, alors :

a) revient a multiplier A a droite par une matrice F;;, qui s’obtient de 1'identité

en permutant les colonnes i et j.

b) revient a multiplier d’abord A a droite par la matrice ();. qui s’obtient de
'identité en multipliant la colonne ¢ par ¢, puis multiplier le résultat a droite
par la matrice R;; qui s’obtient de l'identité en retranchant la colonne i de la
colonne j, enfin multiplier ce dernier résultat a droite par Q; 1 /..

Ainsi, l'identité s’écrit comme un produit fini de la forme I = AS;S;...S,,
ou chaque Sy, est un P;; ou un ); . ou un R;;. Ceci donne A = S-Sy ! Notons
que:

1. Pi;l = P;.

2. Qz_cl = Qi,l/c-

3. Ri_j1 = T, ou T;; s’obtient de I'identité en ajoutant la colonne ¢ a la colonne j.
Pour résumer, nous venons de prouver le résultat suivant.

9.1 Proposition. Toute matrice inversible est produit de matrices du type F;;, Qi .
et E] <o

9.2 Changements de variables linéaire

Voici la forme la plus simple du théoreme du changement de variables : ® est
linéaire, et f est une fonction caractéristique.

9.2 Théoreme. Soit A € M, (R) une matrice inversible.
Nous avons :

a) E c R" est borélien (respectivement Lebesgue mesurable) si et seulement
si A(E) lest.
b) Si tel est le cas, alors \,,(A(E)) = |det A| A\, (E).

9.3 Remarque. Si A n’est pas inversible, alors pour toute partie £ de R", A(F) est Le-
besgue mesurable, de mesure nulle.
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Changements de variables 9.2 Changements de variables linéaire

En effet, A(R") est un sous espace de R" de dimension < n — 1, donc contenu dans
un hyperplan H. La conclusion suit du fait que v,,(H) = 0 (exercice 8.33). o

9.4 Remarque. La mesure de Lebesgue étant invariante par translations, nous pouvons
remplacer dans le théoreme 9.2 «linéaire » par « affine ». En effet, si Bx = Az + b, avec A
matrice inversible et b € R”, alors

M(B(E)) = Au(A(E) + b) = A(A(E)) = | det A A (E),

pour tout £ < R" Lebesgue mesurable; raisonnement similaire pour un borélien. o

Exercices

Cet exercice sert dans la preuve du théoreme 9.2.

9.5 Exercice. Nous nous proposons de montrer que si y est une mesure borélienne et

invariante par translations sur R" telle que x([0,1[") = 1, alors 1 = vy,

a) Montrer que x([0,1/k[") = (1/k)", Yk € N*. Indication : recouvrir [0, 1[" avec des
cubes d. d. d. de taille 1/k.

b) Soit K; comme dans le lemme 9.7. Montrer que u(K;) = v, (k).

¢) En déduire que u(K) = v, (K) pour tout compact K < R™.

d) Conclure. Indication : mesures de Radon. o

Démonstrations

Démonstration du théoréme 9.2.
Etape 1. Preuve dans le cas borélien. 1/équivalence E borélien «— ®&(F) borélien découle
de I'exercice 2.20.

Soit C := [0, 1[™. Soit k = kg := v,(A(C)). C étant d’'intérieur non vide et A étant
un homéomorphisme, A(C') est d’intérieur non vide. D’ot1 £ > 0 (justifier). Par ailleurs,
A(C) est borné (car C l'est), d’ot1 k < o0.

Posons

u(E) = 1

M(A(E)) = Eun(A(E)), VE € Pgn.
Nous allons montrer que y est la mesure de Lebesgue v, sur Zgn, ce qui implique
'égalité
vn(A(E)) = kvp(E), VE € Byn. (9.3)

Clairement, 1 est une mesure, car si (£}); est une suite d. d. d. de boréliens, alors
(A(Ej)); est une suite d. d. d. de boréliens et donc

P Ey) = Ton(0A(E)) = & Y v (A(E) = Y u(E))
J J
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Par construction, nous avons u(C) = 1 = v, (C).

Par ailleurs, p est invariante par translations, car

BB +2) = 1ua(A(E + 7)) = Tva(A(E) + Az) = Lon(A(E)) = u(B).

Pour résumer, ;1 est une mesure borélienne sur R”, invariante par translations et telle
que u(C) = vy(C). Ces propriétés impliquent 1'égalité 1 = v, (exercice 9.5), comme
annoncé.

Ensuite, montrons 1'égalité (*) k4 = | det A| (qui, au vu de (9.3), permet de compléter
la preuve du théoreme si E est borélien).

Dans un premier temps, notons 1'égalité k4p = kakp. En effet, nous avons

kap = Vn(AB(C)) = kAVn(B(C)) = kAkBVn(C> = kakp. (9.4)

Par ailleurs, nous avons également

| det (AB)| = | det A| | det B. (9.5)

Compte tenu de de la proposition 9.1 et de (9.4)—(9.5), pour conclure il suffit de mon-
trer (*) quand A est 'une des matrices P;;, Q; . ou T;; (puis nous multiplions ces égalités
pour obtenir (*) pour A quelconque).

Si A= Pj,alors|det Al = 1et A(C) = C,d'ottky =1 =|det A|.
Si A = Q. alors | det A| = |c] et, selon le signe de ¢, nous avons

A(C) = [0,1[ [0, e[x [0, 1" ou A(C) = [0, 1~ x]e, 0] x [0, 1.

Dans les deux cas, nous avons k4 = |c| = | det A] (justifier).

Enfin, soit A = T};; d’ou
j = 2. Nous avons

det A| = 1. Pour simplifier 1’écriture, nous prenons i = 1,

AC) = {(x1 + 22,22, ...,xp); 0< < 1, k=1,...,n}

= {
={(y1,x2,...,xn); x2<y1 <l+a2,0< 2 <1, k=2,...,n}.

Nous décomposons A(C) = B; u By, out B; est ’ensemble des points de A(C) tels que
xg < y1 < 1 et By celui des points de A(C) tels que 1 < y2 < x2 + 1. Alors By est inter-
section finie de fermés et ouverts (il est donné par un nombre fini d’inégalités affines),
donc borélien. Il s’ensuit que By = A(C)\B; l'est aussi. Par ailleurs, nous avons B; < C
et By = (C\Bj) + e1. Donc

ka= I/n(A(C)) = Vn(Bl L BQ) = I/n(Bl) + I/n(BQ)
= I/n(Bl) + I/n((C\Bl) + 61) = I/n(Bl) + I/n(C\Bl)
=vp(B1 u (C\B1)) =v,(C) =1 =|det A
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Etape 2. Preuve dans le cas Lebesgue mesurable. Soit E — R" Lebesgue mesurable. 11 existe
E,, E; boréliens tels que £y ¢ E < Ej et v, (E2\E1) = 0. Nous trouvons que A(E,) <
A(E) c A(E?) et v, (A(E2)\A(E1)) = vn(A(E2\E1)) = 0. Donc A(E) est Lebesgue mesu-
rable. Le méme raisonnement appliqué a A~! montre I'implication inverse : si A(E) est
Lebesgue mesurable, alors E 'est. Pour conclure, nous notons que

M(A(E)) = vn(A(Es)) = | det Al vn () = | det A Ay (E). CQFD

9.3 Un peu de topologie

Dans cette section, nous décrivons un procédé de recouvrement d'un ensemble
par des cubes, qui permet d’approximer un compact par des unions finies et dé-
croissantes de cubes.

9.6 Définition (Cube). Un cube (de R") est un produit C = I x I, x ... x I,, ol
les I; sont des intervalles de méme longueur, strictement positive.

La longueur commune de ces intervalles est la taille de C'

Si z; est le milieu de I, V j, alors © := (x4, ..., x,) est le centre de C'. o

Notons que, si x est le centre et r la taille de C, alors
B(z,r/2) c C < B(z,r/2) (9.6)
(boules pour la norme | | ).

Nous pouvons recouvrir R" avec des cubes disjoints de taille 1/27, a 1’aide
du recouvrement R" = Liyezn(1/27 - £ + [0,1/2["). Notons 2; la collection de ces
cubes; C' va désigner un cube appartenant a 2;.

Si F' < R", posons

F; = U C;

CEQ]'
CnF#Qg

F; est le recouvrement dyadique (a 1’échelle j) de F.

Notons que F; < Fj_; si j > 1. En effet, pour tout cube C de 2, il existe
un (unique) cube () de 2;_; qui le contient. Donc, si C' apparait dans F}, alors
apparait dans F;_;, ce qui implique F; < F;_;.

Notons également que F' — F}. En effet, si x € F), alors il existe un C' de 2; tel
que x € C. C apparait donc dans Fj, d’ou x appartient a F.

9.7 Lemme. Soit K < R" un compact.

Nous avons :
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a)
b)

K; \\ K.
/\n(Kj) - /\n(K)

c) K, estborné, Vj. En particulier, K; est une union finie de cubes Cy, avec C;

2,,VL.

d) Si U est un | ouvert tel que U o K, alors, pour j suffisamment grand, nous

avons U o Kj. o

Démonstrations

Démonstration du lemme 9.7.

a)

b)

d)

Nous avons déja vu que la suite (K;); était décroissante et 'inclusion K < Kj, V5. 11
reste a montrer l'inclusion n; K; < K.

Six € Kj, alors il existe un C'de 2 telquex € CetC n K # J. Soity; € K n C.
Alors |z — yj]0 < 1/27, d’ou dist(z, K) < 1/27.

Siz € n;K;, alors dist(z, K) < 1/27,V j, d’ot dist(x, K) = 0 et par conséquent z € K
(justifier).

Notons que I'ensemble K est réunion a. p. d. de cubes (qui sont boréliens), donc un

borélien. L'item b) découle du théoréme de la suite décroissante si K est borné (donc
de mesure de Lebesgue finie).

Soit M tel que |z| < M, Vx € K. De la premiere partie de la preuve, nous avons
dist(y, K) < 1,Vy e Ko, d’ol |y|e < M + 1, Vy € K (justifier). K, est donc borné.

Il suffit de reprendre, pour j arbitraire, I’argument ci-dessus, qui donne Ky borné.

La deuxiéme partie suit du fait que la boule B(0, M + 1) n’intersecte qu'un nombre
fini de cubes de 2;.

1 1
Soit ¢ := dist(K,U¢) > 0. Si 20 <€ et j > jo, alors 5 <& Pour un tel j, montrons

queU > K;.

Soit d’abord y € K. Alors il existe C' € 2; tel que y € C etil existe x € K n C. 1l
s’ensuit que |z — y|o < 1/27, d’out

dist(y, U°) = dist(z, US) — |z — y]o > dist(K,U°) — 1/27 > 0. (9.7)

Soit maintenant y € K;. Alors il existe une suite (y;)r < Kj telle que y, — y. En
appliquant (9.7) a yx, nous obtenons

dist(y, U*) = lim dist(y, U*) = dist(K, U*) - 1/27 > 0.

Il s’ensuit que que y ¢ U¢, ou encore y € U. y € K; étant arbitraire, nous obtenons
lI'inclusion K; < U. CQFD
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9.4 Image d’un petit cube par un C'-difféomorphisme

Dans cette section, nous établissons 1'inégalité fondamentale (9.9), qui permet de
majorer la mesure de I'image d’un petit cube par un C'-difféomorphisme.

Nous munissons .Z(R") de la norme matricielle subordonnée a la norme | |, :

|A] == sup{| Az]eo 5 ] < 1}.F (9.8)

Dans la suite, U et V désignent des ouverts de R”, muni de la norme || .
Les boules B(z,r) considérées dans cette section sont définies par rapport a cette
norme.

9.8 Définition (C'—difféomorphisme). Une application ® = (®y,...,®P,) :
U — V est un C'-difféomorphisme si :

i) ® a des dérivées partielles du premier ordre, qui sont continues.

ii) Le déterminant jacobien de @,

0d, 00, 0D,
o om, | oa.
8@2 8@2 6@2
det Jp = det 5_$1 5_962 Oz,
0d, 09, 0o,
or; Oxa  Oxn

est non nul en tout point de U.

iii) @ est bijective.}

Rappelons que, sous ces hypotheses, le théoréme d’inversion locale affirme
que ! est encore de classe C' (et a donc exactement les mémes propriétés que
P).

9.9 Notation. Si ® : U — V est différentiable, alors

|J¢>’ = \deth)|. &

Le résultat de cette section est

t. Les normes matricielles subordonnées sont désignées comme normes triples dans la littéra-
ture francophone (mais pas en dehors de celle-ci), et notées plutot || A]|.

t. Ce n’est pas la définition usuelle d'un C*-difféomorphisme. Il s’agit plutot d’une caractéri-
sation. ]’ai adopté ce point de vue car approprié en vue des applications.
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9.10 Proposition. Soit @ : U — V un C'-difféomorphisme.
Soient K un compact de U et e > 0.

Alors il existe § > 0 tel que : pour cube C de taille < § qui intersecte K," on a
CcUet

v (@(C)) < (1 +¢) |Jo(x)| vn(C), Y e C. o (9.9)

Notons que (9.9) a bien un sens. En effet, C' est borélien, et &(C) l'est égale-
ment (exercice 2.20).

Exercices

L’exercice suivant sera utilisé dans la démonstration de la proposition 9.10.
L’item b) est une variante de la continuité uniforme des fonctions continues sur
un compact K. La différence avec la continuité uniforme usuelle est que nous
permettons aux points z, y de « sortir un peu » de K.

9.11 Exercice. Soient U un ouvert de R"” et X' < U un compact.

Soient (Y, d) un espace métrique et h € C(U,Y).

Montrer que, pour tout 7 > 0, il existe un 6 > 0 tel que : si z,y € R" sont tels que
dist(z, K) < d et |z — y|o < §, alors

a) [z,y] < U (ici, [z, y] est le segment d’extrémités x et y).
b) d(h(x), h(y)) <. o

Démonstrations

Démonstration de la proposition 9.10. Nous utilisons 1’exercice 9.11 avec : ¥ := Z(R") muni
de la norme (9.8), h := Jg et 7 a fixer ultérieurement.

Soit ¢ la constante donnée par 1'exercice 9.11 et soit C' un cube de taille [ < § tel que
CnK+# @.Soitze Cn K etsoitz e C. Alors

dist(z, K) < |z — 2|l < L.

De méme, siy € C, alors |y — x| < I.

Comme | < §, nous sommes en mesure d’utiliser les conclusions a) et b) de 1’exercice
9.11. En particulier, si y € C, alors [z,y] < U (et en particulier z,y € U), et le théoréme
des accroissements finis donne :

[®(y) — (2) = Ja(2)(y — )]|oo < sup [ Ja(2) = Jo(2)||y — 2] < 7L (9.10)

z€[z,y

1. Autrement dit, tel qu'on ait C n K # (.
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Sinous posons A := D®(z) et b := ®(z) — Az, alors I'inégalité (9.10) devient
|®(y) — Ay = oo < 71,
ou encore ®(y) = Ay + £ pour un £ € B(b, 71). Il s’ensuit que

d(C) = A(C) + B(b,7l) = A(C) + b+ B(0, 7). (9.11)

Par ailleurs, A étant inversible et linéaire, nous avons

A(C) +b+ B(0,71) = A(C+ Ao+ A7 (B(0,71))). (9.12)

En combinant (9.11), (9.12) avec la monotonie de la mesure et le théoréme 9.2, nous
obtenons

Un(®(C)) < v (A(C + A7 + A7Y(B(0,71))))
= | det A| v, (C + A™1b + A7Y(B(0,71))) (9.13)
= |det A| v, (C + A7Y(B(0,71))).
Soit
L:={yeR"; dist(y, K) < d}.

Alors L est compact (justifier, en montrant qu’il est fermé et borné), et, de 1’exercice 9.11
a), nous avons L c U.

Soit

M = max{|(Jo) " (y)] ; y € L} < 0.

Nous avons
[A™ ¢ = [(Ja) " (@) €l < (o) (@) €0 < M [€]c0, ¥V € € R,
d’ou (justifier)

A7YB(0,71)) < B(0,MT1). (9.14)

Si & est le centre de C, alors C' < B(&,1/2) (voir (9.6)), ce qui implique (au vu de
(9.14))

C + A1 (B(0,71))  B(&, (1 +2M71)1/2). (9.15)

De (9.13) et (9.15), nous obtenons

vn(D(C)) < | det A va(B(&o, (1 + 2M7)1/2))
= |det A| (1 + 2M7)™" = (1 + 2M7)" | det A| v, (C).

Pour conclure, il suffit de choisir 7 tel que (1 +2M7)" =1 +¢. CQFD
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9.5 L’inégalité clé

Soit @ : U — V un C'-difféomorphisme (avec U, V ouverts de R"). Dans cette
section, nous allons « faire le plus dur » dans la preuve du théoreme 9.14, qui
consiste a prouver la proposition 9.12.

9.12 Proposition. Nous avons

J |Jo(y)| dy = v, (P(K)), VK < U compact. (9.16)
K

De maniére équivalente, nous avons

vn(L) < f |Jo(y)|dy, YL < V compact. o (9.17)
»-1(L)

Notons que le membre de droite de (9.16) est bien défini, car ®(K) est com-
pact, donc borélien. De méme, le membre de droite de (9.17) est bien défini, car
®~!(L) est compact.

Exercices

Cet exercice sera utilisé dans la preuve de la proposition 9.12.

9.13 Exercice. Soient (X, d), (Y, J) deux espaces métriques et & : X — Y un homéomor-
s T
phisme.

a) Soit £ une mesure borélienne sur Y. Posons

u(B) = £(8(B)), ¥ B € #x.

Alors 1 est une mesure borélienne sur X.
b) Symétriquement, si ;1 est une mesure borélienne sur X, alors la formule

f(C) = M((I)_1<C)), VC e %Y7

définit une mesure borélienne sur Y.

Indication : on pourra utiliser 1'exercice 2.20. o

Démonstrations

Démonstration de la proposition 9.12.
Etape 1. Une inégalité approchée. Soit € > 0 et soit 6 > 0 comme dans la proposition 9.10. Si
C est un cube de taille [ <  qui intersecte K, alors nous avons C' < U et

1 v (®(0))
= 1+e 1,(0)

| Ja(y) , VyeC. (9.18)

1. Donc ¢ est continue, bijective, et &~ est continue.
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En intégrant (9.18) sur C, nous obtenons (justifier)

L ()] dy > —— v (3(C)). 9.19)

T 1+4+e

1
Soit maintenant j; tel que o < 4.Soit j > j; et soit K; le recouvrement dyadique de

K, comme dans la section 9.3. Nous écrivons K; = Li,C; (union finie), avec Cy € 2;, V j
(voir le lemme 9.7 c)).

1
Par construction, chaque Cy intersecte K. Par choix de j, chaque C; est de taille o <

9. Nous pouvons donc appliquer (9.19) a chaque Cy. En sommant sur ¢, nous obtenons
(justifier)

| 1] dy = jc Ja(y)| dy = % oy dy
1 1
> 1+€;un(cp(cg)) = 1 vn(0e@(Cr) (9.20)
= (®(C0) = v (B(E).

Etape 2. Preuve de (9.16). Nous allons passer a la limite (sur j) dans (9.20). Expliquons
d’abord la démarche.

Posons

v(B) = JB |Jo(y)| dy, VB € By. (9.21)

Alors v est une mesure borélienne (exercice 6.30). De méme, si nous posons
w(B) = v, (®(B)), VB € Ay, (9.22)
alors p est une mesure borélienne (exercice 9.13).
Par ailleurs, nous avons
K; \\ K (9.23)
(lemme 9.7 a)).

Ainsi, pour passer a la limite dans dans (9.20), 1'idée naturelle est d’utiliser le théo-
réme de la suite décroissante (proposition 4.2 a)) pour les mesures v et ;1. Pour ce faire, il
faut trouver un j tel que v(K;) < oo (ce qui implique, au vu de (9.20), 1(K;) < ).

Grace a I'exercice 9.11 a) et au choix de j;, nous avons, pour tout cube C de K;,,

_ 1
reC = HyeKtelqueHx—yHooﬁzjgé — [r,y]cU = zeU,

et donc C < U. Kj, étant une union finie de cubes Cy, ¢ € I, de 2; (lemme 9.7 c)), nous
obtenons

L:= Kij1 = UperCr = UperCp c UL
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L étant compact (lemme 9.7 c)), nous obtenons

W(E5) = [ alo)ldy < maxl o (o) va(E,) < o 9.24)

J1

En utilisant (9.24), (9.23), le fait que v est une mesure, et le théoréme de la suite dé-
croissante, nous obtenons

tim | o)l dy = lim v (15) = v(K) = | Jo(w)ldy (9.25)
J K; J K

De (9.20) et (9.24), nous avons (K, ) < co. Comme ci-dessus, (9.23), le fait que . est
une mesure, et le théoreme de la suite décroissante, impliquent

lim v (®(K)) = lim p(K;) = p(K) = vn(®(K)). (9.26)

En combinant (9.20), (9.25) et (9.26), nous obtenons, en faisant j — oo,

Un (®(K)). (9.27)

J dy >
| 1oy = -

En faisant ¢ — 0 dans (9.27), nous obtenons (9.16).

Etape 3. Equivalence entre (9.16) et (9.17). Soit L < V. Si L est un compact, alors K :=
®~1(L) est un compact (pourquoi?), et (9.17) revient a (9.16) appliquée a K. Symétri-
quement, si K < est compact, alors L := ®(K) l'est également, et (9.16) revient a (9.17)
appliquée a L. CQFD

9.6 Théoréme du changement de variables

Nous pouvons enfin compléter la preuve du théoréme du changement de va-
riables.

9.14 Théoréme (Théoreme du changement de variables). Soit ® : U — V un
C'-difféomorphisme, avec U, V ouverts de R".

Soit f : V —>R.Soitg: U —» R, g:= fo®|Js|
Nous avons :

a) f estborélienne si et seulement si g I’est.
b) f est Lebesgue mesurable si et seulement si g 1" est.
c) [ aune intégrale (par rapport a la mesure de Lebesgue) si et seulement si
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g en a une, et dans ce cas

fv fdh, = LgdAn = L fo®|Jg|d\,. (9.28)

9.15 Remarque. Il estimportant de comprendre le sens de 'égalité (9.28). Elle
affirme :

a) Que les fonctions f : V — Ret f o ®|Js| : U — R sont de méme nature’.

b) Que leurs intégrales de Lebesgue sont de méme naturet et, en cas d’exis-
tence, égales.

C’est une égalité au sens du théoreme du changement de variables.

Démonstrations

Démonstration du théoréme 9.14. Commengons par une observation générale concernant les
équivalences a montrer. En notant I'identité

f=go® | Jpl, (9.29)

(justifier) il s’ensuit qu’il suffit & chaque fois d’établir une implication (en cas d’équiva-
lence) ou une inégalité (en cas d’égalité); I'implication inverse (ou l'inégalité opposée)
s’obtient en échangeant U avec V et ® avec &1

Pour faciliter la compréhension, la preuve du théoreme est découpée en plusieurs
étapes simples.

Etape 1. B < V est borélien si et seulement si ®~*(B) < U est borélien. Ceci découle de
I'exercice 2.20.

Etape 2. Preuve de a). Supposons par exemple f : V — R; preuve similaire si f peut
prendre les valeurs +c0. Soit B € Bg. Alors (f o ®)~}(B) = @ }(f~1(B)) € By, grace a
I'étape 1 (justifier). Il s’ensuit que f o ® est borélienne, et donc g I'est également (justifier).

Etape 3. Nous avons

vn(B) < f

|Jo(y)|dy, ¥V B € By. (9.30)
®-1(B)

Notons que le membre de droite de (9.30) est bien défini (étape 1).

Soit B € Ay . Soit (K),; une suite de compacts tels que

Kj c B, V], et Vn(Kj) - Vn<B) (931)

t. De méme nature : borélienne ou pas, Lebesgue mesurable ou pas, ayant une intégrale de
Lebesgue ou pas, Lebesgue intégrable ou pas.
1. De méme nature : existe ou n’existe pas.
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L’existence d'une telle suite suit du corollaire 4.27 appliqué a la mesure v, qui est de
Radon (détailler).

L’'inégalité clé (9.17) et la monotonie de l'intégrale donnent

W) < [l | el 9.32)

En faisant j; — oo dans (9.32) et en utilisant (9.31), nous obtenons (9.30).

Etape 4. Nous avons

ff w<Jf U¢M@=mew

V f:V — [0, 0] borélienne positive.

(9.33)

Si f := xp, alors fo® = xg-1(p), et (9.33) devient (9.30) (vérifier).

Par linéarité de l'intégrale, (9.33) reste vraie pour une fonction étagée (justifier, en
partant du cas f = xp et d'une représentation admissible).

Si f est borélienne positive, soit (f;j); une suite de fonctions étagées positives telles
que 0 < f; / f (voir le corollaire 3.7). En appliquant (9.33) et en faisant j — 00, nous
obtenons (9.33) pour f via le théoréme de convergence monotone (vérifier).

Etape 5. Nous avons

J f(x)dx = J g(y)dy, ¥V f : V — [0, 0] borélienne positive. (9.34)
1% U

En appliquant (9.33) a @~ ! eta f o ® | Js|, nous obtenons, en utilisant (9.29),

fmmwsfﬂ@m 9.35)
1% U

Nous concluons grace a (9.33) et (9.35).

Etape 6. Preuve de (9.28) si f est borélienne. Ceci se fait en appliquant (9.34) a fi et en
retranchant les deux égalités obtenues.

Etape 7. B € By est v,,- négligeable si et seulement si ®~*(B) < U est v,-négligeable. 1l suffit
de montrer que, si B € By est négligeable, alors 1 (B) est négligeable.

Pour un tel B, (9.34) appliquée a f := xp donne

0=m(B) = | x5y = | xarm@ o= [ ewld 936

1l s’ensuit que |Jo(y)| = 0 vy-p. p. sur @~1(B) (proposition 6.50 a)). Comme, par
ailleurs |.J5(y)| > 0 en tout point, nous obtenons que v, (®~1(B)) = 0.
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Etape 8. Preuve de b). Supposons f : V — R Lebesgue mesurable. Soit f : V — R bo-
rélienne et soit B € %y un borélien négligeable tel que f = f sur V\B. Alors § :=
fo®|Js| = g en dehors de 'ensemble ® (). Nous concluons grace a a) et a I'étape 7
(justifier I'existence de J? et B, et la conclusion finale).

Etape 9. Preuve de (9.28) si f est Lebesgue mesurable. Avec les notations de 1'étape précé-

dente, nous avons, en utilisant (9.28) pour fet le corollaire 6.46, les égalités au sens du
théoreme du changement de variables

fv f(a)dx = JV fl@)do = L g(y) dy = f 9(y) dy. CQED

U

9.7 Ensembles Lebesgue négligeables

Cette section prépare a la preuve du théoréme du presque changement de variables
9.21. Les résultats présentés donnent des exemples utiles d’ensemble Lebesgue
négligeables.

9.16 Proposition. Soient U un ouvert de R" et ¥ € C'(U,R™), avec m > n. Si

E c U est v,-négligeable, alors ¥(E) est v,,-négligeable. o
9.17 Corollaire. Soient U un ouvert de R" et ¥ € C*(U,R™), avecm > n.Si E < U
est un fermé v,-négligeable, alors V(E) est un borélien v,,,-négligeable. o
Exercices

9.18 Exercice. Montrer qu’une courbe dans R? est Lebesgue négligeable. o
Démonstrations

Commencgons par établir un résultat classique sur les recouvrements dya-
diques.

9.19 Proposition. Tout ouvert U de R" est union a. p. d. de cubes d. d. d. o

Démonstration de la proposition 9.19. Reprenons les notations de la section 9.3. Posons
My :={Ce2y; CcU}
et, par récurrence,
M;:={Ce2;; CcU\ UCreMou...uM;_y C'y.
Chaque 2; étant dénombrable, M esta. p. d., d’ot1 U;M; est a. p. d. Par construction,

les cubes qui apparaissent dans U ;M sont d. d. d. L'inclusion ucey. p. C < U étant claire
q Pp 77 gty
par construction, il reste & montrer que Uceu, M; CoU.
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Soit x € U. Alors x appartient a exactement un cube C; € 2;, pour tout j. Si C; € M;
pour un j, alors x € Ucey,m,C. Pour conclure, il suffit de montrer que le contraire meéne
a une absurdité.

Si, pour chaque j, C; ¢ M;, alors en particulier Cy ¢ My, d’ott Co nU* # &, ou encore
il existe zg € Cy N U°. Il s’ensuit que dist(x, U¢) < |z — zolleo < 1.

Montrons, par récurrence sur j, que dist(z, U¢) < 1/27, j € N. (En admettant ce fait,
nous obtenons que dist(x, U¢) = 0. U étant fermé, ceci donne la contradiction z € U*.)

Passage de j — 1 a j : comme z € Cy ¢ M, { = 0,...,5 — 1, nous avons = €
U\Ucemyo...om;_, C. Parailleurs, comme = € Cj, nous avons C; < R™\(Ucenyo...om;_,C)
(justifier, par exemple sur un dessin). Compte tenu du fait que C; ¢ M;, nous obtenons
C; n U # . Comme ci-dessus, nous en déduisons que dist(z, U¢) < 1/27. CQFD

Le résultat suivant est une variante du théoreme 4.35 a) dans le cas particulier
des ensembles négligeables.

9.20 Proposition. Soit £ — R". L'ensemble E est Lebesgue négligeable si et seule-
ment si : pour tout £ > 0, il existe une famille a. p. d. de cubes (C;); telle que
FE c UiCi et Z,L Vn(Oi) < E. &

Démonstration de la proposition 9.20.

« == » Il existe un ouvert U tel que E < U et v,(U) < ¢ (corollaire 4.27). En utilisant
la proposition 9.19, nous écrivons U comme 1'union d’une famille a. p. d. (C;); de cubes
disjoints. Alors £ < u;Cj et X v, (C;) = v, (U) < e.

«<=» Avec e := 1/m, m € N*, soit (C"); la famille de I'énoncé. Posons B := N, u; CI".
Alors B est un borélien contenu dans chaque u;Cj", donc v,-négligeable (justifier). Par
ailleurs, B contient E, donc E est v,-négligeable. CQFD

Démonstration de la proposition 9.16. Soit, pour ¢ € N*,
Up:={zxeR"; |z|on < ¥, dist(z,U°) > 1/},

de sorte que U, / U, U, / U, U, est compact et Uy = Upy 1.

Nous avons ¥(E) = uyU(E n Uy); il suffit donc de montrer que V(E n Uy) est v,-
négligeable, V ¢. Nous pouvons ainsi remplacer F par E n Uy, et donc supposer que £
Us.

Soit gy := dist(Uy, (Ugs1)¢), qui est > 0 (pourquoi?). Soit ¢ < (g¢)". Soit (C;); une
famille a. p. d. de cubes tels que £ < u;C; et Y}, v,(C;) < e. (L'existence des cubes
découle de la proposition 9.20.) En particulier, nous avons v, (C;) < ¢ pour tout i, d’ott
chaque cube est de taille < '/ < ¢,.

Quitte a enlever de la suite les cubes « inutiles » (qui n’intersectent pas E), nous pou-
vons supposer £ n C; # J, pour tout i. Considérons, a i fixé, un pointy € £ n C; < Uj.
Siz e Cy, nous avons |z — y|o < ¢, d'ou dist(x, Uy) < . Il s’ensuit que u;C; < Upy ;.
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Soit, pour chaque i, 2" le centre de C; (voir la définition 9.6). Pour x € Cj, le segment
[z, %] est contenu dans C;, donc dans Uy, ;. Le théoréme des accroissement finis donne
() |9(x) — B(2') oo < Clla — s, 2 € Gy, 01t C := max{|DB(y) | ; y € Upy1} < 0.

Si 4; est la taille de C;, alors (*) équivaut a ®(C;) = B(®(x?), C;/2). Nous trouvons
que

®(F) c u;B(®(z"),C5;/2),
d’ou

vn(B(E)) < Y C™67 < C™e ™ ) 1y (Ch) < Ce . (9.37)
Nous complétons la preuve en faisant ¢ — 0 dans (9.37). CQFD

Démonstration du covollaire 9.17. Au vu de la proposition précédente, il suffit de montrer que
U(E) est un borélien. Or, E étant fermé, il existe une suite (K;); de compacts de R" tels
que E = U;K;. Comme V(K;) est compact, donc borélien de R™, I'ensemble V(E) =
u;V(K;) est un borélien. CQFD

9.8 Théoréeme du « presque changement de variables »

9.21 Théoréeme (Théoréme du presque changement de variables). Soient Uj,
U, E, ® avec les propriétés suivantes :
i) U est un ouvert de R" et ® € C'' (U, R™).
ii) U < U; est un ouvert. Si nous posons V := ®(U), alors ® : U — V est un
C*-difféomorphisme.
iii) £ < U;\U est un fermé v,,-négligeable.
Soit F' := ®(E).
Sif:VUF ->R,s0itg: ULuE —R,g:=fod|Js]
Nous avons :

a) g estborélienne si f l'est.t
b) f est Lebesgue mesurable si et seulement si g 1" est.

c) f aune intégrale (par rapport a la mesure de Lebesgue) si et seulement si
g en a une, et dans ce cas

f fdAnzf gd)\nzf fo<I>|J¢|d)\n=ffocI>|Jq>|d)\n. (9.38)
VUF UuFE UuFE U

1. Du corollaire 9.17, V' u F est borélien.
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Démonstrations

Démonstration du théoréme 9.21.

a) Supposons par exemple que f : V — R; le cas ot f peut prendre les valeurs +oo est
similaire. Si B € %y, alors (fo®)~}(B) = &~ 1(f~1(B)) € By (en utilisant le théoréeme
3.5 et I'exercice 2.20). Il s’ensuit que g est borélienne (justifier).

b) Les parties E et F' étant v,-négligeables (£ par hypothese, et F' grace au corollaire
9.17), nous avons f Lebesgue mesurable«<= fxp: 'este= fy 'este= gy l'est (ici,
nous utilisons le théoréeme du changement de variables)<= g est Lebesgue mesu-
rable.

¢) suit du théoréme du changement de variables 9.14, en notant que les intégrales sur &/
et F\V sont nulles. CQFD

9.9 Changements usuels

Comme expliqué dans l'apercu, la motivation du théoreme du presque chan-
gement de variables 9.21 vient des (presque) changements de variables usuels,
que nous rappellerons dans cette section.

9.9.1 Coordonnées polaires

Tout point de R? s’écrit sous la forme

(z,y) = (rcosf,rsinf), avecr := (2% +y*)/?> = 0 et 0 € [0, 2n[.

Si (z,y) # (0,0), alors cette écriture est unique et, de plus,

=0 x>0ety=0.

Posons

®:R? - R? &(r,0) := (rcosf,rsinf).

Nous avons ® € C* et det Jo(r, 0) = 7.

Il s’ensuit de ce qui précede que ® est une bijection de U :=]0, oo[ x 0, 27| vers
V = R*\([0, o0[x{0}).

Par ailleurs, nous avons det J3 # 0 sur U, d’ott ® : U — V est un difféomor-
phisme.

Avec FE := 0U et F' := [0,0[x{0}, nous avons ®(F) = F et F est un fermé
Lebesgue négligeable (justifier).
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Nous pouvons donc appliquer le théoreme 9.21 (avec U; := R?):si f: R? > R
est Lebesgue mesurable, alors

J fdr = f f(rcosf,rsinf) rdiy(r,0)
R? [0,00[x[0,27]

au sens du théoréeme du changement de variables.

9.9.2 Coordonnées sphériques
Soit x = (w1, 79,23) € R Soit p := (22 + 22)/2. 1l existe § € [0, 27] tel que
(x1,m9) = (pcosh, psinb).

Par ailleurs, (p, x3) s’écrit sous la forme (p,xz3) = (rcos g, rsinp), avec r > 0
et € [—7/2,7/2[ (la condition sur ¢ vient du fait que p > 0). Il s’ensuit que tout
point 2 € R? s’écrit sous la forme

x1 = rcosycosh,
xo =Tcospsing, avecr >0, p € [—7n/2,7/2[, 0 € [0, 27], (9.39)

T3 = rsin .

Si, de plus, = ¢ ({(0,0)} x R) u (]0,0[x{0} x R), alors nous pouvons prendre
r>0,p €| —mn/2,71/2] et O €]0,27] et, pour un tel choix des coordonnées r, ¢, §,
I'écriture (9.39) est unique.

Soit

d:R* - R ®(r,¢0,0) := (rcospcosh,rcospsinf, rsing).

Avec

Uy :=R3 U :=]0,00[x] — 7/2,7/2[x]0, 27|
et

V= RA\(({(0,0)} x R) U (]0, 0[x{0} x R)),

® est une bijection de classe C'! entre U et V.

Par ailleurs, nous avons det J3(r, 0, 0) = —r?cosp, d’ott det J3 # 0 sur U et
donc @ : U — V est un difféomorphisme.

Avec E := 0U et F' := ({(0,0)} x R) u (]0,0[x{0} x R), nous avons E fermé,
A3(E) = 0et ®(F) = F (vérifier).
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Le théoreme du presque changements de variables 9.21 donne : si f : R* - R
est Lebesgue mesurable, alors

fdAs

R3

= J f(rcos pcosf,rcospsinf, rsin ) r? cos  dAs(r, @, 0)
[0,00[ x [—7/2,7/2] % [0,27]

au sens du théoreme du changement de variables.

9.9.3 Coordonnées cylindriques

Si (z1,12) € R?\(]0, o[ x{0}), alors (w1, z2, z3) = (rcosf, rsinb, x3), avec r > 0,
0 < 0 < 2m, I'écriture étant unique.

Le théoréme du presque changement de variables, appliqué avec

O(r,0,x3) := (rcosb,rsinb, x3), (qui satisfait det Jo(r, 8, x3) = r),
Uy :=R3 U :=]0,0[x]0,2r[xR, V := R*\([0, 0[x {0} x R),
E:=0U, F :=[0,0[x{0} x R,

donne:si f : R? — R est Lebesgue mesurable, alors
J fdrs = J f(rcosO,rsin, x3)rdis(r,0, zs)
R3 [0,00[x[0,27] xR

au sens du théoreme du changement de variables.

9.9.4 Coordonnées sphériques généralisées

Soit ¢,, : R — R",

D, (r,01,05,...,0, 1) := (rcosbycosby...cos, 1,rcosbcosby...sinb, 1,
rcosfycosby...cos0, 3sinb, o, ..., rsinb).
Tout point de R" s’écrit sous la forme z = ®,(r,0y,0s,...,0,-1). La preuve

de cette assertion se fait par récurrence sur n, le cas n = 2 correspondant aux
coordonnées polaires. Passage de n — 1 a n : soit p := /2% + z3. Nous appliquons
I'hypothese de récurrence a (p, zs, . . ., ), qui s’écrit donc sous la forme

(p, T3, ... ,.Z'n) = (I)n71<7'7 91, e ,HH,Q).
Il s’ensuit que p = rcos b, ...cosf,_o, d’ottil existe 6,,_; tel que

zr1 =1cosl...cosb,_5cosb,_1etxy =rcosb;...cos0,_ssinb,_;.
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Nous concluons a I'égalité x = ®,,(r, 61,6, ...,60,_1).

Une preuve analogue par récurrence montre (nous omettons les détails) que
I'on peut prendre r > 0, 6,,...,0,_5 € [-7/2,7/2] et 6,,_; € [0, 27].

Le jacobien de ®,, est

det Jp, = (—1)"+D/2Hn=1 005029, cos" 30, ... cos O,,_s. (9.40)

Preuve de (9.40) par récurrence sur n, les cas n = 2,3 étant déja vérifiés. Si
ai,...,a,—1 désignent les cooordonnées de ®,,_,, alors

®,, = (a1 cosb,_1,a18n0,_1,a9,...,6,_1).

Il s’ensuit que

cosO,_1J,, —aisin, 4
sinf,_1J,, ajcosf,_q

Jo, = Jas 0
e 0
Jan, 1 0

En développant le déterminant de Jp, selon la derniere colonne, nous obte-

nons Jg, = (—1)"a1Js, ,, relation de récurrence qui permet d’établir facilement
(9.40).

Avec
Up:=R" U :=]0,00[x] — 7/2,7/2[*%x]0,27[, E := U,
F = U2 (R x {0} x RI71) U ([0,00[x {0} x R""?), V := R™\F,

n—17/

nous déduisons (comme pour les coordonnées sphériques) que ® : U — V est un
C'-difféomorphisme, que E est un fermé \,-négligeable et que ¢(F) = F.

Le théoréme du presque changement de variables 9.21 donne :si f : R* — R
est Lebesgue mesurable, alors

fd\,

Rn

= J fod,r" tcos" 20, cos" 30, ...cos0,_od\,
[0,00[x [—7/2,7/2]"—2x[0,27]

au sens du théoréeme du changement de variables.

9.10 Intégrales de référence

Comme pour les intégrales généralisées, quand nous étudions la nature d"une
intégrale de Lebesgue il est utile de disposer d"une liste d’intégrales de nature
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connue. Dans la suite, nous munissons R™ de la norme euclidienne, notée | |. Bx
désigne la boule ouverte centrée en 0 et de rayon R, B(0, R).

9.22 Proposition. Pour a,b € R, nous avons :

1
a) © — —— est intégrable sur B;\{0} si et seulement si a < n.

]

b) z — Tz est intégrable sur B /,\{0} si et seulement sia < nou[a =n
x|% In|x
etb > 1].
1
C) T +— W est intégrable sur R™\ B, si et seulement si a > n.
€T a
d) z— m est intégrable sur R™\ B, si et seulement sia > n ou [a = n et
x|% In|x
b > 1]. o
Démonstrations

Démonstration. Nous faisons la preuve de b) ; preuves similaires dans les autres cas.

En passant en coordonnées sphériques généralisées et en appliquant le théoréme de Tonelli
8.24, nous avons, avec g(f1,. .., 0,_1) := cos" 20 ...cos 0, o (justifier) :

fB ol v, - fR X8y o\ (03 () 2] In fo ~bd,
172 n

Xj0,1/2((r) 1= Inr| g duy,

a J\[0,00[X [—m/2,m/2]"—2x[0,27]
= J = In g | "bg du,
10,1/2[x[—m/2,7/2]7—2 x [0,27]

1/2
= C’J 0t n e b duy,
0

ou C est le produit d’'intégrales de Riemann

/2
C:= cos" 16, db .. f
—7/2 —7/2

/2 2m

COS Gn,g d9n72 J d@nfl.
0
Nous avons 0 < C' < o0, ce qui montre que l'intégrale de départ est finie si et seulement

1/2
si lintégrale (de Lebesgue ou généralisée) f 1/(r¢ "1 Inr|®) dv; est finie, ce qui équivaut &
a<noula=nethb>1]. : CQFD
9.11 Pour aller plus loin

Voici un résultat utile, plus fort que le théoreme du changement de variables
9.14.
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9.23 Théoreme. Soit @ : U — V telle que:

i) U,V sont des ouverts de R".
ii) ® est différentiable et bijective.

Pour f : V — R, nous avons

ff dw—ff ) 1o (o)) dy 9.41)

au sens du théoreme du changement de variables.

Pour la preuve, voir Rudin [19, Theorem 7.26].

Une autre extension utile du théoreme 9.14 est la formule de I'indicatrice de Ba-
nach (voir Evans et Gariepy [7, Section 3.3.2, Theorem 1 avec m = n]). Voici un
cas particulier, simple a énoncer et qui sera abordé comme exercice de synthese,
de cette formule.

9.24 Théoréme. Soit ® € C'(U,V), avec U, V ouverts de R™. Si f : V — R est
Lebesgue mesurable, alors

| @ mmidy = | s o @) e 9.42)
au sens du théoreme du changement de variables. o
Ici, # est la mesure de comptage, donc

Iy card A, si A est fini
C | o, sinon '
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Chapitre 10

Espaces X

10.0 Apercu

Nous avons déja vu I'importance des fonctions intégrables (autrement dit :
des fonctions mesurables telles que J| fldp < o0), par exemple comme majo-
rantes dans le théoréeme de convergence dominée. Dans le langage probabiliste,

une fonction intégrable est une fonction f qui a une espérance E(f) := | fdP fi-
nie. Une autre quantité importante est la variance V(f) := J( f—E(f))*dP, qui
est finie a condition que J f*dP soit finie.

D’autres conditions similaires jouent un role important : par exemple, la condi-

tion J |f]?dP < oo intervient dans 1’étude de la vitesse de convergence dans le

théoreme central limite; la condition f |f|P dP < w0, avec 1 < p < 2, pour la validité

du théoreme central limite, etc.

Nous allons présenter ici un « chapeau » commun a toutes ces propriétés, qui
mene aux espaces de Lebesgue £F,avec 1 < p < ow0:

o 1/p
LP = {f:X—JR; f mesurable et | f|.» := (f\f\p> <oo}.

La définition de l'espace .2’ fait intervenir une nouvelle notion, celle de sup
essentiel, qui est un sup adapté a la théorie de l'intégration, donc ne tenant pas
compte des ensembles négligeables.

Les espaces . sont des espaces vectoriels, et f — || f| .» Vérifie 'inégalité tri-
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angulaire, mais n’est pas une norme. Nous allons pallier ce défaut en définissant
des cousins des espaces .£7, les espaces L”; la définition est conceptuellement
compliquée, mais concretement facile a maitriser.

Ces espaces sont des espaces normés par | |.» (inégalité de Minkowski, théo-
réme 10.26) et complets (théoreme de Fatou 10.28).

L’autre notion importante de ce chapitre est celle d’exposant conjugué : si 1 <
p < 0, le conjugué de p est le nombre 1 < g < oo défini par

L'inégalité de Holder (théoreme 10.18) affirme que, si f € £P et g € £9, avecp
et ¢ conjugués, alors fg est intégrable et

fio

L'inégalité de Cauchy-Schwarz s’obtient en prenant p = ¢ = 2 dans l'inégalité de
Holder.

< J ol < 11w lglr

Dans la section 10.4, nous énongons le théoreme de représentation de Riesz 10.31,
qui, de maniere informelle, montre que I'inégalité de Holder est la seule inégalité
possible dans les espaces L” avec 1 < p < .

Dans tout le chapitre, (X, .7, ) est un espace mesuré fixé. f,g, etc. : X — R
sont des fonctions mesurables. Méme sans mention explicite, la mesurabilité des
fonctions concernées est assumée dans chaque énoncé. Le p. p. est relatif a la
mesure /L.

Compétences minimales attendues.

a) Comprendre la différence entre .£7 et L”.

b) Comprendre la définition de ..

c) Savoir montrer qu'un objet est bien défini pour une classe f € L”.

d) Savoir utiliser les inégalités de Holder et Minkowski.

e) Savoir utiliser le théoréeme de Fatou et son corollaire. o

10.1 _Z? versus P

Dans cette section, nous définissons les espaces de Lebesgue -£F et LP et donnons
quelques éléments pour comprendre les regles de calcul dans L”.

184



Petru Mironescu Mesure, intégration, éléments d’analyse fonctionnelle

10.1 Définition (Espaces de Lebesgue .Z7).

a) Sil<p<ow,

”ﬂm:<JMOW=(LUVWye

b) Sip = oo,
Iflze := esssup | f| := min {M e R; |f(z)] < M p.p.}.

Q) LP=L°(X,p):={f: X >R, |fllr <0}

10.2 Notation. Une notation alternative, tres répandue, pour les normes || |z» est | |,.

Cette notation est cohérente avec les notations des normes usuelles dans R" : si x =

(x1,...,2,) € R", et si nous identifions x a une fonction f : {1,...,n} — R, alors
||, = ||fllLe, ot la seconde norme est calculée par rapport a la mesure de comptage
sur {1,...,n}.

Attention toutefois au danger suivant : si f : X — R, | f|+ peut désigner, selon le
contexte, soit sup | f|, soit esssup | f|. o

10.3 Définition (Espaces de Lebesgue L?).

a) LP = L*(X, p) := L7/ ~.Ici, ~ est I'équivalence f ~ g si et seulement si
f=gp-p

b) Si f € LP, alors nous posons | f|zr := |g|r», ol g est une fonction arbitraire
de la classe d’équivalence définissant f.

10.4 Remarque.

a) La définition |f|z» := |g|rr est correcte, au sens ol |¢|r» ne dépend pas du choix
de g dans la classe de f, mais ceci demande une preuve; voir 'exercice 4.22 b). En
particulier, ceci implique que, si g € £? et h ~ g, alors h € 7.

b) Voici une conséquence de l'item a). Nous pouvons définir de la méme maniere | f|z»,
1 < p < o, si f est une classe d’équivalence de {g : X — R; g mesurable} pour ~.
Nous avons alors la définition équivalente de L” :

LP := {f; f estune classe d’équivalence telle que | f|r» < o0}. o

10.5 Notation. Par abus de notation, et bien qu'un élément de L” soit une classe d’équi-
valence et non pas une fonction, nous écrivons

1/p
pr=(fmmm) sil<p<o

Le sens de cette égalité est que pour tout représentant g de f, 1’égalité précédente est
vraie si nous remplacons a droite f par g.

Abus de notation analogue dans L®. o
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Nous continuons par deux remarques essentielles pour comprendre, d"une
part, le sens des énoncés concernant les espaces L?, d’autre part, la facon de défi-
nir les opérations dans les espaces L”.

10.6 Remarque. Lorsqu’il s’agit d'une propriété des espaces L”, la premiére
question a se poser est si sa preuve (qui fait intervenir des fonctions, et non
pas des classes) est indépendante du choix de la fonction dans la classe d’équi-
valence.

Illustration pour I'inégalité de Cauchy-Schwarz (théoreme 10.18 avec p =
q = 2). Pour prouver cette inégalité, nous allons montrer que

1/2 1/2 B
J|f191’ < (J|f1‘2) (f ’91|2> , Vibg: X - R (10.1)

En prenant, dans (10.1), f; dans la classe de f et g; dans la classe de g,
nous obtenons

[ 171911 < 17152l

Pour conclure, il suffit de montrer que f; g; est dans la classe de f g; or,
ceci découle de I'exercice 10.11 b).

10.7 Remarque.

a) Sil <p < wet fe. P alors la proposition 6.48 (appliquée a | f|?) et la remarque 6.47
montrent qu'il existe, dans la classe d’équivalence de f, une fonction g finie partout.

b) Si f € X%, s0it A := {x € X;|f(x)] > esssup f}. Alors A € .7 est négligeable,
d’ott ¢ = f x4c est dans la classe de f. Notons que g est, par construction, bornée, en
particulier finie partout.

¢) Ainsi, lorsque nous travaillons avec une classe f de L?, nous pouvons toujours consi-
dérer un représentant fini partout (et, si p = o0, borné).

d) En particulier, si f,g € L? alors nous pouvons définir la classe f + g comme celle
de fi + g1, avec f; (respectivement ¢;) dans la classe de f (respectivement g) finie
partout. Dans ’esprit de la remarque 10.6, nous laissons au lecteur le soin de vérifier
que la classe f + g obtenue ne dépend pas du choix de f; et g;. o

La remarque suivante montre que 1'espace L?(X, i) n’est pas, dans un sens a
préciser, plus riche que l'espace LP (X, u1).

10.8 Remarque. Nous pouvons identifier de maniere naturelle les classes d’équivalence
des fonctions .7-mesurables et .7-mesurables. En effet, soit f; : X — R une fonction
7 -mesurable. Alors (proposition 4.19 a)) il existe une fonction .7 -mesurable g; : X — R
telle que fi = g1 pu-p. p. (ou, ce qui est équivalent, telle que fi = g1 f-p. p.).

Notons : f la classe de f; par rapport a (X, 7,1), g la classe de g; par rapport a
(X,.7,7), G la classe de g; par rapport a (X, .7, p1). Par choix de g;, nous avons f = g.
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Par ailleurs, nous avons G < g (vérifier). L'application f — G est bien définie et bijective,
de réciproque G — g (vérifier).

Cette identification naturelle s’étend aux espaces LP : si f; € ZP(X,f), alors les
classes respectives satisfont f € LP(X, 1) et G € LP(X, u), ce qui donne une bijection na-
turelle, f — G, entre LP(X, 1z) et LP(X, ;1). Cette bijection préserve la norme : || f| »(x 7) =
|G| r(x ) (Vérifier).

En particulier, nous pouvons identifier LP(R", \;,) a LP(R", vp,). o

Exercices

Cet exercice donne quelques propriétés simples de || |.». L'item d) est particu-
lierement important de point de vue théorique.

10.9 Exercice.

a) |[tflee = |t||fle, Vt € R,V f: X — R (avec la convention 0 - o0 = 0).
b) Si f =gp.p. alors|f— gl = 0et|f|Lr = |g]Lr-

¢) |[flz» = Osietseulementsi f =0 p.p.

d) La définition de | f||z= est correcte, au sens suivant. Soit A := {M € [0,00]; |f(z)] <
M p. p.}. Montrer que A est non vide et a un plus petit élément, m. Cet m est le plus
petit nombre C de [0, ®0] avec la propriété | f(x)| < C p. p., et donc m = || f| L.

e) |f +glee < | flze + lglLe pourp =Tetp = o0.(Ici, f,g: X - R) o

La définition de || ||~ est assez absconse. L'exercice suivant donne un cas ott

[flle = sup|f].

10.10 Exercice. Soit U un ouvert de R", muni de la mesure de Lebesgue sur #y;. Si f €
C(U), montrer que | f| > = sup|f]. o
U

L’exercice suivant montre que la relation ~ « commute » avec les opérations
sur les fonctions.

10.11 Exercice. Soit (X, .7, ) un espace mesuré. Nous considérons des fonctions f, g :
X — R (pas nécessairement mesurables). Montrer que la relation d’équivalence « f ~ g
si et seulement si f = g p. p. » a les propriétés suivantes.

a) Sif~ fietg~gy,alors f+tg~ fi+tg1,Vte R (acondition que les fonctions soient
finies en tout point).

b) Si f ~ fietg~ gi,alors fg~ f101-

) Sif~getsi®:R - R,alors®of~dog.

d) Dans cette question, X := R" et y1 := \,. Soit 71, f () := f(x — h),Vz,he R".Si f ~ g,
alors 7, f ~ 9, ¥V h. o

Dans le méme esprit, nous mentionnons la propriété suivante, utilisée dans la
définition du produit de convolution (dans le chapitre 11).
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10.12 Exercice. Nous munissons R" de la mesure de Lebesgue. Soient f, g, fi,g1 : R —

R, avec f ~ fi et g ~ g1. Soit x € R". Montrer que h ~ hy, ol
h(y) = f(x—y) 9(y), hi(y) = filz —y) g1(y), Yy e R™. o

L’exercice suivant introduit des espaces tres importants, les espaces (7.

10.13 Exercice (Espaces /7).
a) Si p est la mesure de comptage, alors I'égalité p. p. équivaut a 1'égalité. Ainsi, nous
pouvons identifier naturellement 7 et LP.

Si X = N muni de la mesure de comptage sur &(N), alors nous définissons
P =PN):=LP=IFP Vi<p<ool

b) Si (ay)n est une suite indexée sur n € N, montrer que

1 .
H(a ) Hep = (Zn |an|p) /p’ sil <p<
n)n = .
supy, |an|, sip =0

c) Montrer que si 1 < p; < py < ®, alors 1t pr < P2 < (. De plus, ces inclusions
sont « continues » :si 1l < p < r < 00, alors |(an)nller < [(an)nller-
d) Soit (ay), € 7, avec p < co. Montrer que pour tout r > pnous avons limg_,, ||(an)n e =

I(an)nller-
e) Sil <r < o et (ay), est une suite arbitraire, alors lims , [ (@n)nles = [[(@n)nler- o

Cet exercice est une suite « concrete » de la remarque « abstraite » 10.8.

10.14 Exercice.

a) Nous travaillons dans (R",.Z,, \,). Montrer que toute classe d’équivalence contient
un représentant borélien.

b) Méme propriété si a la place de R" nous considérons une partie borélienne de R”.

¢) Généralisation? o

Un autre exercice fondamental. Nous le commenterons a sa fin.

10.15 Exercice. Nous supposons . finie.
a) Montrer quesi 1 < p; < py < o, alors L® < LP? « [Pt < L1,
b) Soit f € LP, avec p > 1. Montrer que pour tout 1 < r < p nous avons lim,_,, || f|rs =

Il o

10.16 Remarque (Inclusions entre les espaces L?). En général, il n’y a pas de
relation d’inclusion entre L? et L9, avec p # ¢ : nous n’avons pas L? c L4.

Il existe deux exceptions notables.
a) Sil < p; < py < oo, alors (1 < (Pr < (P2 < (*,

Les espaces (? croissent avec p.

t. Nous définissons de méme ¢*(A), avec A a. p. d.
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b) Sipestfinieetl < p; < py < o0, alors L' > LP' o [P2 o [°.

Si pu est finie, les espaces LP décroissent avec p.

Pour l'item a), voir I'exercice 10.13 c); pour l'item b), I'exercice 10.15 a).

10.2 Inégalité de Holder

Cette section est dédiée a la preuve de l'inégalité de Holder et a deux de ses
« réciproques » qui montrent que cette inégalité ne peut étre améliorée. La pre-
mieére « réciproque », la proposition 10.19, servira dans la preuve de 'inégalité
de Minkowski dans la section 10.3; elle intervient dans de nombreuses preuves
« par dualité » en analyse fonctionnelle. La deuxieme « réciproque », la proposi-
tion 10.20, intervient également dans des preuves d’analyse plus avancée, comme
celle du théoreme d’interpolation de Riesz-Thorin.

Commencons par une définition essentielle dans ce contexte.

10.17 Définition (Exposants conjugués). Les nombres p, g € [1, c0] sont conju-

Co .11
gués (ou exposants conjugués) si et seulement si — + — = 1.1#
p q

10.18 Théoreme (Inégalité de Holder). Si p, ¢ sont conjugués, alors

[f gl < | flee lglze, ¥ £, g (inégalité de Holder) . (10.2)

En particulier, nous avons

[faller < | flzz lglzz, ¥ f, g (inégalité de Cauchy-Schwarz) . (10.3)

Les inégalités s’entendent pour des fonctions ou pour des classes d’équi-
valence.

10.19 Proposition (Formule de dualité LP-L9 (I)). Soient p, ¢ exposants conjugués.
a) Sil < p < o, alors nous avons

1flzr = sup{ [soi9e20 19l = 1}, Vfer (10.4)

De plus, nous pouvons remplacer dans (10.4) le sup par max et considérer
uniquement des fonctions g telles que f g > 0.

1. Notons que nous ne pouvons pas avoir en méme temps p = o et ¢ = . Si, par exemple,
p < w, alors ¢ = p/(p—1). Sinous avons en méme temps g < o, alors, par symétrie, p = ¢/(¢—1).
1. ¢ est désigné comme le conjugué de p (et réciproquement).
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b) Si p est o-finie, alors 'égalité (10.4) reste vraie pour p = . o
10.20 Proposition (Formule de dualité LP-L9 (II)). Soient p, g exposants conju-
gués.

Soit f : X — R telle que f g soit intégrable pour tout g € ..
a) Sip=1,alors f e £'.
b) Si i est o-finieet 1 < p < oo, alors f € Z7.

En particulier, sous ces hypotheses nous avons (10.4). o

Exercices

L'inégalité suivante, classique, sert dans la preuve de 1'inégalité de Holder.
Elle généralise l'inégalité élémentaire a* + b* > 2 ab.

10.21 Exercice (Inégalité de Young). Soient 1 < p,q < o0 exposants conjugués. Montrer
que

alP b
ab< —+ —, Va,be [0,0][. (10.5)
p q
. a? b
Indication. Etudier, pour b fixé, la fonction a — — + — — ab. o
p q

L’'inégalité de Holder a des variantes a plus de deux facteurs.

10.22 Exercice. Soient 1 < po, ..., pr < o tels que Z§=1 1/p; = 1. Montrer que
|fife-o frllor < | fillze | follve o I frloews ¥ fos oo fo s X — R o

Nous savons déja que, si p est finie, alors L™ < LP sip < r. L'exercice qui suit
donne permet d’estimer ™ || f|1» en fonction de | f| 1.

10.23 Exercice. Nous supposons p finie. Si 1 < p < r < o0, alors
[£lze < ()P f L, ¥ S
Ceci implique en particulier la conclusion de I’exercice 10.15 a). o

L'inégalité qui suit est un exemple simple d’inégalité d'interpolation.*

10.24 Exercice. Soient 1 < py < p < p1 < 0.
1 0 -0
a) Montrer qu’il existe un unique 0 €]0, 1] tel que — = — + -7
b Po p1
b) Montrer que [ £[ze < |9 [fI72/, ¥ f- o

t. Estimer : donner un ordre de grandeur. En analyse, le sens est plutot : majorer.

t. Du verbe interpoler, utilisé en philologie : « introduire un texte dans une ceuvre a laquelle il
n’appartient pas ». En mathématiques, 1'un des sens est : «intercaler des valeurs ou des termes in-
termédiaires dans une série de valeurs ou de termes connus ». En analyse, l'interpolation consiste
a estimer (donc majorer) des valeurs d"une fonction entre deux valeurs connues. Dans notre cas,
nous connaissons | f|rro et || f||Le:, et nous estimons | f| .
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Démonstrations

Démonstration du théoréme 10.18. 11 suffit de travailler avec des fonctions (voir la remarque
10.6).

Sip = 1et ¢ = o, nous devons montrer que

[ 1791 < esssup ol [ 111

qui est vraie (vérifier). Argument similaire sip = cwetq = 1.

Supposons maintenant que 1 < p,q < 0. Nous pouvons aussi supposer que 0 <
|fllze < 0 et0 < |g|za < oo (justifier). Dans ce cas, nous avons |f| < « p. p. et |g] < ®©
p- p- (justifier) et donc nous pouvons travailler avec des fonctions finies en tout point
(voir également la remarque 6.47). Pour de telles fonctions et pour A €]0, oo[, I'inégalité
de Young donne

_ @) lg@)

_ -1
[f(z) g(x)| = [A]f ()] [A |g(2)]] ) Aig o TEX (10.6)
En intégrant (10.6), nous obtenons
AP 1 q
[ 1791 = S0 + ol (107)

En choisissant, dans (10.7), la valeur de A qui minimise le membre de droite de (10.7), a
savoir
R
it

nous obtenons (10.2) (vérifier). CQFD

Démonstration de la proposition 10.19. L'inégalité de Holder implique « > » dans (10.4). Il suffit
donc d’établir « < ».
a) Soit d’abord p = 1. Soit g := sgn f.F Alors |g||p~ < 1 et Jfg = | fllz (vérifier).

Soit maintenant 1 < p < c0.5i | f|» = 0,1a conclusion est claire. Supposons | f||z» > 0.

Soit h(x) := |f(x)|P~! sgn f(x). Alors h est mesurable et |h| 1« = HfHIi;l (vérifier). Soit
g := h/||h| L4, de sorte que |g| L« = 1. Nous avons

Jf9=0ﬂhLﬂfUW=|fm-

1. Faire une étude de fonction pour justifier ce choix de A.

1, sit>0
t. Rappelons la définition de la fonction «signe » : sgn (t) = < 0, si¢=0.
-1, sit<0

191



Espaces L 10.2 Inégalité de Holder

b) Supposons M := | f|r» > 0, sinon la conclusion est claire. Soit (X,,),, une suite crois-
sante telle que X,, /" X et u(X,,) < o0, ¥n.Soit 0 < € < M et soit

A=A, :={zeX; |f(zx)] =M —e}.

Nous avons p(A) > 0 (justifier). Soit h,, := xanx, sgn f, qui satisfait |, |1 = p(A N
Xp) (vérifier). Par théoréme de la suite croissante, pour n suffisamment grand nous
avons j(AnX,) > 0. Pour un tel n, posons g,, := hy,/iu(AnX,), de sorte que |g,| 1 =
1. Nous obtenons

sup{ffg;ge.zl, gl < 1} = [ 7o

1
- M—e.
(AN Xy) men 7= ©

Nous concluons en faisant ¢ — 0 dans (10.8). CQFD

(10.8)

La preuve de la proposition 10.20 repose sur le résultat auxiliaire suivant.

10.25 Lemme. Soient 1 < p, ¢ < o0 exposants conjugués.

Soit (ay)), une suite de nombres réels positifs telle que >, (ax)? = oo.

Alors il existe une suite (o), de nombres réels positifs telle que >, (a)? < o0
et Y, a oy = 0. o

De maniere équivalente : si (ay), ¢ ¢7, alors la série ), a; a ne peut pas étre
convergente pour toute suite (o), € 9.

Ainsi, le lemme 10.25 prouve (par contraposition) la proposition 10.20 dans le
cas de la mesure de comptage sur N.

Démonstration du lemme 10.25. Soient 0 = k1 < kg < --- tels que

1
kjiy1—1 /p

d(ap)P | =8i=1

k=k;
(justifier I’existence des k;). Le choix

(ag)P
- Vi>1, Wk <k<ki—1
(077 j(sj)p_lv J=1, ] = < j+1 )

donne une suite ()i avec les propriétés désirées. En effet, nous avons

kji1—1

-yt TN s/ R o
;akak ;;(SJ)Pl k:ij (Cllg) ; j 2;] o0,
k T (S5 k=Fk; 7
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Démonstration de la proposition 10.20.

a) Soit g :=sgn f € £*. Nous avonsj\f| = ffg < o, etdonc f e £

b) Supposons, par I'absurde, que f ¢ £P?. Pour un tel f, nous allons construire une
fonction g € £ telle que fg > 0 et J fg = o0 — ce qui constitue la contradiction
recherchée.
Etape 1. Construction de g si 1 < p < oo et u est finie. Soit B := {x € X ; |f(z)| = o0}. Si

pu(B) > 0, alors g := sgn f xp convient. Ainsi, nous pouvons supposer que p(B) = 0,
ce qui revient a | f| < oo p. p. Nous pouvons donc supposer f finie partout (justifier).

Soit k € Z. Posons Ay, := {x € X ; 2F < |f(x)| < 2¥*1}, de sorte que les Ay sont d. d. d.
et f = 0sur X\ uy Ag. Soit f, := f xa,. D'une part, nous avons

1l ) = f 1P < 2650 p(4y) < o0, VR € Z. (109)

Apg

D’autre part, nous avons

2 Wil = X [ 107

k=—00 k=—00 k=—o0

P = L P = . (10.10)

Ag

0 0
De (10.10), nous avons soit Z kaHip(X) = o, soit 2 ka||’L’p(X) = o0. Nous exami-
k=0 k=—00
nons le premier cas; l’autre est similaire. Nous supposons donc

0
2 Ml = oo (10.11)
k=0

De (10.9) et de la preuve de la proposition 10.19 a), pour tout £ > 0 il existe g, €
L1(Ag) telle que |gk|ra(a,) =1, fegr = O et L fregr = [ felzrcay) = 1kl zexo)-

k
Nous allons prendre g de la forme g = >,;° , o, gk X 4,, avec oy, > 0. Nous avons, par
calcul direct,

9|7 = D) (ax)? | lgkl* = ) ()’

f g ;O (e Lk 9k ];10 Qg

[ro= | o= anlfilor
k=0 Ap k=0

Le lemme 10.25 combiné avec (10.11) montre que 1’on peut trouver oy, tels que
0 o8}
Z ok | fellr(x) = o et Z (a)? < 0.
k=0 k=0
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Pour de tels oy, g a toutes les propriétés désirées.

Etape 2. Construction de g si 1 < p < oo et i est o-finie. Soit (Y;,),, < .7 une suite d. d. d.
telle que X = u,,Y;, et u(Y;,) < o0, ¥n. Notons f, la restriction de f a Y,,, de sorte que
frn est mesurable et

ZL |ful? = L |fIP =0 (10.12)

(vérifier). Si J | frno|P = 00 pour un ny, alors, de I'étape précédente, il existe g,, : Y, —

n

R telle que f |nol? < 00, frg gne = 0 et j fro gny = 0. Dans ce cas, la fonction
Ying

nQ
g 1= gng XY,, a les propriétés souhaitées.

Nous pouvons donc supposer que f |fn|? < oo pour tout n. De la preuve de la

n

proposition 10.19 a), il existe g,, € £(Y7,) telle que

lgnllze = 1, fogn > Oct fy Fogn = Ul oy,

Nous définissons g := >, o, gn X4, avec a;, > 0 a déterminer de sorte que g € 7 et
f g = . Comme dans I'étape 1, ces propriétés sont vraies si nous choisissons (via

le lemme 10.25), des o, tels que Y, o fulzr(v,) = 2 et 3, (an)? < oo (vérifier).

Etape 3. Construction de g si p = o0 et i est o-finie. Soit (Y},), la suite de 'étape 2. Soit
B :={xe X;|f(z)| = co}. Nous avons u(B) = >, p(B n'Y,) (justifier). Si u(B) > 0,
alors 0 < u(B n'Y,) < oo pour (au moins) un n. Pour un tel n, g := sgn f xBnv,
convient (vérifier). L'étape 3 est donc complétée si u(B) > 0.

Ainsi, nous pouvons supposer que p(B) = 0, d’ou |f| < o p. p. Posons A; = {z €
X;j < |f(z)] <j+1},Vj e N*. Notons que les A; sont d. d. d. Comme [ ¢ £%,
il existe une infinité de j tels que p(A;) > 0 (justifier). Soient 1 < j; < jo < -+ <
Jr < --- tels que u(Aj,) > 0, Vk > 1. Soit fj, la restriction de f a A;,, de sorte que
fx € L®(A;,). De la preuve de la proposition 10.19 b), il existe g, € L1 (A}, ) telle que
lgkllzra;,) =1 fugr = Oet

| feoez 21y = /252 020k

Si nous posons g := >, (1/k%) gk x4,, , alors par calcul direct [g] 1 = X, (1/k%) <
w (d’ottge L) et

192 Y00 inle=> 3 25 = 5 5~ carp

k>1 k>1 k>1
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10.3 Norme et complétude

Dans cette section, nous montrons que L” est un espace normé complet (théo-
reme de Fatou 10.28), et en particulier que || |» est une norme sur LP (inégalité de
Minkowski, théoreme 10.26).

10.26 Théoreme (Inégalité de Minkowski).

a) Sil <p<a,alors ||f + g|ee < ||flle + |9]zr, ¥ £, g
b) (LP, | ||lz») est un espace normé et (£7, | |.») est un espace « semi-normé »."

10.27 Corollaire. L’application L” 5 f — || f||z» € R est continue. o

10.28 Théoreme (Théoreme de Fatou). L” est un espace normé complet, V1 <
p <ot

10.29 Corollaire. Si f,, — f dans .#?, alors il existe une sous-suite (f,, ), et une
fonction g € Z7 telles que

a) fu, — fp-P-
b) [ful <gp-p o

10.30 Proposition. Dans L?,

< fg== ffg, Vigel? (10.13)
est un produit scalaire, et | f| 2 =< f, f >1/28 o
Démonstrations

Démonstration du théoréme 10.26. Nous pouvons travailler avec des fonctions finies en tout
point (justifier).

a) Lescasp = 1 et p = o suivent de 'exercice 10.9 e). Nous pouvons donc supposer
1 <p<awetaussi|f|rr <0, |g|rr < c0.

La fonction ¢ +— ®(t) := |t|P étant convexe, nous avons ®((s + t)/2) < (®(s) +
®(t))/2, Vs, t € R, d’ott |s + t[P < 2P~ (|sP + [tP), V s, ¢ € R (vérifier). Ceci implique

1. Un espace semi-normé est un espace vectoriel muni d’une « semi-norme ». Une semi-norme
x — ||z|| vérifie toutes les propriétés de la norme sauf |z =0 — z = 0.

1. Un espace normé complet est un « espace de Banach ». Donc L? est un espace de Banach.

§. L? est donc un espace normé complet dont la norme provient d’un produit scalaire : c’est
un « espace de Hilbert ».

t. Vérifier la convexité de la fonction ® en étudiant la monotonie de sa dérivée.
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|f +glP < 2P~L(|fP + |g|P). En intégrant cette inégalité avec f, g € £, nous obtenons
que [+ ge ZP.

Comme f + g € £?, nous pouvons appliquer la proposition 10.19 a). Avec ¢ le conju-
gué de p, nous obtenons

I1f + glow = SupU(f f g b he 29 Rl < 1}

< sup{ffh; he %% |h|La < 1} —i—sup{fgh; he 29 |h|La < 1}
= [fllze + lglze-

b) Les propriétés de (semi-)norme de | |» suivent de 1’exercice 10.9. CQFD

Démonstration du covollaire 10.27. Ceci est vrai pour toute norme (car une norme est, d’apres
I'inégalité triangulaire, lipschitzienne de constante 1). CQFD

Démonstration du théoréme 10.28. Nous pouvons travailler avec des fonctions (justifier).

Rappelons le principe suivant de preuve. Pour montrer qu'un espace métrique (en
particulier, normé) est complet, il suffit de montrer que toute suite de Cauchy contient
une sous-suite convergente. Pour construire une telle sous-suite dans le cadre du théo-
reme 10.28, nous reprenons essentiellement la preuve du théoréeme 7.5.

Soit ( f,,)n une suite de Cauchy dans .Z? et soit ( f,,, )i une sous-suite telle que

ank - fnk+1"LP < 2_k_1, Vk > 0.

Supposons d’abord 1 < p < co. Pour tout k& > 1, posons

k—1

gk = ‘fno‘ + Z ‘fnj+1 - fn]|

§=0
La suite (g ) étant croissante, nous pouvons définir g := limy, gy.
L'inégalité triangulaire et 1'inégalité de Minkowski impliquent

|frl < g1 < get|gilor < [ faolr + 1. (10.14)

Le théoreme de convergence monotone et la deuxiéme partie de (10.14) donnent
lgll» < o0. Nous avons en particulier g(z) < o p. p. Si z est tel que g(x) < o0, alors

| fao (@] + D | (Fy i — ) (@)] = g(z) < 0.

7>0

Il s’ensuit que pour un tel z la série fu,(2) + >;50((fn;11 — fn;)(2)) converge vers
un f(x) tel que |f(x)| < g(x) (justifier). Les sommes partielles de la série étant (f,,, (z))%,
nous obtenons f,, () — f(z) et |f,,(z)|P < (g(x))?. Pour les autres z, nous définissons

f() = 0.
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De ce qui précéde, nous avons f € Z?. Le théoreme de convergence dominée (va-

riante p. p.) donne J |fnp — fIP = 0,d’ou f,, — fdans £7.

Enfin, supposons p = . Soit B € .7 négligeable tel que f,, soit bornée sur X\B.
Soit A, € .7 un ensemble négligeable tel que |f,,,, — fn,| < 277! dans X\A. Soit
A = B u U,A, € 7, qui est encore négligeable. Sur X\A4, f,, est bornée et la suite
(fn,. )i est de Cauchy pour la norme uniforme. Elle converge donc uniformément vers
une fonction bornée f. En posant f(z) = 0siz € A, nous avons f € Z* et f,, — f dans
L (vérifier). CQED

Démonstration du corollaire 10.29. ( fy)n étant une suite de Cauchy, si 1 < p < o le corollaire
découle de la preuve du théoreme 10.28.

Sip = ®, a) découle de la preuve du théoreme 10.28, et pour b) nous pouvons prendre
g = sup,, || fal e CQFD

Démonstration de la proposition 10.30. L'inégalité de Cauchy-Schwarz implique que < f,g >
est bien défini. La linéarité dans chaque variable et la symétrie étant évidentes, il suffit
de vérifier que < f, f >= 0 = f = 0. Ceci découle de la derniére égalité de 1’énoncé,
qui est claire. CQFD

10.4 Pour aller plus loin

Soient p, g exposants conjugués. Si g € L4, alors I'inégalité de Holder montre
que "application

T:IP >R, T(f) :szg, Vfelr, (10.15)

est linéaire, continue et de norme < | g|| 4.

Sil < p < o, la proposition 10.19 (appliquée a | | .«) montre que la norme de
T est égale a |¢| .. De méme pour p = 1, si i est o-finie.

Le résultat suivant montre que (10.15) donne toutes les applications linéaires et
continuesT" : LP — R.

10.31 Théoréme (Théoreme de représentation de Riesz). Soit 7" : LP — R une
application linéaire et continue.

a) Sil < p < o, alors il existe g € L telle que

T(f) = ff g,V fell (10.16)

De plus, la norme de T est |g| za.
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b) Sip = 1 et p est o-finie, alors il existe g € L™ telle que

T(f) = ffg, VfelL. (10.17)

De plus, la norme de T est |g| .

Le théoreme ne mentionne pas L : les applications linéaires et continues sur
L* sont connues, mais tres difficiles a décrire.

Pour la preuve du théoréme 10.31, voir par exemple Lieb et Loss [16, Theorem
2.14]. Voir également 1’éclairage sur la similitude entre la preuve de ce résultat et
celle d’un autre théoreme de représentation de Riesz, le théoreme 14.19, apporté
a la fin de la section 14.4 et surtout dans la section 14.5.
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Chapitre 11

Convolution

11.0 Apercu

La convolution est historiquement apparue dans la résolution des équations
différentielles, mais ses utilisations les plus fréquentes sont liées au lissage des
fonctions, c’est-a-dire a I’approximation d une fonction peu réguliére (par exemple
discontinue) par des fonctions plus lisses (par exemple de classe C).

Donnons un exemple simple de telle approximation. Soit f : R — R continue.
Posons

1 T+

Fé(x) := > fly)dy, Ve eR, Ve > 0. (11.1)

Tr—e&

Le théoreme de Lagrange donne 'existence d'un point { = {(z,¢) €|z —e, z+¢]
tel que F*(z) = f(£). Quand ¢ est petit, { est proche de z, et donc, du moins
intuitivement, F° est proche de f.' Par ailleurs, F*© est plus lisse que f : si f
est continue, alors F* est de classe C' (théoreme de Leibniz-Newton), et plus
généralement, si f € C*, alors F* € C*1.

Dans ce chapitre, nous allons expliquer un procédé général d’approximation.
Il est basé sur le produit de convolution, qui associe a deux fonctions f,g : R* — R
la « fonction »

frg(x):= . fw) gz —y)dy = . flx—y)g(y)dy; (11.2)

les guillemets attirent 1’attention sur le fait que les intégrales de (11.2) n’existent
pas nécessairement.

t. Et, en effet, si f est uniformément continue, alors F'°* — f uniformément sur R quand ¢ — 0.
Si f est « seulement » continue, alors F* — f simplement quand ¢ — 0.
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Convolution 11.0 Apergu

La formule (11.1) peut se réécrire comme

Fe(z) = %f(y) X[=cc](z — y) dy, (11.3)
R

qui est une convolution.

Dans un premier temps, nous allons donner des conditions sur f et g (inéga-
lité de Young, théoreme 11.2) qui assurent que le produit de convolution est bien
défini.

Par la suite, nous allons décrire une bonne classe de fonctions g telles que f = g
soit lisse (proposition 11.7).

La partie la plus importante est celle qui donne le mécanisme proprement dit
d’approximation. Si nous revenons a (11.3), nous avons F* = f = g., ou
1 1
g(x) = SX-11, ge(x) := gg(x/g), VreR, Ve >0. (11.4)
Le résultat fondamental de ce chapitre, le théoréeme 11.9, affirme que, si p :
R — R est convenable, " alors, pour 1 < p < w et f € £?(R), nous avons

f#p.e C°(R) et f*p, — fdans ZP(R) quand ¢ — 0. (11.5)

Enoncé convenablement, le méme résultat reste vrai dans les espaces L?.

La section 11.3 contient des conséquences de ce résultat d’approximation, et
des généralisations de celui-ci, sous des hypotheéses plus faibles sur p (théoreme
11.27).

Nous finissons par le théoreme d’approximation de Weierstrass 11.29 : « toute
fonction continue sur un compact de R” est limite uniforme d’une suite de fonc-
tions polyndmiales », théoréme dont la preuve « historique » passe par la convo-
lution.

Compétences minimales attendues.

a) Savoir appliquer I'inégalité de Young.

b) Savoir raisonner « par densité », en utilisant la densité de C'(2) dans .£7((2)
sil < p < oo (théoreme 11.11). o

Dans ce chapitre, nous considérons uniquement des fonctions ou classes d’équi-
valence f, g, etc., définies sur R” ou sur une partie borélienne de R" et qui sont
Lebesgue mesurables. La mesure sous-jacente est \,, sur la tribu .&),. Cette mesure
étant compléte, nous pouvons travailler si nécessaire avec des fonctions définies
p- p- : pour de telles fonctions, les notions de mesurabilité et intégrabilité sont
bien définies (remarque 8.36).

t. p doit étre bien plus lisse que notre g, et d’ailleurs 1’existence d’un tel p n’est pas évidente.
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11.1 Inégalité de Young

11.1 Définition (Produit de convolution). Le produit de convolution de f, g :
R"” — R est

frg(x):= . flx—y)g(y) dy, (11.6)

défini pour les x € R™ tels que la fonction y — f(z — y) g(y) a une intégrale.

D’apres 1'exercice 10.12, la définition du produit de convolution a aussi un
sens pour des classes f et g. Dans la suite, nous travaillerons soit avec des classes,
soit avec des fonctions boréliennes. (Rappelons que dans chaque classe nous pou-
vons choisir un représentant borélien; voir ’exercice 10.14 a).)

11.2 Théoreme (Inégalité de Young). Soient 1 < p,q < cotelsque 1/p + 1/q >
1. Soit 1 < r < oo défini par 1'égalité 1/r = 1/p + 1/q — 1.
Soient f € LP(R™), g € L4(R"™). Alors :
a) Le produit de convolution f * g est défini presque partout et définit une
fonction Lebesgue mesurable.

b) Nous avons f g e L"(R") et
I+ glr < 1F)ze llglze- (11.7)

c) Sil/p+1/q =1 (et donc r = ), nous avons les conclusions plus fortes
suivantes : f = g est défini en tout point, et | f = g(x)| < ||f]z» |lg]|lze, V@ € R™.

Exercices

L’exercice suivant montre que le produit de convolution est commutatif.

11.3 Exercice. Nous avons f = g(x) = ¢ * f(z), au sens olt 'une de ses quantités existe si
et seulement si l’autre existe et dans ce cas elles sont égales. o

Démonstrations
Démonstration du théoréme 11.2. Nous pouvons travailler avec des fonctions boréliennes (jus-
tifier).

c) Par symétrie du produit, nous pouvons supposer p < o (justifier). Avec h(y) := f(z—
y), I'inégalité triangulaire 6.23 a) et I'inégalité de Holder donnent

|f # gl(z) < flh(y)g(y) dy < [h|e lglLe = 1 flze [9lLe, Ve e RY
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(justifier la derniére égalité), ce qui au passage montre que f * g est défini en tout point
(justifier).

a) + b) Supposons maintenant 1/p + 1/¢q > 1 et donc 1 < r < co. Il suffit de traiter le cas
des fonctions positives. En effet, si les conclusions du théoréme sont vraies pour | f| et
lg|, alors f* g(z) est défini pour tout x tel que | f| = |g|(z) soit fini, et pour un tel z nous
avons

frg@)=frrgi(x) = frrg(z) = foxgi(x)+ f*xg_(x)

et

|f # gl(x) < [f] = gl(2),

d’ot1 les parties a) et b) du théoreme (justifier).

Si f, g sont boréliennes positives, alors f * g(z) existe (mais peut étre infini) pour
tout z, car il s’agit de I'intégrale d"une fonction borélienne positive (vérifier que y —
f(x—y) g(y) estborélienne). Il suffit donc de montrer (11.7), car dans ce cas nous avons
f+ge Z"(R") etdonc f = g(x) < oo pour R"\4, avec A — R" borélien négligeable.
De maniere équivalente, (11.7) donne que y — f(x — y) g(y) est intégrable pour tout
x € R™\ A (ce qui donne la partie a) du théoreme).

Notons les relations suivantes: p < r, g < r et

11~+rp/<:—p>+rq/<:—q> :1+<;‘1>+(;‘1> -

En utilisant ces faits et 1'exercice 10.22 (avec k := 3, p1 = 1, p2 := (rp)/(r — p),
ps = (rq)/(r — ¢) et la convention 1/0 = <), nous obtenons, pour tout z € R" et avec

h(y) := flxz —y):

Frgle) = | P g7 IHP () g () dy

< |2/ g 1 DA pomion 19T | ey i—a)

r r 1-—p/r 1—q/r
— B2 g R gl e
1/r
- (  Pa-ngw dy) LIS gl

(vérifier et justifier les deux dernieres lignes, en considérant séparément les cas ot
p=rouq=r).

Ceci implique (via le théoreme de Tonelli)
Il = [ gt de <1157 lali [ ([ - aa) ao
Wt ol [ ([ =) gt dy = 1615 ol
(vérifier), d’ou (11.7). CQFD
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11.2 Régularisation

Dans cette partie, nous travaillons dans R” muni de la norme euclidienne
usuelle, désignée par « | | »." Les intégrales s’entendent par rapport & la mesure
de Lebesgue.

Rappelons le résultat suivant de calcul différentiel.

11.4 Lemme. II existe une fonction ¢ € C*(R", R), non identiquement nulle, telle
que:

i) 0<(<1si|z]<]1.
ii) ((z) =0si|z| > 1} o

La fonction ¢ est alors intégrable d’intégrale strictement positive (justifier). En
divisant ¢ par son intégrale, nous obtenons ainsi l'existence d"un noyau régulari-
sant. Les noyaux régularisants jouent un role fondamental dans ’approximation
d"une fonction par des fonctions lisses.

11.5 Définition (Noyau régularisant). Un noyau régularisant est une fonction
p e C*(R™ R) telle que il existe 0 < R < oo tel que
i) p(xz) = 0si |z| < R.
ii) p(x) =0si |z| = R.
iii) p(x)dr = 1.
R
Si, de plus, R = 1, alors p est un noyau régularisant standard.

Une autre classe de fonctions d’intérét dans les procédures de régularisation
est C*(Q).

11.6 Définition. Si k € N u {0} et Q est un ouvert de R”,

CH(Q) := {p e C*(Q, R) ; il existe un compact K <
tel que p(x) =0, Vo e Q\K}.

Le résultat suivant montre que la convolution avec des fonctions de C*(R")
«lisse » les fonctions et donne une formule trés importante, (11.8).

t. Donc |z| = |z||2, Yz € R™.
1. Voici un exemple explicite de telle fonction (dont nous ne vérifierons pas ici les propriétés).

((x) = e~V 6] < 1
- |0, sifz|>1"
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11.7 Proposition. Soient 1 < p < cwetk e N u {w0}.
Soient f € ZP(R") et ¢ € C*(R"). Nous avons :

a) [+ est défini en tout point.

b) f=peCk.
¢) Pour toute dérivée partielle 0* d’ordre < k,
0N (f o) = [+ (%) (11.8)

La notation suivante est dans l'esprit de (11.4).

11.8 Notation. Si p : R” — R, nous posons

1
pe(x) = E—np(w/s), Ve>0,VxeR" o (11.9)

Le résultat suivant est le résultat central de ce chapitre.

11.9 Théoréme. Soit p un noyau régularisant. Soit 1 < p < o0. Nous avons

f#pe — fdans ZP(R") quand ¢ — 0, V f € ZP(R"). (11.10)

En particulier, C*(R") n .Z?(R") est dense dans .Z?(R").
De méme, C*(R") n LP(R™) est dense dans LP(R™).

11.10 Remarque. Notez I'ambiguité de la formulation de la derniéere partie du théoreme.
Au sens strict du terme, C° n LP n’a pas de sens, car L? contient des classes et C* des
fonctions. Le sens de I'énoncé est le suivant : pour tout f € L?, il existe une suite (f;);
telle que :

a) [ eCPnLPVj.

b) Pour tout représentant g € £? de f, f; — g dans ZP.

Une formulation équivalente est que, avec f; comme ci-dessus, la classe [ f;] € L? de
fj vérifie [f;] — f dans L”. o

Une conséquence facile du théoréme 11.9 est le résultat suivant.

11.11 Théoréeme. Soient 1 < p < w et Q < R"™ un ouvert. Alors CP(12) est
dense dans £7(12).

De méme, C'°(2) est dense dans L?(2).

11.12 Remarque. Le théoreme 11.11 est a la base de la stratégie la plus utilisée
pour montrer des propriétés de toutes les fonctions de 'espace £7((2), avec
1 <p<wetouvertde R":

1. Etablir la propriété pour les fonctions f € C©(Q).
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2. Montrer que 'ensemble des fonctions de .Z7(2) qui ont la propriété étu-
diée est un fermé.

Nous illustrerons cette démarche dans la section 11.3 (preuve des propositions
11.21, 11.24 et du théoreme 11.27).

Exercices

Voici quelques propriétés fondamentales de p., avec p noyau régularisant stan-
dard.
11.13 Exercice. Soit p un noyau régularisant standard. Montrer, pour toute > 0:
a) pg( )=>0silz| <e.
b) p:(x) =0si|z| = e.

c) fpe—l °

Cet exercice est un complément de la proposition 11.7. Cette fois-ci, c’est f qui
est supposée de classe C*.

11.14 Exercice. Soient f € C¥(R") et ¢ € C.(R™). Nous avons :

a) f * ¢ est défini en tout point.

b) f*peCk.
¢) Pour toute dérivée partielle 0“ d’ordre < k,
0U(fxp)=(0"F) = . (11.11)

d) Si f est un polyndme ' (de n variables) de degré < m, alors f * ¢ est un polyndme de
degré < m. o

L’exercice suivant, dans 'esprit de I'exercice 4.32, sera utilisé dans la preuve
du théoreme 11.9.

11.15 Exercice. Soit K < R" un compact. Pour j € N*, soit

K; = {z e R"; dist(z, K) < 1/5}.
Alors K; est un compact, Vj, et K; \, K. o

L’exercice qui suit sera utilisé dans la preuve du théoreme 11.11.
11.16 Exercice. Soit 2 un ouvert de R"™ (muni d'une norme). Pour j € N*, soit
ji=A{x e R"; |z| < j, dist(z,U°) = 1/j}.

Alors K est un compact, Vj, et K; / U. o

t. Ou plut6t une fonction polyndmiale.
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L’exercice suivant montre que la procédure d’approximation de la preuve du
théoreme 11.11 permet d’approximer une fonction dans plusieurs espaces .Z” a
la fois.

11.17 Exercice. Soient 1 < py,...,p, < 0. Soit f € LP1(Q) N ... " ZLP(Q). Montrer qu’il

existe une suite (¢;); € CF(Q) telle que ¢; — f dans ZP(2),i=1,...,k. o
11.18 Exercice. En prenant n = 1 et f := g, ,[, montrer que les théoremes 11.9 et 11.11
et le lemme 11.19 sont faux si p = 0. o
Démonstrations

Démonstration de la proposition 11.7. Rappelons le résultat suivant : une fonction continue sur
R"™ qui s’annule en dehors d’un compact est bornée.

Etape 1. Existence de f  0%p si 0% est d’ordre < k. Soit R < oo tel que ¢(x) = 0, V|z| > R.
Soit 0 une dérivée partielle d’ordre < k. Alors 0y est continue et s’annule en dehors de
B(0, R) (justifier), donc il existe une constante finie C,, telle que [0%p(x)| < Cy, V2 € R™.

Soit ¢ le conjugué de p. De ce qui précede, 0%¢ € £ (justifier), et donc f = 0%y est
défini en tout point (théoréme 11.2 c)).

Etape 2. f *  est continue. Soit h(y,z) := f(y) p(z — ), z,y € R?, de sorte que f * p(z) =
h(y,z) dy. Nous appliquons le théoreme 7.10. La continuité par rapport au parametre

étant claire, il faut obtenir la majoration exigée par le (i”) du théoreme. Soit 2 € R™. Alors
p(z—y)=0si|z—z| <let|y| =r:= R+ |z|+ 1, car dans ce cas nous avons |z —y| > R
(justifier). Il s’ensuit que

fro) = [ hly.a)dy. ¥z e B,
B(0,r)
De ce qui précede, nous avons la majoration
h(y, 2)| < 9(y) := Colf W) XBon(W), ¥z € Blx,1).

Pour conclure, il suffit de noter que g est intégrable, car, par 1'inégalité de Holder, si ¢
est le conjugué de p alors

lglzr < Collflre IxBom e = ClflLe (avec C = C(r) < o).

La continuité de f * 0%¢ (avec 0 dérivée partielle d’ordre < k) se montre de la méme
maniere.

Etape 3. Preuve de 0;(f * ) = f = (3;). Le raisonnement est analogue a celui de I'étape 2;
on utilise le théoreme 7.14 au lieu du théoreme 7.10 (vérifier). Par récurrence sur 1’ordre
de différentiation, ceci permet d’établir c) pour tous les o concernés.

Pour conclure, f * ¢ a,jusqu’al’ordre k, des dérivées partielles continues qui vérifient
c). Elle est donc de classe C* et a les propriétés a)—c). La preuve est compléte. CQFD
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L'ingrédient clé de la preuve du théoreme 11.9 est le lemme suivant.

11.19 Lemme. Soit 1 < p < . Soient f € Z?(R") et > 0.

Alors il existe une fonction étagée de la forme g = }; a; xx,, avec K; compact,
Vj, telle que || f — g|» < 6.

De maniere équivalente, I’espace vectoriel engendré par les fonctions y x, avec
K < R" compact, est dense dans .£?(R"). o

Démonstration du lemme 11.19. Nous pouvons supposer f borélienne (justifier). Soit ( fx ), une
suite de fonctions boréliennes étagées telle que sgn f; = sgn f, Vk, fr — fet|fi] ./ |f]
(I'existence d"une telle suite découle de la preuve du théoreme 3.5). Par convergence do-
minée, nous avons | fi, — f||z» — 0; par ailleurs, f;, € £7, V k (justifier).

Chaque f, étant une somme finie de la forme ;; a; x4,, avec A; borélien et v,,(4;) <
o (la derniere propriété découlant de fj, € .£7;justifier), il suffit de montrer la conclusion
du lemme si f = x4, avec A borélien de mesure de Lebesgue finie (détailler). Dans ce
cas, rappelons que pour tout € > 0 il existe un compact K < R" tel que l’'on ait K < A et
vn(A\K) < € (corollaire 4.27).

Nous obtenons x4 — xk|r = |xa\xlzr = (n(A\K))/P < £l/P_ ¢ étant arbitraire,
nous obtenons le résultat désiré de densité. CQFD

Démonstration du théoréme 11.9. Nous considérons uniquement un noyau régularisant stan-
dard; le cas d'un noyau régularisant général est analogue.

Pour la deuxieme partie du théoreme, il suffit de noter que f * p. € C*(R") (proposi-
tion 11.7) et d’appliquer (11.10).

Soit
X :={feZ°R"); f*p. — fdans ZP(R") quand € — 0}. (11.12)
Par linéarité du produit de convolution par rapport au premier argument, X est un

sous-espace vectoriel de .ZP.

Etape 1. X est fermé dans £P. Soit (f;); = X avec f; — f dans £P. Soit § > 0. Alors il
existe un j et un eg tels que | f; — fllor < 6/3 et | fj * p- — fillLr < /3, V0 < & < &o.
L'inégalité de Young et le fait que | p-||;1 = 1, Ve (exercice 11.13) donnent

If # pe — floe < (f = £3) % pelloe + | f5 % pe = filee + | f5 — fllie
< |f = fillee + 1 f5 % pe — fillee + | f5 — fller <0, VO < € < &o.

0 étant arbitraire, nous obtenons que f € X.

t. Par abus de langage, comme expliqué dans la remarque 11.10, la conclusion du lemme 11.19
est que les fonctions étagées de la forme g = >}, a; xx; sont denses dans LP(R"). Par ailleurs, la
conclusion reste valable si nous remplagons R™ par un ouvert de R"; ceci découle de la preuve
du lemme 11.19.
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Au vu du lemme 11.19 et de ce qui précede, afin de conclure il suffit de montrer

Etape 2. Pour tout compact K = R", nous avons xx € X. Soit K un compact de R™ et § > 0.
Posons, pour j > 1,

Kj = {z e R"; dist (v, K) < 1/j} = Uzex B(z,1/j) (11.13)
(justifier la deuxieme égalité en utilisant le fait que, si F' — R" est fermé et y € R", alors il

existe z € F tel que dist(y, F') = |y — z|).

L'ensemble K; est compact, V¥ j, et nous avons K; \, K (exercice 11.15). Comme
vn(K1) < o, le théoreme de la suite décroissante implique 1'existence d’'un j tel que
vn(K;\K) < 6 (justifier).

Posons ¢p := 1/5. Soit 0 < € < (. Notons les faits suivants (évidents sur un dessin;
les justifier en utilisant la deuxiéme égalité dans (11.13)) :

size Ketye B(0,¢), alorsx — y € Kj, etdonc xg, (z —y) = 1; (11.14)
siz ¢ Kjetye B(0,¢), alorsz —y ¢ K, etdonc xg(z —y) = 0. (11.15)

Il s’ensuit de (11.14) que

re K = Xk, * pe(2) =J XK; (T —y) pe(y) dy = fB(O )pe(y) dy,
€

B(0,¢)
=1 = xx(x),
d’ou
re K = Xk(v)— XKk *p(2) = (XK; — XK) * pe(2) = XK;\K * pe(T). (11.16)

De méme, (11.15) donne (vérifier)
z¢ Kj = xk(z)— xK *pe(x) = 0. (11.17)
Par ailleurs, pour tout point € R" nous avons (vérifier) 0 < xx * p-(x) < 1, d’ott
ve KAK — |xi(@) — i #pe(@)] = v #pela) < 1. (11.18)
En combinant (11.16)—(11.18), nous obtenons
XK — XK * pe| < Xrcj\i * e+ XKk VO <€ <o (11.19)
L’'inégalité (11.19) et celles de Minkowski et Young donnent (détailler) :

IxXr = Xk * pellr < XK \i * PellLe + X&)\ | L2
< Ixxpklee el + Ixe, e = 2 Xk lle (11.20)
= 2 (Vu(K\K))YP < 26YP, V0 < € < &.

0 > 0 étant arbitraire, nous obtenons (11.10) pour f = xk. CQFD
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En examinant la preuve de (11.19), nous déduisons le résultat suivant.

11.20 Lemme (Existence de fonctions plateau; lemme d’Urysohn). Soient

K c U c R", avec K compact et U ouvert.

II existe une fonction ¢ € CF(U) telle que :
i) 0<p<lsurU.
ii) ¢ = 1sur K. o

Démonstration du lemme 11.20. Soit eg := dist (K, U¢), de sorte que €9 > 0 (pourquoi?).

Soit 0 < € < €0/2. Posons

L:={zxeR";dist(z,K) <e}, M :={zreR"; dist(z, K) < 2¢}.

Alors K < L ¢ M < U et M est un compact (vérifier). Soit p un noyau régularisant
standard. La preuve de (11.19) implique que ¢ := x, * p- a toutes les propriétés requises;
en particulier, p(z) = 0sixz ¢ M, etdonc p € CL(U). CQFD

Démonstration du théoréme 11.11. Soit f € ZP(Q). Soit f le prolongement de f avec la valeur
0 a R™\(), de sorte que f € ZP(R"). Soient e > 0etg e C*(R") n LP(R") telle que
If =9l zerny < &/2;existence de g suit du théoréme 11.9.

Soit g la restriction de g a Q. Nous avons g € C*(Q) n ZP(1) et (justifier)
1f = 9lr) < If = Gle@wny <e/2.

Il reste & trouver h € CX(Q) telle que g — | r () < /2.

Rappelons le résultat suivant de topologie : il existe une suite (K;);>1 de compacts
telle que K; €2 (voir I'exercice 11.16).

Soit, comme dans le lemme 11.20, p; € CF(12) telle que 0 < ¢; < 1 et p; = 1 sur Kj.
Nous avons ¢; — 1 simplement dans € (justifier). Comme [gp; — g| < |g| et gp; — ¢
simplement, nous obtenons par convergence dominée que ||g p; — gllrr() — 0. Pour j
suffisamment grand, h := g ¢; convient. CQFD

11.3 Pour aller plus loin

Sil < p < o, nous savons (théoreme 11.11) que C(€2) est dense dans .Z7(12).
Ce résultat permet, dans certains cas, d’établir des propriétés de toutes les fonc-
tions f € Z7(2) en étudiant uniquement les fonctions de C'°(€2). Nous donnons
ici quelques exemples typiques.

11.21 Proposition. Soient p, ¢ exposants conjugués. Si f € LP(R") et g € L9(R"),
alors f = g e C(R"). o
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Démonstration de la proposition11.21. Nous avons soit p < 0, soit ¢ < 00. Supposons par
exemple p < c0.

Etape 1. Preuve si f € C*(R™). Dans ce cas, la conclusion découle de la proposition 11.7.

Etape 2. Preuve si f € £P(R™). Soit (f;); = C*(R™) telle que f; — f dans #7 (I’existence
de la suite découle du théoreme 11.11). Nous pouvons travailler avec un représentant de
f, encore noté f. Alors l'inégalité de Holder donne

[fi*g(@) = frg(@)| =|(f; = f)*g@)] < |fj = flizr [g]ze — 0 quand j — oo.
Il s’ensuit que f * g est limite uniforme d’une suite de fonctions continues, donc conti-
nue. CQFD

11.22 Notation. Si f : R® - R, 7, f(z) := f(z — h), Va,h € R™. o

L’exercice suivant sera utilisé dans la preuve de la proposition 11.24.
11.23 Exercice. Si f ~ g, alors 7, f ~ 11,9, V h. o

11.24 Proposition (Continuité des translations dans L?). Soit 1 < p < oo. Pour
tout f € £?(R"), nous avons 7, f — f dans .Z?(R") quand h — 0.

De méme dans L”(R"). o

Démonstration de la proposition 11.24. Compte tenu de 'exercice 11.23, il suffit d’établir le ré-
sultat dans .#P(R") .

Etape 1. Preuve si f € C=°(R™). Soit R < o tel que f(x) = 0si|z| > R. Soit h € R” tel que
|h| <1.Si|z| = R+ 1, alors 73, f(z) = 0 et f(x) = 0 (vérifier).

Par ailleurs, soit M := max{|Vf(z)|; x € R"} < oo (justifier la finitude de M). Le
théoreme des accroissements finis donne (vérifier)

|Tnf(x) — f(z)] < M|h|, Yz, h e R™.

Il s’ensuit que, pour |h| < 1, nous avons

)

d =1l = [ mf@) - S ds
B( 1)

SMp\h\pf dz — 0 quand h — 0.
B(0,R+1)

Etape 2. Preuve si f € .£P(R™). Soit ¢ > 0. Soit g € CX(R") telle que |f — g|lr» < /3
(I'existence de g suit du théoreme 11.11). Soit 6 > 0 tel que |79 — g|» < /3 si|h| <
(I'existence de § découle de la premiere étape).

En notant que |kl zr = ||k|z», V k € LP(R™) (vérifier), nous obtenons, pour |h| < ¢ :

lmnf — floe < |lmnf — Thglze + |Thg — glle +llg — fl e
=|m(f =9z + lmng — glrr + |g — fle
=|f —glze + g — gllr + g — fllzr <e.
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€ > 0 étant arbitraire, nous obtenons la conclusion de la proposition. CQFD

Nous allons maintenant considérablement généraliser le résultat de conver-
gence (11.10), en affaiblissant les conditions sur (I’analogue de) p..

11.25 Définition (Approximation de I'identité). Une approximation de I'identité est
une famille (¢%).~ telle que :

i) ¢°:R" — R est (Lebesgue) intégrable, Ve > 0.
ii) J(E =1,Ve>0.

iii) Il existe une constante M < oo telle que f ICF| < M,¥e>0.

iv) Pour tout § > 0, limg_,of 7| = 0.
R™\B(0,5)
Définition analogue lorsqu’il s’agit d"une suite (¢?) 1. o

Un exemple fondamental d’approximation de 1'identité est donné par le ré-
sultat suivant.

11.26 Proposition. Soit p € Z*(R") telle que Jp = 1. Soit, comme dans (11.9),

1
pe(x) := E—np(:zc/e)7 VreR" Ve >0.

Alors (p:)e~o est une approximation de l'identité.

En particulier, cette proposition s’applique lorsque p est un noyau régulari-
sant. o

Démonstration.

1) +1i) + iii) Nous avons Jpg = Jp =1let f |pe| = J\p\ := M < oo (vérifier), de sorte que
1)—1ii) sont satisfaites.
iv) Soitd > 0. Nous avons (justifier, en utilisant le changement linéaire de variables ®(y) := e y)

|pe ()| dz = J lp(y)| dy — 0 quand e — 0,

fR”\B(O,é) R™\B(0,6/¢)

la derniére conclusion étant une conséquence du théoréme de convergence dominée (justi-
fier). CQFD

Le résultat suivant généralise le théoreme 11.9.
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11.27 Théoreme. Soit 1 < p < c0. Soit ((%).~¢ une approximation de l'identité.
Pour tout f € Z?(R") nous avons f = (* — f dans .Z?(R") quand ¢ — 0.
De méme pour une suite (¢7) ;1.

De méme dans LP(R"). o

Démonstration. Etape 1. Preuve quand f € CX(R™). Pour les besoins des résultats a venir, nous
allons estimer la différence f = (¢ — f lorsque f ala propriété plus faible f € C.(R™). Rappelons
quune telle fonction f est uniformément continue sur R™.

Donné ¢ > 0, soit0 < ¢ < 1telque
[Vz, 2’ eR", |z —a'| < 0] = |f(z) — f(a')] <&

Soit C' < w tel que |f(x)| < C, Va € R™ (justifier I'existence de C). Enfin, soit R < oo tel que
f(z) =0si|z| = R.

Pour tout x € R™, nous avons

|f*fm»—fmn:Lﬁﬂx—wcﬂwdy—fm>

| [0 -rercmal
gfﬁ@—@—f@ﬂf@ﬂ@
_J (@ —y) = F(@)| ¢ (y)| dy
B(0,5)
JJ |f(x —y) = f(@)] 1 (y)| dy
R™\B(0,5)

sff 15 (y)| dy
B(0,5)
_l’_

(11.21)
f @ —y) — f@)] )] dy
R\ B(0,5)

<¢ | 1l
S pe— - @l w) dy
R\ B(0,5)

ng+j Flz—y) — F@)] W) dy
R™\ B(0,0)
sM§+J (£ — )| + 1F@)]) ¢ ()] dy
R™\B(0,6)
£M§+2CJ 1¢5(y)] dy-
R™\B(0,6)

Par ailleurs, si |x| > R+ let|y| < 0 < 1,alors f(z) = f(x —y) = 0. Il Sensuit que pour
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un tel z le calcul (11.21) donne

x (" (x) — f(x L= : d
Fc@—s@ls] il @l 1122)

=|f] = (|¢°] XR"\B(O,J))(x)'

Soitr =15, 1= J |¢°(y)| dy, de sorte quelim, g 5. = 0,V > 0. Soite) = 15, :=
R™\B(0,6)

IC¥[ Xrm\B(0,5), qui Vérifie [|[¢)]| 1 = 7.

En utilisant (11.21) si |x| < R+ 1et(11.22)si |x| > R+ 1, nous obtenons, grice al'inégalité
de Youngetavec N = N(R) < o0:

f*f—ﬂ%sf

B(0,R+1)

[ME+KHVm+f [1f] % w]?

R™\B(0,R+1)

<N[ME+207)P + JR [1F] )P (11.23)

n

< NM&+ 2007 + | £, 0], — N MP & quande — 0.

& > 0 étant arbitraire, nous obtenons que f % (* — f dans Z?(R") quand e — 0.
Etape 2. Preuve si f € £P(R™). Soient f € £P(R™) et > 0. Soient g € CX(R™) et gy > 0 tels

que ||f —gllzr <&et]g*(*—g|r <& V0 < e < ep. Pour un tel ¢, nous avons (détailler)

[f# ¢ = fllee < f# ¢ =g Cller + lg* ¢ —glee + g = flee
<I(f=9)*Cller + 28 < If = gllze I +26 < (M +2) &

¢ > 0 étant arbitraire, nous obtenons la conclusion du théoréme pour f. CQFD

Au passage, nous avons montré le résultat suivant (voir (11.21)).

11.28 Corollaire. Soit (¢°).~o une approximation de l'identité. Soit f € C.(R"™).
Nous avons f # (* uniformément dans R" quand € — 0. o

Ce corollaire intervient dans la preuve du résultat suivant.

11.29 Théoreme (Théoreme d’approximation de Weierstrass). Soit K < R” un
compact. Soit f € C(K,R).

Alors il existe une suite de polynomes ' de n variables (P;); telle que P; — f
uniformément sur K.

De maniere équivalente, {P : K — R; P fonction polynémiale} est dense
dans C'(K, R) muni de la norme uniforme. o

1. Ou plutét de fonctions polynoémiales.
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Démonstration. Nous utilisons le résultat suivant de topologie (théoréme de Tietze) : si B est
une boule de R” telle que K < B, alors toute fonction f € C'(K,R) admet une extension g €
C(R™,R) avec g(z) = 0, Vx € R™\B. Ainsi, quitte 2 remplacer K par B et f par g, il suffit de
montrer le résultat pour la restriction B d’une fonction f € C(R", R) qui s'annule en dehors de
B (justifier). Sans perte de généralité, nous pouvons supposer que B = B(0, R).

Soit f € C.(R™) telle que f(x) = 0si|z| = R. Soit p la « gaussienne standard » dans R",

1 2
— — |z
p(z) = pry Ve eR"™

Rappelons que J p = 1. Laproposition 11.26 combinée avec le corollaire 11.28 donne f  p. —

f uniformément sur R quand ¢ — 0, out

1

e e P/ e >0, Vo e R™ (11.24)
s g

pe(x) =

Soitd > 0. Soite > Otel que || f * pc — f|L» < I, dou (exercice 10.10)

|f *pe(z) — f(x)] <, Vx e R™. (11.25)

Nous allons trouver un polynéme S tel que

[(pe = 8)(2)| <0, Vz € B(0,2R). (11.26)

En admettant lexistence d’'un tel S, nous concluons de la fagon suivante. Pour tout ¢ nous
avons

B(0,R)

f*w@>=f F(0) ol — ) dy. (11.27)

Soit M < o tel que |f(x)| < M,Vz € R™. Siz,y € B(0,R), alorsx —y € B(0,2R). En
combinant ce fait avec (11.25)-(11.27), il s’ensuit que, pour tout = € B(0, R) nous avons, avec
N =N(R) < w,

[f#S(x) = f@)| < |f = [S(x) = pel(@)] + [(f * pe = F)(@)]

<[ swIs - pdw - vy +9
B(0,R)

< M&f dy+6=NG.
B(0,R)

d > 0étantarbitraire nous obtenons, pour une suite (.5;) ; convenable de polyndmes, f+S; —
f uniformément sur B quand j — o0. Pour conclure, il suffit de noter que f * S; est un polynéme
(exercice 11.14 d)).
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Ainsi, pour compléter la preuve il suffit de trouver S satisfaisant (11.26). Rappelons que le dé-
veloppement en série de 'exponentielle converge vers 'exponentielle uniformément sur les com-
pacts:siT > Oet{ > 0, alors il existe k tel que

k
e~
=0

l
Llee viel-n1. (11.28)

~

Soit k tel que (11.28) soit valide avec T := 4 R? /2 et £ := 7"/2 " §. Posons

k 2/,.2\¢
1 (=l=*/e%)
S = . .
£=0
De (11.28), (11.29) et (11.24), nous avons (11.26) (vérifier!). CQFD
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Chapitre 12

Séries de Fourier

12.0 Apercu

Dans ce chapitre, nous considérons des fonctions f : I — C, avec I < R inter-
valle. Le but est d’écrire f comme une « superposition d’ondes (co)sinusoidales »,
ou encore comme la somme d’une série de Fourier.

Le choix de I n’est pas important, les plus populaires étant / =]0,1[ et I =
10, 27[. Nous travaillons dans I =]0, 2n[, muni de la tribu de Lebesgue et de la mesure
w=(1/m(I)) A\ = (1/(27w)) A\;. Ainsi, si 1 < p < o0, alors

o 1/p
Ifl = <i [ |f<x>|pdas) E 12.1)

21 Jo

Toutes les (classes de) fonctions f considérées sont supposées étre Lebesgue intégrables
sur I. I étant de mesure finie, il s’ensuit que I'hypothese d’intégrabilité est satis-
faite si f € LP(I) pour un p > 1 (remarque 10.16). Selon un principe rencontré a
plusieurs reprises, les énoncés comprennent des classes de fonctions, les preuves
se font sur des fonctions.

Si f: R — C est 2r-périodique et suffisamment lisse (de classe C"* suffit, voir
la section 12.4), alors nous avons

n=00 n=N
flz) = Z cn(f)e™ = th{lw 2 cn(f)e™, Vo eR, (12.2)
n=—o0 N—ooo n=M
avec
27
alf) =g | ey (123)

t. Rappelons la conventionj g(x)dr = J gdA;.
Ja.bl

a
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Séries de Fourier 12.0 Apercu

La définition (12.3) s’obtient a partir du calcul formel * suivant (avec §)), le sym-
bole de Kronecker) * :

= S alpen

n=—au
1 21 1 2 M=
il ) flz)e ™ de = %L ; dx
1 2 1 m=00 21
= 5 ) flx)e das=2— Z L dx
= 27?521
1 21 m
e % f(l’) e " dr = Z Cm(f) 5:1 = Cn(f)
0

m=—0o0

Ce calcul permet de dégager la définition (12.3). Ses lignes formelles sont la
premiére et la troisieme, car il faut pouvoir justifier (12.2) et la permutation de la
somme et de l'intégrale.

Dans ce chapitre, nous allons justifier et donner un sens a la premiére égalité
(12.2). Ce sens ne sera pas, en général, celui de la deuxieme égalité de (12.2).

La section 12.1 permet de faire le lien entre (12.3) et la décomposition d'un
vecteur dans une base orthonormée. Ce sujet sera revu dans le chapitre 14, dans
le cadre des espaces de Hilbert; nous donnerons ici le cadre minimal permettant
de comprendre (12.3) si f € L*(I).

La section 12.2 est consacrée a 1'égalité (12.2) si f € L?(I). Le résultat principal
est le théoreme de Fatou 12.4 qui affirme que
n=N
f= lim Z cn(f) e™ dans L*(I).

M——0o0
N—o0 n=M

Ce résultat est complété par 1'égalité de Parseval (12.13)

foﬁ @) =27 Y Jea())P

n=—0

et par le théoréme de Riesz-Fischer 12.8.

t. En analyse, un calcul formel est un calcul que I'on ne peut pas nécessairement justifier. En
dehors de 'analyse, cette expression est synonyme de calcul symbolique Calcul formel (Wikipédia)
En anglais, il n'y a pas d’ambiguité : formal computation en analyse, vs symbolic calculus.

) 4 1 sii—i
t. Le symbole de Kronecker &}, avec i, j € I, est défini par 67 := 0’ S% ! . I,
, sii#

218


https://fr.wikipedia.org/wiki/Calcul_formel

Petru Mironescu Mesure, intégration, éléments d’analyse fonctionnelle

Un autre résultat significatif qui sera obtenu dans cette section est le lemme de
Riemann-Lebesgue 12.9.

La section 12.3 est dédiée au comportement ponctuel " de la série >, 7 ¢, (f)
e : plus spécifiquement, on s’intéresse a la validité de (12.2) (ou d"une variante
de (12.2)) a = fixé. Pour des fonctions dérivables par morceaux, cette convergence
(énoncée proprement) est le contenu du théoréme de Dirichlet 12.13.

Dans la cas d’un fonction continue par morceaux, la série de Fourier peut
ne pas converger. La bonne notion de convergence est celle de convergence en
moyenne; le résultat de convergence correspondant est le théoreme de Fejér 12.15.

La section 12.4 est dédiée a la convergence uniforme ou normale de la série
de Fourier. Cette section est plus avancée que les autres et peut servir de base
a la préparation a 'agrégation. Notons, dans cette introduction, deux résultats
marquants et simples a énoncer (Corollaire 12.25) :

a) Si f(0) = f(2n) etil existe « > 0 et C' < w tels que |f(z) — f(y)| < Clz —y|%,
Va,y € [0,27], alors >_  ci(f)e™ converge uniformément vers f quand
n — .

b) Si f(0) = f(27m) etil existe a > 1/2 et C' < o tels que | f(z) — f(y)| < Clz —y|%,
Vaz,ye|0,2r],alors X7 c,(f)e™ converge normalement vers f.

n=—oo N

Dans la section 12.5, nous mentionnons sans preuve d’autres résultats célébres
de (non) convergence.

Compétences minimales attendues.

a) Savoir utiliser 1'égalité de Parseval, le théoreme de Fatou et le théoreme de
Riesz-Fischer.

b) Savoir utiliser le théoreme de Dirichlet. o
12.1 Un peu d’algebre bilinéaire
Soit H un espace vectoriel complexe, muni d’un produit scalaire complexe

<, >,% qui induit la norme |z| :=< z,7 >'2,Vx € H.

Si (ej)jes = H est une famille orthonormée,  alors pour tout = € H et toute

t. Ponctuel : en tout point z € 1.

1. Nous considérons un produit scalaire linéaire dans le premier argument et antilinéaire dans
le deuxiéme argument. L'exemple typique est C? 3 (z1,22) — z1%3. C'est le produit scalaire des
mathématiciens. Les physiciens considerent des applications antilinéaires dans le premier argu-
ment, linéaires dans le deuxieéme argument. L'exemple typique est C? 5 (21, 22) — Z120.

§. Donc <ej,ep>=0,Vj#Llet<eje; >=1,Yj.
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Séries de Fourier 12.1 Un peu d’algebre bilinéaire

famille finie L < J nous avons les propriétés suivantes.

2 2

|||* = Z <mze; > e + 93—2 <z, ej > €
jeL jeL 2 (12.4)
:2| <ze; >+ :U—Z<:c,ej> e;ll
jeL jeL
d’ot1 en particulier
Ml<we > < |z (12.5)
jeL
Siz e Vect{e;; je L}, alors z = 2 <z,e; > €
Jet (12.6)

et o> = > [ <z e > |*.
jeL

Nous allons appliquer ceci a ’espace L? := L?(]0, 27[), avec le produit scalaire

1 2m 1 2m
<fozm g | s = 5| sgan (127)
12.1 Notation. Sin € Z,
en(z) =", Yrel. (12.8)

(Pour étre plus précis, nous travaillons avec [e,] plutdt qu’avec e,,. Néanmoins, par
souci de simplicité, dans les formules nous identifions e,, a sa classe.) o

12.2 Définition. Si f € L' := L'(]0, 27[), le n® coefficient de Fourier de f (n € Z)
est

1 21

enlf) f@a@w=if7m§mm 129)
2 Jo

Si f € L?, nous avons ¢, (f) =< f, e, >.

Il est immédiat que c,(f) dépend uniquement de la classe de f.

La suite (e, )nez étant orthonormée (exercice 12.3 b)), les relations (12.4), (12.6),
respectivement (12.5) avec J := Z et L := {n € Z; ng < n < n;} donnent l'inégalité
de Bessel

n1 1 2m | N1 2
2 leNP =g | | 20 enlh)e™| da
n=ngo @ 0

e (12.10)
1 Yy
<o | IF@Pde = 13 ¥ € 0. 20D
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et 'identité

ni 2 ni 2
M= S aner] 4= 3 aer] | (12.11)
n=ng L? n=ng L2
Exercices

12.3 Exercice.

a) Montrer que (12.7) définit un produit scalaire sur L.

b) Montrer que la famille (e;,),cz définie par (12.8) est orthonormée dans L? muni du
produit scalaire (12.7). o

12.2 Séries de Fourier dans 2

12.4 Théoréme (Théoréme de Fatou et égalité de Parseval). Soit f € L? = L?
(]0,27(). Alors :

a) (Théoreme de Fatou) Nous avons

0 n=N
f= ) clf)em = lim ' c(f)e™ dans L. (12.12)
n=-—00 ]\J4V_—)>_oooon=M

b) Nous avons l'égalité de Parseval

['e) 2m
D el = 52 | 7@ do = 1113 (12.13)

n=—0o0

12.5 Remarque. Une somme de la forme z — ZZ;]& en(f) €™ est un polyndme trigono-
métrique, c’est-a-dire une somme finie de la forme ), a,e"". o

12.6 Définition. Si f € L', nous posons

n

Sulf) =) clf)ex (12.14)

k=—n

En combinant le théoréme 12.4 et le corollaire 10.29, nous obtenons la consé-
quence suivante.

12.7 Corollaire. Si f € £ = £?%(]0,2x[), alors il existe une sous-suite (n;); de N
telle que

Su;(f)(x) — f(x) quand j — oo, pour presque tout x €]0, 27| o (12.15)

221



Séries de Fourier 12.2 Séries de Fourier dans 2

L'inégalité de Bessel (12.10) implique que, si f € L?, alors la suite (¢, (f))nez des
coefficients de Fourier de f appartient a ¢*(Z). Remarquablement, la réciproque
est vraie. C’est le contenu du théoréme suivant.

12.8 Théoreme (Théoréeme de Riesz-Fischer). Soit (a, ).z une suite telle que

a0

Z |an|? < .

n=—0o0

Alors il existe une et une seule fonction f € L?> = L*(]0,2x[) telle que
cn(f) = an, VneZ

La preuve du théoreme 12.4 se fait par densité, en commengant par des fonc-
tions de C'(]0, 27[). C’est une situation analogue a celle rencontrée dans la sec-
tion 11.3. Voici un autre résultat important dont la preuve est dans cet esprit.

12.9 Lemme (Lemme de Riemann-Lebesgue). Soit f € L' = L'(]0,2x[). Nous
avons ¢, (f) — 0 quand |n| — oo. o

Exercices

12.10 Exercice. Soit

PzZanem' zZanen

nel nel

(avec I  Z fini) un polyndme trigonométrique. Montrer que P € .#! et que

inel
cn(P) = in s%n . o
0, sing¢l
12.11 Exercice. Que donne 1’égalité de Parseval pour f(z) = x? o
Démonstrations

Démonstration du théoreme 12.4. L'ingrédient fondamental dans la preuve est le résultat sui-
vant de densité, qui sera démontré plus tard.

12.12 Théoreme. Soit g € C([0, 27]; C) telle que ¢g(0) = g(2). Soit € > 0.
Il existe un polynome trigonométrique P tel que |g(z)—P(z)| < ¢,V € [0, 27].

De maniere équivalente, soit Cper := {g € C([0,27];C); g(0) = g(27)}, muni
de la norme uniforme. Alors les polyndmes trigonométriques sont denses dans
Cher- o

pér
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Démonstration du théoréme 12.4 (en admettant le théoréeme 12.12).

a) Soit f € £? et soit e > 0. Soit g € CX(]0, 27() telle que | f — g| ;> < e ('existence de g
suit du théoreme 11.11). Soit P un polyndme trigonométrique tel que |g(x)—P(z)| < ¢,
Va € [0,2n] (existence de P suit du théoreme 12.12). Notons que g — P||;2 < ¢, ce
qui implique | f — P|;2 < 2e.

Soient ng,ny € Z tels que P = Z;“:no an €n. S1 M < nget N > ni, nous avons

N

>l en(P)en =P (12.16)
n=M

(justifier, en utilisant 1’exercice 12.10).

Pour de tels M et N, il s’ensuit que

N N
Hf— S ealfeal < =P+ P= ) elf)en
n=M L2 n=M L2
N N
=|f— Pl + Z cn(P) en — Z en(f)en
n=M n=M L2
= f = Plzz+| D ealP = fen
n=M L2

< |[f = Pl + [P = fll2 < 4e.

Au passage, nous avons utilisé : (12.16), la linéarité de 'application f — ¢,(f) (la
justifier) et I'inégalité

n1

Z cn(9) en

n=ng

< glz2, Vge L2

.2
qui découle de (12.10).

e > ( étant arbitraire, nous obtenons que

N
lim ' cn(f)en = f dans .£2. (12.17)

M——0o0
N—ow n=M

b) découle de (12.6) et de (12.17). En effet,

2

0 N

N
2 (AP = Jim > je(f)F = lim | Y en(f)en) =72 cam
k=—00 N—op n=M N—oop lIn=M L2

Démonstration du théoréme 12.8. Existence. Soit P, := >, __ aiej. L'identité (12.6) donne,
pour0 <n <m:

| P — Pall32 = Z ager| = Z lax|* — 0 quand n,m — oo.

n+1<|k|<m 2 ntllklsm
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Il s’ensuit que (P,), est une suite de Cauchy dans .¥ 2 Par complétude de .¥ 2 (théo-
réme de Fatou 10.28), il existe f € .#? telle que P,, — f dans #? quand n — . Sin > |k,
alors ¢ (P,,) = ay, (exercice 12.10), d’ott (justifier)

ler(f) = arl = ler(f) — cu(Po)l = ler(f — Po)| = | < f — Pr, e > |
<|f = Palrz lenlrz = | f — Pulrz — 0 quand n — o0,

ce qui implique ¢, (f) = aj pour tout k.

Unicité. Notons que, si cx(f) = ck(g) pour tout k € Z, avec f,g € L?, alors I'égalité de
Parseval appliquée a f — g donne f = g. CQFD
Démonstration du lemme 12.9. Soient f € £* et e > 0. Soit g € C*(]0,2n]) telle que ||f —

gl < e (Uexistence de g suit du théoréeme 11.11).

Sin # 0, alors une intégration par parties donne

1 2m B 1 21 , _
ule) = 5 | o) e e = o [ @) e,

1
d’ot < — 1'-0 d — 0.
0 fen)] = - g/ — 0 quand o

11 existe donc ng tel que |c,(g)| < € si |n| = ng. Pour un tel n, nous avons

len ()] < lea(g)] +len(f — )| < len(g)] + 1f — gl < 2e. CQED

12.3 Comportement ponctuel des séries de Fourier

Dans cette section nous travaillons avec des fonctions (au lieu de classes). La
question fondamentale étudiée est le comportement de la suite

n

Sulf)(x) = > al(f)e* neNzell

k=—n

Il sera commode de travailler avec des fonctions définies d’abord sur [0, 27|,
qui sont prolongées par 27-périodicité a R. Par exemple, si f(z) = z, z € [0, 27|,
alors le prolongement 27-périodique de f est

T
—r—2 E(—) VreR?
flz)=a—2m o x
Toutes les fonctions définies dans cette section sont supposées 2m-périodiques et inté-
grables sur I =)0, 2x|.

Le premier résultat fondamental de cette section est le théoreme de Dirichlet.

t. L'étude du comportement de Y, _ ¢ (f) e’*® quand m — —oo et n — o0 de maniere indépen-
dante est un sujet tres délicat qui dépasse largement le cadre de ce cours. Dans cette section, nous
considérons uniquement le cas ot m = —n.

1. E(z) désigne la partie entiére de z.

224



Petru Mironescu Mesure, intégration, éléments d’analyse fonctionnelle

12.13 Théoréme.

a) (Critere de Dini) Soit 2 € R. S’il existe deux nombres f(xy+) et une fonc-
tion G € £1(]0, 7[) telle que

|f(woL) — f@o £ y)| <yG(y), VO <y <m, (12.18)

alors

f(zo+) + f(wo—)

Sul ) (o) — T

quand n — oo. (12.19)

b) En particulier, (12.19) est vraie si f a des limites latérales f(zo+) en zy, et
les limites

lim f(zo £ y) — fzoL)
y—0 Yy

existent et sont finies.

¢) (Théoreme de Dirichlet) En particulier, (12.19) est vraie en tout point x, €
R si f est « dérivable par morceaux ».

Si, dans le théoreme précédent, nous voulons abaisser la condition de régula-
rité sur f de « dérivable » & « continue », alors la bonne notion de convergence est
celle de convergence en moyenne (théoreme de Fejér 12.15), la moyenne étant définie
ci-dessous.

12.14 Définition. Si f € Z', nous posons
So(f) + S1(f) + - Su(/f)

n+1

T,(f) :=  VYneNt (12.20)

12.15 Théoreme (Théoreme de Fejér).
a) Soit zg € R. Si f a des limites latérales finies f(zo+) en x, alors

f(xo+) + f(z0—)

To(f) o) — 202

quand n — 0. (12.21)

b) Si f est continue, alors 7,,(f) — f uniformément quand n — oo.

De maniere équivalente, soit f € C([0,2n]) telle que f(0) = f(2x). Alors
T.(f) — f uniformément sur [0, 27| quand n — co.

t. (Tn(f))n estla moyenne de Cesaro de (S,,(f))n.
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Exercices

L’exercice suivant est fondamental. Il montre que, dans les calculs, on peut rem-
placer |0, 27| par tout intervalle de longueur 2.

12.16 Exercice. Soit f 2m-périodique et intégrable sur |0, 27[. Montrer que :

a) f estintégrable sur tout intervalle borné.

27 a+2m
b | f(y)dy=j f(y)dy, VacR. 5

a

Les noyaux de Dirichlet interviennent dans la preuve du théoréme de Dirichlet
12.13.

12.17 Définition (Noyau de Dirichlet). Le n® noyau de Dirichlet (n € N) est
Dy(z):= ) €* VzeR o (12.22)
k=—n

12.18 Exercice. Soit f 2mw-périodique et intégrable sur |0, 27[. Montrer que :

1 2

Su(N@) =5 [ £~ 9) Dalw)dy
| o (12.23)
=5 fa:— y) Dp(y)dy, Ve R,
sin n+1/2 )7 Siydon
sin y/2
sin(ny) cotan (y/2) 4+ cos(ny), siy ¢ 2n7Z
2n + 1, siye2nZ’
— | Duy)dy = o (12.25)

o
Les noyaux de Fejér interviennent dans la preuve du théoreme de Fejér 12.15.
12.19 Définition (Noyau de Fejér). Le n® noyau de Fejér (n € N) est

Dot it D
=20 P yen o (12.26)
n+1

12.20 Exercice. Soit f 2m-périodique et intégrable sur |0, 27[. Montrer les propriétés sui-
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Y

vantes.
1 21
Tu(f)(@) =5 | flz—y) Fuly) dy
) (12.27)
— f flz— (y)dy, Vx € R,
sin?[(n + 1)y/2] )
(n + 1) sin?(y/2)’ sty ¢ 2nZ , (12.28)
n+1, siye22nZ
(y) dy (12.29)
f n(y) dy = f Fo(y)dy == (12.30)
0 -7

Par ailleurs, montrer que
a) F,(y)>0,Yn,VyeR.
b) Pour tout0 < 6 < =, F;, — 0 uniformément sur [—m, —0] U [d, 7] quand n — oo.
¢) Pourtout0 < § <,

J F,(y)dy — 0 quand n — co. o (12.31)
[—m,—=d]u[d,7]

Démonstrations

Démonstration du théoreme 12.13. Etape 1. Preuve de (12.19) sous I'hypothese (12.18). Posons
[f (w0 = y) = f(xo—)] cos(y/2)

" (/) , si0<y<m
TIZ [fwo —y) = flwo)] cos(y/2) .
sin(y/2) S msyst

et

_ Jf@o—y) = flwo—), si0<y<m
h(y) := , .
f(xo —y) — f(zot+), si —m<y<0

Notons que

lg(y)| < G(lyl), V0 < |y <,

)
sin(y/2)

avec G comme dans (12.18). La fonction

Y
I=m a0} sy 2o

se prolongeant par continuité en 0 et +, il existe une constante C' < o telle que

l9(y)l < CG(lyl), VO < |y| <. (12.32)
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Par ailleurs, g est mesurable (justifier). De (12.18) et (12.32), g est intégrable sur | — 7, [
(détailler).

De maniere analogue,
()] < WIG(lyl) < 7G(Jyl),
et donc h est intégrable sur | — 7, 7.
En utilisant I’exercice 12.18, nous obtenons (détailler)

S f(ao) = HEHEICZ) LT 0y ) D) dy

—T

1 0
7 paos) Daty) ay

—217r B sin(ny) g(y) dy + % B cos(ny) h(y) dy
=ﬁ - g(y) [e" —e "] dy
1 T
+ - -
1
:2*1[0771(9) - Cn(g)] +

h(y) [e™ +e™"¥] dy

Slen(h) + ea(h)]

— 0 quand n — oo,
la conclusion finale étant une conséquence du lemme de Riemann-Lebesgue.

Etape 2. Preuve des items b) et c). Il faut montrer que les hypotheses des items b) et c)
impliquent 'existence d"une fonction intégrable G ayant la propriété (12.18). Posons

G(y) == fzo + y)y_ f(@o+) ‘ n ’f(wo - y)y_ f(xo—)

, Vo< y<m.

Alors G est mesurable et satisfait, par construction, (12.18).

Si f est comme dans l'item b), alors GG a une limite finie en 0, et donc G est bornée (et
donc intégrable) dans un voisinage |0, €[ de 0. Par ailleurs, si y > ¢, nous avons

G(y) < e (|f(wo +y)| + [f(@ot)| + [ f(wo = y)| + |f(zo-)]) := H(y),
et cette majorante est intégrable (justifier), d’ott G est intégrable.

Enfin, I'item c) est un cas particulier de l'item b). CQFD
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Y

Démonstration du théoréme 12.15. Etape 1. Preuve de I'item a). Soit ¢ > 0. Soit 0 < § < 7 tel que
0<y<d = |f(xzoLty) — flzot) <e. (12.33)
Posons
my = max{F,(y); 6 < [y| < 7},
de sorte que

lim my, =0 (12.34)

n—aoo
(exercice 12.20).

En utilisant I’exercice 12.20 et (12.33), nous obtenons, avec a := [f(zo+) + f(zo—)]/2:

T f (o) —al = flx—y) Faly) dy — 7 fzo+) — 7 f(20—)

1 s
oL
1 (0
<o— | |fle—y) = flzot)| Fuly)dy

27
+ ;ﬂf: [f(z—y) = f(zo—)| Fuly) dy
s
9

TJos
| el + 1 a0o)] + 1o = )] + £+ )] dy
™ Jlom]
<o | Fulw)dy + (1 @o+)] + | flao-))

2o [ @) ds

My
= + 7(|f(£vo+)| + |f(zo—)| + 2| f]l;) = € quand n — co.
Il s’ensuit qu'il existe ng tel que |T), f(z0) — a| < 2¢, Vn > ny.

Etape 2. Preuve de I'item b). Rappelons qu’une fonction continue et périodique sur R est
bornée et uniformément continue. Il s’ensuit qu’il existe un ¢ indépendant de zy tel que
(12.33) soit satisfaite, et pour ce 6 nous avons, en reprenant les calculs précédents,

T f(wo) — al <&+ (1 f@o+)| + | (wo=)| + 2/ 1)

m
<e o+ "2l +21f]1) — € quand n — 0.

Nous en déduisons I'existence d'un ng indépendant de x tel que |1}, f(zo) — a| < 2¢,Vn >
ng, d’ot1 la conclusion de l'item b). CQFD

Démonstration du théoreme12.12. Au vu du théoréme de Fejér (item b)), il suffit de prendre
P :=T,(g) avec n suffisamment grand. CQFD
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12.4 Comportement global des séries de Fourier

La question fondamentale étudiée dans cette section est celle de la conver-
gence uniforme ou normale de la suite (S, (f)). " Notons que la convergence nor-
male dg la séo1;ie de fonctions Y,"___ c,(f)e™ revient a la convergence de la série
numérique >, |c.(f)].

Dans ce qui suit, les fonctions f sont continues* et 2r-périodiques.Elles sont donc
en particulier uniformément continues sur R.S

La philosophie générale est que plus f est lisse, plus la convergence de sa série
de Fourier est forte. Notons, par exemple que, si f € C?, alors

oe]

=D elf)em, (12.35)

n=—00

la série de (12.35) étant normalement convergente (exercice 12.26). Une quantité
qui mesure la continuité de f est le module de continuité.

12.21 Définition. Le module de continuité de f est 6 — w(d), ou

w(d) :=supf{|f(z) — fy)|; z,yeR, |z —y| <}, VO<d<2rT o (12.36)

L’interprétation intuitive de la taille de w est que plus w(d) tend vers 0 rapide-
ment quand 0 — 0, plus la fonction f est lisse. (Voir néanmoins 1’exercice 12.28.)

On peut montrer que, dans (12.36), le sup est un max (exercice 12.27).

Il sera instructif d’illustrer la calcul de w(6) et les résultats généraux qui suivent
sur les fonctions holderiennes, qui sont une généralisation des fonctions lipschit-
ziennes.

12.22 Définition. Soit 0 < « < 1. Une fonction [ : [0,27] — C est a-holderienne si
| floa < 00, ot

| floa = sup {M z,y € [0,2n], v # y} :
[ =yl
Une fonction est holderienne si elle est a-hdlderienne pour un a. o

t. Pour la convergence de la suite (7,(f)), le théoreme de Fejér 12.15 fournit une réponse
convenable.

1. On ne peut espérer de la convergence uniforme de (S,,(f)) en I’absence de la continuité de
f, car une limite uniforme de fonctions continues est encore continue.

§. Voir l'étape 2 de la preuve du théoréme 12.15.

4. La définition la plus courante du module de continuité est légerement différente, mais pour
énoncer les résultats de cette section la définition via la formule (12.36) convient.
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Si f est a-holderienne sur [0, 27] et, de plus, f(0) = f(27), alors le prolonge-
ment par périodicité de f est continu et nous avons (exercice 12.29)

w(8) < 2|flca 6%, 0 < 6 < 2. (12.37)
12.23 Théoreme. (Théoreme de Jackson) Si

lim c(8) | In | = 0, (12.38)
alors S,,(f) — f uniformément quand n — . o

12.24 Théoréme. Si

Lw(s
f A0 45 < o0 (12.39)
0
alors la série >,°__ c,(f) €™ converge normalement vers f. o

En combinant les théorémes 12.23 et 12.24 avec I'inégalité (12.37), nous obte-
nons le résultat important suivant.

12.25 Corollaire. Soit f : [0, 27] — C une fonction telle que f(0) = f(2).

a) Si f est a-holderienne pour un o > 0, alors Y;_ ¢ (f) e* converge uni-
formément vers f quand n — .

b) (Théoreme de Bernstein) Si f est a-holderienne pour un a > 1/2 (donc, en
particulier, si f est de classe C*, ou si f est lipschitzienne), alors la série

Zfz_ » Cn(f) e™ converge normalement et sa somme est f.

Exercices

12.26 Exercice. Soit f € C*(R) une fonction 27-périodique. Montrer que

£ - "
len(f)] < M , VneZr.

mx

. . . 2 s . . o0
En particulier, si f € C*, montrer que sa série de Fourier z — ».°_ ¢, (f)e"* converge

normalement, et que la somme de la série est f. o

12.27 Exercice. Soit f : R — C continue et 27-périodique. Soit w son module de conti-
nuité,

w(0) :==sup{|f(z) — f(y)|; z,y e R, |x —y| <}, VO < I < 27. (12.40)

1. Montrer que, dans (12.40), le sup est un max.
2. Montrer que w est continue et croissante. o
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12.28 Exercice. Soit f : [0,27] — C une fonction telle que w(d) = o(d) quand § — 0.
Montrer que f est constante (et réciproquement). o

12.29 Exercice. Soit f : [0,27] — C une fonction a-holderienne telle que f(0) = f(27).
Nous notons encore f son prolongement par 27-périodicité.

1. Montrer que
w(0) < 2|f]cad®, V0 < § < 2. (12.41)
2. Améliorer (12.41) a
w(d) < 217 f|cad®, V0 < § < 2m. o
12.30 Exercice. Montrer que Sy, (T, (f)) = Tn(f). o
12.31 Exercice. Montrer que
1S ()l e < IDnllzallflljw, ¥V f : R — C mesurable, bornée, 2m-périodique.c (12.42)

12.32 Exercice.

1. Montrer que

IDn(y)| < &min((n +1/2)|yl,1), ¥n = 0,Y0 < |y| <. (12.43)

On pourra utiliser les inégalités suivantes :
|sint| < min (|¢],1),Vt e R,
2
sint > =t, Vt e [0,7/2].
™
2. En déduire que

|Dpll;r <1+Inm+In(n+1/2), Vn > 0. o (12.44)

12.33 Exercice. Montrer que

2

™ .
|Fo(y)| < Wmm(((n +1)y/2)%,1),Vn=0,Y0 < |y| <. o (12.45)
12.34 Exercice. Si f estlocalement intégrable et 2r-périodique, montrer que ¢, (f(-+h)) =
e, (f),VheR,¥nel. o
Démonstrations

Démonstration du théoréme 12.23. Etape 1. Stratégie générale de la preuve. La fonction f étant
continue, nous avons T),(f) — f uniformément (théoreme 12.15 item b)). Il suffit donc
de montrer que S,(f) — T,(f) — 0 uniformément. En notant que 7,(f) = Sn(T.(f))
(exercice 12.30), nous devons montrer que

Sp(f —Tn(f)) — 0 uniformément quand n — co. (12.46)
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La preuve de (12.46) repose sur les exercices 12.31 et 12.32, qui donnent

150 (f = Ta(fDlpe < (1 + 1w +In(n+1/2)[f = To(f)ll - (12.47)

Pour compléter la preuve du théoréme, nous allons obtenir les résultats suivants :

™ T w(y)

— Ty w < —w(2/(n+1))+ f —= dy, 12.48
I =TaDle < GeCfr )+ s | =y (12.48)
sous I’hypothese (12.38), nous avons }in(l) 0 |1Ind| f w;g;) dy =0, (12.49)

- 5

résultats qui, combinés avec (12.47), permettent de conclure (vérifier).

Etape 2. Preuve de (12.48). En reprenant le début de la preuve du théoreme 12.15, et en
utilisant les propriétés de F;, (exercices 12.20 et 12.27), la définition de w, et la monotonie
de w (exercice 12.27), nous obtenons successivement, pour tout z € R :

1
Cor

1 (™ 1 (™
<3 | el Fuwyay - jo w(y) Foly) dy

2/(n+1) 7r
<7r(n+ 1)J’ wly) dy + T J‘ w(gz/) i
0 n+1Jome1y Y

T f () = f(2)]

[ ve--renrw dy|

—T

(12.50)

Y

< 2w(2/(n+1))+ T F “) 4.

n+1 Joynir) Y2
On obtient (12.48) en prenant, dans (12.50), le sup sur z.

Etape 3. Preuve de (12.49). La régle de ’'Hospital « ? /o0 », qui s’applique car w est continue
(exercice 12.27), donne, grace a 'hypothese (12.38),

" w(y) J, & -
lim(5|ln5]J —deyzlim%zlim T 0 T
6—0 s Y 6—0 - 6—0 +
dIno 02Iné 62 (Ind)? CQFD
. —w() Ino
T
Iné

Démonstration du théoréme 12.24. Rappelons que notre principal but est de montrer la conver-
gence de la série >, |en(f)]-

Etape 1. Utilisation de 1'égalité de Parseval et du module de continuité. Pour 0 < h < 2, soit
fu(z) := f(z + h), Yo € R.Nous avons

cn(fn) = € cn(f) (12.51)
(exercice 12.34) et, clairement,
Ifn = fllze < 1fn = flipe < w(h). (12.52)
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De (12.51), (12.52) et I'égalité de Parseval (12.13), nous obtenons

e¢]
D1l = 1P len(f))? < w?(h), YO < h < 2. (12.53)

n=—aoo

Etape 2. Controle de Y. |c,(f)| si |n| est de l'ordre de 1/h. Prenons h := 1/2¢, avec £ € N, et les
n € Z vérifiant 2¢ < |n| < 21, Pour de tels n et h, nous avons 1 < |nh| < 2, et donc

lemh — 112 = C, (12.54)

C:=min{|e" —1*; 1< |t| <2} >0
(justifier le fait que C' > 0).
De (12.53), (12.54), et I'inégalité de Cauchy-Schwarz, nous obtenons

2
( > cn(f))< e = 1Plen(f)?

2t <|n]<26+1 20<n]<20+1 (12.55)

! 2 2 VeeN
x Z |6m/2‘f —1J2 = C2 w™(1/2%), €.

2t<|n| <261

Etape 3. Comparaison série-intégrale. La monotonie de w (exercice 12.27) et la sommation
par paquets (proposition 6.40) donnent

1/2¢

1/2¢ 1/2€+1)
f 53/2 d(S - Z f/ﬂﬂ 53/2 do > EL o532 do

/2[+1
(12.56)

=3 fm w(1/27) ds = 2732 % 212w (1/2%).

(=0 J1/2+1 (1/26)%2 >1

Etape 4. Convergence normale de la série de Fourier. En utilisant la sommation par paquets,
(12.55), (12.56), et I'hypothése (12.39), nous obtenons

Dl =leoDI+D D0 lealD] < leo(f)] + C 22”2 (1/2)

n=—o0 >0 2£<|n|<2€+1 £>0
21/2 1 w((s)
<leo(f)] + 2o )+CJ063/2d5<oo

Etape 5. Identification de la limite. Notons S(f) := Y cu(f) €™, qui est continue,
comme somme d’une série normalement convergente de fonctions continues. Du corol-

laire 12.7, il existe une suite n; /" o telle que

lim Z cr(f) e*® = f(x) pour presque tout z € R. (12.57)
J—0

k=—n;

Nous avons donc S(f) = f presque partout d’oti, par continuité de S(f) et f, S(f) = f
partout (justifier). CQFD
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12.5 Pour aller plus loin

Les résultats des sections précédentes, notamment la comparaison entre le
théoreme de Fejér 12.15 et le théoreme de Dirichlet 12.13, montrent que la « bonne »
notion de convergence des séries de Fourier est la convergence en moyenne : il est
plus approprié d’approcher f par T,,(f) plutot que par S,(f). Ce phénomene est éga-
lement illustré par le phénomene de Gibbs, instabilité numérique associée a S,,(f)
(mais pas a T,,(f)) étudiée en analyse numérique. (Voir, dans Hewitt et Hewitt
[13], la présentation historique des phénomenes de ce type.)

Néanmoins, I'étude du comportement de la suite (S,,(f)), a été I'un des mo-
teurs importants du développement de 1’analyse entre 1850 et 1970. Signalons,
sans preuve, quelques résultats marquants.

12.35 Théoreme (Critere de Jordan). Si f : [0, 27[— R est monotone (et étendue
par 2r-périodicité a R), alors

f(xot+) + f(wo—)

Sulf) o) — HE

quand n — o0, Yz € R. o

12.36 Théoréeme (Théoréme de du Bois-Reymond). Il existe une fonction continue
et 2r-périodique f telle que S,,(f)(0) 4 f(0) quand n — 0. o

12.37 Théoreme (Théoreme de M. Riesz). Soient 1 < p < w et f € £ =
2?(]0,2x[). Nous avons S,,(f) — f dans .£? quand n — . o

12.38 Théoréme (Théoreme de Kolmogorov). Il existe une fonction f € £! = £*
(]0,27[) telle que la suite (S,,(f)(xo)) diverge, V z, € [0, 27]. o

Enfin, une amélioration remarquable du corollaire 12.7.

12.39 Théoreme (Théoreme de Carleson-Hunt). Soient 1 < p < w et f €
P = £7(]0,2x[). Nous avons S,,(f) — f p. p- sur [0,27] quand n — o0}

Pour une description historique de ces problemes, une bonne référence est
Edwards [6, Chapitre 10], qui contient aussi des (ébauches de) démonstrations
de ces résultats, sauf du dernier. La preuve du dernier théoreme est longue et
difficile, méme si elle a été beaucoup simplifiée entre 1973 et 2000; voir Grafakos
[9, Chapitre 11].

t. Cette propriété négative est vraie pour «la plupart » des fonctions continues, mais donner
un sens précis a « la plupart » nécessite un formalisme qui ne sera pas développé ici.

1. Le cas p = 2 est d1 a Carleson, qui conjectura que le cas général 1 < p < o devait se faire
de maniere analogue. Une preuve pour 1 < p < o fut trouvée ultérieurement par Hunt.
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Chapitre 13

Transformée de Fourier

13.0 Apercu

Nous étudierons dans ce chapitre, qui est un pendant « continu » du chapitre
12, les propriétés basiques de la transformée de Fourier.

Les fonctions considérées sont définies sur R™ et a valeurs complexes; elles
sont supposées Lebesgue mesurables et/ou intégrables (par rapport a la tribu et a

la mesure de Lebesgue). Rappelons la définition de la transformée de Fourier si
feZ = LYR) =L (R,C):

76) = 7)) = f e f(x) di, V€ € R. (13.1)

Notons que si f = g p. p., alors f = gen tout point. Nous pouvons donc définir

f pour une classe f € L'(R), le résultat étant une fonction définie de maniere
unique en tout point de R. Pour cette méme raison, nous allons faire les calculs
de transformée de Fourier sur des fonctions et non pas sur des classes.

La définition et les remarques précédentes s’étendent aux fonctions définies
sur R". Si f € Z(R"), alors

&) = 7)) = f e~ f() di, V€ € RY, (13.2)

Rn
Ici, - désigne le produit scalaire standard dans R" : - § = 37, 2.

Le début de la section 13.1 est dédié aux propriétés fondamentales de la trans-
formée de Fourier, par exemple au lien entre f’ et f (proposition 13.4) ou au calcul
de f # g (proposition 13.1 c)).

Le résultat fondamental de cette section est la formule d’inversion (théoreme
13.7), qui permet de calculer f en fonction de f. C’est ’analogue du théoréme de
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Dirichlet 12.13 qui permet de calculer f en fonction des coefficients de Fourier
cn(f), neZ.

La section 13.2 est dédiée a la transformée de Fourier dans .#2. La définition
de celle-ci est problématique : une fonction de -£? n’est pas nécessairement in-
tégrable, et dans ce cas l'intégrale de (13.1) n’est pas définie. C’est le théoréme de
Plancherel 13.19 qui permet de donner un sens a la transformée de Fourier pour
une telle fonction. Celle-ci n’est pas définie comme une intégrale, mais comme
une (classe d’équivalence de) limite d’intégrales, en approchant f dans .£? par
des fonctions de .Z! n Z2. C’est 1'un des résultats les plus subtils de ce cours.

Le champ des applications de la transformée de Fourier (et des séries des Fou-
rier) est immense, et ne peut pas étre détaillé ici. A titre d’illustration, nous présen-
tons dans la section 13.3 une application potentielle de la transformée de Fourier
a la résolution d’une équation aux dérivées partielles.

Compétences minimales attendues.

a) Savoir calculer les transformées de Fourier usuelles.

b) Savoir utiliser les propriétés fondamentales de la transformée de Fourier dans
L0

¢) Savoir utiliser le théoréeme d’inversion de Fourier.

d) Comprendre la définition de la transformée de Fourier dans L. o

Certaines propriétés de la transformée de Fourier s’obtiennent par des inté-
grations par parties et/ou par « récurrence » sur les dérivées partielles. Les deux
deviennent plus compliquée dans R" avec n > 2; c’est pourquoi parfois les ar-
guments sont détaillés uniquement en dimension un. Il est instructif d’essayer
d’adapter ces arguments aux dimensions supérieures.

13.1 Transformée de Fourier dans L!

Nous travaillons dans L' := L'(R"). Comme expliqué dans l'introduction, la
transformée de Fourier se calcule pour des fonctions f € £!, mais le résultat ne
dépend que dela classe [ f] de f dans L'. Ce qui explique les énoncés donnés pour
des classes, accompagnés de preuves faites pour des fonctions. Il conviendra de
vérifier, dans chaque énoncé (exemple typique : la proposition 13.3) que les hy-
potheses faites et les conclusions sont « robustes », au sens ou elle ne dépendent
pas du choix d’un représentant dans une classe de L.

Voici les premiéres propriétés fondamentales de la transformée de Fourier
dans L.
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13.1 Proposition. Soit f € L. Nous avons

a) ]?est continue et

~

IFO < [fller, VEeR™ (13.3)

b) (Lemme de Riemann-Lebesgue)

lim f(£) = 0. (13.4)

frg=13 (13.5)
et
f©g©de=| f(z)§()d. o (13.6)
R™ Rn
13.2 Notations.
a) « désigne un multi-indice o = (o, ..., o) € N

b) La longueur de avest |af := 77, |-
) SizeChetae N, 2% := (1)* - (x,)*".
d) Si f estde classe C!, alors 0% f := (01)* - - - (0p)" f. o

Si f est «mieux que L' », alors la transformée de Fourier a quelques propriétés
supplémentaires.

13.3 Proposition. Soient f € L'(R) et k € N*. Si J l2|* | f(x)| dz < o, alors feck
R
et (&) = () f(€),V0 < L <k, V¢
Plus généralement, soient f € L'(R") et k € N*. Si f |z|* | f ()| dx < oo, alors
R?’L

FeChetoof (&) = (i) f(€), Yo tel que || < k. o

—

13.4 Proposition. Si f € C*(R") etsi 0°f € £,V atel que |a| < k, alors 0vf(£) =
() f(§), Vatel que |af < k. o

Le résultat suivant est important a plusieurs titres. D’une part, il donne un
exemple concret de fonctions f telles que f soit intégrable; cette propriété, qui est
plus forte que la conclusion lim¢|_, f(& ) = 0 du lemme de Riemann-Lebesgue,
nous permet d’appliquer la formule d’inversion de Fourier (voir le théoréeme
13.7 et le corollaire 13.9). D’autre part, cette proposition est le résultat clé dans
la preuve du théoreme de Plancherel 13.19.
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13.5 Proposition. Si f € C"*1(R"), alors f € C*(R™) et f est intégrable. o

Nous arrivons enfin au résultat le plus important de cette section, la formule
d’inversion.

~

13.6 Notation. f(x) := f(—x). o

13.7 Théoreme (Formule d’inversion de la transformée de Fourier). Soit f €
ZHR").

a) Supposons f continue et ]?inte’gmble. Nous avons

fla) =@ [ o= Feyde i

~
A~ A~
~ ~

= 2m) " f(—z) = 27) " f(x), Yz e R™.
b) Supposons finte’gmble. Nous avons

fla) =@m™ [ e=tfe)de i

~
~ ~
~ -~

=2m) " f(—x) = (2m) " f(z) p. p- dans R".

13.8 Corollaire. La transformée de Fourier .% : L' — L® est injective. o

En combinant le théoreme 13.7 et la proposition 13.5, nous obtenons le résultat
suivant.

13.9 Corollaire. Soit f € C""!(R"). Nous avons

flz) = (@2m)™ f e € f(€)dE, Yz e R™ (13.9)

n

Exercices

L’exercice suivant sera utilisé dans la preuve de la proposition 13.3.
13.10 Exercice. Montrer que

|z%| < |z|l®l, Yz e R”, Va € N o (13.10)

L’exercice suivant sera utilisé dans la preuve de la proposition 13.4.

13.11 Exercice.
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a) Soit g : R — R continue et intégrable. Montrer qu’il existe une suite R; — o telle que
19(R))| + l9(~Ry)| — 0 quand n — o,

De maniere équivalente, lim inf (|g(x)| + |g(—x)]) = 0.
R—0 |z|>R

b) Soit g : R" — R continue et intégrable, avec n > 2. Donner un analogue de a) faisant
intervenir des intégrales sur les spheres {z € R"; |z = R;}. o

13.12 Exercice. Nous nous proposons ici de montrer (pour simplifier, uniquement pour
n = 1) que, pour k£ > 2, il y a trop d’hypotheses dans la proposition 13.4.
a) Prenons d’abord k = 2. Soit f € C?(R).
(i) Exprimer f(xz + 1) en fonction de f(x), f/(x) et f” en utilisant la formule de
Taylor a l’ordre deux sous forme intégrale au point x. En déduire une formule
pour f'(z).
(ii) Montrer qu’il existe une constante C' < oo telle que ||f'|;1 < C(||fllzr + | /"] 11)-
(iii) En déduire que, pour n = 1 et k = 2, la conclusion de la proposition peut s’obte-
nir sous les hypothéses plus faibles f € C?, f, " € L.
b) Soit maintenant k > 3. Soit f € C*(R).
(i) Bxprimer f(z+1), f(z+2),..., f(z+k—1)enfonctionde f(z), f'(z),..., f* D (z)
et f*) en utilisant la formule de Taylor a 'ordre k sous forme intégrale au point
. En déduire des formules pour f'(z),..., f*=D(z).

(ii) Montrer qu’il existe une constante C' < o telle que ||f/|[z1 + -+ + [f* V| <
Ol e + 1F P L)

(iif) En déduire que, pour n = 1 et k > 2, la conclusion de la proposition peut s’obte-
nir sous les hypothéses plus faibles f € C¥, f, f*) e £, o

L’exercice suivant aborde des propriétés basiques, utiles dans le calcul de
transformées de Fourier, et dans la preuve du théoreme 13.7. Il convient de justi-
tier le fait que, dans les preuves, on peut travailler avec des fonctions (au lieu de
classes).

13.13 Exercice.

a) Soient f € L*(R") et e > 0. Rappelons que f-(z) = e f(x/e), Vo € R™
(i) Montrer que f- € L'.
(ii) Montrer que ﬁ(f) = f(a §).

(iii) Montrer que 172 < | fl 2, Ve >0,VEe R

b) Soient f € L'(R") et h € R™. Rappelons que 7, f(z) = f(x — h),Vz € R".
(i) Montrer que 7, f € L'.
(ii) Montrer que 7{;3(5) = e ¢ f(f), VEeR™
c) Soit f € LY(R").
(i) Montrer que f € L.
(ii) Montrer que ?(5) = ?(—f), VEeR™
d) Soit f € L'(R™). Rappelons que f(z) = f(—z), Vx € R™,
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(i) Montrer que fv’ e L.

~ ~ ~

(ii) Montrer que f(§) = f(—¢€) = f(§), Ve R™ o

Nous présentons ici un calcul fondamental : la transformée de Fourier des
« gaussiennes » (centrées).
13.14 Exercice.
a) Soit a > 0. Soit g* : R — R, ¢%(x) := e’”z, x € R. Nous nous proposons de calculer
h® .= ;E
Rappelons que f e dx = /2,
R

(i) Montrer que g% € £* et calculer h%(0).
(ii) Montrer que h® € C! et donner la formule de (h%)'.

§n(€)

(iii) En utilisant une intégration par parties, montrer que (h®)'(¢) = o Indi-
a
/
cation : ze”*/% = —1/(2a) <e“w2) .
(iv) Obtenir la formule
— N2 2044
e_“IQ(f) _ (E) €7/ (4a)
Sous une forme plus compacte, nous avons
ey (T2 1/4a)
7= (2) " g/
b) Plus généralement, soit ¢%(z) = e~ |‘”|2, x € R™. Montrer que
~ T\ /2
7€ = (5)" g/, va> 0, vee R o

13.15 Exercice. Dans R, soit f := x(o,1]- Montrer que f € £ ! mais que f ¢ ' En déduire
que la formule d’inversion (13.8) ne s’applique pas a foutes les fonctions de .#. o

Voici trois calculs classiques de transformées de Fourier.

13.16 Exercice.
a) Soit f : R — R, f(z) := e~ |, V2 € R. Calculer 7.
1
b) Soitg: R — R, g(v) := ——, Yz € R. Calculer g. o

1+z
13.17 Exercice. Soit A > 0. Soit
o0
flx) = f e M (4m )2 e 1P/ gr v g e R™
0
a) Montrer que f € Z(R").
b) Calculer . o
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Démonstrations

Démonstration de la proposition 13.1.

a) Pour montrer la continuité de f, nous appliquons le théoreme 7.10 a 1a fonction (z, §) —
e~@€ f(x), en utilisant I'identité [e =¥ f(z)| = | f(2)|.

Pour (13.3), notons que

~

Fel< [ le =< )l de = 1l
b) Le raisonnement se fait par densité, en partant de g € CZ(R"™) et en utilisant (13.3)
(justifier cette démarche, en adaptant la fin de la preuve du lemme 12.9).

Soit g € C(R™). Nous prenons sur R” la norme | |. Soit R < o tel que g(z) = 0 si
|20 = R.

Soit £ € R™\{0}. Soit j = j(&) tel que |¢]|c = |&;]| > 0. Sans perte de généralité, nous
supposons j = 1.

Nous écrivons un point de R" sous la forme z = (z1,2’), avec 2’ € R"~L. Le théoréeme
de Fubini donne (justifier)

R
1] ([ emogoayan ) e a
[-R.R"~1 \J-R

R
- 1J (J e 1810, g (a1, 2) dxl) e da! = L319(5):
1&1 J—r,Rp—1 \J-R =

d’ou [g(&)] = (1/[€lle0) [Vgl] L1 — 0 quand [¢] — co.
c) L'inégalité de Young donne f * g € L'. En utilisant le fait que

f (@ — )] l9(y)| dedy < o
R xR™

(vérifier), le théoreme de Fubini et un changement affine de variables permettent de
justifier le calcul suivant (détailler)

Fa0) = [ e=tregwar— [ e ([ fa-noway) as

_ Jn Une—“'ff(:vy) dl‘) 9(y) dy

— Jn <J ) e UTTVE £z — ) d:ﬁ) e Y g(y)dy

~

-[ ( [ s dz) e~ g(y) dy = F(€)(6).

L’identité (13.6) est une application directe du théoréeme de Fubini, dont ’application
est justifiée par le fait que

[ ls@lg()] dad <
R™ xR™

(détailler). CQFD
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Démonstration de la proposition13.3. Notons que pour 1 < ¢ < k nous avons ¢ < 1 + t¥,
¥t > 0.' En combinant cette inégalité avec I'inégalité (13.10), nous obtenons que la fonc-
tion z — x“ f(z) est intégrable si |a| < k. Ceci permet d’appliquer le corollaire 7.15 et
d’obtenir les formules de 1"énoncé (justifier). CQFD

Démonstration de la proposition 13.4. Nous considérons uniquement le cas n = 1, qui repose
sur I'exercice 13.11 a). La preuve pour n > 2 est similaire et est basée sur la partie b) de
I'exercice.

La preuve se fait par récurrence sur k; le point essentiel est le passage de k = 0 a
k = 1. Soit (R;); comme dans l’exercice 13.11 a) avec g = f. Nous avons (justifier)

R .

?({) = JR e e f(x)dr = lim ’ e e f(x)dx

Jj— —R;

R; R
= lim [e*”“"5 f(x)] + zfj e flx)dx | = z&f e % f(z) du,
Jj—oo —R; —R; R

qui est I'égalité désirée. CQFD
Démonstration de la proposition 13.5. Sous ’hypothese plus faible f € C.(R"), nous avons

f 2] ()| dz < o0, ¥k e N
Rn

(vérifier), d’ol1 f e C” (proposition 13.3).

Si|a] < n+1,alors 0°f € L' (vérifier). La proposition 13.4 et 'inégalité (13.3) im-
pliquent

~

1€ [ F(€)] < Cay V]l <n+1,¥VEeR™

En prenant o := (0,0,...,0), & := (n+ 1,0,...,0), a := (0,n + 1,0,...,0),...,a :=
(0,0,...,n + 1) et en sommant les inégalités obtenues, nous obtenons

(1+ el 17 )] < (1 +3) fj\”“) ()] < C <o, VER™,
J
d’ot, pour C’ < oo convenable,

VEeR™

~ C '’
< < ,
O = T = T g

(justifier).

Par comparaison avec les intégrales de référence, f € . CQFD

1. Montrer cette inégalité en examinantlescas 0 <t < lett > 1.
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Démonstration du théoréme 13.7.

Etape 1. Preuve de (13.7) pour x = 0 si, de plus, f est bornée. 1'identité (13.6) avec g :=
(2m)~" g, ot g%(z) := e~ %**, 4 > 0, z € R", donne (grace a 'exercice 13.14)

@r) | f&) e ag = (1/(ara))? | f(z) e lEP/E) gy (13.11)
Rn Rn
Z:\’Ia I:‘T]a

La domination

F© e <1f©) Yaz 0, vee R,
I'hypothese f € £1 etle théoreme 7.10 donnent (justifier)

~

lmfo= ()" | (o) de. (13.12)

Pour étudier J,, posons ¢ (x) := (1/(47r))”/26_‘x|2/4, de sorte que 1 € £ et =1
Rn

(vérifier). Nous avons J, = f(x)%,1/2(x) dz. Le changement de variables z = ®(y) :=
Rn
a'/? y donne (vérifier)
Jo=| J@Py)v)dy— | F0)%(y)dy = J(0) quand a 0. (13.13)

Le passage a la limite dans (13.13) se fait en utilisant le théoreme 7.10 et repose sur la
continuité de f et sur la domination

[F(@y) ()] < (sup [f)) [¢(y)], Ya =0, VyeR"
(vérifier).
Nous concluons la premiere étape grace a (13.11)—(13.13).

Etape 2. Preuve de (13.7) si, de plus, f est bornée. Soit k := 7_, f,* dont la transformée de

Fourier est £ — "¢ ]? (&) (exercice 13.13 b)). La fonction k vérifie les hypothéses assumées
al’étape 1 (vérifier), d’ou

Cry ™ | e flede = em | RO dE = KO = f(o),

ce qui équivaut a (13.7) pour un = quelconque.

Etape 3. Preuve de (13.8). Soit p un noyau régularisant. Soit f¢ := f # p.. Nous avons
f¢ € C* (proposition 11.7), f¢ est intégrable (ceci découle de I'inégalité de Young avec
p = 1 et g = 1) et bornée (conséquence de I'inégalité de Young avec p = 1 et ¢ = 0,

t. Pour la notation v,1/2, voir la formule (11.9).
1. Voir la notation 11.22.
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en utilisant le fait que p. € £®). Par ailleurs, nous avons ﬁ =7 pe (proposition 13.1).
Comme [pz(¢)| < 1 (exercice 13.13), nous obtenons que f¢ € .#!. Grace a la deuxieme

étape, il s’ensuit que
frpela) = @n)" | e P de
—— n
=f(z)

~ (13.14)
- @2m) f (e € e, Ve > 0, Vo e B

=L (x)
Nous allons maintenant faire ¢ — 0 dans (13.14). Grace a l'exercice 13.13 a) (appliqué a
p), au fait que p(0) = J p = letal’hypothese f e #1, nous obtenons

lim Le(z) = (2m) ™" f e € f(€)dE, Va e R, (13.15)

n

Par ailleurs, nous avons f¢ — f dans #! quand ¢ — 0 (théoréme 11.9). 1l s’ensuit
qu’il existe une suite ; — 0 et un ensemble négligeable A — R" avec f% (z) — f(x)
quand j — o, Vz € R™\ A (corollaire 10.29). En combinant ce fait avec (13.14) et (13.15),
nous obtenons (13.8).

Etape 4. Preuve de (13.7). De (13.8), I'égalité (13.7) est vraie p. p. Le membre de droite de
(13.7) est continu (car la transformée de Fourier de f 'est, grace a la proposition 13.1).
Nous avons donc I'égalité p. p. de deux fonctions continues sur R”, ce qui revient a une
égalité partout (exercice 4.39 b)) et implique (13.7). CQFD

Démonstration du corollaire13.8. Si f € Z1(R") et f = 0, alors f = 0 v,-p. p. (théoreme 13.7
b)) et donc la classe de f est nulle. CQFD

13.2 Transformée de Fourier dans 2

Dans cette section, nous allons donner un sens naturel a fsi f e L2 (théoréeme de
Plancherel 13.19). La clé est I'identité (13.16), qui repose sur la formule d’inversion
de Fourier (théoréme 13.7, et plus spécifiquement le corollaire 13.9).

13.18 Proposition. Soient f € L'(R") et g € C"™!(R"). Nous avons

J©u©a - | f@ge)d o (13.16)

13.19 Théoreme (Théoreme de Plancherel).
a) Soit f € L' n L? = LY(R") n LA(R™). Alors f € L2 et || f]z2 = (27)™2 | f] 2.
b) L'application L' n L? 5 f — Z(f) = F € L? admet une et une seule
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extension continue de L? vers L2.
Par abus de notation, cette extension est encore notée .#, et nous posons
Fi=F(f),VfelL?

c) Z : L* — L? ales propriétés suivantes :

O | FOFEd=n)" | f@)ga)de,Vfige L.

@) [fllzz = @m)"2 | fllz2, ¥ f € L2
(iii) .#, # ! sont linéaires, continus et bijectifs .

(iv) f = (27r)_"]/?\, Vfel?

13.20 Remarque.

a) Si f € L? nous n'avons pas nécessairement f € L'.YSi f € L*\L!, la for-
mule f &) = J e~ f(x) dx n’a pas de sens et ne définit pas 7.
R™
b) Néanmoins, le théoréeme 13.19 permet de donner une définition naturelle de

f pour f € L?, de la maniére suivante.

(i) Nous prenons une suite (f;); telle que f; € L' n L?,V jet f; — f dans
L?* quand j — o0} Alors la suite (f;); converge dans .£2. Si sa limite
est g, alors la classe de g ne dépend pas du choix de la suite, et par
définition nous posons f := [g]. (Avec un abus de notation, ]? =gq.)

(ii) Le long d’une sous-suite (fjk)k , hous avons ?J\k — g p. p., et donc
f(§) = limgo0 5, (€) P- P-

(iii) Considérons le choix particulier f; = fxpo; ), j € N*. Alors f; €
L'~ L? et f; —» f dans L? quand j — oo (vérifier). Il s’ensuit que,
pour tout f € L?, il existe une suite d’entiers j, — o (en principe
dépendante de f) telle que

7 (&) = lim et f(x) dz, pour presque tout £ e R". o
= J B0

Exercices

13.21 Exercice. Calculer les transformées de Fourier des fonctions suivantes.
a) f:R >R, f(x):=(sgn z)e 1, vz e R
1
b) g: R —C, = ——,VrxeR. o
) g g() oA L

t. Prendre par exemplen = let f(z) =1/(1 + |z|), Vz € R.
t. Par exemple, nous pouvons considérer une suite (f;); = C*(R") telle que f; — f dans L?
quand j — o (voir le théoreme 11.11). Alors nous avons également f; € L', V j (pourquoi?).
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Démonstrations

Démonstration de la proposition 13.18. Notons que f, § € L' et f, g € L (justifier). Grace a

I'inégalité de Holder (cas p = 1, ¢ = o), nous obtenons f g, f g € L. 1l s’ensuit que les
deux membres de (13.16) sont donnés par des intégrales convergentes.

En utilisant la formule (13.7) et le corollaire 13.9, nous obtenons (justifier 1'utilisation

du théoréeme de Fubini)

e [ swawae= [ s ([ evcaeae) i

s (00
f dr | g

d’ot1 la conclusion. CQFD

Démonstration du théoréme 13.19.

a)

b)

La formule (13.16) s’applique en particulier si f € C**1 := C?*1(R™). En prenant
g = f, nous obtenons

12 = @m)™2 | flL2, ¥ f € CIHL. (13.17)

Soit f € L' n L% Alors il existe une suite (g;); = CX(R") telle que g; — f dans L' et
dans L? quand j — oo (exercice 11.17). De (13.17), nous avons

135 — Gkl 2 = (2m)™? | gj — gr|lz2 — 0 quand j, k — 0,

ce qui montre que la suite (g;); est de Cauchy dans L% Nous obtenons !’existence
d’une fonction (ou plutdt classe) h € L? telle que g; — h dans L? (théoréme 10.28).
Quitte a passer a une sous-suite, nous pouvons également supposer que g; — h p. p.
(corollaire 10.29).

Par ailleurs, nous avons g; — f dans L, ce qui entraine g; — ? uniformément (inéga-
lité (13.3)).

La limite p. p. d’une suite étant unique p-p- (justifier), nous en déduisons que f=h
p. p., d’ott en particulier f € L2 et §j — f dans L2,

En appliquant (13.17) a g; et en passant a la limite sur j, nous obtenons la validité de
(13.17) pour tout f € L' n L? (vérifier).

Rappelons le résultat suivant de topologie. Soient X,Y des espaces de Banach, et Z
un sous-espace vectoriel de X. Soit 7" : Z — Y une application linéaire et continue. Si
Z est dense dans X, alors T' admet une et une seule extension continue T:X —>Y.
De plus, T est linéaire.
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Appliquons cecia X =Y = L?, Z := L' n L? et T := Z. Z contient C*(R"), donc
Z est dense dans X (justifier). D’apres le point a), T' est continu, de norme (27)™2. La
conclusion de b) découle de ce qui précede (justifier).
c) (i) Légalité est vraie si f,g € CX(R") (proposition 13.18). Soient f,g € L? et des
suites (f;);,(g;); € CL(R") telles que f; — f et gj — g dans L? quand j — oo.
Nous avons

CIGESC0k ‘f f3(x) g (@) dar, ¥ j. (13.18)

Si <, > est le produit scalaire complexe dans L?, alors (13.18) équivaut a

< [5.3 >= @0)" < fi.9; >, V. (13.19)

Pour obtenir c) (i), nous passons a la limite j — oo dans (13.19). Nous avons par
exemple

<fAj7gAj>—<?,§>‘
:’<f/\j,gf—\g>+<f/—\f §>}

)< fi:9i—9 >( ’< fi— g>’

<[,

=@2m)" [ fill L2 lgj — 9l
+@m)" | f5 = flig2 lglg: — 0 quand j — oo.

L2 191z

|5 =5l,2+ |5 =7

Le passage a la limite dans le membre de droite de (13.19) se justifie de maniere
similaire. Nous obtenons la validité de (i) pour tout f, g € L.

(ii) Il suffit de prendre g = f dans (i).

(iii) Montrons d’abord que l'image de .# est fermée dans L2 En effet, soit (h;); =

7 (L?) une suite qui converge vers un h € L2. Soit f; € L2 tel que f; = h;. De (i),
nous avons

Ifi = fallze = @7)™™2 |h; — hy| 2 — 0 quand j, k — oo.

Nous obtenons que ( f;); est une suite de Cauchy dans L? et donc il existe f € L?
tel que f; — f dans L? quand j — @ (theoreme 10.28). Il s’ensuit que h; — f
dans L? quand j — o (justifier), d’ot1 f = h et donc h € .Z(L?).

Par ailleurs, I'image de .# contient C°(R"). En effet, si ¢ € CZ(R"™), alors nous
avons d’une part (justifier)

9=3=F(2n) " Z()).

t. Nous donnons une preuve directe de ce fait, mais nous aurions pu invoquer le résultat plus
général suivant. Soit 7' : X — Y linéaire et continu, avec X espace de Banach et Y espace normé.
S’il existe une constante C' > 0 telle que (*) |Tz||y = C|z|x, Va € X, alors I'image de T est
fermée. Dans notre cas, X = Y := L?, T := Z, et nous avons |.Z(f)|zz = (27)"? | f|z2, ¥V f € L?,
ce qui montre a la fois que .# est continu et que (*) est vérifiée.
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D’autre part, nous avons .7 € L' n L*; ceci découle des propositions 13.1 a)
et 13.5. Il s’ensuit que .#§ € L? (utiliser I’exercice 10.24). Donc, comme affirmé,
nous avons g € .Z (L?),V g € CX(R").
De ce qui précede, .7 (L?) est fermé dans L? et contient C*°(R™), qui est dense
dans L? (théoreme 11.11). Il s’ensuit que .7 (L?) = L?, d’ou .F est surjectif.
La propriété c) (ii) montre que .# est injectif. Donc .% est bijectif.
F étant bijectif, la propriété c) (i) donne |.Z =1 (f)|| 2 = (27) 2| f| 12 (vérifier).
En particulier, .# —1 est continu.

(iv) se démontre de la maniére suivante. La formule est vraie si f € C(R"). De
ce qui précéde, chacun des membres de I'égalité est continu pour la topologie

de L2. Par densité de C*(R™) dans L?, la formule reste vraie pour tout f € L?
(justifier). CQFD

13.3 Pour aller plus loin

La transformée de Fourier a d’innombrables applications, par exemple en
théorie du signal, traitement d’images et équations aux dérivées partielles. Pour
expliquer le role joué par la transformée de Fourier dans 1’étude des équations au
dérivées partielles, partons d"un calcul formel, qui montre que la résolution d"une
équation différentielle fait apparaitre un produit de convolution et nécessite de
pouvoir calculer une transformée de Fourier inverse.

Considérons 1"équation
u— Au = f dans R", (13.20)
*u *u *u
i A est le laplacien, Au := .
ou A est le laplacien, Au ) + ) + FENE

Si nous avons le droit de prendre la transformée de Fourier dans (13.20) et si
la proposition 13.4 s’applique, alors (13.20) devient

(1+ € a(e) = F(€),vEeRY, (13.21)

ce qui donne

_ 1 .
u(§) = ngf(f)yvf € R". (13.22)

Admettons qu’il existe une fonction K telle que

~ 1

K(&) = rpreid V¢ e RS (13.23)

t. A nouveau, nous aurions pu invoquer un résultat plus général : si T : X — Y est linéaire,
continu et bijectif, avec X, Y espaces de Banach, alors 7! est continu.
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Alors (13.21) et (13.22) donnent

~

i(g) = K(€) f(€),vE e R™ (13.24)

En comparant (13.21) a (13.6) et en supposant que l'on puisse identifier une
fonction a partir de sa transformée de Fourier," nous obtenons, du moins formel-
lement, 1’égalité

u=K:+f. (13.25)

Nous voyons sur cet exemple le besoin de pouvoir définir la transformée de
Fourier directe ou inverse dans un cadre, le plus large possible, qui préserve les
propriétés de la transformée de Fourier obtenues dans la section 13.1. Le cadre
naturel pour de tels résultats est celui des distributions tempérées introduites par
Schwartz. Pour une introduction rapide et efficace a cette théorie et a quelques
applications aux équations aux dérivées partielles, voir par exemple Hérmander
[14, Chapitre VII].

1. K existe bien! Utiliser I'exercice 13.17 pour le montrer.
t. Ceci est le cas si le corollaire 13.8 ou le théoreme de Plancherel s’appliquent.
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Chapitre 14

Introduction aux espaces de Hilbert

14.0 Apercu

Dans ce mini-chapitre, marginal par rapport au sujet principal du cours, nous
présentons quelques propriétés basiques des espaces de Hilbert, c’est-a-dire des es-
paces de Banach H dont la norme || || est induite par un produit scalaire < , >.
Pour simplifier la lecture, nous considérons systématiquement un espace de Hil-
bert réel; le passage aux espaces complexes n’apporte pas de difficulté supplé-
mentaire.

En dimension finie, les objets fondamentaux qui permettent de mener des
calculs explicites (projection orthogonale sur un sous-espace, calcul de I’adjoint,
diagonalisation des opérateurs auto-adjoints, ...) sont les bases orthonormées. Le
passage aux espaces de dimension (algébrique) infinie pose de nombreux pro-
blémes : par exemple, un opérateur auto-adjoint n’est plus nécessairement dia-
gonalisable. Nous établissons ici trois résultats fondamentaux qui ne nous dé-
paysent pas trop et sont des pendants « infinis » de résultats rencontrés en di-
mension finie :

1. L'existence de la projection orthogonale sur un sous-espace vectoriel fermé de

H (ou, plus généralement, sur une partie convexe fermée non-vide de H);

2. L'existence d'une base hilbertienne ('analogue d’une base orthonormée en

dimension infinie) dans les espaces séparables;

3. La caractérisation des formes linéaires et continues sur H (théoreme de Riesz
14.19).

Compétences minimales attendues.

a) Savoir utiliser I'inégalité de Bessel et I'égalité de Parseval.

b) Savoir étudier et manipuler des séries orthogonales.

c) Savoir utiliser les propriétés de 'orthogonal.

d) Savoir utiliser le théoreme de Riesz 14.19. o
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14.1 Projection sur un convexe fermé

14.1 Proposition. Soit C' une partie convexe, fermée et non-vide de H. Pour
tout x € H, il existe un et un seul y € C tel que

lz —y|| < ||z — 2|, VzeC. (14.1)

14.2 Définition. Le point y ci-dessus est la projection orthogonale de = sur C, et
on note y = pc(z).

La résultat suivant donne une caractérisation utile de la projection orthogo-
nale.

14.3 Proposition. Avec z, C' comme ci-dessus, nous avons

y=poc(zr) < [yeCet <x—y,z—y><0,VzeC]. (14.2)

Dans le cas particulier d'un sous-espace vectoriel fermé F' de H, nous
avons

y=pr(z) < [yeFet <zxz—y,w>=0, Vwe F. (14.3)

14.4 Définition. Soit F' une partie non-vide de H. L'orthogonal de F est

Ft ={yeH;<z,y>=0 VYaeF} (14.4)

On vérifie aisément que F* est un sous-espace vectoriel fermé de H (exercice 14.9

a)).
14.5 Théoréme. Soit F' un sous-espace fermé de H. Alors F @ F+ = H.

14.6 Corollaire. a) Si F est un sous-espace fermé de H, (FL)" = F.

b) Si A est une partie non-vide de H, (A+)" = Vect (A). o
14.7 Corollaire. Soit F' un sous-espace fermé non-nul de H. Alors py est un pro-
jecteur linéaire continu de norme 1. o
Exercices

Cet exercice prépare la preuve de la proposition 14.3.
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14.8 Exercice. Soit f : [0,1] — R une fonction convexe dérivable. Montrer 1'équivalence
des propriétés suivantes :

1. 0 est un point de minimum de f.
2. f(0) = 0. o

Cet exercice prépare la preuve du corollaire 14.6.

14.9 Exercice. Soit F' une partie non-vide de H. Montrer que :
a) F'* est un sous-espace vectoriel fermé de H.
o=l
b) Vect(F) = F*. o
Démonstrations

Démonstration de la proposition 14.1. Etape 1. Existence de la projection. Soit
d:=d(z,C) =inf{|lz — z||; z€ C}.

Soit (y;) < C telle que ||z — y;| — d. L'identité du parallélogramme donne (vérifier)

1 1 .
(i — w)/2)) = Sl — yil? + Sl — uel® =l = (y; + w) /21, V3. k. (14.5)

C étant convexe, nous avons (y; +yx)/2 € C,V j, k, d’ot, en utilisant (14.5) et la définition
ded,

1 1 .
Iy — wr)/2]* < §||:v —yil* + §va —yi|* —d — 0 quand j, k — oo. (14.6)

De (14.6), nous avons lim; . (y; — yx) = 0, et donc (y;) est une suite de Cauchy de
C. H étant complet et C fermé, (y;) converge vers un y € C. Par ailleurs,

|z =yl =lim |z —y;|| = d < Jlz — 2], V2 € C,

et donc y a la propriété de I’énoncé.

Etape 2. Unicité de la projection. En admettant provisoirement la proposition 14.3, si y1, yo
sont comme dans 1"énoncé, nous avons

<z —y1,Yy2 —y1 >=<0,

<z—y2,y —y2><0.
En additionnant les deux inégalités, nous obtenons [|y2 — y1 H2 <0,dotty; = yo. CQFD

Démonstration de la proposition14.3. « = » Soit z € C. Pour t € [0, 1], nous avons (1 — t)y +
tz € C (par convexité de C') et donc (par définition de la projection)

ft) i=llz — (1= t)y — t2|* > |z — y|* = £(0), YVt e [0,1]. (14.7)
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/ étant convexe et dérivable (justifier), (14.7) équivaut a f/(0) > 0 (voir I’exercice 14.8).
Or, f/(0) =2 <z —y,y — z >, d’ou la conclusion.

« <= » Avec les notations ci-dessus, nous avons f/(0) > 0, et donc f(1) > f(0), ce qui
revienta ||z — z|| > |z —y|,Vz € C.

Le cas particulier d’un sous-espace. « = » Soit w € F. En prenant, dans (14.2), z := y+w €
F, respectivement z := y — w € F, nous obtenons < z — y,w >< 0, respectivement
<z-—y,—w><0,dou<z—y,w>=0.

« <= »Soitze F.Alors<z —y,z—y >=0,carz —y € F. CQFD

Démonstration du théoréme 14.5. F- est un sous-espace vectoriel de H (exercice 14.9 a)). Par
ailleurs, siz € F n Ft, alors < z,x >= 0, et donc = = 0. Enfin, soient 2 € H ety := pp(z).
La proposition 14.3 donne x — y € F*, etdoncz =y + (v —y) e F + F*+. CQFD

Démonstration du corollaire 14.6. a) F- est un sous-espace fermé de H (exercice 14.9 a)), d’oi1,

en appliquant deux fois le théoréme 14.5, F @ '+ = Het F+ @ (FL)L = H. Par ailleurs,
nous avons clairement F' ¢ (FL)l, d’ou l'égalité F = (FL)l.

b) L'exercice 14.9 b) donne A+ = Vect (A)L. Comme l'adhérence d'un sous-espace est
encore un sous-espace (justifier), la partie a) du corollaire donne

(Ai)L = (Vect (A)L)l = Vect (4). CQFD

Démonstration du corollaire 14.7. Soient x1,x9 € H, A € R.Six := 21 + Azg et y := pp(x1) +
Apr(x2), alors z et y satisfont (14.3), et donc y = pr(x). Il s’ensuit que pr est linéaire.

Pour tout ensemble convexe, fermé et non-vide C, nous avons pc(z) = z, Vz € C,
d’ott pc o pc = pc. Dans le cas particulier d"un sous-espace fermé F, nous obtenons que
pr est un projecteur (linéaire).

La décomposition orthogonale x = pr(x) 4+ (x — pr(x)) et le théoreme de Pythagore
donnent

2 2 2 2
lpr@)|I" = =] = |z — pr(z)[” < [lz]"
et donc pr est continu, de norme < 1.

F étant non-nul, il existe x € F'\{0}. Pour cet z, nous avons

lpr (@) = ] < llpe(ll=(,

d’ott |pr| = 1, et finalement |pp| = 1. CQFD

14.2 Bases hilbertiennes

Dans un espace de Hilbert de dimension algébrique infinie, la notion «natu-
relle » de base orthonormée serait la suivante :
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a) (ej)es (avec J famille infinie) est une base algébrique de H, c’est-a-dire
tout z € H s’écrit de maniére unique sous la forme x = } ;_; Aje;, avec
un nombre fini de scalaires A\; non-nuls (pour donner un sens a la somme).

b) La famille (e;), e est orthonormée, c’est-a-dire, pour j, k € J, < ej, e, >= 0
si j # k, respectivement < ¢;,¢; >= 1.

Il se trouve qu’aucun espace de Hilbert de dimension infinie ne possede une base
orthonormée au sens de la définition naive ci-dessus (voir 'exercice 14.17). La
bonne définition d"une base garde l'exigence b), mais remplace, dans la repré-
sentation a), la somme finie par une somme infinie. Afin de simplifier la com-
préhension, nous considérons le cas « le moins infini possible », celui des espaces
séparables, mais il faut garder a l'esprit que cette restriction n’est pas fondamen-
tale pour l'existence d"une base hilbertienne (en général, non-dénombrable).

14.10 Théoreme. On suppose H séparable et de dimension infinie. Alors il existe
une famille orthonormée (e,,),; telle que

:vzz <z, e,>e, YreH. (14.8)

n>1

Ce résultat reste valable en supposant uniquement H pré-hilbertien, sépa-
rable et de dimension infinie.

14.11 Définition. Une suite (e, ),>1; comme dans le théoréeme 14.2 est une base
hilbertienne de H.

14.12 Corollaire. Si (e, ),~1 est une base hilbertienne de H, nous avons

|||* = Z <z,e, >% Vaze H (égalité de Parseval). (14.9)

n>1

En lien avec le corollaire 14.12, voir les exercices 14.14 et 14.15.

Le résultat suivant donne une définition alternative d’une base hilbertienne.
14.13 Proposition. Une suite (e,),>; est une base hilbertienne de H si et seule-
ment si :

(i) La suite est orthonormée.
(ii) L'espace vectoriel engendré par la suite est dense dans H.

De maniere équivalente, (e, ),>1 est une base hilbertienne de H si et seulement
si nous avons (i) et

(ii") Si < z,e, >= 0, ¥n, alors x = 0. o
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Exercices

14.14 Exercice. Soit (e;);>1 une famille orthonormée. Soit (a;);>1 < R. Montrer 1'équiva-
lence

2
Z aje; converge <= Z aj < oo.

j=1 j=>1
_ 2
En cas de convergence de la série, montrer que HZ j=10j ej” =2j=1 G5 o
14.15 Exercice. (Voir la section 12.1) Soit (e;)1<j<n < H (avec N = 2,3, ..., 0) une suite

orthonormée d’une espace pré-hilbertien . Montrer que

Z <z >’< |||, ¥z € H (inégalité de Bessel). o
1<j<N

14.16 Exercice. Avec les notations du chapitre 12, montrer que (z — €%,z est une base
hilbertienne de L?(]0, 27[). o

14.17 Exercice. Soit H un espace préhilbertien ayant une base algébrique orthonormée
infinie %. Montrer que H n’est pas complet.

Indication : soit (e,),>1 = £ une suite orthonormée. Soit z,, := Z;‘:l(l / j2)ej, VYn > 1.
Montrer que la suite (x,,),>1 est de Cauchy, mais ne converge pas. o

Cet exercice éclaire I'’énoncé de la proposition 14.13.

14.18 Exercice. Soit ' un sous-espace vectoriel de H. Montrer I'équivalence des proprié-
tés suivantes :

1. F est dense dans H.

2. Ft={0}. o
Démonstrations
Démonstration du théoréme 14.10. Soit A = {a1,as, ..., ag, ...} une partie dénombrable et dense

de H. Soit Ey := Vect({a1,...,ax}), Vk > 1. Nous avons Fy € Ey < ... etdim Ep;q —
dimEy, <1,Yk > 1.

Etape 1. La suite (Ey)>1 n’est pas stationnaire. En effet, sinon il existe k tel que Ey = Ej,
V¢ > k, et dans ce cas tous les points de A appartiennent a Ej. Il ensuit que (justifier)
H = A c Ej, = Ey, impossible, car H est de dimension infinie.

Etape 2. Construction par récurrence des vecteurs e,, n > 1. Si Ej, est le premier espace
non-nul, alors dim £, = 1 et nous choisissons un vecteur normé e; € Ej. En suppo-
sant construits ey, ..., e, qui forment une base orthonormée de E;, nous considérons
le premier j > ¢ tel que E; # E; (un tel j existe, ¢f la premiere étape). Nous avons
dim E; — dim E; = 1. Nous pouvons donc compléter {e1, ..., e,} a une base orthonormée
{e1,...,en,ent1} de E;. Notons que, grace a 1’étape 1 et par construction, (e,),>1 est une
suite (infinie) orthonormée.
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Etape 3. Preuve de (14.8). Soient = € H et ¢ > 0. Soit a, € A tel que
(14.10)

|z — agl| <e/2.
., €en}) (justifier), et donc
(14.11)

Sin > k, nous avons ay € Vect ({e1,

ap = Z <ag,e; >, Vn=>k.
1<j<n
En combinant (14.11) avec I'inégalité de Bessel (exercice 14.15) et (14.10), nous obtenons,

pour toutn > k,
Z <z, ej>—z| < Z <z,e5 > —ap| + |z — agl
1<j<n 1<j<n
= Z <z —ag, e >+ ||z — ag
1<j<n
<e/2+¢€/2=¢,
CQFD

d’ot1 (14.8).
Preuve du covollaire 14.12. La continuité de la norme, (14.8) et le théoreme de Pythagore donnent
2 CQED

2
: 2
:1171Ln Z <z, e > :Z<x,en>
n>1

1<j<n

}: <Z,ej > €y

|lz]* = lim
n

1<j<n

Preuve de la proposition 14.13. Soit (ey,)n>1 € H une suite orthonormée. Soit

G := Vect ({en,; n > 1}).
«(14.8) = (ii)» Siz € H, alors y,, := >y _;_, < z,€; > €; € G,Vn > 1, ety, — z,dou

z € G, ce qui implique G = H.
« (ii) = (ii") » L'exercice 14.9 b), (ii) et le théoreme 14.5 donnent

[<z,e,>=0,Vn>1] xe{en;nzl}J‘ — el — a:eHJ‘z{O}

— x=0.
«(ii") == (14.8) » L'inégalité de Bessel (exercice 14.15) et 'exercice 14.14 implique 1'exis-
tence de
y::2<x,en>en:lil£n Z <z, e >ej. (14.12)
n>1 1<j<k
=y
Si k > n, nous avons < y, e, >=< x,¢e, >,d ol
<x—y,ey >=li]£n<a;—yk,en >=li}£nO=O,Vn21. (14.13)
CQFD

De (14.13) et (ii"), nous trouvons que = = y. Nous concluons grace a (14.12).
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14.3 Théoréme de représentation de Riesz

14.19 Théoréme. (Théoréme de Riesz) Soit ¢ : H — R une application linéaire
et continue. Alors il existe a € H tel que

o(x) =<z,0a>, Ve H. (14.14)

Et réciproquement.

De plus, nous avons

lell = flall (14.15)

Exercices

14.20 Exercice. Montrer que

|| = max{< x,y >; ye H, |y <1}, Yz € H. o

Démonstrations

Démonstration du théoréme 14.19. Etape 1. Existence de a et preuve de (14.15). Si p = 0,a = 0
convient. Si ¢ # 0, soit F' := Kerp = ¢ ({0}), qui est un sous-espace fermé de H
(justifier). Soit b € H tel que p(b) = 1 (justifier 'existence d'un tel b). Soient ¢ := pr(b)
etd :=b—c # 0. Notons que p(d) = p(b) = 1 et p(x — p(x)d) = 0,Vz € H (et donc
x—p(x)de F,Yze H).Sixze H, nous avons (grace a (14.3))
2
<z, d>=<z—p@)d, d >+ <p(r)dd>=q¢)|d|,

eF =b—pr(b)
etdonc a := d/||d|* convient.

L’égalité (14.15) suit de l'exercice 14.20.

Etape 2. Assertion réciproque. Clairement, H 5 x —< z,a > est linéaire et, de I'exercice
14.20, continue de norme | a|. CQFD

14.4 Pour aller plus loin

L’étude des espaces de Hilbert sera poursuivie dans 'UE d’Analyse fonction-
nelle en master 1. Une excellente référence est Brezis [5].

Les bases hilbertiennes jouent un role important dans 1’analyse des espaces de
Hilbert et au-dela (analyse numérique, étude des espaces L” et d’autres espaces
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de fonctions). Parmi les plus célebres, notons celle de Haar, Hermite, Laguerre,
Legendre et Walsh, dont la construction sera étudiée en master.

Pour conclure ce chapitre, nous ouvrons ici une perspective non-hilbertienne,
dans le prolongement du théoréme de représentation de Riesz 14.19. La preuve
de ce théoreme repose sur deux ingrédients :

a) On peut projeter sur un ensemble convexe, fermé et non-vide de H.

b) Pour tous u € H\{0} et v € H, 'application R 5 t — |u + tv| est dérivable
ent = 0.

Le résultat suivant (voir Willem [22, Chapitre IV, Section 14] pour un énoncé
voisin) permet d’obtenir une conclusion similaire a celle du théoréme de repré-
sentation de Riesz dans le cadre des espaces de Banach.

14.21 Théoreme. (Théoreme de représentation de James) Soit H # {0} un espace
de Banach avec les propriétés a) et b) ci-dessus. Si ¢ : H — R est une forme linéaire
et continue, alors il existe u € H tel que ||u|| = 1 et

d
p(z) = [l [@Ilu + txll]  VYazeH. o (14.16)

t=0

De maniere remarquable, ce théoréme s’applique aux espaces L? avec 1 < p <
. Pour ces espaces, la formule (14.16) donne le théoreme de représentation de
Riesz 10.31 a). (Voir la section suivante.)

14.5 Pour aller encore plus loin

Cette section sera utile plutét au moment d’aborder en master I’analyse fonc-
tionnelle. Elle fait suite a la fin de la section précédente et permet de voir la par-
tie difficile du théoreme de Riesz 14.19 ('existence de a) et la partie difficile du
théoreme de représentation de Riesz 10.31 (I’existence de g) comme des cas par-
ticuliers d'un résultat plus général.

14.22 Théoreme. (Forme « utile » du théoréme de représentation de James) Soit
E # {0} un espace de Banach.

On suppose que :

Pour tout hyperplan affine fermé F' — E, il existe u € F' tel que (14.17)
ull < loll, Yo e P, |

Pour tous u € E\{0} et v € E, I'application R 3 ¢ — |u + tv||
- (14.18)
est dérivable en t = 0.
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Si¢ : E — R est une forme linéaire et continue, alors il existe u € E tel que
u| = 1et

d
@) = Il [ g+ el vaer. > (1419

t=0

14.23 Remarque. La propriété (14.17) ci-dessus équivaut a |0 — u| = dist(0, F'), et donc
la condition a) revient a exiger que 0 ait une projection sur F', qui est un convexe fermé.
Ainsi, 'hypothese (14.17) qui apparait dans le théoreme 14.22 est a priori plus faible que
la condition a) du théoreme 14.21. o

Preuve du théoreme 14.22. Si ¢ = 0, tout u convient. Supposons ¢ # 0.

Etape 1. Choix de F et utilisation de (14.17) pour trouver u. Soit

Fi=¢ " (lel) = {ve E; ov) = llel},

qui est un hyperplan affine de E (car ¢ est une forme linéaire non-nulle) fermé
(car ¢ est continue).

Par définition de la norme |/¢||, nous avons p(z) < ||¢|/|z|, V& € E, et donc
Jv| > 1,VveF.

Egalement par définition de la norme, pour tout ¢ > 0 il existe = € F tel que

x| = 1 et p(x) > @, et donc, si on pose v = Mm, alorsve Fet|v]| <1+e.
£

()
De ce qui précede, nous avons inf,cr ||v| = 1. La propriété a) assure 1'existence
de u € F tel que [Jul| = 1.

Etape 2. Utilisation de (14.18) pour montrer (14.19). Soit x € E. Pour tout ¢ € R, nous
avons ¢(t) > 0, ou

9(t) = llellllw + ta] = (u + tx). (14.20)

De plus, nous avons ¢(0) = 0, et donc ¢ = 0 est un point de minimum de
g. L'hypothése (14.18) nous assure que g est dérivable en 0. Il s’ensuit, de ce qui
précede, que ¢'(t) = 0, ce qui revient a (14.19). CQED

Pour utiliser le théoréme 14.22, il faut pouvoir vérifier les hypotheses (14.17)
et (14.18). Les trois résultats qui suivent ont trait a '’hypothese (14.17).

14.24 Proposition. Dans un espace de Banach F, la propriété suivante :

Si (u;)  E satisfait [|u;| — 1, et |u; +ugl =2, V5, k, (1421)
alors (u;) est une suite de Cauchy, '

implique (14.17). o

262



Petru Mironescu Mesure, intégration, éléments d’analyse fonctionnelle

La preuve de la proposition 14.1 utilise implicitement la propriété (14.21).
Dans ce cas particulier, la validité de (14.21) découle de l'identité du parallélo-
gramme. En examinant 'utilisation de cette identité dans le preuve de la propo-
sition 14.1, on constate qu'une « inégalité du parallélogramme », méme avec une
marge d’erreur (quantifiée ci-dessous par ¢) aurait suffit.

14.25 Proposition. (Inégalités du parallélogramme généralisées) Dans un espace
de Banach F, la propriété suivante :

Il existe 1 < p < oo tel que : pour tout € > 0, il existe C'(¢) < o tel que

u+v (14.22)

2

p
[u— ol <ol +C(e) (nuup + ol — 2|5~ ) Vuvek,

implique (14.21) (et donc (14.17)). o

14.26 Proposition. a) Dans un espace préhilbertien E, (14.22) est vérifiée avec
p = 2 et C(e) = 2. En particulier, tout espace de Hilbert vérifie (14.21) et donc
(14.17).

b) Sil < p < m, alors L? vérifie (14.22). En particulier, tout espace L” avec 1 <
p < oo vérifie (14.21) et donc (14.17). o

Démonstration de la proposition 14.24. Si 0 € F, nous prenons u = 0, et (14.21) ne
sert pas. Si 0 ¢ F, alors dist(0, F') > 0. En remplacant F' par (1/dist(0, ")) F, nous
pouvons supposer que dist(0, F') = 1 (détailler). Soit (u;) < F telle que |ju;| — 1.
Pour tous j, k, nous avons (u; + uy)/2 € F, et donc |u; + ui| > 2 (détailler). De
(14.21), la suite (u;) est de Cauchy. £ étant complet et I’ fermé, il existe u € F tel
que u; — u. Il s’ensuit que u € F et [|u]| = 1 = infcp ||v]. CQFD

Démonstration de la proposition 14.25. Soit € > 0. Soit 6 > 0 a fixer ultérieurement.
Soit jj tel que |Ju; | <1+ 4§,V j > jo. Nous avons (de (14.22))

luj — wgl| < [P(1 + &) +2C(£)8]'P, ¥ j, k = jo. (14.23)

Le nombre ¢ étant fixé, en choisissant § de sorte que le membre de droite de
(14.23) soit < 2¢, nous obtenons que la suite (u;) est bien de Cauchy. CQFD

Dans la preuve de la proposition 14.26 b), nous utiliserons le résultat suivant.

14.27 Lemme. Soient 1 < p < w et e > 0. Alors il existe C'(¢) = C(e,p) < oo telle
que, pour a,b € R,

la—b| = elp| = |a— b <Ce) (|a\p+|b|p—2 .

ot blp) | o (14.24)
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Démonstration. Soit
it —1JP

FO = g o2p

VteR\{1}.

La fonction z — |z|P étant strictement convexe (car p > 1), I'inégalité stricte
de Jensen montre que le dénominateur de F'(t) est > 0 (justifier!), et donc F est
continue et strictement positive sur R\{1}. Par ailleurs, nous avons

1
lim F(t) = ———— > 0.

|t|—o0 1—21-»

I s’ensuit que, pour tout € > 0, il existe < C(e) < w tel que

1—21-»
F(t)<C(e), Vttelque |t — 1| > . (14.25)

Par homogénéité, (14.25) implique (14.24) (justifier, en étudiant le cas b = O et,
sib # 0, en prenant ¢ := a/b). CQFD

Démonstration de la proposition 14.26. a) suit de 1'identité du parallélogramme
u—+v
fu—of? =2 (Jul* + 1o - 2“5 ) .

b) Si f, g € £P7, alors (en utilisant (14.24))

fv—gv=f u—gw+f =g
|f—gl<elg] |f—g|=¢lg]
] W (e
|f—gl<elg] |f—g|=¢lg]

P p>
<er [l + @) [ (1rp +1p 27521,

car les intégrandes de la deuxiéme et troisiéme lignes sont positives (pour la
deuxiéme intégrande, justifier en utilisant la preuve du lemme 14.27). CQFD

‘f—g
2

Enfin, nous nous intéressons a la propriété (14.18).

14.28 Proposition. a) Si H est un espace préhilbertien réel et u € H\{0}, alors

[inu + m] Wy e (14.26)
dt im0 lul

b) Sil < p < wetue LP\{0}, alors

d 1
[—Hu + tf||p] = —— f|u|p_1(sgnu)f, VfelP. o (14.27)
dt =0 uly
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Dans la preuve de la proposition 14.28 b), nous utiliserons le résultat suivant.

14.29 Lemme. Si 1 < p < o, alors, pour tous a,b € R,
lla +b]P — [af’| < p2P~ ' (lafP~" + [b"~1)[b]. o (14.28)

Démonstration. La fonction z +— |x|P est dérivable, de dérivée p|z|’~'sgnz. Le
théoreme des accroissements finis donne 'existence d’un ¢ compris entre a et
a + b tel que

ja + 0" —[a]” = plc["~ (sgn ).

On obtient

[la+ 6" —fal”| =plc/~* || < p(|al + [b])"~"[b]

<p[2max{|al, [B[}]7" [o] < 22" (|a"~" + [bP~1)b]. o

Démonstration de la proposition 14.28. a) Il suffit de noter que

ot =/l + 20wy + 2]
et d’utiliser la regle de la chaine (détailler).

b) Considérons l'intégrale a parametre

R\{O} 3t — F(t) :

_ +tfl5 =l _ f lu +tf|P — |ul?
t t ’

u+tfIP — Jul”

Nous avons — plufP~(sgnu) f simplement quand ¢ — 0 (justi-

tier). Par ailleurs, d’apres le lemme 14.29, la domination

u+ tfP — Jul?
t

< p2"H(luf + [FP)I S (14.29)

est vraie lorsque |t| < 1 (détailler). L'inégalité de Holder montre que le membre
de droite de (14.29) est dans L' (détailler). Par convergence dominée, il s’ensuit
que lim; o F(t) = p§ |u|P~*(sgnu) f, et donc

d
s e

L’'identité (14.27) suit de (14.30) et de la regle de la chaine (détailler). CQFD

= ulP~Y(sgnu)f. 14.30
) p | e sgn)f (14.30)

t

Nous concluons cette section par la preuve des théoremes 14.19 et 10.31 (partie
existence) en utilisant les résultats établis ci-dessus.
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Preuve du théoreme 14.19 (partie existence). Soit ¢ : H — R linéaire et continue. Le
théoreme 14.22, la proposition 14.26 a) et la proposition 14.28 a) impliquent qu’il
existe u € H tel que |jul| = 1 et

() = |ell<e,u), Vo e H.

11 suffit alors de prendre a = ||| u. CQFD

Preuve du théoreme 10.31 (partie existence). Soit ¢ : L? — R linéaire et continue. Le
théoreme 14.22, la proposition 14.26 b) et la proposition 14.28 b) impliquent qu’il
existe u € L” tel que [|ul|, = 1 et

o(f) = el f P (sen ) f, ¥ f e L7,

Nous concluons en notant que g = |p|||u[P~*(sgnu) € L4 (détailler). CQFD

14.30 Remarque. Sous I’hypotheése (14.21), on peut définir la projection sur tout convexe
fermé non-vide de E (analogue de la proposition 14.1). De plus, il y a une caractérisation
de la projection analogue a la proposition 14.3. Pour ces propriétés, voir les exercices de
synthese et avancés. o
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Lebesgue intégrable, 106
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Feuille de TD # 0
Opérations sur les ensembles

Cadre, notations

1. Nous travaillons dans un ensemble fixé X .

2. Les parties (sous-ensembles) de X sont notées A, B, etc. « A est une partie de X » s’écrit
Ac XouX o A.

3. Lensemble de toutes les parties de X est noté #(X).

4. (A;)ier désigne une famille de parties de X, indexée par un ensemble quelconque (donc
pas nécessairement fini ou dénombrable) d’indices.

5. Rappelons les opérations usuelles avec les ensembles.
() Union)Au B:={xe X;xe Aoux € B}.
(i) (Intersection) AN B:={xe€ X;z € Aetz € B}.
(iii) (Différence) A\B :={re X;xe€ Aetx ¢ B}.
(iv) (Différence symétrique)

AAB := (A\B)u (B\A) ={ze X;[reAetx ¢ Blou|[r e Betx ¢ Al]}.

(v) (Complémentaire) A° = X\A :={x e X;z¢ A}
(vi) (Produitcartésien)Si X,Y sontdesensembles,alors X xY := {(z,y); x € X ety €
Y.
6. Une suite (A,,),>x de parties de X est croissante si A,, < A, 11, Vn > k. Elle est décrois-
santesi A, D A1, Vn = k.
Exercice #1. (Echauffement)

a) Dessiner «avec des patates » les ensembles A U B, A n B, A\B, A°, AAB.
b) Calculer (AAB)AA.

Exercice # 2. (Propriétés fondamentales) Montrer les propriétés suivantes.

) An (UierBi) = Vier(An B)) et Au (NierBi) = nier(A U By).

b) (Uierdi)® = nicr Af et (NicrAi)® = Uit A7,

Q) A\(UierBi) = nier(A\B;) et (Uier Ai)\B = Uier (A:\B).

d) A\(nierBi) = ier(A\Bs) et (Nicr Ai)\B = nier(A\B).

€) (Vierdi) X (Ujes Bj) = UiijersAi x Bjet (Nigp Ai) ¥ (NjesBj) = NjperxsAi X Bj.

f) Déduire de la question précédente deux formules pour (U,esA;) X (NjesB;), respective-
ment deux formules pour (N A4;) X (UjesBj).

Exercice # 3. Soient X un ensemble et A et B deux parties fixées de X .

a) Simplifier les conditions suivantes portant sur la partie C' de X.

HAUVCcBUC;({HANCcBnC; [)(AnC)u(BnC =.
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b) On définit f : Z(X) —» P(A) x P (B) par f(C) := (A n C,B n C). Déterminer,
pour le couple (A, B), une condition nécessaire et suffisante pour que f soit (i) injective;
(ii) surjective.

Exercice # 4. (Fonction indicatrice) Soit X un ensemble. Pour une partie A de X, on définit
1, size A

sa fonction indicatrice x 4 : X — Rpar xa(x) := _ .
0, siz¢ A

a) Calculer yg et yx.Pour A ¢ X fixéet Y = R, calculer x (V).

b) Exprimer simplement en fonction de x4 et xp les fonctions x ac, x4~B, Xaup (dans le
cas général et dans le cas particulier ot A N B = (&), xann, Xj-1(a) (@vec f : Y — X).

c) Rappelons la notation suivante. Si B et C sont des ensembles, alors

BY := {f : C — B} (lensemble de fonctions de C vers B).

Lapplication A — 4 est-elle une bijection de 22(X) dans {0, 1}*?
d) Montrer, a l'aide des fonctions caractéristiques, 'égalité (AAB)AC = AA(BAC).

Exercice # 5. (Suites d’ensembles) Soit (A,,),>o une suite de parties de X.
a) Si(A,)n=0estcroissante, alors Uy~ Ay = Unso0A,, V1o € N.
b) Si (A, )n>0 est décroissante, alors My,>pn, An = Nps0An, Yo € N.

¢) Soit A := U,0A,. Si(A,)n=0 est croissante, alors la suite (x4, )n>0 €st croissante et
converge simplement vers x 4.

d) Enoncer et prouver le résultat analogue au précédent pour une suite décroissante.
e) Soit A := U,>0A,. Siles A, sont d. d. d. (deux a deux disjoints), montrer que x4 =

Zfzo XAn .

Exercice # 6. (Image directe, image réciproque) On se donne deux ensembles X et Y et une
application f : X — Y.
Si A c X,ondéfinit f(A) := {f(z); x € A}.
Si B < Y,ondéfinit f1(B) :={xe X ; f(x) € B}.
Montrer les propriétés suivantes de l'image réciproque B — f~'(B).
a) [N (VierBs) = Uier fT1(B)).
b) 7 (icrBi) = nierfH(By).
o f7H(B) = (f71(B))".
d) Si,deplus, gestuneapplicationde Y vers unensemble Z, alors (gof) ' (B) = f (g ' (B)).

Pour I'image directe A — f(A), les relations analogues ne sont pas vraies en général.
e) Montrer que f(U;erA;) = Uier f(A4;).

f) Montrer que f(NierA;) © Nierf(A;) et donner un exemple montrant que I'égalité nest
pas vraie en général.

g) Montrer par des exemples quen général il n'y a aucune relation d’inclusion entre f(A°)
et (f(A))".

Exercice # 7. (Injectivité) Soit f : X — Y une application. Montrer que les propriétés

suivantes sont équivalentes.

a) f estinjective.



b) YA C X, fL(f(A)) = A.

0 VaoeX, fH(f({z})) = {z}.

Exercice # 8. (Surjectivité) Soit f : X — Y une application. Montrer que les propriétés
suivantes sont équivalentes.

a) f estsurjective.
by VBcY, f(f'(B))=B.
o VyeY f(f~({y}) = {v}.

Exercice # 9. (Produit cartésien)
a) Soient A,C' € Z(X)et B, D e Z(Y). Montrer I'implication

(AxB)n(CxD)# g = [AnC+# JetBn D # .

b) SiA ¢ XetB c Y, écrire (X x Y)\(A x B) comme une union finie de produits
cartésiens d. d. d.

0 SiAd; c XetB;, cY,Vie [l,n], montrer que (X x Y)\(Ul;A; x B;) sécrit comme
une union finie de produits cartésiens.

Exercice # 10. (Coupes) Si £ < X x Y, soient
VeeX, E,:={yeY; (z,y)e E}etVyeY, BV :={xe X; (z,y) € E}.

a) Si X =Y =R, «dessiner» E, et EY pour une « patate ».

b) SiE:={(z,y) e R?; 2 >0,y >0, x+y < 1}, trouver £, et EY pour chaque z, y € R.

¢) Montrer que (UierE;)y = Uier(Ei)g, Vo € X et (UierE;)? = Uier(E;)Y,Vy e Y.

Exercice # 11. (Union d. d. d.) La notation w;c; A; est utilisée pour la réunion d’'une famille

(A;)ier ensembles deux a deux disjoints (d. d. d.).

a) SiAy, Ay,. .., sontdespartiesde X, soient By := Aget,pourn > 1, B, := A,\(UI) 4;).
Montrer que U; A; = 1; B;.

b) Montrer que (L;erA;) X B = UerA; x B.
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Feuille de TD # 1
sup, inf, lim sup, lim inf, dénombrement

Exercice # 1. Soient A, B des parties non vides de R. Montrer que :

a) M = sup A si et seulement si M est un majorant de A et il existe une suite (z,), < A
telle que x,, — M. Trouver une caractérisation analogue de inf A.

b) Tout A admetsup A €] — 0, o] etinf A € [—o0, 0.

c) sup A etinf A sont uniques.

d) sup (—tA) = —t inf A,V ¢ €]0, co[. Donnerles formulesdesup (tA), inf (tA), inf (—tA).

e) sup (A+ B) =sup A +sup Betinf (A + B) = inf A + inf B.

f) SiAc B,alorsinf B < inf A < sup A < sup B.

g) Si(x,)n>n, = R estune suite croissante, alors lim,, z,, = sup x,, := sup{x, ; n > ng}.
n=no

Trouver 'énoncé analogue pour une suite décroissante.
h) SisupA > z € R, alorsil existeuny € Atelquey > x.

i) Montrer quesup (Au B) = max (sup A, sup B).Y a-t-il des formules pour inf (AU B),
sup (A n B)etinf (A n B)?

Exercice # 2. Que devient ce qui précéde si nous considérons des parties nonvides A, B de
R?

Exercice # 3. Trouver B ¢ A c Rtelsqueinf A = —o0,inf B = 0,supB = letsup A =
2.

Exercice # 4. Trouver A — R tel que sup A et min A existent dans R, mais max A n'existe
pas.

Exercice # 5. Soient A, B deux parties non vides de R telles que sup A = inf B.
a) Montrer que pour tout z € Aettouty € Bonaxz < y. Montrer que pour tout e > 0 il
existex € Aety € Btelsquey —z < e.

b) Inversement, on suppose que pour toutz € Aettouty € Bonax < y. Montrer que si
pour toute > Oilexistex € Aety € Btelsquey — z < ¢, alorssup A = inf B.

Exercice # 6. Déterminer les bornes sup et inf des ensembles ci-dessous :
A = {COS (n%) i n e N};
12n + 107"

b) Ap = {M—M;”EN};

c) Az := {(1 + sin <ng)> Inn;ne N*}.

Exercice # 7. Calculer

cos(xt + m/4) o—o/(1+?)
sup ———————, SUp —————.
2>0, teR 1+ steR 1+ +



Exercice # 8. Trouver tous les ensembles A — R tels que
sup(tA) =tsup A, Vt e R.
Exercice # 9. Soienta, ; € R, Vn, k € N. A-t-on toujours

Sup sup an = Sup sup CLn’k?
n k k n

Exercice # 10. Nous considérons une suite (x,), < R.

a) Siliminfz, > limsup z,, alors x,, — limsup,, z,, = liminf,, z,,.
n n

b) Sia < x, <b,Vn > ny,alorsa < liminf, z,, < limsup,, z,, < b.

¢) Siz, > a,Vn > ngetlimsup, z, < a,alorsz,, — a.

d) Donner des exemples de suites (x,,), et (y,), avec lim sup,, (x,, + y,) # limsup,, x, +
lim sup,, Y.

Exercice # 11. a) Montrer que x,, < y,, Vn > nyg = limsupx,, < limsup y,,.

n n

b) Quelles sont les hypotheéses implicites de la question précédente?

Exercice # 12. Trouver une suite réelle (a,), telle que sup,, a, = 4, limsup, a, = 2,
liminf,, a, = 1etinf, a,, = 0.

Exercice # 13. Calculer lim sup,, z,, et liminf,, x,, pour les suites définies pour tout n € N
respectivement par les formules :
a) o, :=1/(n+1).

n

b) z, = (n+1)V",

0 rn = (2reos (n3)) 57
Ty = cos (n3)) 5—7-
Q) 1z, = 11n 4 2 cos(nm)

Van2 +n—1 "

Définitions. Soit (A, ),>, une suite de parties d'un ensemble X . Les ensembles lim sup,, A,,
et liminf,, A, sont définis respectivement par les formules

limsup 4, := Npsng YUksn Ak, iminf A, 1= Upsng Nisn Ak
n n

Exercice # 14. a) Montrer que x € lim sup,, A, siet seulement si z appartient 2 une infinité
d’ensembles A4,,.

b) Montrer que = € lim inf,, A, si et seulement si il existe un n; (qui peut dépendre de = €
X)telquex € A,,Vn > n,.

¢) Pour tout z € X, montrer les égalités

Xlim sup An(:v) = lim sup x4, (z), Xlim inf A,, (x) = limninf Xa, ().

n

d) Soit (A,,)n=n, une suite croissante de parties de X . Montrer que

limsup A,, = liminf A,, = Upspn, An, Y01 > ng.
n n

Quel est 'analogue de cette formule pour une suite décroissante?
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e) Montrer que

n n n

limsup A,, = (lim sup A2n> U (lim sup A2n+1) ,
liminf A,, = <lim inf A2n> N (lim inf A2n+1> )

Exercice # 15. Déterminer les limites supérieures et inférieures des suites suivantes d’en-
sembles :

a) Ajet Asdonnés, A, = A,,_»,Vn > 3.
b) A2n = [—17 24 n_l[et A2n+1 Z:] —2— n_l, 1], Vn > 1.
o) A, :=]—,a,]avec (a,), < R suite monotone.

Exercice #16. Soit X := [0, 1[. Montrer que tout entier n € N* g’écrit de fagon unique sous
la forme

n=2"+pavecme Net) <p < 2™ 68)

Avec m et p déterminés (en fonction de n) par la formule (1), nous posons

1
A, = ﬁ,]i cX,Vn>1.
2m’ 2m

Trouver lim sup A,, etliminf A,,.

Exercice # 17. Comparer liminf, (A4, u B,) et (liminf, A,) U (liminf, B,). Donner un
exemple de suites telles que

liminf (4, u B,,) # (liminf A4,)) U (liminf B,,).
Exercice # 18. Montrer que (limsup,, A,)\(liminf,, 4,) < limsup,, (4, AA,,41).

Rappels de cours. Dans les trois exercices suivants, on pourra utiliser sans preuve les faits
suivants :
a) Lintervalle [0, 1] < Rrlest pasa. p. d.
b) Si A « Nestinfini, alors A est dénombrable.
c) S’il existe une bijection ® : A — B, alors:
(1) Soit A et B sont tous les deux finis;
(ii) Soit A et B sont tous les deux dénombrables;;
(iii) Soit aucun des deux ensembles rest a. p. d.

Exercice # 19. Prouver ou réfuter les assertions suivantes.

a) Lensemble des nombres premiers est dénombrable.
b) Lensemble des nombres pairs est dénombrable.

¢) Lensemble R est dénombrable.

d) Lensemble C est dénombrable.

e) Lensemble N x R est dénombrable.

f) Lensemble Z(N) = {A; A < N} est dénombrable.



Exercice # 20. a) Soient n € N* et py,...,p, n nombres premiers distincts. Montrer, a
'aide de I'application

©:N" >N, N3 (ki,....ky) = @k, ... k) :=pi*---pkr e N,

que N™ est dénombrable.

b) En déduire que le produit cartésien d’'un nombre fini d’ensembles dénombrables est dé-
nombrable. Que peut-on dire d’'un produit cartésien infini d’ensembles dénombrables?

c) Montrer que Z¢(N) := {A; A < N, Aestfini} est dénombrable.

Exercice # 21. Un nombre réel = est dit algébrique s'il existe un polyndéme nonnul P € Z[ X |
tel que P(x) = 0. Un nombre réel qui n'est pas algébrique est transcendant.

a) Montrer que tout nombre rationnel est algébrique.

b) Montrer que 'ensemble des nombres algébriques est dénombrable.

c) Montrer que 'ensemble des nombres transcendants n'est pas dénombrable.

Exercice # 22. Soit A — R un ensemble dénombrable. Soit B = A\ A (avec A I'adhérence
de A). Existe-t-il un A tel que :

a) B ait exactement n éléments, pour unn € N donné?
b) B soit dénombrable?
c) Bnesoitpasa.p.d.?

Exercice # 23. Montrer quil existe un nombre réel qui ne peut pas étre décrit par une défi-
nition mathématique.

Exercice # 24. Nous admettons le résultat suivant, qui sera démontré en topologie : tout

ouvert U < Rsécrit U = | |._; J;, avec les J; intervalles ouverts non vides (et d. d. d).

Montrer que [ est a. p. d. Donc : tout ouvert de R est réunion a. p. d. d’intervalles ouverts d. d. d.
(m+4+n)(m+n+1)

Exercice # 25. Soit f : N> — N, f(m,n) := 5 +mn,Vm,n € N.

Montrer que f est bijective.
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Feuille de TD # 2
Tribus, fonctions mesurables, mesures

Exercice #1. a) &(X) est une tribu.
b) 7 = {, X} estune tribu.

Exercice # 2. a) Soit I < R un intervalle. Lensemble % des unions finies d’intervalles
contenus dans [ est un clan (sur I).

b) UnpavédeR" estun ensembledelaforme P = [} x I x - - - x I,,, avec chaque I, intervalle
de R. Lensemble %, des unions finies de pavés de R" est un clan.

¢) Tout élément de %, est une union finie d. d. d. de pavés de R".

Exercice # 3. Prouver ou réfuter les assertions suivantes.

a) Si X estdénombrable, alors toute tribu sur X esta. p. d.
b) Une partie 7 de &2(X) est une tribu si elle vérifie :

i) ge 7.
(i) Ae T — A°e 7.
(i) [A, € T, Vn] = nuend, € J.

Exercice # 4. Le but de cet exercice est de montrer quune réunion arbitraire d’ensembles
mesurables n'est pas nécessairement un ensemble mesurable. Soit

T ={AcR; Aa.p.d.ouda.p.d.}.

a) Montrer que .7 est une tribu.
b) Montrer que .7 # Z(R).
¢) Conclure.

Exercice #5. Si X := {1,2,3} et := {{1}}, alors:
a) le clan (etla tribu) engendré par o7 est {7, X, {1}, {2, 3}};
b) la classe monotone engendrée par .o/ est <7 .

Litem b) contredit-il le théoréme de la classe monotone?

Exercice # 6. Soient X := Net.o/ := {{n}; ne N}.

a) Montrer que 7 («/) = Z(N).

b) Montrer que ¢’ (<) = {A < N; A fini ou A° fini}.

¢) Endéduire que, en général, 7 () # € ().

d) En déduire que si ¢ est un clan et (A, ),»0 < ¥, alors en général U, ~0A, ¢ E et
Nnsod, & €.

e) Montrer que .Z (<) = <.

Exercice # 7. Déterminer les tribus engendrées dans X par la famille o7, ot :
a) X :=Reto :={Z}.



b) X :=Rets := {{n}; neZ}.
) X :=Netw/ = {{0}, {2}, {4},... }.

Exercice # 8. a) Soit ¥ unclansur X. SoitY < X.Alors 4y := {AnY; Ae ¥}estun
clansurY.

De méme pour une tribu .7.
Gy (respectivement Jy) est le clan induit par € sur Y (respectivement la tribu induite par

T surY).
b) SiY e @, alorséy = {A; Aec¥, AcY}.

Exercice # 9. Soit (X, d) un espace métrique. Soit Y < X, muni de la métrique induite par
X. Montrerque By = {BnY; Be ABx}.

De maniére équivalente, %y coincide avec la tribu induite par Zx sur Y (voir 'exercice
précédent).

Exercice # 10. Montrer que si ¥’ estunclanet A;,..., A, € €,alors A; u ... U A, € F.
De méme si on remplace clan par tribu.

Exercice # 11. a) Toute tribu est un clan.
b) Toute tribu est une classe monotone.
c) Si X est fini, alors tout clan est une tribu.

Exercice # 12. Montrer que A,, / A si et seulement si : la suite de fonctions (4, ), est
croissante et converge simplement vers x 4.

De méme, A, \, A si et seulement si : la suite de fonctions (x4, )., est décroissante et
converge simplement vers x 4.

Exercice # 13. Si (¢ );cs est une famille d’ensembles o7, = (X)) telle que chaque <7 soit
un clan (ou tribu, ou classe monotone), alors N;c;.%7% est un clan (ou tribu, ou classe mono-
tone).

Exercice #14. a) Si/ < A, alorsC () < € (B), M () < M (B)et T (o) = T (B).
b) Ona % (¢ («/)) = € (). Propriété analogue pour la classe monotone et la tribu engen-
drées.

Exercice #15. Soit &/ < Z(X).Si A € (<), montrer quil existe une partie a. p. d. #
de o telle que A € T (A).

Indication : considérer ¢ := {Ae T («); 3B < &/ a.p.d.telque A € T(A)}.

Exercice # 16. a) Montrer que 'union de deux tribus n'est pas nécessairement une tribu.
b) Montrer que 'union d’une suite finie et croissante de tribus est une tribu.

c) Cedernier résultat ne passe pas a une union infinie. En effet, pourn € N, soit .7, latribu
sur N engendrée par Z({0,...,n}). Montrer que (.7,,),>0 est une suite croissante de
tribus sur N, mais que U, .7, nest pas une tribu.

Exercice # 17. Prouver ou réfuter les assertions suivantes.

a) Un ouvert ou un fermé est un borélien.
b) Un borélien est un ouvert ou un fermé.
¢) Unintervalle est dans #.

Exercice # 18. Prouver ou réfuter les assertions suivantes.



a) Lensemble [2, 3] n Q est un borélien de R.
b) Lensemble A := {z € R; cosx = sin(sinz)} est un borélien de R.
c) Si B c Restborélienetsi A « B, alors A est borélien.

Exercice #19. Soit (X, d) un espace métrique. Soit f : X — R.

a) Montrer que f estcontinueenz € X <= Ve > 0, il existe unvoisinage V' de x tel que

[y, zeV] = [f(y) - f(2)] <e.

b) Endéduire que {x € X ; f continue en x} est un borélien.

Exercice # 20. Soit (X, d) un espace métrique. Soient f,, : X — R des fonctions boré-
liennes, n € N. Montrer que {x € X ; (f,(z)), converge} est un borélien.

Exercice # 21. Soit ® : X — Y un homéomorphisme entre espaces métriques. Si A < X,
alors A € Ay sietseulementsi P(A) € By

Exercice # 22. a) Soient A € $gn et B € HBrm. Montrer que A x B € Brn+m.

b) Plus généralement, si (X, d) et (Y, J) sont des espaces métriques et si nous munissons
X x Y d’'une métrique produit, alors Zx x By < Bxxy-.

Exercice # 23. Dans cet exercice, nous considérons un espace mesurable (X, .7). Prouver

ou réfuter les assertions suivantes.

a) Une fonction f : X — R qui ne prend quun nombre fini de valeurs est étagée.

b) Sif: X — R"estmesurable,etsig : R" — Restborélienne étagée, alorsgof : X — R
est étagée.

¢) Sif:X — Resttelleque f~}(F) € J pour tout F' = R fermé, alors f est mesurable.

d) Si f: R — Restborélienne et ne s’annule pas, alors 1/ f est borélienne.

e) SiAc X,alors x4 : X — R est mesurable si et seulementsi A € 7.

r+1, six>0

] , est borélienne.
—x, siz <0

f) Lafonction f: R — R, f(x) := {
g) Lafonction f : X — R est mesurable < |f| est mesurable.

Exercice # 24. Décrire les fonctions mesurables f : X — R suivants.
a) X estmunide .7 = {(J, X}.
b) X estmunide 7 = Z(X).

Exercice # 25. Montrer quun fonction monotone f : R — R est borélienne.

Exercice # 26. a) Soit f : R — R dérivable. Montrer que f’ est borélienne.
b) Soit f : R — R continue. Soit x € R. Montrer 'équivalence des propriétés suivantes :

(i) festdérivableenzet f'(z) = /.
(ii) Nous avons la double égalité :

¢ = lim inf{f(x+h)_f<x>;he@*, |h|<i}
h m

m—00

= lim sup{f(x—i_h})b_f(x);he(@*? |h| <%} .

m—00




¢) Endéduire que, si f est continue, alors la fonction g : R — R définie par :

f'(z), sifestdérivableenz
g(z) =

0, sinon

est borélienne.
d) Vraioufaux?Sig = 0, alors f est constante.

Dans les exercices suivants, .7 < &?(X) est une tribu. La mesurabilité des fonctions consi-
dérées s'entend par rapporta .7 .

Exercice # 27. Soient f : X — Rmesurableet g : X — R définie par:

g@y_{L si fla) eQ

0, sinon

Montrer que g est mesurable.
Exercice # 28. Soit f : X — R une fonction étagée. Montrer que f*(B) € 7,V B < R.

Exercice # 29. Soient f,g : X — R fonctions étagées et A € R. Montrer que f + get Af
sont étagées.

Exercice # 30. Soit f : X — R. On définit, pour tout 0 < M < o, la fonction f,; par

f(x), silf(z)| <M
fu(x) =< M, sif(x) > M
—M, sif(x)<—-M

Montrer que f est mesurable si et seulement si f); est mesurable pour tout M > 0.

Exercice # 31. Soit (f,,),=0 une suite de fonctions mesurables de X dans R.

a) Rappeler pourquoi liminf f,, et lim sup f,, sont mesurables.

n

b) Montrer que B := {z € X ; (f.(z)), est bornée} est mesurable.
¢) Soita € R. On définitg : X — [0,00] par g(z) := inf{n € N; f,(x) > a}, avecla
convention inf (J = c0. Montrer que g est mesurable.

Exercice # 32. Soit (X, d) un espace métrique.
a) Soient A € &y et f: A— R continue. Alors f est borélienne.

En particulier, toute fonction continue f : X — R est borélienne.

b) Plus généralement, si f est continue en dehors d'une partie a. p. d. de X, alors f est
borélienne.

¢) Encore plus généralement. Soient A;, A, ..., boréliens d. d. d. tels que X = 1 Ay.
Pour chaque Ay, soit fi, : Ay — R une fonction continue. Soit f : X — R définie par
f(z) := fr(x)siz € Ag. Alors f est borélienne.

d) De méme si, dans le point précédent, on remplace « f, continue » par « fj borélienne »
(voir aussi le point f)).

e) De méme pour des fonctions a valeurs dans R".



f) Soit (X, .7) un espace mesurable. Soient A;, As, ..., mesurables d. d. d. tels que X =
U Ag. Pour chaque Ay, soit fr : Ap — R une fonction mesurable. Soit f : X — R
définie par f(z) := fi(z) siz € Ay. Alors f est mesurable.

g) Montrer que les items a)—e) sont des cas particuliers de I'item f).
h) Obtenir la conclusion de I'exercice # 25 en utilisant I'item b).

Exercice # 33. Soit 4 ¢ Z(X)unclantelque @f € €.Sipu : € — [0, 0] est o-additive,
alors ou bien u () = 0 (et donc p vérifie les axiomes d'une mesure), ou bien u () = o (et
dans ce cas u(A) = w0,V A € 6).

Exercice # 34. Soit X un ensemble. Montrer que I'application p : #(X) — [0, ],

card A, siAestfini
n(A) = { .
0, sinon

est une mesure sur (X ). C'est la mesure de comptage.

Exercice # 35. Prouver ou réfuter les assertions suivantes.
a) SiAe 7, alors u(X) = p(A) + p(A°).
b) Si (A, )n>0 est une suite décroissante d’éléments de .7 et 1(Az) < o0, alors

p(Onz0dn) = lim p(Ay).

¢) SiA,Be T etu(A v B) = pu(A) + u(B), alors A et B sont disjoints.
d) Ilexiste un espace mesuré (X, .7, u) telque {u(A); Ae 7} ={0,1,2}.
e) Il existe un espace mesuré (X, .7, u) telque {u(A); Ae 7} ={0,1,3}.
f) La mesure de comptage sur N est finie, respectivement o-finie.

g) Soient &/ une famille qui engendre .7 et y1, s deux mesures sur .. On suppose que
pour tout Adans .o/ ona iy (A) = ps(A). Alors pour tout 7'dans .7 ona g (T') = ua(T).

Pour cette derniere question : y a-t-il des hypothéses raisonnables a ajouter ou enlever?

Exercice # 36. Soit i la mesure de comptage sur (N, &?(N)). Trouver une suite décroissante
d’ensembles (A, ),>o telle que p(A,) - 1 (Np=04y).

Exercice # 37. Soit ;. une mesure finie sur (X, .7). Soit . < .7 I'ensemble défini par
S i={Ae T pu(A) = 0oup(A) = p(X)}.
Montrer que .% est une tribu.

Exercice # 38. Soit ;1 une mesure o-finie sur (X, 7). Montrer quil existe une suite d. d. d.
(Xn)n © T telleque u(X,) < 0, ¥net X = 1, X,.

Exercice # 39. Soit i une mesure o-finie sur (X, .7). Soit (X,,)n>1 © 7 avec u(X,,) < o0,
Vn=>1letX = u,X,.Posons j,(A) := u(An (X;u...uX,)),VAe 7. Alors:

a) /i, est une mesure finie, Vn > 1.

b) wn /.

Exercice # 40. (Formule de Poincaré)

a) Montrer quesi pu(A; U Ay U ... U A,) < oo alors

,LL(AluAQU...UAn):Z<_1)j+1 Z (A N0 Ayg).

j=1 1<iy<ig<---<ij<n



b) Que devient cette formule dans le cas particulier de la mesure de comptage?

Exercice # 41. Soit .7 une tribu contenant les singletons. Soit ;. une mesure sur (X, .7).
Soit D := {x € X; pu({x}) > 0}. Est-il vrai que D esta. p. d.

a) Sipestfinie?

b) Siu est o-finie?

¢) Sip est quelconque?

Exercice # 42. a) Soit ;1 une mesure borélienne de probabilité sur [0, 1], avec la propriété
suivante :

u(B) >0 = u([0,1\B) =0,V B e By

(i) Construire une suite d’intervalles fermés (/;);~0 < [0, 1] avec les propriétés sui-
vantes: Iy = [0,1], [;41 < [;,Vj = 0, [; estdelongueur27,V j > 0,et u(I;) = 1,
Vi =>0.

(ii) Endéduire qu'il existe un pointa € [0, 1] tel que 1 = 9.

b) Soit v une mesure borélienne o-finie sur R avec la propriété suivante :
v(B) >0 = v(R\B) =0,V Be %g.
Montrer quil existe a € Retb € [0, o[ tels que v = bd,.

Exercice # 43. (Mesures discrétes) Soit .7 une tribu contenant les singletons. La mesure p
sur (X, .7) est continue si, pour tout x € X, u({z}) = 0. u est discréte s'il existe un ensemble
Da.p.d.tel que u(D°) = 0.

a) Montrer que y est continue si et seulement si toute partiea. p. d. Ade X est u—négligeable.

b) Montrer que p est discrete si et seulement si il existe une suite (a,,)_ ., de points de X et

0

n>1

une suite (¢,),., < [0, 0] telles que p = Z Cnla,, -
n=1
¢) Supposons maintenant y o-finie. Montrer que y s’écrit de fagon unique i = ji.+ fig, OU
[ €st une mesure continue et /i, est une mesure discréte.

Exercice # 44. (Mesure image) Soient (X, .7) un espace mesurable et f : X — R" une
fonction mesurable. Soit ;1 une mesure sur .7 . Nous définissons fy i : Bre — [0, 0] par
fep(A) == u(f~Y(A)), VA € Bgn. Rappelons que f,u est une mesure sur Bgn. Cest la
mesure image de y par f.

a) Déterminer f.d,, aveca € X.
b) Soit ;2 une probabilité sur X (donc p(X) = 1). Nous prenonsn = 1. Si B € .7, détermi-
ner (xp) /-

Dans les quatre exercices suivants, A est la mesure de Lebesgue sur les boréliens de R. (Avec
les notations du cours, A = 1;.)

Exercice # 45. Soit U un ouvert de R. Montrer que A\(U) = 0 si et seulementsi U = (.

Exercice # 46. Prouver ou réfuter les assertions suivantes.

a) Si A c Restborélienetsi A(4) > 0, alors il existe un ouvert non vide U < R tel que
Uc A.

Et réciproquement?



b) Si A — Restborélienetsi A\(A) < oo, alors A est borné.

Exercice # 47. Soit B € Artel que \(B) > 0. Soit e > 0. Montrer qu'il existe un borélien
A c Btelque0 < A(A) < e. Indication : recouvrir B avec des intervalles disjoints de taille
<e.

Exercice # 48. Le but de cet exercice est de donner une définition équivalente de A comme

la seule mesure borélienne normée et invariante par translations.

a) Montrer que,siz € Ret A € %, alorsz + A € Py.

b) On fixe z € R. Soit u : Br — [0, 0] définie par u(A) := Az + A) pour A € .
Montrer que £ est une mesure sur Hg.

¢) En déduire que A\(x + A) = A(A) pour tout z € Ret A € By, C’est-a-dire : la mesure de
Lebesgue est invariante par translations.

d) Inversement, soit y une mesure borélienne sur R, invariante par translations et telle que
w([0,1]) = 1. Calculer x([0,1/n[), n € N*. Déterminer la mesure d’'un intervalle arbi-
traire. Montrer que ;1 = A.

e) Prouverouréfuter. Une mesure borélienne sur R, invariante par translations, est un mul-
tiple de la mesure de Lebesgue.

Exercice # 49. Cet exercice fait suite au précédent. Nous nous proposons de montrer que,

si 1 est une mesure borélienne et invariante par translations sur R" telle que x([0, 1[") = 1,

alors p1 = v,.

a) Montrer que u([0, 1/k[") = (1/k)", Vk € N*. Indication : recouvrir [0, 1[" avec des
cubesd. d. d. detaille 1/k.

b) Soit K; comme dans le lemme 9.6 du cours. Montrer que /() = v, (Kj).

¢) Endéduire que p(K) = v,(K) pour tout compact K < R".

d) Conclure.

Exercice # 50. Prouver ou réfuter les assertions suivantes.

a) Une partie d’'un ensemble négligeable est négligeable.
b) Une union a. p. d. d’ensembles négligeables est négligeable.
¢) Une union d’ensembles négligeables est négligeable.

Exercice # 51. Pour des fonctions f, g définies sur X a valeurs dans R ou R", la relation
f ~ gsietseulementsi f = g u-p. p. est une équivalence.

Exercice # 52. Prouver ou réfuter. Une partie d’'un ensemble Lebesgue mesurable de R" est
Lebesgue mesurable.
Exercice # 53. Soit A = \; la mesure de Lebesgue (complete) dans R.
a) Soient f et g deux applications continues de R dans R. Montrerque f = g \—p.p. <
f=9
Deméme pour f,g: A — R,avec A c R" tel que A — A
b) Soit f : R — R. Nous considérons les deux propriétés suivantes.
(P1) f est continue A-p. p.
(P2) Il existe une fonction g : R — R continue telle que f = g A\-p. p.

Montrer que (P1) nimplique pas (P2), et que (P2) nimplique pas (P1).
c¢) Soite > 0. Montrer quil existe un ouvert U dense dans R tel que A(U) < ¢.



Exercice # 54. a) Nous avons i = ﬁet? = 7.
b) .7 est compléte par rapport  7i.
¢) Une partie de X est pu-négligeable si et seulement sielle est i-négligeable.

Exercice # 55. Soit \, la mesure (complete) de Lebesgue sur la tribu de Lebesgue .%,, dans
R™. Montrer que

a) A, est o-finie.
n

b) A, est l'unique mesure sur &, telle que A, (P) = [];_,(b; — a;) pour tout pavé P =
[Tj_1]a;, b;[ de R™.

j=1
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Intégrale. Convergence monotone et dominée

Exercice # 1. Ecrire de maniére plus simple la quantité [ f dp lorsque :

a)  est une mesure de Dirac.
b) westla mesure de comptage sur N.

Exercice # 2. Soit (X, .7, u) un espace mesuré. Prouver ou réfuter les assertions suivantes.
a) Sif=xaavecAe 7, alors [ fdp = pu(A).

b) Sif=axa+bxp aveca,be Ret A, Be 7 ,alors [ fdu=ap(A)+bu(B).

¢) Sif: X — [0, ] estintégrable, alors u(f~*(o0)) = 0.

d) Sif:X — [0, 0] est mesurable et satisfait u(f~'(c0)) = 0, alors f est intégrable.

e) Sif: X — [0, 00] est mesurable et satisfait [ f = 0, alors f = 0.

f) Sif:X — [0, 0] est mesurable et satisfait [ f = 0, alors f = 0 u-p. p.

g Sif:X — [0,0]est mesurable et satisfait f = 0 p-p. p., alors [ f = 0.

h) Le produit de deux fonctions intégrables est intégrable.

Exercice # 3. Soit (X, .7, u) un espace mesuré. Si f : X — [0, 0] est mesurable, alors

/fduzsup{(l—a)/udu; u étagée,0 <u< f,0<e< 1}.
Exercice # 4. Dans cet exercice, I désigne un intervalle de R, muni de sa tribu borélienne

et de la mesure de Lebesgue.

L 1
a) Soit I := ]0,1[. Soit 0 < « < oo. A quelle condition la fonction z — — est-elle inté-
:L»a
grable sur /?

b) Méme question avec [ := [1,00[ et [ := |0, o0].
Exercice # 5. a) On consideére la fonction f : [0, 1] — R définie par
r, sire@Q
fl@)=4", :
x®, siz¢Q

Montrer que f est Lebesgue intégrable sur [0, 1] et calculer son intégrale.
b) Mémes questions pour la fonction f : [0, 7/2] — R définie par

F@) = {sinx, si cosz € Q

B sinz, sicosz¢Q

Exercice # 6. Etudier I'existence et la finitude de :

w .
SIn T . , , s .
a) / —dx,aveca = 1, 3/2, ou 2, au sens des intégrales généralisées ou de Lebesgue.
0



3

=)

b) La somme de la série Z

n>1
¢) Lintégrale / (=1

N e

,aveca = 1ou2.

du(n), avec a = 1ou 2, et i la mesure de comptage.

Exercice # 7. (Théoreme de convergence décroissante) Soit (X, .7, ) un espace mesuré.
Soit ( f,,)n=0 une suite décroissante de fonctions mesurables positives sur X , avec f, intégrable.
a) Montrer (via le théoréme de convergence monotone) que lim,, [ f,, du = [ lim,, f,, dp.
b) Montrer par un contre-exemple que 'hypothése d'intégrabilité de f; est essentielle.

Exercice # 8. Soit P une probabilité sur (R, %g). Pourn € N, soit [,, := [, (coswt)*" dP(t).
a) Montrer que [,, < o0, Vn.

b) Montrer que la suite (/,,),>0 est décroissante.

c) Déterminer lign I,.

Exercice # 9. Soit (X, .7, ) un espace mesuré et soit f : X — [0, ] une application

mesurable.

a) Soient A:={re X; f(z)>1},B:={re X; f(r)=1}etC:={x e X; f(x) < 1}.
Déterminer lim,, [, » f"dpu.

b) Déterminer lim,, fX f™dpu. On pourra commencer par le cas olt fX fdu < oo.

Exercice #10. Soit P une probabilité sur (R, g, ). Pourz > 0, soit F'(z fR T dP(t

a) Montrer que F'est décroissante.
b) Soit (z,,) = R, telle que z,, /" co. Déterminer lim F'(x,,).

n

¢) Endéduire lavaleur de lim,_,, F'(x).

Exercice #11. a) Soit [ un intervalle de R. Montrer que si ( f,),>n, €st une suite de fonc-
tions boréliennes positives sur [, alors

/fndulz/(z fn> du1.

n=ng n=ng

b) En déduire la valeur de

0 0
St
= Ji I+

. , . . Yo oe
Exercice # 12. Déterminer, pour tout a € R, lim ™+
n
0

o —1
—> dx.
n

nsin(x/n)

3 dx.

Exercice # 13. Calculer hrn /

Exercice # 14. Dans cet exercice, I est un intervalle de R, muni de sa tribu borélienne et de
la mesure de Lebesgue A (= v1). Montrer que les fonctions suivantes sont intégrables sur /
et déterminer lim,, [, f, dA.

nTsin T

a) I:= [O, 1],fn(:13) = m,Oﬁl <a<?2.



n%x exp(—n’a?)
1+ a2

b) I:=[A o @vec A > 0)et f,(z) :=
o) I:=[0,1]et fu(x) := v/ X[1/n2/n[(T)-

Exercice # 15. Soit f une fonction Lebesgue intégrable sur [0, oo[. Calculer

xr+n

lim / Fla)—— d\(x).
mJo
Exercice # 16. Calculer

o0 : n
lim / Gino) 4
m Jo

T2

Exercice #17. Soit (X, .7, 1) un espace mesuré. Soit f une fonction mesurable positive sur
X . Montrer que

lignn/){ln(l—i—%f) d,uz/deu.

Exercice #18. Soit f : R, — R une fonction Lebesgue intégrable. Calculer

117?1 /000 exp(—nsin® z) f(z) d\(x).

Exercice # 19. Rappelons que, si y > 0, alors la suite ((1 - 2) ) est croissante, de
n n>y

limite e Y.
Soit f,,(x) := n(1 — z)"sin*(nx)x[o.1)(z), Vn e N, Vz e R.
a) Déterminer la limite simple (notée f) de la suite (f,,),>1-

b) Calculer, enutilisantle rappel etle théoreme de convergence monotone, lim,, fR fo(z) dx.
¢) Montrer que lim,, [, fo(z)dz # [ lim, f,(x) dz.

Exercice # 20. Soient (X, .7, i) un espace mesuré et f : X — R une fonction intégrable.
a) Pourn > 0, soit A, := {z € X ; | f(z)| = n}. Déterminer lim,, [, fdpu.
b) Soit A € J tel que u(A) < co. Déterminer lim,, [, | f|*/" dp.

¢) Mémes questionssi f : X — R.

Exercice # 21. Soit P une probabilité sur (R, %) telle que la fonction R 3 ¢ — exp (alt|)
soit intégrable pour tout a € R.

a) Donner deux exemples de telles mesures « de nature différente ».

b) Montrer que ¢t — t" est intégrable pour tout n € N.

c) Soitz € C.

(i) Montrer que ¢t — exp(zt) est intégrable.

(i) Posons F(z) := [ exp(zt) dP(t). Montrer que F' admet un développement en série

entiére de la forme F'(z) = > _, an2", oul'on explicitera les coefficients a,,.

Exercice # 22. Soit (X, .7, ;1) un espace mesuré, avec y finie. Soit f : X — [0, o[ une
fn

dp. Calculer lim,, I,,.
x 1+ /"

fonction mesurable et, pour n > 1, soit [, :=




Exercice # 23. Rappelons que

<1+§> e Vo =>0.
n
Nous considérons, pour tout n > 2, la fonction f,, : |0, o[ — R définie par

1
fn(ﬂf) N AN Vo >0.
gi/m (1 + —)
n
a) Démontrer que, pourn > 2etz > 1, nous avons f,(v) < 4/
b) Montrer que, pour toutn > 2, f, est Lebesgue intégrable sur |0, oo|.

¢) Calculer lim,, fooo fon(z) dz.

Exercice # 24. Pour tout entier n > 1 et tout réel , soit f,,(z) := e "¢ — 2e72"*,

a) Montrerque . ., f.(x)estune série convergente pour tout z > 0, et calculer sa somme
/().

b) Comparer [[°>) ., fu(z)dzet,, ., J* fo(z) dz. Expliquer.

Exercice # 25. Nous munissons l'intervalle [0, 1] de sa tribu borélienne et de la mesure de
Lebesgue A (= v4). Soit (f,,)n>2 la suite de fonctions définies sur [0, 1] par

nw, si0 <z <1/n
fo(z) =% —n?(x —2/n), sil/n<z<2/n.
0, sinon

a) Tracer le graphique de f,,.
b) Calculeretcomparerliminf, [ f,d\, [liminf, f, d\ limsup, [ f,d\et [limsup, f,dA.
¢) Mémes questions avecla suite de fonctions (g, ),>1 définie par go,, := X[0,1/(2p)], ¥V P € N¥,
Gop+1 := X[1/(2p+1),1], VP € N.
Exercice # 26. a) Montrer que la fonction
sin x

fil0,o0[= B, fx) = =,

est Lebesgue intégrable sur |0, oo|.
b) Montrer que, pour tout z > 0, nous avons f(x) = > _, e " sinx.

[C ORI 1
¢) Endéduire que / ST g = E
0

V>0,

er — 1 n2+1

n>1
Exercice # 27. Soient (X, .7, ) un espace mesuré et f : X — [0, o[ une fonction mesu-
rable.
a) Supposons y finie. Pour n € N, soit X,, := f~'([n,n + 1[). Montrer que f est u-
intégrable si et seulementsi > _ nu(X,) < .
b) Nous ne supposons plus y finie. Pour n € Z, soit F, := f~*([2",2"*1[). Montrer que f
est u-intégrable si et seulementsi >, 2" u(F,) < .

Exercice # 28. Soient (X, .7, u) un espace mesuré et f : X — [0, oo[ une fonction mesu-
rable. Posons

Fy(t) := p(f 7 (I, 0D) = u(lf > 1)), VE = 0;
Fy est la fonction de distribution de f.

Pour traiter les questions suivantes, on pourra commencer par le cas ot f est une fonc-
tion étagée.



a) Montrer que F/; est borélienne.
0 ¢]
b) (Décomposition en tranches) Montrer que / fdu= / Fy(t) dt.
X 0

¢) Plus généralement, soit @ : [0, 00[— [0, co[ une fonction croissante de classe C'! avec
0¢]

B(0) — 0. Montrer que / B(f) dp — / &' (1) Fy (8) dt.
X 0
d) (Calcul de moments) Soient1 < p < wet f : X — R une fonction mesurable. Montrer

que

i = [ e utis > ) ae

Exercice # 29. (Lexercice précédent, vue probabiliste) En théorie des probabilités, ;i est une
probabilité, et on travaille plutét avec la fonction de répartition G¢(t) := p([f < t]),Vt = 0.
«Traduire » 'exercice précédent en fonction de G ;.

Exercice # 30. (Inégalité de Jensen) Soit (X, .7, P) un espace probabilisé. Soient I — R un
intervalle ouvert et  : [ — R une fonction convexe.

Nous admettons dans la suite le fait suivant (qui caractérise la convexité de ®). Pour tout
t € I, il existe une fonction affine ¥ (c’est-a-dire, une fonction de la forme W(s) = a s + b,
Vs € R)telle que :
@ Y(s) < P(s),Vsel;
(i) (t) = ().
Soit f : X — I une fonction intégrable.
a) Montrerque [ fdP € I.
b) Si W est affine, comparer les nombres [ W(f)dP etV ([ fdP).
¢) Endéduire l'inégalité de Jensen :

/cp(f)dpch(/fdp). 1)

Exercice # 31. a) Ecrire I'inégalité de Jensen (J) dans les cas suivants :
@) I:=R,o(t) =€, VteR.
(i) I :=]0,00[, ®(t) :=Int, V¢ €]0, oof.
(i) I :=R,1 <p<oo,P(t) := |t|P,VteR.
b) Obtenir, a partir de (J) appliquée a un espace probabilisé et a une fonction convexe conve-
nables, le cas particulier suivant de I'inégalité de Cauchy-Schwarz :

n

" 2
nZ(aj)Qz <Zaj> ,VneN* Vay,...a, €R.
j=1

j=1

"y

=— VA
#X,V c

¢) Que devient (J) si X est un ensemble fini non-vide, 7 = (X)), et u(A)
X?

d) Etsi, de plus par rapport a la question précédente, I =)0, 0| et &(t) = —Int, ¥Vt > 0?

Exercice # 32. (Variables aléatoires indépendantes) Soient (X, .7, P) un espace probabilisé

et f,g : X — [0, 0] des variables aléatoires (=fonctions mesurables). Nous supposons les

variables aléatoires f et g indépendantes, au sens suivant :

P([feAgeB]) =P(feA])-Plge B]), VA B e Zg.

5



a) Soient®, ¥ : [0, co[— [0, o[ deux fonctions boréliennes. Montrer que o f et Wo g sont
indépendantes.

b) Si f, g sont, de plus, étagées, montrer que [ fgdP = [ fdP- [ gdP.

A partir de maintenant, f, g ne sont plus supposées étagées.
¢) Montrer qu'il existe deux suites, (f, ). et (g,)n, de fonctions étagées positives telles que
fn €t g, soient indépendantes, Vn,m, f, / fetg, / g.

(Indication :examiner le procédé d’approximation d’'une fonction mesurable par des fonc-
tions étagées et utiliser la question a)).

d) Montrerque [ fgdP = [ fdP- [ gdP.
e) Si f,gsontintégrables, alors fg estintégrable. Contradiction?
f) Pourquoi ne pas considérer des mesures plus générales que des probabilités?

Exercice # 33. (Mesures a densité) Soit (X, .7, ;1) un espace mesuré. Soit g : X — [0, o0]
une fonction mesurable.

a) Montrer que
v: 7 —|0,0], v(A) :z/gd,u, VAe 7,
A

est une mesure (a densité g par rapport a ).
b) Sous quelles hypotheses sur g cette mesure est-elle :
(1) Finie?
(ii) o-finie?

¢) Dans (R, %g), montrer que dy n'est pas une mesure a densité par rapport a ;.

Exercice # 34. (Formule de transfert) Soient (X, .7, ;1) un espace mesuréet f : X — R"
une fonction mesurable.

Rappelons que la mesure image f, est la mesure borélienne sur R” définie par

fep(B) = u(f~(B)), V B € B

a) Montrer que pour toute fonction borélienne ® : R™ — [0, o[ nous avons la formule de
transfert

/XCI)ofd,uz /n@df*u.

On pourra commencer par ¢ étagée.

b) Par souci de simplicité, nous étudions ce qui suit principalement pour n = 1. En théorie
des probabilités :
1 pest une probabilité sur X.

2 Si f : X — R estune variable aléatoire, ce qui est connu n'est pas u, mais la loi de f,
c'est-a-dire la mesure image f,u, notée Py. (Pour ajouter a la confusion, f est notée
X, et saloi Py, mais dans ce cours X est 'espace ambient des fonctions mesurables.)

3 Lintégrale d’'une variable aléatoire f (si elle existe) est désignée comme l'espérance de f
etnotée E(f).

(i) Montrer que P est une probabilité sur (R, Zg).



(ii) Ecrire, sous réserve d’existence et a laide de Py, E(f), E(f — E(f)):, R 2 t —
E(e/), qui, en langage probabiliste sont, respectivement, l'espérance, la variance et
la fonction caractéristique de f.

(iii) Que deviennent ces formules si Ps est une probabilité a densité par rapport a v ?
o Sif = (fi,---,fn) : X — R"estun vecteur aléatoire (=fonction mesurable), exprimer,

en fonction de laloi de f, la fonction caractéristique R" > ¢ — E (eZ 21 tfff).

Exercice # 35. (Suites croissantes de mesures)
a) Pour k € N, soit (a, x)n=0 une suite telle que

ani =0, Vn, k>0, (HD)
(@n, k=0 est croissante , Vn > 0. (H2)

Soit a,, := limy_,o Ay, V1o > 0.

Montrer que limy Y, o G = Dosp Gn-
b) Soit (X,.7) un espace mesurable. Soit (i )x=o une suite de mesures sur .7 telles que :

(1 (A))r=0 est croissante, VA € 7. (H)

Pour A € .7, soit pu(A) = limy, py(A).
(i) Montrer que u est une mesure sur .7 .

(ii) Montrer que pour toute fonction 7 -mesurable f : X — [0, oo],lasuite ([ fdpuy)
est croissante.

k=0

On pourra commencer par le cas ol f est étagée.
(iii) Montrer que pour toute fonction .7 -mesurable f : X — [0, 0], ona

i [ fd = [

On pourra commencer par le cas ot f est étagée.

. . r+n, sir<-—-n
Exercice # 36. Pour toutn € N, soit f,, : R - R, f,,(x) := {0 o . Montrer
, siz > —n

que :

a) f, aune intégrale par rapport a la mesure de Lebesgue .

b) f. /0.

c) ffnd,u - deM-

d) Quelle hypothése de théoréme de convergence monotone r'est pas satisfaite?

Exercice # 37. En considérant, sur R, les fonctions f,,(z) := —(z + n)_, montrer que 'hy-
pothese f,, > 0 est essentielle pour avoir la conclusion du lemme de Fatou.

Exercice # 38. En considérant, dans R, la suite f,, := X[ n+1[, montrer que 'hypotheése de
domination est essentielle pour la validité du théoréme de convergence dominée.

Exercice # 39. Nous munissons [0, 1] de la mesure de Lebesgue. Pour n € N*, soit m =
m(n) lunique entier tel que m? < n < (m + 1)2. Soient

2
:| ) fn = mXAn-

4 n—m?n+1l—m
" o2m+1 2m+1

Montrer que :



a) [|fa] = 0.

b) Il nexiste pas g intégrable telle que | f,,| < g pour tout n € N*.
¢) Pour tout z € [0, 1], nous avons f,(z) - 0.

En déduire quen général la conclusion de la réciproque du théoréme de convergence
dominée nécessite de passer a une sous-suite.
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Feuille de TD # 4
Intégrales a parameétres

Exercice # 1. Soit f : R — R Lebesgue intégrable. Montrer que la transformée de Fourier de
f, définie par

f(t) = /Re_mf(x) dr, VteR,

est une fonction continue et bornée sur R.

Exercice # 2. (Transformée de Laplace) Soit f : [0, oo — Rune fonction continue et bornée.
Nous posons

F(t) := /Oooe“tf(x) de,Vt>0;

cest la transformée de Laplace de f. (F est plus communément notée .Z f.)

a) Montrer que F est de classe C* sur |0, o[ et calculer F*) pour tout k > 1.
b) Déduire de la question précédente la valeur de fooo e dx,Vk > 1.

Exercice # 3. (Fonction zéta de Riemann) La fonction zéta de Riemann est donnée par la for-
mule

C(s) := Z %, Vs>1.

n>1
Montrer que ¢ :]1,00[— R est de classe C.

Exercice # 4. a) Retrouver la théorie des séries entiéres a partir de la théorie de l'intégra-
tion. Plus précisément, soit (a, ),>o une suite de nombre réels (ou complexes). Soient

R :=sup{r > 0; lima,r" = 0}
et/ :=| — R, R[. Posons F(x) := >, _,a,2",Vx € I. Montrer que F' € C*(I) et que

F® (z) = Z nin—1)-(n—k+Da,z" " Vel

n>k

b) Calculer > _,(=1)"na" ', |z| < 1.

1 _
t:L'l

dt,VzeR.

Exercice #5. Soit f(z) := /
o 1+t

a) Montrer que f est finie si et seulement si z > 0.
b) Montrer que f est continue sur |0, oo].
c) Calculer f(x) + f(z + 1) pour z > 0. En déduire la valeur de 1i<1(1):1: f(x).

1



t—1
Exercice # 6. Soit f(t,x) := ﬁtx pourt €]0,1[ etz € R.
1

a) Montrer que F'(z) := fol f(t, x) dt est finie si et seulement si z > —1.
b) Montrer que F est dérivable sur | — 1, oo| et calculer F'(z).
¢) Calculer lim,_,, F'(z). En déduire la valeur de F'(x) pour = € R.

-1\
Exercice # 7. a) Montrer que la série Z u converge. Notons K sa somme.
n
n>1
b) Soit f(z) := Z T Montrer que f estde classe C' sur | — 1, 1[ et calculer f'(z).
n

n>1

¢) Déterminer f(z) et 1{@1 f(z).
d) Endéduire la valeur de K.

Exercice # 8. Pour x > 0, soient

Flz) = (/0 exp(—2) dt>2 et Glz) = /01 xp(—e(L+ 1)) )

1+¢2

a) Montrer que F et G sont de classe C* sur R,
b) Calculer F'(x) + G'(x) pour z > 0.
¢) Endéduirelavaleurde ] := [,” exp(—t?) dt,ainsiquelavaleurde J := [, exp(—t*/2) dt.

“In(1 2
Exercice #9. Soit I («) := / Mdm,a > 0.

0 1+ 22
a) Montrer que la fonction I : R, — Reest continue sur R, et de classe C! sur R*.

b) Donner la formule de I'(«) si v > 0.
2

(14 22)(1 + ax?)

c¢) Soit & € R*\{1}. Décomposer la fraction en éléments simples. En

déduire la valeur de I'(«) pour v > 0.
d) Calculer I(«) pour o > 0.

0 . 2
Exercice #10. Soit f la fonction définie sur R, par f(¢) := / (sm x) e dx.
0 x

a) Montrer que f est continue sur R, et deux fois dérivable sur R* .
b) Calculer f” etles limites a I'infini de f et f’.
¢) En déduire une expression simple de f.

Exercice # 11. Soit P une probabilité sur (R, %g ).

a) Montrer que, pour tout ¢t > 0, la fonction = — cos(zt) est P-intégrable sur R, . Soit

F(t) = /]R cos(xt) dP(x), Yt = 0.

b) Montrer que F' est continue sur R, .

SENRTINgr 2 .y , . . 1= F(t)
¢) Nous supposons que l'application x — x* est P-intégrable. Déterminer 111]% —

(On pourra établir et utiliser 'inégalité 1 — cosu < u?/2.)
1— F(t)
2
est P-intégrable. (On pourra utiliser le lemme de Fatou.)

d) «Réciproquement », supposons lim ionf < o0. Montrer que l'application z +— 2
t—

2



* cos(at ® 1 —cos(xt) di
Exercice #12. Pourz € R, soient F'(x) := / cos(xQ) dtetG(z) := / CC;S($ ) .
o 1+t 0 t 1+t

a) Montrer que F et G sont continues sur R. Calculer F'(0) et G(0).
b) Montrer que

* gin?t

ot

F(0)— F(z) + G(z) =Clz|, Yz e R, ouC ::/

¢) (i) Montrer que G est de classe C* sur R et que l'ona G”(x) = F(z) pour tout réel x.

(i) En utilisant la question b), en déduire que F' est de classe C* sur R* et est solution
d’une équation différentielle du second ordre que I'on déterminera.

(iii) En déduire lexpression de F'(x) pour x > 0 (on pourra remarquer que la fonction
F est bornée sur R). Calculer enfin F'(x) pour tout réel x.

d) Déduire de tout ceci la valeur de la constante C'.

Exercice # 13. (Transformée de Fourier d’'une gaussienne) Soit a > 0. Soit g,(z) := ez’

pour x € R. Nous nous proposons de calculer la transformée de Fourier de g,, donnée par
= [pe ™ g.(z)dv, ¥t € R. Rappelons que [, e~ dv = /7.

a) Montrer que g, est Lebesgue intégrable et calculer A, (0).

b) Montrer que h, est de classe C* et donner la formule de sa dérivée h.,.

¢) En utilisant une intégration par parties, montrer que h. (t) = (—t hy(t))/(2a).

d) Endéduire que h,(t) = \/fe_ﬁ/(‘m).
a

Exercice # 14. Soit h, la fonction de I'exercice précédent.
Soit f(t) := [, 7" hy(t) da. Montrer que f est de classe C" sur |0, ool

0 1 2
Exercice #15. Pour z € R, soit F'(z) := / exp (—5 (t2 + t2>) dt.
0

a) Montrer que F'est continue sur R.

b) Montrer que I’ est dérivable sur R*.

c) Montrer que, pourtoutx > 0,ona F'(z) = —F(x).

d) Endéduire lavaleur de F'(x) pour x réel.

exp(—x) — exp(—tx)
. .

a) Montrer que pour tout ¢ > 0, la fonction z — f(x,t) est Lebesgue intégrable sur R .

Pourt > 0, soit F'(t) := [,” f(x,t) dz.
b) Montrer que F' est continue sur ]O, ool.

Exercice #16. Pour x > Oett > 0, soit f(z,t) :=

¢) Montrer que F' est dérivable sur |0, «o].
d) Calculer F'(t) et en déduire la valeur de F'(¢) pour tout ¢ > 0.

: : * exp(—a?
Exercice #17. Poury > 0, soit F'(y) := / LQZD dx.
0 1+
a) Montrer que F est continue sur R, .

b) Calculer F'(0) et déterminer lim F(y).
y—00

c¢) Montrer que F’ est dérivable sur R* .

d) Montrer que F est solution sur R* d’une équation diftérentielle du premier ordre s’ex-
primant 3 laidede I := [[* exp(—2?) dx.



e) Endéduire, sous forme intégrale, une expression de F'(y) valable pour y > 0.
f) Pour finir, retrouver (une ne fois!) la valeur de I.

Exercice # 18. (Fonction Gamma d’Euler)

a) Montrer que, pour tout z > 0, lapplication ¢ — t* e~ est Lebesgue intégrable sur R* .
La fonction Gamma d’Euler est définie par

o0
[(x) := / t" e tdt, Vo > 0.
0

b) Montrer que I est continue sur R* .
c) Montrer que I" est de classe C* sur R* .
d) Montrer que I" est strictement convexe.

tan(¢
Exercice #19. Soit F'(t) := / &n(?

a) Montrer que F est de classe C! sur R. Calculer F'(t), puis F(t) .
2
b) En déduire la valeur de / (W) dx.
R x

“sinz

Exercice # 20. Nous admettons la convergence de l'intégrale généralisée / := / dzx.
0 T
0 e—xt
Pour tout t > 0, posons S(t) := / sinx dz.
0 T
a) Montrer que S est de classe C! sur |0, o] et calculer S(¢) pour ¢ > 0.
b) Déterminer lim,_,,, S(¢) et calculer S(¢) pour tout ¢ > 0.
c) Soient A > Qett > 0.
. © e sing 2
(1) Montrer que —dx| < —.
A T A
. , A et sin g sin &
(i) Prouver que, pour tout A > 0, nous avons lim —dx = / dz.
™NO Jo x 0 Xz

(iii) En déduire la valeurde .

Exercice # 21. (Extension harmonique) Soit

U :=Rx]0,0[= {(z,y) e R*; y > 0}.

Iy

Si (z,y) € U, soit P,(x) := T

; P, est le noyau de Poisson. Si f est Lebesgue

intégrable sur R, posons

u(z,y) = /R.Py(x —t) f(t)dt, ¥ (z,y) € U.

a) Montrer que u est finie en tout point de U.

b) Montrer que u est de classe C* sur U.

u Pu ,
¢) Montrer que Au = 0, oit Au(z,y) := Fr + 52 et le laplacien.
x? Oy



d) Si f est continue et bornée, montrer que

li y) = f(z), Vo eR.
lim u(z,y) = f(z), Vo

Ainsi, u est «la » (en fait, une) solution du probléme de Dirichlet

Au=0 dans Rx]0, oo
limpou(z,y) = f(x), VxeR ’

Cet u est lextension harmonique de f.
dt
14t
a) Déterminer 'ensemble D := {x € R; F(x) € R}. Montrer que F est continue sur D.

0
Exercice # 22. Posons F'(z) := /
0

b) Démontrer que F est de classe C* sur D et que

“ tTInt 1

En déduire le sens de variation de F'.
¢) Déterminer lalimite a I'infini de F'.

. *dt :
d) Calculer lim et lim F'(x).
=N\ 1+ t= \,1

Exercice # 23. Le but de cet exercice est de démontrer, pour tout = > 0, l'identité

© et “ sint
[ [y,
o 1+t 0o T+t
“sint

et d’en déduire (2 nouveau!) la valeur de / — dt.
0

—xt

“ e
a) Soit f(x) :2/0 mdt,szo.

(i) Montrer que f est bien définie et continue sur [0, 0.

(ii) Montrer que f est de classe C? sur |0, co[. Calculer f'(z) et f”(x) pour x > 0.
1
(iii) Montrer que f(z) + f"(z) = —,Vz > 0.
x
* sint
b) Soit g(x) := / — dt,V z > 0. Rappelons que ¢(0) existe (en tant quintégrale gé-
0o T

néralisée).

(i) Montrer, par intégration par parties, que g(x) existe pour tout x > 0 (en tant quin-
tégrale généralisée).
(i) Par un changement de variables, prouver que, pour x > 0, nous avons l'identité

* sinu , * cosu
g(x) = cosz du — sinx du.
T x

u u

(iii) Montrer que g(z) est de classe C? sur |0, oo| et calculer ¢/(x) et ¢”(z) pour z > 0.

1
(iv) Montrer que pour toutz > 0, g(x) + ¢"(z) = —.
T



¢) Dans cette partie, nous nous proposons de montrer I'égalité de f et de g sur |0, oo].
(i) Montrer que xh_r)rolo f(z) =0etque 531_1[130 g(xz) =0.
(ii) A partir del'équation différentielle du seconde ordre vérifiée par les deux fonctions,
en déduire que f(z) = g(z) pour z > 0.
d) Dans cette partie, nous nous proposons de trouver g(0).
(i) Montrer que 9161{1(1) g(x) = g(0).
(ii) Endéduire la valeur de g(0).

Exercice # 24. (Continuité de l'intégrale définie) Soit f : R — R une fonction Lebesgue
intégrable. Posons

/ f(t)dt, sizx >0
F(z):= [0z )
- flt)dt, sixz <0
[=,0]

a) Montrer que F’ est continue sur R.
b) Montrer que, si f est continue en 1, alors I’ est dérivableen 1 et F’(1) = f(1).

¢) De méme si on suppose f localement intégrable, c’est-a-dire f est (Lebesgue) mesurable et
[ |f(t)| dt < oo, pour tout compact K < R.
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Feuille de TD # 5
Mesures produit

Notations

1. v, estlala mesure de Lebesgue sur la tribu borélienne %~ de R".
2. )\, estla mesure de Lebesgue sur la tribu de Lebesgue ., de R".
3. Aestlamesure de Lebesgue sur la tribu de Lebesgue %) de R. (Donc A = A;.)

Exercice # 1. Soient X, Y a. p. d., et u, respectivement v, la mesure de comptage sur X,
respectivement Y.

a) Montrer que Z(X)® Z(Y) = (X xY).
b) Montrer que i ® v est la mesure de comptage sur X x Y.

Exercice # 2. Prouver ou réfuter les assertions suivantes.

) I®Y ={AxB;Ae T ,Be .Y}

b) Brn @ Brm = Bgrn+m.

Q) L, ®%Lw =Lnim.

d) v, QUi = Vnien-

e) My ® A\ = Ay

f) Soient (X, .7, u)et(Y, ., v)desespaces mesurés, avec p et v o-finies. Soit £ € T ®.7.
Siv(E,) = 0 pour (presque) tout z € X, alors y ® v(F) = 0.

g) Sip et v sont des mesures o-finies, alors ;1 ® v est o-finie.

Exercice # 3. Soit D := {(z,y) e R*; 2 > 0,y > 0,2 + y < 1}.
a) Dessiner le domaine D dans le plan et déterminer D, et DY,V x,y € R.

b) Montrer que D est borélien.
c) Calculer laire de D et [, (2* + y*) dzdy.

Exercice # 4. Calculer l'aire d’'un disque.

Exercice # 5. Calculer || [0.1]2 T€™ ddy.

Exercice # 6. Dans R?, nous considérons :
(i) Lademi-boule fermée D := {(z,y,2) e R?; 2 >0, 2% +¢? + 22 < 1}.
(ii) Le cone plein K := {(z,y,2) e R*; 0 < z < 1, 2% + y? < 2%},
(iii) Le cylindre plein C := {(z,y,2) e R3; 0 <2 <1, 22 + ¢y < 1}.
En examinant les aires des coupes des ces trois solides a la hauteur z, retrouver l'identité
dArchimede
vol(C) = vol(D) + vol(K),

«vol » désignant le volume d’un solide.

Vérifier cette identité a 'aide de formules connues.



Exercice # 7. Dans IR3, calculer le volume d’un cylindre (plein), pas nécessairement circu-
laire ou droit, en fonction de l'aire de sa base et de sa hauteur. Généralisation a R™?

Exercice # 8. a) Montrer que, si ¢ est une homothétie de rapport k£ dans R", alors
pn(H(A)) = k" pn(A), VA€ Bgn.

b) Comme application, calculer le volume d’une pyramide dans R? en fonction de l'aire de
sa base et de sa hauteur.

c¢) DansR?, deux pyramides qui ont la méme base et la méme hauteur ont le méme volume.
d) Généralisation a d’autres formes et dimensions?

Exercice # 9. Dans R3, on considére deux cylindres (pleins) circulaires droits infinis de
rayon 1. Si les axes des cylindres sont concurrents et orthogonaux, calculer le volume de
leur intersection.

Exercice #10. Pour x € Rety > 0, soit f(z,y) := y*. Soienta et b tels que —1 < a < b.
a) Montrer que f est \y-intégrable sur [a, b] x [0, 1].

1 yb _ ya
b) Trouver la valeur de l'intégrale I := / d
o Iny

1
(14 2262)(1 + y2t?)
a) Montrer que f, est \o-intégrable sur [0, 1] x R..
b) Soit g(y,t) := fol fy(z,t) do. Montrer que g est A\p-intégrable sur [0, 1] x R,.

Exercice # 11. Pour y > 0, soit f,(z,t) :=

,avecz,t € R.

. © /arctant )
¢) Trouver la valeur de I'intégrale [ := / ( ! tn ) dt.
0

Inz

o0
Exercice # 12. a) Montrer que 'intégrale généralisée I := / dx existeetque [ =
0

1
|
2/ 2n;1: dzx.
0 x -1

b) Calculer de deux facons différentes I'intégrale

xr2 —

/ dxdy
R, xr, (1+9)(1+2%y)

En déduire que I = 72 /4.
¢) Déduire des questions précédentes et d'un développement en série entiere de la fonction

T 1_quue
Z 1 —ert 1 _7T2
(20 +1)? 8 2 6

Exercice # 13. En calculant de deux facons différentes I'intégrale

['e] 1
I:= / </ e “sin(2xy) dy) dz,
0 0

.2
)

dx.

o0
déterminer la valeur de / e
0 xr



Exercice # 14. (Variables aléatoires indépendantes a densité) Soit (X, .7, P) un espace pro-
babilisé. Soient f,g : X — R deux variables aléatoires indépendantes (voir 'exercice # 32
de la feuille # 3). Supposons que laloi f,P = Py de f (respectivement laloi g. P = P, de g)
ala densité F' (respectivement (3) par rapport a v (voir les exercices # 33 et 34 de la feuille

4 3).

Soit

FRG:R? - [0,0], FRG(x,y) := F(z)G(y), ¥ (x,y) € R%

Nous considérons le couple (f,g) : X — R? (qui est un vecteur aléatoire, en langage
probabiliste). Montrer que laloi (f, g).P = P, de (f, g) aladensité F'® G par rapporta
Vy.

Exercice # 15. (Transformée de Fourier d'une mesure) Soit 1 une mesure borélienne finie
dans R. La transformée de Fourier de la mesure i est définie par

o(t) = [Rexp(—mt) du(x), VteR.

(En théorie des probabilités, on travaille plutét avec la fonction caractéristique de i, définie par

P(t) = p(—t) = [Rexp (vxt) dp(z), Vt e R.)

a) Calculer o dans les cas particuliers suivants : (i) = dg; (i) u(A4) = A\ (A4 n [0,1]),
YV A € Pr; (iii) u est la mesure de densité e,

b) Montrer que la fonction ¢ est continue et bornée sur R.

c) Soientn > 1eta € R. Montrer que

1 n

5, | exp (1ax) p(z) daz=/RKn(t—G) dp(?),

ou K, est une fonction que I'on explicitera.

n

1
d) Déterminer lim o / exp (rax) o(x) dz.
n 2n J_,
e) En déduire que, si ‘ 1|im (x) = 0, alors u est une mesure diffuse.
xr|—0

f) Méme conclusion si ¢ est Lebesgue intégrable sur R.

Exercice # 16. Soit /. la mesure de comptage sur ([0, 1], B[o.17).
a) Soit A := {(x,); z € [0,1]}. A est-il un borélien de R?? De [0, 1]*?
b) Justifier 'existence des intégrales itérées suivantes, et les calculer.

I = /[0,1] </[071] xa(,y) dA(ﬂf)) du(y),
nef ( JARCY () ) (o),

¢) Quelle hypothése d'un théoréme important n'est pas satisfaite?

Exercice # 17. a) Enoncer les hypothéses et les conclusions des théorémes de Tonelli et Fu-
bini pour la mesure de comptage sur N x N.

3



b) Soit

1, sin=m—1
f:NxN->R, f(mn):=<-1, sin=m+1.
0, sin+m+t1

Calculer > >, f(n,m)et), > f(n,m),etvérifiersiles conditions du point précé-
dent sont satisfaites.

Exercice # 18. Pour (z,y) € [—1, 1]?, soit

f@w,:{uwmﬁ+fﬂ si (2.y) # (0,0)

0, sinon

a) Montrer que les intégrales itérées de f existent et sont égales.
b) La fonction f est-elle A\p-intégrable sur [—1, 1]*?

Exercice # 19. Soient 1, ps deux mesures boréliennes, o-finies, non nulles, sur R, telles
que

1 @ pa(RAN\A) =0, ot A := {(x,2); v € R}.

Le but de cet exercice est de montrer qu'il existe a € Ret by, by €]0, o[ tels que p; = by J, et

o = b d,. (Et réciproquement.)

a) Montrer que si Ay, Ay € Py sont tels que 111 (A1) > 0et us(Az) > 0, alors g ® pa(Ag %
Ay) > 0.

b) Avec A;, A, comme ci-dessus, endéduire que (A; x As)NA # ¢, puisque Ayn Ay # .

c) Soit A € HBg tel que py(A) > 0. En utilisant les questions précédentes, montrer que
w2 (R\A) = 0, puis que p2(A) > 0, et enfin que p; (R\A) = 0.

d) Conclure en utilisant 'exercice # 42 de la feuille #2.

Exercice # 20. Soit p la mesure de comptage sur N, v une mesure o-finie sur X, et soient
fn : X — R des fonction mesurables, Vn € N. Soit f(n,z) := f.(z),VneN,Vze X.

a) Quelles hypothéses supplémentaires doit-on ajouter pour pouvoir appliquer le théoréeme
de Tonellia u ® veta f, et quelle est 'identité obtenue?

b) Quelles hypothéses supplémentaires doit-on ajouter pour appliquer le théoréeme de Fu-
binia u ® veta f, et quelle est l'identité obtenue?

c) Lesidentités obtenues dans les deux questions précédentes restent-elles valides si v nest
plus supposée o-finie?

Exercice # 21. Soient y, v deux probabilités sur Ag. Soient

Fut) = ult,00), Gu(t) i= (] — o0, ), H,(0) := p({t}), Vi e R.

On définit de maniére analogue F,, G, et H,.

a) Montrer que les fonctions F),, GG, et H,, sont boréliennes.
b) Montrer que [, F, dv = [,(G, — H,) dp.
c¢) Soient D, := {te R; H,(t) # 0}et D, := {t e R; H,(t) # 0}.

(i) Expliquer pourquoiles ensembles D, et D, sonta. p. d.



(ii) Montrer 'égalité suivante :
/Fudu+/Fz,du+ > Hu(t) H,(t) = 1.
R R teD,D,

Exercice # 22. Soit ;. une mesure borélienne finie dans R. Soit

1 Y
Hyz,y) =~ | —2  _dut),VzeR, Yy > 0.

.U( y) 7T\/Ry2+($t)2 M() Yy
Par analogie avec I'exercice # 21 de la feuille # 4, H,, est 'extension harmonique de /.
Le but de cet exercice est de montrer que si H,, = H,, alors 1 = v.

a) Montrer que H,, est continue.
b) Soit x € R. Déterminer li{r(l) yH,(x,y).
Y

b
¢) Soienta < bdeux réels. Déterminer li\If(l)/ H,(z,y) dz.
v a

d) Soit v une autre mesure borélienne finie dans R. On suppose que H,, = H, . Montrer que
pw=rv.
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Feuille de TD # 6
Changement de variables

Notations

a) Pourz > 0,T(xz) := [ t"'e~" dt €]0, o[ (Cest la fonction Gamma d’Euler).
b) v, estla mesure de Lebesgue sur les boréliens de R™.

c) A, estla mesure de Lebesgue (compléte) dans R™.

Exercice # 1. On demande de calculer

=
o l+cos?x

Voici une « solution ».

T dx ™1+ tan?x
- 1 - 2 + tan? du
014+ ——0p /0 e

1+ tan?zx

En posantt := tan z, nous avons dt = dz = (1 + tan® 7) dz, d’olt

tan dt 0 dt
[ [t
tano 2+ 1 0 2+t

a) Pourquoi est-ce manifestement faux?

cos? x

b) Ou estlerreur de raisonnement?
¢) Quelle estlavaleurde I?

Exercice # 2. Vrai ou faux. Si ® :]a, b[—]c, d[ est un C'-difféomorphisme et f :]c,d[— R

est mesurable, alors

d b
/ f() d = / F(@(y)) () dy

au sens du théoreme de changement de variables.

Exercice # 3. (Fonction Béta d’Euler)

a) Montrer que, Vo > 0,Vy > 0, lapplication t — t*71(1 — ¢)¥~! est \;-intégrable sur
10, 1].

La fonction Béta d’Euler est définie par

1
B(z,y) := / t" N1 -ty tdt, Yo,y > 0.
0



b) Soientz > 0,y > Oet] := / 21 oY1 e (%9 dsdo. Calculer I en utilisant le
R* xR*

changement de variables dans R? :u = g etv = s + 0.
¢) En calculant I d’'une autre maniére, établir, pour z, y > 0, 'identité

['(z)T'(y)

I(x+y) @)

B(z,y) =
Exercice # 4. a) Soit H : R? — R?, H(u,v) := (s,0),avec s := uveto := u(l — v).
Montrer que H est un C'-difféomorphisme de l'ouvert U =]0, o[ x |0, 1[ sur (R* )?.

b) Calculer I'intégrale I de l'exercice précédent en utilisant le changement de variables H,
et retrouver I'identité (1).

Exercice #5. a) Calculer/ 5 dedy, ou A = {(z,y) € R2:0<z,y<1,0<
Yy

Al+a?+
2 +y? < 1}
2y
b) Calculerlairede D := {(x,y) e R?; = + = <l,z>0,y=> 0} (avec a,b > 0 para-
metres).

o) Caleuler [, (22 + y?) dudy.
d) Soienta,b > 1. Calculerl'aire de B, ot B est 'ouvert délimité par les courbes d’équation
y=ax,y=x/a,y =b/rety = 1/(bx) et contenant le point (1, 1).

Exercice # 6. Pourn > 1,soitU, := {r e R"; 2y > 0,...,2, > 0,29 + -+ + x, < 1}.
Soit S, := A, (U,). Etablir une relation entre S,, et S,,_;. En déduire la valeur de S,,.

Exercice # 7. Soient 0 < a < b. Soit
D:={(z,y)eR*;0<z<y<+a+leta<axy<b}.

a) Montrer que D est un borélien.

b) ATaide du changement de variables u := y* — 22, v := 1y, que l'on justifiera, calculer
Pintégrale I := [, (y* — %)™ (2 + y*) dedy en fonction de a et b.

Exercice # 8. Soit U la partie de R? définie par
U:={(u,v,w)eR’;u>0v>0w>0,uv<1l,uw<1vw < 1}.

a) Montrer que U est borélien.

b) Calculer I := [;; uvw dudvdw. On pourra, aprés Iavoir justifié, utiliser le changement
de variables suivant :

(ZE,y,Z) = (I)(U,U,U)) = (\/w’ \/M, m>

Exercice # 9. Soit f : R* — R une fonction borélienne. Pour a, b, ¢ > 0 fixés, soit

Ia,b,c = / l_a—l yb_l Zc_l f(l' +y+ Z) dxdydz

(R¥)3

x +
etw = —y. Montrer
rT+y r+y+z

que H estun C'-difféomorphisme de (R* )* sur un ouvert U de R? que 'on déterminera.

a) Soit (x,y, 2) A, (u,v,w),o0u:=x+y+ 2,0 :=



b) Enutilisant H et la formule (1), en déduire que

_D@TOT©) [ aipre
Ia,b,c = m/o‘ u +o ! f(U) du. (2)

Exercice # 10. Soient o, 3,7 > 0. Soit

J-—/ dxdydz
o (R¥)3 T+az 4yl + 27

A quelle condition sur «, 3, 7, l'intégrale J est-elle finie?

Trouver la réponse de deux fagons différentes :

a) En utilisant le théoréme de Tonelli.
b) En utilisant (2).
Exercice # 11. Soit B := {(x,y,2) e R®; 22 + % + 2% < 1}.

a) Calculer
L:= / 2|y | 2]t dodydz
B

(@) Enutilisant les coordonnées sphériques.
(b) En utilisant (2).

b) Que retrouve-t-ondanslecasa =b=c=1?

Exercice # 12. Rappelons que fooo e dt = % . Soit
®© 2 2
H,(z) := / e~ @) gt Va >0,V = 0.
0

a) Montrer que la fonction H,, : [0, o0[— R est continue.

b) Calculer H,(0).

¢) Montrer que la fonction H, est dérivable sur |0, oof.

d) Calculer, pour x > 0, H! () en fonction de H,(x). Indication : utiliser le changement de
variable ¢t := %, avec o convenablement choisi.

e) Endéduire que

1
H,(z) = 5\/%6_2\/@, Va>0,Vz>0. 3)

Exercice # 13. Pour o > 0, soit

J(a) = / ey Ha/y) g o1/2 qu gy,
(R*)?

N

a) En utilisant (3), montrer que J(«) = Dol ['(a).

b) Enutilisant le changement de variables u := zy?, v := x/y?, que l'on justifiera, montrer

que
o= Qr(s)




¢) Endéduire la formule I <%> r (a ha 1) VT ['(a), a > 0.

2 - Qa—1
. . . ; o et +e’
Exercice #14. Rappelons que la fonction cosinus hyperbolique est définie par cosh x := —
a) Nous considérons les intégrales suivantes
e dsdt o / dsdt o / dudv
o g2 coshs + cosht’ " Jgecoshs 4+ cosht’ ~ " Jge coshu cosho’

(i) Vérifierque B = 4AetC = 7%
(i) En utilisantle changement de variables s := v — v,t := u + v, calculer B, puis A.
b) Soit H : R* — R, définie par H(z) := [” exp(—a cosht) dt.

(i) Démontrer que H est décroissante et continue sur |0, oo[. Déterminer les limites de
H en 0 etalinfini.
(ii) Montrer que [,” H(z)dz = 7/2.
(iii) Enutilisant lintégrale A, montrer que [, [H(z)]* dx = 7%/4.

dzd
Exercice # 15. Soit J ::/ Y
10,1[x]0,1] I —xy

1
a) Montrer que J = Z —5-
n
n>1

b) Effectuer le changement de variables x := u — vety := u + v et en déduire que

2 dudv
J = 2 4 20
ol—uw+wv
ou @) est un quadrilatere du plan que 'on déterminera.
c) Effectuer le changement de variable u := cost et en déduire que J = 72/6. Rappels :

1— cost
——— = tan(t/2), V¢ € R\wZ, et arctan(z) + arctan(1/2) = 7/2,V 2 € .
S111

Exercice # 16. (Théoréme du changement de variable dans R) Soit ¢ :]a, b[—]c, d|, avec

la, b], Je, d[< R. Nous supposons ® un C*-difféomorphisme, c’est-a-dire : ® € C'*,  bijec-
tifet ®'(z) # 0,V €la, b|.
a) Montrer que ¢’ est de signe constant sur |a, b|.
Dans la suite nous supposons ®'(z) > 0, ¥V x €]a, b[. Nous nous proposons de montrer
la validité du théoréme du changement de variable : si f :]c, d[— R est borélienne et si

g(y) == f(®(y)) ®'(y), Yy €la, b, alors f a une intégrale de Lebesgue si et seulement si
genaune et dans ce cas

d b
/]c,d[fdyl = /]a,b[gdm, ou encore /c f(;p) dr = /a f(q)(y)) (I)/(y) dy. @)

b) Montrer la validité de (4) si f := x;, avec I C]c, d[ intervalle.

¢) Endéduire que (4) est vraie si f = xp, avec B € %) 4. Indication : classe monotone.
d) Endéduire que (4) est vraie si f est borélienne positive.

e) Conclure.

f) Etsi f est Lebesgue mesurable?



g) Etsid'(z) <0,Vz€la,b?

Exercice # 17. Soient f, g : R” — R deux fonctions Lebesgue mesurables. Nous nous pro-
posons de montrer 'égalité

. fle—=y)gly)dy= [ [f(y) gz —y)dy, VzeR" ©)

Rﬂ/
a) Donner un sens a I'égalité (5).
b) Lajustifier.
Exercice #18. Soit | |lanorme euclidienne standard sur R™. Soit f :]0, oo[— R une fonction
borélienne.

a) Nous nous proposons de montrer qu’il existe une constante C' €]0, o[ (dépendant uni-
quement de n, en particulier indépendante de f) telle que

f(lz|)de =C / "1 f(r) dr. (6)
RTL

0

(i) Donner un sens a I'égalité (6).

(i) Lajustifier (pour C convenable).

2 n/2
b) En calculant de deux fagons différentes [, e~ 1" dz, montrer que C' = ﬁ
n

¢) Calculer, en fonction de la fonction I, le volume de la boule euclidienne unité.
Exercice # 19. Soit || | une norme quelconque sur R™. Nous nous proposons de trouver un
analogue de I'égalité (6) de I'exercice précédent pour le calcul de lintégrale [, f(||z]|) dz, ot
f :]0, 0[— R est borélienne.

a) Supposons d’abord f > 0. En utilisant les coordonnées sphériques, montrer I'existence
d’une constante C” €]0, oo| telle que

f(l]) de = € / L f(r) dr. )
Rn 0

b) Montrer que (7) reste encore vraie (dans un sens a expliquer) si f n'est plus supposée po-
sitive.

c) Soient U := {x € R"; ||z > 1} eta € R. Quelle estla nature de [, [[=|* dx?

Exercice # 20. Soit f € .Z*(R). Montrer I'égalité

/R F(a) do = /R Fe— 1)) d.

Exercice # 21. Pour toute fonction /' : R — R borélienne et bornée, soit
I(F) = / : F(ff2+y) :
g2 T2(1 4+ 22)(1 + y?)
a) Montrer que /(F') est bien définie.
b) Calculer I(F)si F(z) :=sinz,Vx € R.
¢) Montrer, en utilisant un changement de variables, que

/ Fa+y) dxdy = 2/ ﬂ dz.
rz T2(1 4+ 22)(1 + y?) r (4 + 22)
d) Soit F\(z) := cos (Az),Vz € R, avec A € R paramétre. Soit G(\) := I(F)). Ecrire G

comme la transformée de Fourier d’'une fonction que l'on précisera.
e) Montrer que, pour toute fonction F' : R — R borélienne et bornée, nous avons

2 2 F
/ FZ) ewtrzvr dxdy = 2/ (2) dz.
R2 Yy R 1+22

5

dzdy.
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Feuille de TD # 7
Espaces L”. Convolution

Cadre. Sauf mention contraire, nous travaillons dans un espace mesuré (X, .7, u1). Les es-
paces ZPet LP,1 < p < o0, sont relatifs a cet espace mesuré.

Exercice # 1. (Inégalité de Young) Soient 1 < p, ¢ < o0 exposants conjugués. Alors

ap q
ab< —+ —, Ya,be [0, 0.
p q

Indication : étudier, pour b fixé, la fonction a — a?/p + b?/q — ab.

Exercice # 2. Soient f, g : X — R mesurables. Montrer les propriétés suivantes.
a) |[tfl, =[] | fl,, Vt e R (avecla convention 0 - oo = 0).

b) Sif = gp.p. alors |f —gl, = Oet|f], = [gl,.

¢) |f], = Osietseulementsi f = 0p. p.

d) La définition de | f| est correcte, au sens suivant. Soit A := {M € [0,0]; |f(x)]| <
M p.p.}. Alors A est non vide et A a un plus petit élément, m. Cet m est le plus petit
nombre C' de [0, c0] avec la propriété | f(x)| < C p. p.

&) |f +glp <[ flp+ lglp pourp = Letp = oo. (Ici, f, g : X —> R))

Exercice # 3. Soit U un ouvert non vide de R”, muni de la mesure de Lebesgue sur %;,. Si
f e C(U), montrer que | f|, = sup |f].
U

Exercice # 4. Soit (X, 7, 1) un espace mesuré. Nous considérons des fonctions f,g : X —
R (pas nécessairement mesurables). Montrer que la relation d’équivalence f ~ g sietseule-
ment si f = g p. p. ales propriétés suivantes.

a) Sif ~ fietg~ gy, alors f+tg~ fi+tgi,Vte R(acondition que les fonctions soient
finies en tout point).
b) Sif ~ fietg~ gi,alors fg ~ fig:.
c) Sif ~getsi®:R - R,alors®o f~Pog.
d) Dans cette question, X := R" ety := \,,.
(i) Soit7,f(x) := f(x —h),Vx,heR".Sif ~ g,alors7,f ~ 7,9, V h.
(ii) Soient f, g, f1,91 : R* — R, avec f ~ fietg ~ ¢1. Soit z € R™. Alors h ~ hy, ol

h(y) :== f(z —y) g(y), ha(y) := filr —y) g1 (y), Vy e R™

Exercice # 5. Nous considérons la relation d’équivalence de I'exercice précédent, mais uni-
quement pour des fonctions mesurables.

a) Nous travaillons dans (R", .%,, \,,). Montrer que toute classe d’équivalence contient un
représentant borélien.

b) Méme propriété si a la place de R" nous considérons une partie borélienne de R™.

¢) Généralisation?



Exercice # 6. Donner un sens aux expressions suivantes.

a) «felP, f=0»

by «[f e L, | fl, = 0] = S =0».

Exercice # 7. Donner un sens aux affirmations suivantes, puis les prouver ou les réfuter.

a) Si f € LP?, alors f est mesurable.
b) Sife LP,avecl < p < o0, alors f est finie p. p.
o fel' = u({xeX;|f(x)]>t}) <|fl/t, Vt> 0.

Plus généralement, si1l < p < wet f € L, alors
fel? = u({reX; |f(x)] >1t}) <|fIb/t*, ¥t > 0(inégalité de Markov).

Exercice # 8. Nous munissons les parties boréliennes U de R™ de la mesure de Lebesgue
An. Décider pour quelles valeurs de p nous avons f € £P(U, \,,) si :

a) U :=]0,1], f(x) := %,aeR.
b) U:=R, f := xq-
o) U :=]0,m], f(x) :=

sin x

sin |z
|

d) U = {x € R"; || = 1}, f(z) :=

standard).

a € R (avec «| | » la norme euclidienne

Exercice # 9. Soit 1 < p < o0. Si f est mesurable, soit

Fy(t) := p({z e X5 [f(2)] > t})
la fonction de répartition de f .
a) Sipuesto-finie, montrer la formule du giteau en étages

112 = / PV () dt. W

0

b) Montrer que (1) reste vraie sans 'hypothése i o-finie. Indications : commencer par une
fonction étagée, et traiter le cas général par convergence monotone.
Exercice # 10. (Espaces (P)

a) Si p estla mesure de comptage, alors I'égalité p. p. équivaut a 'égalité. Ainsi, nous pou-
vons identifier naturellement £ et L”.

Si X = N muni de la mesure de comptage sur &(N), alors nous définissons

P =PN) =% =P, V1<p< .

Nous définissons de méme (P(A), avec A a. p. d. (Cas particuliers importants : A = Z,
A =N*)
b) Si(ay), est une suite indexée sur n € N, montrer que

p)l/P i1 <
<an>np={(2“'a”') alErem

sup,, |an|, sip= 0



c) Montrer que, sil < p; < py < o, alors (! < (P* < (P2 < (. De plus, ces inclusions
sont «continues»:sil < p < r < 00, alors | (@, )n|r < [(@n)nlp-

d) Soit (a,), € €7, avec p < co. Montrer que pour tout 7 > p nous avons limg_,,. |[(a,)n|s =
[ (an)nllr-

e) Sil <r < wet(a,), est une suite arbitraire, alors limg ;. ||(@n)n|s = [|(an)n -

Exercice # 11. (Espaces L” quand la mesure est finie) Nous supposons y finie.

a) Montrerquesil < p; < py < w,alors L < [P? < [P < L,
Plus spécifiquement, montrer que, 1 < p < r < oo, alors || f|, < (u(X))VP=V" | f|l,,
v f.

b) Si une variable aléatoire positive a un moment d’ordre k£ > 2 fini, montrer que ses mo-
ments d’ordre ¢, avec 1 < ¢ < k — 1, sont finis.

¢) Soit f € LP, avec p > 1. Montrer que pour tout 1 < r < p nous avons lim,_,,. | f||s =

| £
d) Sife L®, alors:

@ felP,V1<p<oo.
(ii) Lapplication [1, 0] 3 p — | f|, est continue. En particulier, lim | f|, = | f| .
p—0

Exercice # 12. Rappelons la définition de la fonction Gamma d’Euler :
0
[(x) := / t" e tdt, Vo > 0.
0

Montrer que la fonction z — In(I'(x)) est convexe sur |0, co[. On pourra utiliser la définition
de la convexité et I'inégalité de Holder.

Exercice # 13. Nous travaillons dans / =]0, o[ muni de la mesure de Lebesgue. Soient 1 <

p<ooetfe LP(I). Posons F(x) := [} f(t)dt,Vx > 0.

a) Donner un sens a cette définition. Montrer que F’ est bien définie.

b) Sip = oo, montrer que F est lipschitzienne.

c) Sil < p < oo, montrer que F' est «holderienne » : il existe C' < oo et v €]0, 1| (que 'on
déterminera) tels que |F(z) — F(y)| < C'|x — y|*, Vx,y > 0.

d) Sip = 1, montrer que F est continue.

e) Sip = 1, montrer que F est «absolument continue » : pour tout € > 0, il existe 6 > 0 tel
quesiO <a; <by <as <by <---<a, <b,sonttelsque (by —ay)+ (by —az) +---+
(b, — a,) < 0,alors |F(by) — F(a1)| + |F(by) — F(ag)| + -+ + |F(b,) — F(a,)| < e.
Indication : lemme de Lebesgue.

Exercice # 14. (Lemme de Brezis-Lieb) Soit 1 < p < co. Nous considérons une suite (f;) <
ZP telle que :
) |fill, < Co <0, Vj.
i) fj— f.
a) Montrer que f € Z7.
b) A-t-onnécessairement f; — f dans .£”?

Dans la suite, nous nous proposons de montrer le lemme de Brezis-Lieb

10 = [111+ [ 10~ 517+ o) quandn — . @

3



En fait, nous allons montrer la conclusion plus forte

[ g =187 = 18 = 171 0. 8
c) Expliquer pourquoi (3) = (2).

d) Sip = 1, montrer que

et conclure via le théoréme de convergence dominée.
e) Sil < p < oo, montrer que :

(i) Iexiste C' < oo telle que

C 1t <1
i —je—1p—1<{¢  sll=1
Cleft, sift] =1

(ii) Endéduire que

ClfI, si [ fnl

<Ifl @
C‘fn‘p_1|f’a si|fnl = |f]

P — Lo — fP— 7] < {

(iii) Soit M > 1. On définit

Anar = {z € X5 [fulo)] = M| f(2)]},
Bor = A{z e X5 [fu(x)] > M[f(z)[}.

En utilisant (4) et le théoréme de convergence dominée, montrer que
[l =l =g 1511 =0
An, M

(iv) Montrer que

ch
p 0
/B = ¥

(v) Utiliser (5), la deuxiéme inégalité de (4) et I'inégalité de Holder pour montrer que
Jimsup [ 50 = Uf = P =10 =0,
% n JB,um

(vi) Conclure.

Exercice #15. Soit 1 < p < . Si f,, — fdans Z?et f,, — g p. p., quelle est la relation
entre fetg?

Exercice # 16. a) En examinant la preuve de 'inégalité de Holder, montrer le résultat sui-
vant.

Soient f € LP\{0} et g € L9\{0}, avec 1 < p,q < oo conjugués et f, g > 0. Alors
[ f9=15llgly = BC elo, o[ el que 7 = C'g].
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b) Sinous ne supposons plus f, g > 0, montrer que

/fg = flsllgly = [3C €]0, o[ telque |f|"~" f = C'|g|*" g].

Exercice #17. a) En utilisant éventuellement l'exercice précédent, montrer le résultat sui-
vant.

Sil<p<wetf,ge LP\{0}, alors
If+3glp = 1flp + lgl, <= [B3C€]0,0[telque f = Cg].

b) Que devient cette conditionsip = 1?

Exercice # 18. Soient 1 < po,...,pp < 0 tels que Z§=1 1/p; = 1. Alors

[fifo-- Sl < WAl [ f2lps - Wfklps ¥ Frs foroos S 2 X

Exercice #19. Soient1 < py < p < p; < 0.

6 1-6
a) Montrer qu’il existe un unique e]() 1[tel que — = — + .
p

Do P1
b) Montrer que | fl, < [ fI, I £],:°,

Exercice # 20. (Inégalités pour des opérateurs a noyau) Nous travaillons dans un espace
produit (X x Y, .7 ® ., u®v), avec j1 et v o-finies. Toutes les fonctions considérées sont
mesurables et, par souci de simplicité, positives. Un noyau est une fonction K : X xY — R,.

Soient 1 < p, ¢ < oo deux exposants conjugués. Nous voulons majorer les quantités

= A(f,9) = K(z,y) f(z) g(y) dp®@v(z,y), avec f: X > Ry, g: Y > Ry,

XxY

B = Hyn—>/ny x) dp(z) avecf:X—>R+.

a) Montrer que
B(f) =sup{A(f,9); g€ L (Y;R,), |lgll, < 1}.

b) Soientar : X — R*,~:Y — R*. En utilisant I'identité (évidente)

K(e,y) f(2) gly) = ([K(af,y)]”p%f(x)> Y ([m,y)]l/q%g(y)) |

I'inégalité de Holder (avec les exposants p et ¢) et le théoréme de Tonelli, obtenir 'inégalité

at9) < ([ Fo) o) ) u<x>)l/p

< ([ cwrmsma >)1/q,

K(z,y)
y 7P)

(6)

ol
K(z,y)

x ai(x)

dv(y), G(y) = dp(z).



) (Inégalité de Schur) En prenant a(x) = 1, v(y) = 1, obtenir l'inégalité de Schur

/a
_lsup/nydV ] [sup/nydu ] £l
zeX yeY

d) (Inégalité de Young) En prenant a(x) = 1 et~(y) = 1, obtenir, pour f,h : R* — R,
Vinégalité de Young || = £, < [[Rl, ]| f]l,-

e) (Inégalité de Hardy) En prenant a(z) = () = 2V/*+9 obtenir l'inégalité de Hardy

/:% (/;f(y)dy)pdx < qp/owf%)dx

f) (Inégalités de Hilbert-Schur-Hardy-Riesz) Préliminaire. Nous admettons la formule des com-
pléments (due a Euler)

* 1 T
/ dt = —  Vo<a<1.”
o (t+1)te sin(ma)

En prenant o(z) = y(x) = 2V/?*9) montrer les inégalités de Hilbert-Schur-Hardy-Riesz

f(x)g(y)
oo Sy TS el
* fa) p
[ 2L a4y (2 s

Exercice # 21. (Inégalité de Hardy, encore) Nous proposons ici une autre approche pour
montrer I'inégalité de Hardy obtenue dans l'item e) de 'exercice précédent. Nous travaillons
dans I =0, oo[muni de la mesure de Lebesgue. Soit 1 < p < 00.8Si f € £P = £P([), nous
posons F'(x) := [* f(t)dt, V> 0.

a) Sife (Jgo ( ), montrer a 'aide d’'une intégration par parties l'inégalité de Hardy

7P ()P p \ [ »
A-TE—MS(;TJ Aﬂ@|m. )

b) Montrer que I'inégalité (7) reste vraie pour tout f € .ZP.

Exercice # 22. (Inégalité de Landau)

a) Soit f : R — R. Si f est Lebesgue intégrable, montrer qu’il existe une suite (R,,),, telle
que :

@ 2n<R,<2n+1,Yn.
(i) f(Rn) —0
b) Si, de plus, f est dérivable, montrer qu’il existe une suite (.S, ),, telle que
N R,<S,< Rn+1; YV n (etdonc S,, — 0).
@) f(Sn) f/(Sn) =
Indication : apphquer le théoréme des accroissements finis & f2.

De méme, il existe (7,), telle que T,, — —wo et f(1},) f'(T,,) — 0.

*, Cette identité peut s'obtenir, par exemple, en appliquant le théoréme des résidus en analyse complexe.



¢) (Inégalité de Landau) Soit f : R — R une fonction deux fois dérivable telle que f soit
(Lebesgue) intégrable et f” soit bornée. Montrer que f’' € Z*(R, vy) et l'inégalité de Lan-

dau
N2 1/
Qnsfuém.

Sn
On pourra commencer par calculer 'intégrale / (f")*(x) dx si, de plus, f € C2.

Exercice #23. a) Soit 1 < p < oo. Montrer que {f € Z?(X, T, u); [ étagée} est dense
dans ZP(X, .7, ). Il convient de distinguerlescas 1 < p < wetp = .

b) On travaille dans (R", %gn, 11), avec ;1 mesure de Radon. Si 1 < p < oo, montrer que

k
{ZanKj ; ke N*, a; e R, K compact, Vj}

j=1
est dense dans £P(R"™, Bgn, ).

Exercice # 24. a) Soit (X, .7, P) un espace probabilisé. Soient f,g : X —]0, 00| deux
fonctions mesurables telles que f - g > 1. Montrer que [ fdP - [ gdP > 1. Indication:
utiliser 'inégalité de Cauchy-Schwarz, c’est-a-dire 'inégalité de Holder avec p = ¢ = 2.

n n
1 2
0 Y~ =n
a.
1 j=1 J

b) Siay,...,a, > 0,alors
J

Exercice # 25. Soient f,g : R — R deux fonctions mesurables. Nous avons f * g(z) =
g = f(x), au sens du théoréme du changement de variables.

Exercice # 26. Soit p un noyau régularisant standard. Alors, pour tout ¢ > 0, nous avons :
a) p-(z) > 0si|z| <e.

b) p-(z) =0si|z| > €.

c) fpa = 1.

Exercice # 27. Une approximation de I'identité est une famille ({¢).-q telle que :
i) ¢°:R" — Rest (Lebesgue) intégrable, Ve > 0.

i) [¢F=1,Ve>0.

iii) Il existe une constante M < oo telle que [ |¢°| < M, Ve > 0.

iv) Pour toutd > 0, lim._, fRn\B(o,é) |Cé] = 0.

a) Montrer que, si p € £ (R") (avec la mesure de Lebesgue) et [ p = 1, alors p.(z) :=
e "p(x/e), e > 0,z € R", est une approximation de l'identité.
b) Soit ((¢).~( une approximation de 'identité.
(i) Si f : R" — R est bornée et uniformément continue, montrer que f = (* — f
uniformément sur R”.
(i) Sil <p < wetfe C.(R"), montrer que f » (¢ — f dans .Z?(R").
(iii) Sil < p < wet f € LP(R") (avec la mesure de Lebesgue), montrer que f «(* — f
dans .Z?(R").

Exercice # 28. Soient f € C*(R") et p € C.(R"). Alors :



a) f = estdéfini en tout point.

b) f * (€ Ck

c¢) Pour toute dérivée partielle 0* d’ordre < k, 0%(f = ¢) = (0*f) * .

d) Si f estun polynéme (de n variables) de degré < m, alors f = ¢ est un polynéme de degré
=m.

Exercice # 29. Soit ) — R" unouvert. Soient 1 < pq,...,pp < 0.So0it f € L7 (Q)n...N
ZPx(Q). Montrer quil existe une suite (¢;); € CF(Q) telle que p; — f quand j — oo dans
2P (Q),i=1,... k.

Exercice # 30. Soit {2 un ouvert de R". Montrer que C*(Q2) n Z%(2) et CF(£2) ne sont
pas denses dans .Z%(12).

Exercice # 31. Nous travaillons dans (R", Zg~, \,,). Soient p, ¢ deux exposants conjugués.
SifelLPetge LY montrer que f * g est continue.

Exercice # 32. Nous travaillons dans (R", Zz~, \,,). Nous nous proposons de montrer le
résultat suivant : si A, B € %, satisfont \,,(A) > 0, \,(B) > 0, alors 'ensemble A + B
contient une boule ouverte non vide.

a) Montrer que I'on peut supposer A et B compacts.

b) Montrer que f := x4 * X p est continue.

c) Calculer [ f et conclure.

Exercice # 33. (Résolution de 'équation de la chaleur dans le demi-espace) Nous travaillons
dans (R",.Z,, \,). | | désigne lalongueur euclidienne standard dans R". (Donc |z| = |z||,,
V2 e R™.) Soit

1

(at) /Qe*|x‘2/(4t), VereR" Vt>0,
T n

Ki(x) =

le noyau de la chaleur.

Soientl < p < wetf:R"” - R, fe_ZP. Sousréserve d’existence, soit
u(z,t) == f Ki(x) = [ Kz —y)dy, Yz eR", ¥t >0.
Rn

a) Montrer que :
i) ue C*(R"x]0,0]).
(i) u vérifie équation de la chaleur homogene

u = Pu .
Lu = g _]lea_gj? = OdanSR X]0,00[.

b) Sil < p < o, montrer que «u(-,0) = f»", au sens ol

limu(-,t) = f dans .£7.

t—0
c) Si f est continue et bornée, montrer que

Pr%u(x,t) = f(z), Ve e R".

+. Noter que u n'est pas définie pour ¢t = 0.



d) Si f est uniformément continue et bornée, montrer que

u(-,t) — f uniformément sur R” quand ¢t — 0.
Exercice # 34. (Produit de convolution de deux mesures) Soient y, v deux mesures boré-
liennes o-finies sur R”. A chaque ensemble borélien de R, nous associons 'ensemble
F=FF):={z,y) eR"xR"; x + y e E}.

a) Montrer que F’ est borélien.

b) Montrer que la formule {(F) := pn® v(F),V E € Brn, définit une mesure borélienne &
sur R". Cette mesure est le produit de convolution des mesures p et v, noté i = v.

c) Montrer que le produit de convolution est commutatif.

d) Siles mesures boréliennes i, v/, n sont finies, alors leur produit est associatif.

e) Montrer que ¢y (la mesure de Dirac en 0) est 'élément neutre de la convolution.

f) Sipetv sontdes mesures a densités f, respectivement g, par rapport a v,,, montrer que
w o+ valadensité f = g.

g) Sipestadensité f parrapporta v, alors u * v aladensité f » v, ot

frv(x) = . flx —y)dv(y), Vo eR"™

Exercice # 35. (Convolution d’une fonction et d'une mesure) Cet exercice fait suite a 'exer-
cice précédent. Si f : R" — R est une fonction borélienne, et ;1 est une mesure borélienne
sur R", nous posons, sous réserve d’existence,

f=v(x):= - flx—y)dv(y), Yo eR".

a) Si f est Lebesgueintégrable et ;s est finie, alors f =y est définie v, -p. p., et est une fonction
Lebesgue intégrable. Indication : théoréme de Fubini.

b) Si f € C*(R™) et j1 est une mesure de Radon, alors f = u est définie en tout point, et est
une fonction de classe C*.

Exercice # 36. (Equations de Cauchy) Nous considérons les équations fonctionnelles (de Cau-
chy) suivantes :

[*R->R, f(r+y) = f(z)+ fly), Vo,ye R, (8)
g:R->T:i={2eC; |2| =1}, gz +y) = 9(x) g(y), Yo,y e R. 9)
Un résultat trés connu affirme que, si f est une solution continue de (8), alors

il existe A € Rtelque f(z) = Az, V x € R (et réciproquement). (10)

Un résultat un peu moins connu affirme que, si g est une solution continue de (9), alors

il existe A € Rtel que g(x) = €1 Yz € R (et réciproquement). (1D

Ces conclusions ne sont plus vraies s'il n'y a aucune hypotheése sur f et g, mais donner
des contre-exemples sort du cadre de cet enseignement. (En demander en algébre.)

Nous nous proposons de montrer que (10) et (11) restent vraies sous 'hypothése plus
faible que f (ou g) est Lebesgue mesurable. Nous assumons cette hypothése dans ce qui suit,
et nous travaillons avec la mesure de Lebesgue.

Pour commencer, nous admettons la propriété qui suit, qui sera démontrée plus loin.

Sige L*(R)\{0}, alorsil existe ) € C*(R) telle que /g(y) Y(y) dy # 0. (12)
R

9



a) Soit g solution Lebesgue mesurable de (9). En multipliant (9) par ¢(y), avec ¢) comme
dans (12) (avec n = 1), et en intégrant dans la variable y, montrer que g € C*(R).

Puis conclure grice au préambule de I'exercice.

b) Soit f une solution Lebesgue mesurable de (8). Soit g := ¢*/. En utilisant la question
précédente pour g, montrer quil existe A € R et une fonction h : R — Z tels que

f(z) = Az + 27 h(z), Yz e R.

c) (i) Soith : R — Z une fonction telle que
h(x +y) = h(x) + h(y), Vx,y e R

(aucune hypothese de mesurabilité).

Montrer que h(z) =0,V x € R.

(i) Conclusion?

d) Montrons (12). Soit A := {y € R; g(y) # 0}.
(i) Expliquer pourquoi A;(A) > 0.

(i) Montrer quil existe X' < A un compact tel que v1(K) > 0. Indication : la mesure
de Lebesgue est une mesure de Radon.

(iii) Soit p un noyau régularisant. Montrer que (12) est vraie si) := (sgn g xx ) * p-, avec
¢ suffisamment petit. Indication : convergence dominée.

e) Généraliser ce qui précede a des fonctions f : R” — Retg: R — T.

10
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Feuille de TD # 8
Espaces de Hilbert

Cadre. Dans ce qui suit, H est un espace de Hilbert réel (sauf si'énoncé précise quil s’agit d’'un
espace de Hilbert complexe), et £/ un espace préhilbertien réel. Le produit scalaire, respective-
ment la norme induite sur H ou F, sont notés { , ), respectivement || |.

Exercice # 1. Soit f : [0, 1] — R une fonction convexe et dérivable. Montrer 'équivalence
0 est un point de minimum de f <= f'(0) > 0.

Exercice # 2. Montrer que, pour toutz € E,
|z = max{(z,y); y € E, Jy| < 1}.

Exercice # 3. Montrer que

1
@y = lle+yl* = le—yl’], vaye E.

Exercice # 4. On consideére un espace vectoriel réel X muni d’'une norme || || vérifiant I'iden-
tité du parallélogramme :

o+ yl* + llz = yll* = 2]=]* + 2[y[*, Y2,y € X.

Lobjectif est de montrer que X muni de cette norme est nécessairement un espace préhil-
bertien. Il s’agit donc de construire un produit scalaire induisant | ||. Compte tenu de I'exer-
cice précédent, posons

1
gy =7 lle+ yI* =z = l*], Y,y e X.

Il reste a vérifier que 'on a bien défini ainsi un produit scalaire.

a) Montrer que, pour tout 2,y € X, ona {(z,y) = (y,z), (z,z) = ||z|* et (—z,y) =
<l’, _y> = —<.73, y>

b) Montrer que, pourtoutx,y,z € X,onalx+y,z2) = {z, 2) +(y, z). (On pourra montrer
d’abord I'égalité suivante : (x + y, 2) = 2(y, 2) + (& — y, 2).)

¢) Montrer, en utilisant b), que, siz,y € X etr € Q,ona{rz,y) = r{x,y). En utilisant un
argument de continuité, montrer que cette égalité reste encore vraie pour tout r € R.

d) Endéduire que (, ) est bien un produit scalaire sur X qui induit la norme || |.

Exercice # 5. (Inégalité de Bessel) Soit (e;)1<j<n < E (avec N = 2,3,...,0) une famille
orthonormée. Montrer l'inégalité de Bessel

Z <l’,€j>2 = H‘CEH27 Vxe k.

1<j<N



Exercice # 6. Soit (e;);>1 < H une suite orthonormée. Soit (a;);>1 < R. Montrer I'équi-
valence

2
Z aje; converge < Z aj < o0.
j=1 j=1

_ 2
aje;| = ijl as.

Exercice # 7. Soient I et G deux sous-espaces fermés orthogonaux de H. Montrer que
F + G est fermé.

j>1

En cas de convergence de 'une des séries, montrer que HZ

Exercice # 8. Soit F' une partie non-vide de H. Montrer que :

a) F* estun sous-espace fermé de H.

by Veet (F)" = F-.

¢) It = Vect (F). En particulier, si F' est un sous-espace fermé de H, alors F*+ = F.,

Exercice # 9. Soit F' un sous-espace de H. Montrer I'équivalence

Festdensedans H < F* = {0}.

Exercice # 10. Soient F et (G deux sous-espaces fermés de H. Montrer que (F + G)* =
FtanGlret(FnG)t=FL+ G

Exercice # 11. Soit H = L?(R), muni de sa norme usuelle.

a) Montrer que

G:z{feH;/Olfzo}

est un sous-espace fermé de H, et déterminer G-.
b) Soient C.(R) I'espace des fonctions continues a support compact, et

F:={f€Cc(R);/01f=0}-

Montrer que F = G.
c¢) Déterminer I'ensemble {g € C.(R); g € F'}.

Exercice # 12. Soient H = L*(]0, 1[) muni de sa norme usuelle et

Ve {feH;/Olf:/ff:o}.

a) Montrer que V est un sous-espace fermé de H. Déterminer une base de V+.
b) Soit f(z) := x. Calculer la projection orthogonale de f sur V, puis d(f, V).

Exercice # 13. Déterminer la quantité suivante

2
inf / |sinz — a — bx|* dx.
0

(a,b)eR?

La borne inférieure est-elle atteinte?



Exercice # 14. a) Déterminer la projection orthogonale sur la boule unité fermée de H.
b) Déterminer la projection orthogonale sur le sous-espace engendré par une famille ortho-
normée finie de H.

Exercice # 15. Soite,(z) := €"*,¥n € Z, ¥ x €]0, 2r[. Montrer que (e, ),cz est une base
hilbertienne de L?(]0, 27|, B0 2x[, 1/(27)11).

Exercice # 16. Montrer quun espace préhilbertien qui a une base algébrique orthonormée
infinie & nest pas complet. Indication : soit (e,),>1 < < une suite orthonormée. Soit
Ty =y, (1/5%)e;, ¥V n > 1. Montrer que la suite (x,,),,>1 est de Cauchy, mais ne converge
pas.

Exercice # 17. On considére R[X | muni de

<PQ > /1 P(2)Q(z) dz, ¥ P,Q € R[X].
0

a) Montrer que <, > est bien un produit scalaire.
b) Montrer quil existe une suite de polyndmes (P, ) ,eny qui converge uniformément vers exp
sur [0, 1].
Montrer que cette suite est de Cauchy dans (R[ X ], <, >).
¢) Endéduire sur (R[X], <, >) rest pas complet.
Exercice # 18. Soit X l'espace vectoriel complexe engendré par les fonctions de la forme
R 5t — ¢ e C ol w parcourt R. Pour f, g € X, soit

I
< >:= lim — t)g(t)dt.
f.g TgI;OQT/Tf( )g(t)
a) Montrer que < , > définit un produit scalaire sur X .

b) Vérifier que la famille (¢ — e™*),,cg est orthonormeée.

¢) X est-il un espace de Hilbert?

Exercice # 19. Soit V' un sous-espace de H. Montrer que toute forme linéaire et continue
sur V' se prolonge en une forme linéaire et continue sur H.

Exercice # 20. Montrer que tout convexe fermé non-vide de H admet un unique élément
de norme minimale.

Exercice # 21. Donner un exemple d’une partie A fermée de (2, telle que dist(0, A) = 1,
mais ne contenant pas d’élément @ vérifiant |a|, = 1.

Exercice # 22. Soit F' — H un sous-espace fermé non-nul. Soit P une projection de H sur
F (c’est-a-dire : P est un endomorphismede H, Po P = Pet P(H) = F).

Montrer I'équivalence entre

1. P estla projection orthogonale sur F'.

2. Pestcontinuet||P| = 1.
3. [(P(z),z)| < ||z||* pour tout = € H.

Exercice # 23. (Polyndmes de Laguerre) Soit y« la mesure sur [0, oo de densité e~ par rap-
port a la mesure de Lebesgue (Cest-a-dire u(B) = [, e “dx, ¥V B € HBjo ). Les polyndmes
de Laguerre sont définis par

e’ d ! -z, n

Montrer que les L,, est un polynéme, ¥ n > 0, et que (L, ),>0 est une suite orthonormée de
LQ([Ov OO[? t%[0700[7 :U’)



Exercice # 24. (Deux identités généralisées du parallélogramme) Soient x4, ..., x, € H.

a) Montrer que
lt1 + (1= t)ao]* + (1 = )21 — 2a]® = thar|* + (1~ t)]Jaz|, VE e R.

b) Montrer que

1
D) lerws + -+ enzall” = aall* + - +

n
(e15sen)e{~1,1}"

¢) Montrer que, sip # 2, alors il nexiste pas d’isomorphisme linéaire entre ¢ et (2. (Sup-
poser par I'absurde quil existe un tel isomorphisme 7' : ¢?(N) — (*(N) et considérer
xXr; = T(ez))

Exercice # 25. Soit H = L*(Q),.7,1). SoitC = {f € H;f > 0}. Montrer que C est un
convexe fermé et que Po(f) = fx(s=0y, V f € H.

Exercice # 26. Soitu € .Z(H). Montrer 'équivalence entre

1. u estune isométrie, c’est a dire ||u(z)|| = ||z|| pour tout z € H.
2. Pourtoutz,y € H,(u(x),u(y)) = {x,y).
3. w*u = Id.

(Indication : penser a identité de polarisation).

Exercice # 27. Si H est séparable, montrer que tout ensemble orthonormé £ < H est au
plus dénombrable. Indication : si G est dénombrable et dense, construire une injection de
FE dans G en considérant des boules de rayon 1/2.

Exercice # 28. a) Soient z,y € E tels que (x,y) = ||z|* = ||y|*>. Montrer que z = y.
b) Soient (x,,) et (y,) deux suites de E vérifiant ||z, | < let|y,| < 1,V n.
1. On suppose que {x,,y,) — 1. Montrer que x,, — y, — 0.

2. Onsuppose que ||z, + y,| — 2. Montrer que z,, — y,, — 0.

Exercice # 29. Soient H séparable, (¢,),~0 < H une base hilbertienne et ( f,,),~0 € H une
suite orthonormée. On suppose que

D llen = fal* < 0.

n=>0

Le but de cet exercice est de démontrer que ( f,),>0 est également une base hilbertienne.

a) Soient N > Oetg € H telque f,, L g pourtoutn > N. Montrer I'inégalité

2
2 2
< lgl* X, llew— full®

n>N

2 (g, en)en

n>N

On choisit maintenant un N € N tel que

2
i llen = ful® < 1.
n>N
b) Montrer que tout vecteur g orthogonala eg, ey, ...,en_1, fn, fn+1,- .., estnul.



¢) On considére les vecteurs

Mo =€n— Y, <en frfu ¥n < N.

k=N
Montrer que tout vecteur g orthogonala ng, m1,...,nv-1, fn, fn+1, .- ., estnul.
d) Soit W l'orthogonal de l'espace V' engendré par les vecteurs fy, fv11,... Montrer que
N, € W pour toutn < N et que W est engendré par g, ..., Nn_1.

e) Conclure.

Exercice # 30. Soient (e,,),>0 une suite orthonormée de H et A := {e,, ; n > 0}.

a) Montrer que A est fermé et borné. A est-il compact?

b) Soit (v, ) une suite de réels positifs de carrés sommables. On note K I'ensemble des élé-
ments x € H qui s'écrivent sous la forme Y. a,e, ot |a,| < «, pour tout n. Montrer
que l'ensemble K est compact.
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Feuille de TD # 9
Séries de Fourier

Notations, cadre

a) Sif :]0,27[— C est Lebesgue intégrable, nous posons

1 2
cn(f) = %/ flz)e ™ dx, VY eZ,
0
N

Sn(H)(z) = D enlf)e™, YN eN,

n=—N
Sf(x):= lim Sy(f)(z) (sicette limite existe),

N—o0

 Su()@) + o+ Sy()(a)
N+1

Tn(f)(z) - YN eN.

b) La série formelle Sf := >\ c,(f)e™ estle développement en série de Fourier (ou la série de
Fourier) de f.

c) Les espaces et normes L? sont considérés par rapport a [ =0, 27| muni de la mesure
1/(2m) Ay, avec \; la mesure de Lebesgue.

1 2m
Exercice #1. a) Montrerque(f,g) := — f(z) g(x) de définit un produit scalaire sur

2m Jo
L2,
b) Posons e, (x) := €"* ¥n e Z,¥ x €0, 2r[. Montrer que la famille (e,,),cz est orthonor-
mée.

¢) Exprimer ¢, (f) alaide de e, et du produit scalaire ci-dessus, et retrouver I'inégalité de
Bessel.

Exercice # 2. Soit f 2m-périodique et intégrable sur |0, 27[. Alors :

a) f estintégrable sur tout intervalle borné.
b [ fy)dy = [T fly)dy,VaeR.

Exercice #3. Soit P = ). _,a,€e" =), ,a,e, (avec ] c Z fini) un polyndéme trigonomé-
an,, sinel

trique. Montrer que P € L' et que ¢, (P) = 0 gl
,  sin

Exercice # 4. Si f est localement intégrable et 2-périodique, montrer que ¢, (f(- + h)) =
e™e,(f),VheR,VneZ.

Exercice # 5. Soit f : R — R la fonction 27-périodique définie par

f(z) = {1, pour x € [0, 7]

0, pourx €|, 2n[



a) Dessiner le graphe f sur [—27, 27].

b) Déterminer Sf.

sin((2n + 1)z)
2n +1

[es}
¢) Calculer, en fonction de z € R, la valeur de la somme Z
n=0

Exercice # 6. Développer en série de Fourier la fonction 27-périodique donnée par f(z) :=
x pour z € [0, 27[. Que donne I'égalité de Parseval?
Exercice # 7. Développer en série de Fourier la fonction 27-périodique définie sur [—, 7|

par f(x) := |sinz|. En déduire la valeur de Z !

= 4n? — 1

Exercice # 8. Développer en série de Fourier la fonction 27-périodique définie sur | — 7, 7]
. 1 1
par f(x) := |z|. Endéduirelavaleurde » —et » —.

Exercice # 9. Soit f : R — Rlafonction 27-périodique définie sur | — 7, 7] par f(z) := 2.

a) Déterminer Sfet Sf(z),z € R.

b) En déduire les valeurs des séries Z %, Z (_12> , Z @ <1F ek Z i4.
n n n n

n>1 n>1 n>0 n>1

Exercice # 10. Soit « €]0, 7| et f : R — Rla fonction 27-périodique définie sur | — 7, 7]
par
1, size|—a,a
() = { el

0, sinon

a) Dessiner le graphe f sur [—27, 27].
b) Calculer SfetSf(x),zeR.
sin(na)?

0]
¢) En déduire la somme de la série Z 5

n=1 n

Exercice # 11. Soit f : R — R la fonction 27-périodique, impaire et telle que f(z) =
(m —x)/2sur |0, x|.

a) Dessiner le graphe de f sur une période.

b) Calculer SfetSf(z),z e R.

L. . sinn 1
¢) Endéduire la valeur des sommes suivantes : Z et Z —-
n>1 n>1 n

Exercice #12. Soit f : R — R la fonction 27-périodique, paire et telle que f(z) = 2z — 7
sur [0, 7].

a) Dessiner le graphe de f sur [—3m, 37| et exprimer f(z) sur [, 27].

b) Déterminer SfetSf(z), z € R.

1

¢) Endéduire la valeur de la somme 2 m
n

n>0
Exercice #13. Soit f : R — R la fonction 27-périodique et vérifiant f(x) = z sur [—m, 7[.

a) Dessiner le graphe de f sur [—3m, 37].
b) Déterminer SfetSf(z), z € R.



(="

on+1

¢) Endéduire la valeur de la somme Z

n>0
Exercice # 14. Développer en série de Fourier la fonction 27-périodique impaire définie sur

[0, 7] par f(z) = x(7 —z). En déduire les valeurs des séries Z % et Z m.

n>1 n>1

Exercice # 15. Soit f : [0,27] — C une fonction de classe C'! telle que f(0) = f(27) et
2
o f(t)dt=0.

a) Exprimer ¢, (f’) enfonctionde ¢, (f), Vn € Z\{0}, et calculer ¢o(f").

b) En déduire que

T 2d 27 ) Qd.
/0 (1) ts/o PP

c) Dans quel cas a-t-on égalité?

Exercice #16. La conclusion deI'item 3 de cet exercice suit du corollaire 12.25 du cours, mais
le but ici est d’en obtenir un preuves plus directe et élémentaire.

1@l

e ,VnelZ*.
n

a) Soit f € C*(R) une fonction 27-périodique. Montrer que |c,, (f)| <

. . . 2 z: : 0 1nx
Enparticulier, si f € C*, montrer que sasériede Fourierxz — " ¢,(f) €™ converge
normalement, et que la somme de la série est f.

b) Dans cetitem, nous améliorons la conclusion de I'item a). Nous supposons f € C*~1(R),
f 2m-périodique, et f*~1 de classe C* sur [0, 27]. Montrer que Y. |n|?* |c, (f)|? converge.

c) Si f est continue, 27-périodique, et de classe C'! par morceaux, montrer que sa série de
Fourier converge normalement vers f.

Exercice # 17. (Noyau de Dirichlet) Soit f 27-périodique et intégrable sur |0, 27 (. Soit

N
Dy(x) := Z et YreR;
k=—N

Dy est le noyau de Dirichlet.

a) Montrer que

Sxf(e) = = [ fle—y) Dnly)dy = = / " f(e—y) Dnly)dy, Y € R.

2m Jo 2 ).

b) Montrer que

sin((N + 1/2)y)

, , siyé¢2nZ
Dyl(y) = sin(y/2)
2N + 1, siye2nZ
_Jsin(Ny) cotan (y/2) + cos(Ny), siy¢2nZ
ON +1, siye2nZ

) Montrer que [ Dy(y) dy = fir Dy(y)dy = .



Exercice # 18. (Noyau de Fejér) Soit

_ Dy+Dy+---+ Dy

Fy:
N N +1

, VN e N,

ol D; est le noyau de Dirichlet (Fiy est le noyau de Fejér). Soit

So(f) + S1(f) +--- + Sn(f)
N+1

Twn(f) = VN eN.

Montrer les propriétés suivantes.

a) Si f est 2r-périodique et intégrable sur |0, 27|, alors

To(P)a) = 5= [ S =) Px(dy = 5- [ fla =) Fuly) dy, v e
sin?[(N + 1)y/2]

b) Fiv(y) = § (N + 1) sin*(y/2)’
N +1, siye 2n7Z

siy ¢ 2w 7

En particulier, Fiy(y) > 0,Vy, V N.

o [ Fn(y)dy = 2.
d) Pourtout0 < ¢ < 7, Fiy — 0 uniformément sur [—m, —d] U [, 7| quand N — oo.

En particulier, pour tout 0 < § < 7,
/ Fy(y)dy — 0quand N — 0.
[—m,—d]u[é,7]

Définition. Si f : R — C est continue et 27-périodique, son module de continuité w est
w(8) = sup{| F(x) — F(3)]; 7y e R, |z —y| < 6}, Y0 < 6 < 2. W

Exercice #19. a) Montrer que, dans (1), le sup est un max.
b) Montrer que w est continue et croissante.

Exercice # 20. Soit f : [0,27] — C une fonction a-holderienne telle que f(0) = f(2n).
Nous notons encore f son prolongement par 27-périodicité.

a) Montrer que
w(8) < 2|f]cad®, Y0 < § < 27, @)

b) Améliorer (2) 2 w(d) < 2'7%|f|cad®, V0 < § < 27.

Exercice # 21. Soit f : [0,27] — C une fonction telle que w(d) « § quand § — 0. Montrer
que f est constante (et réciproquement).

Exercice # 22. Montrer que S,,(T,,(f)) = Tn(f)-

Exercice # 23. (Pour une mise en perspective de cet exercice, voir I'exercice # 26.) Montrer
que

150 ()]l o < |1 Dnllill fllo, ¥V f : R — C mesurable, bornée, 2r-périodique.



Exercice # 24.

a) Montrer que

D, (y)| < 1mim((n +1/2)|y[,1), Yn>0,VY0 < |y| <.

Y|

On pourra utiliser les inégalités suivantes :
2
|sint| < min (|t],1),Vt e R, sint > —t, Vt e [0,7/2].
T

b) En déduire que
|Dplly <1+ Inm+In(n+1/2), Vn > 0.

Exercice # 25. Montrer que

2

g i (0 D2, 1), Y= 0, Y0 <y <

[Fn(y)] <

Exercice # 26. (Produit de convolution de fonctions périodiques) Soient f, g : R — C deux
fonctions 27-périodiques, avec f intégrable sur |0, 27 et g continue. Nous définissons

2m
[rg(x) = %/0 flz—1t)g(t)dt, VxeR.

a) Montrer que le produit de convolution f = g(x) est bien défini, V x € R.

b) Montrer que f = g est 2m-périodique.

c¢) Calculer les coefficients de Fourier de z — f(x — t) en fonction de ¢ et de ceux de f.
d) Endéduire les coefficients de Fourier de f = g en fonction de ceux de f et g.

e) Généraliser ce qui précede au casou f € £P et g € £, avec p et ¢ conjugués.

Exercice # 27.

a) Montrerque Ty (f) = f = Fy,V1 <p <00,V fe LP(I), f 2n-périodique.

b) Avec p et f comme dans la question précédente, montrer que 7 ( f) est 2r-périodique,
Tn(f) e 27T et [Tn(f)lp < [ flp-

c) Soitl < p < . 8i f € CP(I)et f est prolongée par 2m-périodicité a R, montrer que
|Tn(f) — f|, — 0quand N — co. Indication : utiliser le théoréme de Fejér.

d) Soitl < p < 0. 8i f € LP(I) et f est 2w-périodique, montrer que | (f) — fll, — 0
quand N — co. Indication : utiliser la question précédente et la densité de C°(I) dans
2°P(I).

e) Calculerc,(Tn(f)),VN e N,Vn e Z.

f) En déduire que «les coefficients de Fourier d’'une fonction déterminent la fonction » : si
f e LY(I) et f est 2w-périodique, alors [c,(f) =0, Vne Z] = f =0.

Exercice # 28. (Inégalités faibles de Bernstein (I)) Commengons par la fin de l'histoire, qui
dépasse le cadre de cet enseignement. En général, 'ordre de grandeur d’'une fonction ne
donne aucune information sur 'ordre de grandeur de sa dérivée. Par exemple, les fonctions
x — fn(x) := sin(nz) satisfont toutes | f,,| < 1, maisleurs dérivées peuvent étre arbitraire-
ment grandes quand n — o0. Le théoréme de Bernstein donne une inégalité entre f’ et f si f est
un polyndme trigonométrique de degré fixé. Il affirme que, si f est un polynéme trigonométrique
de degré < n, alors

max | f(«)] < n max|f(z)]. (3)



Nous allons montrer une forme plus faible, avec un facteur supplémentaire 3, de cette
inégalité, et une version L? de celle-ci :

1f' ], <3n|flp V1 <p< oo,V polynéme trigonométrique f dedegré <n. (4

a) Soit g(x) := €™ f(x). Si f est un polynéme trigonométrique de degré < n, montrer
Iidentité suivante (avec F,, le polyndme de Fejér, et T,, comme dans I'exercice précédent) :
f(x) =wm f(x)—2me™ (9= F,)(z) = f(x)—2me " (T,(g9))(z),YVz e R. (5)

b) En déduire (4).

Pour la suite de cet exercice (inégalités faibles de Bernstein (I1)), voir 'exercice # 43 de la
feuille d’exercices de synthese et avancés.
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Feuille de TD # 10
Transformée de Fourier

Cadre

1. Nous travaillons dans R™ muni de la mesure de Lebesgue.

2. «-»estle produit scalaire standard dans R" : z - £ := Z?Zl z; &, YV, & e R

1/2
3. «||»estlanorme euclidienne standard dans R" : |z| := <Z?:1(:)sj)2> ,VoeR™

Exercice # 1. a) Soient f € L}(R") ete > 0. Soit f.(x) := ™" f(z/e),Vx € R".
(i) Montrer que f. € L.
(i) Montrer que ﬁ(&“) = f(e £).
(iii) Montrer que |f-(€)| < | f|,, Ve >0,V ¢ e R™.
b) Soient f € L}(R") eth € R"™. Soit 73, f(x) := f(x — h), V2 € R".
(i) Montrer que 73, f € L'.
(i) Montrer que 7, (£) = e~ f(£), V& e R™.
¢) Soit f € LY(R").
(i) Montrerque f e L.
(ii) Montrer que ?(5) = ?(—5), VEeR™
d) Soit f € L*(R"). Soit f(z) := f(—x),Vz € R".
(i) Montrer que fe L.

~
~ ~ A~

(ii) Montrer que f(&) = f(—=&) = f(£),VE e R™.

Exercice # 2. a) Soita > 0.Soitg” : R — R, 9% (z) = e~***,z € R. Nous nous proposons
de calculer h® := ¢°.
Rappelons que [, e dx = 7'/,
(i) Montrer que g° € L' et calculer h%(0).
(ii) Montrer que h® € C'! et donner la formule de (h?)'.

§h*(€)

(iii) En utilisant une intégration par parties, montrer que (h?)'(¢) = T Indica-

. —ax? —ax? ! ¢
tion:ze = —1/(2a) <e > .

(iv) Obtenir la formule =2 (&) = (m/a)"/? =€/,
Sous une forme plus compacte, nous avons g%(¢) = (w/a)Y/2 g/(4) (¢).
b) Plusgénéralement, soit g%(z) := e @*I*, z € R". Montrer que g%(¢) = (w/a)™/2 g"/142)(¢),
Va>0,VEeR
c) Soit A € M, (R) une matrice symétrique, définie positive. Soit f(z) := =)= Yz €
R™. En utilisant la question précédente et un changement linéaire de variables, calculer

7.

Ax)-x



Exercice # 3. Voici une autre méthode pour calculer la transformée de Fourier des gaus-
siennes. Elle est inspirée par 'analyse complexe.

Soit F: R — C, F(s) := [, e~ @+ dz,
a) Montrer que F est bien définie et de classe C.
b) Montrer que [’ est constante.

s . , . 2
¢) Endéduire la formule de la transformée de Fourierde z +— e *

Exercice # 4. Dans R, soit f := x[o,1]. Montrer que f € .Z" mais que f ¢ £ Endéduire
que la formule d’inversion de Fourier ne s'applique pas 2 toutes les fonctions de .#1.

: * sint : .y TR
Exercice # 5. Rappelons que — dt = 7. (Il s’agit d’'une intégrale généralisée.)
—0
Soit f la question de I'exercice précédent.

a) Montrer que

~

f(z) = lim i/_ e f(€)dE, Yo e R\{0,1}.

R— 27T R

b) Voyez-vous un lien entre la formule ci-dessus et le fait que f € .£??

Exercice #6. a) Soit f : R — R, f(z) := e~1*l, V2 € R. Calculer f.

b) Soitg: R — R, g(z) := vV € R. Calculer g.

1
1+ 22’
Exercice # 7. Soit A\ > (. Soit

e¢]
f(x) = / e M (A t) T2 e gy g e R
0

a) Montrer que f € Z(R").
b) Calculer f .

Exercice # 8. (Résolution de 'équation de Helmholtz) Soit f la fonction de I'exercice précé-
dent. Soit g € C(R™).
a) Montrer que f = g € C*(R") etque f = g € L1 (R").
2 2 2
b) Soit A le laplacien, cest-a-dire Au(z) = 5(6 u)2 () + Cu 0"u
X
Vue C*R"). Calculer Z[(f = (\g — Ag)].
¢) Trouver une solution h € C*(R™) de I'équation de Helmholtz \h — Ah = g.

Exercice # 9. Calculer les transformées de Fourier des fonctions suivantes.
a) f:R—-R,f(r):=(sgnz)el voreR.
1
b) g: R — C, = ——,VzreR.
) g gz) = ——, v

Exercice # 10. a) Soit f € .Z*(R™) une fonction « radiale », c’est-a-dire de la forme f(z) =
g(|z|) pour une fonction Lebesgue mesurable g :]0, o[~ R. Montrer que f est radiale.
b) Méme propriétési f € L*(R").

(1—tH)712 sift] <1

, . Montrer que g € £*.
0, sinon

Exercice #11. a) Soitg: R — R, g(t) := {

2



i|z] <1 y
|z, S? 2] . Calculer f(€) en fonctionde g, V¢ € R?.
0, sijz|>1

b) Soit f : R — R, f() := {

~

On pourra utiliser I'exercice précédent et calculer uniquement f(¢,0), avect > 0.

Exercice # 12. Soit f : R" — R, f(x) := el otta > 0.
a) A partir de la transformée de Fourierde R 5 z + 1/(1 + z?) et de l'identité

1
1+ 22

© 2
= / e~ gt Vo e R,
0

montrer que

—r 1 TeTt e
e = e dt, Vr > 0. @
0

T1/2 $1/2

ax

b) Enutilisant (1) et la transformée de Fourier des fonctions R 3 # — ¢~ %**, ¢ > (), montrer

que

J?(f) = 2n7r(n_l)/2r((n +1)/2) (a2 + ’5|L2)(n+1)/27

avec I'(z) := [ t*~! e~* dtla fonction d’Euler.

Exercice # 13. a) Soient f € L*(R")etg € L'(R"). Montrer que f = g € L*(R") et que
f*g= fg.(Onpourracommencer par f € L' n L?))
b) Si fe L}(R")etge L' n L*(R"), montrer que

frglx) = (27r)_”/ et f(é) 9(&) d¢, pour presque tout x € R". )

n

c) Montrer que (2) est vraie pourtout x € R".
d) Demémesi f, g € L*(R™).

Exercice # 14. Rappelons le résultat suivant du cours. Si f € C*(R) etsi f) € £, Vj e
[0, k], alors

—— A~

0 f(&) = ()" (&), Vj € [0, k]. (3)

Nous nous proposons ici de montrer que, pour k£ > 2, il y a trop d’hypotheses dans ce
résultat, et qu'il suffit de supposer que f € £ et f¥) e L1,

Plus spécifiquement, nous allons montrer que

[fe Z'R), fB e LY R)] = [f e L'R),...,f* Ve 2 (R)].

Ceci fait echo a I'inégalité de Landau (exercice # 22 de la feuille # 7), qui donne
[f < L'(R), f'c L7(R)] — [ ¢ L*(R).

a) Prenons d’abord k = 2. Soit f € C*(R).

(i) Exprimer f(z + 1) enfonctionde f(z), f'(x) et f” en utilisant la formule de Taylor
alordre deux sous forme intégrale au point . En déduire une formule pour f'(z).

(ii) Montrer quil existe une constante C' < oo telle que | f'|1 < C(|fl1 + | f"]1)-

3



(iii) En déduire que, pour k = 2, (3) peut s’obtenir sous les hypothéses plus faibles f €

C2, f, 1" e £V,
b) Soit maintenant k > 3. Soit f € C*(R).
(i) Exprimer f(z+1), f(z+2),..., f(z+k—1)enfonctionde f(z), f'(z),..., f* D (z)

et f(®) en utilisant la formule de Taylor a I'ordre k sous forme intégrale au point .
En déduire des formules pour f(z), ..., f* Y (x).

(ii) Montrer quil existe une constante C' < o telle que |[f/||; + - + [f* V|, <
CUA+ 1 Ph).

(iii) En déduire que, pour tout k > 2, (3) peut s’obtenir sous les hypothéses plus faibles
feCh ffMezn

Exercice # 15. (La fonction caractéristique d’'un vecteur aléatoire détermine sa loi) Si y est
une mesure borélienne finie dans R", nous définissons sa transformée de Fourier parla formule

AQ) = [ e dulo), v R,

a) Montrer que /i est bien définie, et que c’est une fonction continue et bornée.

Nous nous proposons d’établir I'analogue suivant de l'injectivité de la transformée de

Fourier dans L'(R™). Soient j1, .. ., s des mesures boréliennes finies dans R", et soient
ai,...,ap € R. Alors
k k
ZOéjﬁjZO:ZOéj/LjZO. (4)
j=1 j=1

b) Soit i une borélienne finie dans R". Soit X' < R™ un compact, et soit f := y_x. Soit
g := [ = u (voir lexercice # 35 de la feuille # 7).
Montrer que :
(i) g estcontinue et bornée.
(i) g e L1(R").
(i) § = f 7.
¢) Soient yi1, ..., des mesures boréliennes finies dans R" et a1, ..., € R tels que
Z§:1 aj ji; = 0. Montrer que Z?=1 a; g;(0) = 0.
d) Endéduire que Z?:l a; i (K) = 0.
e) En déduire que Z?zl a;pt; = 0. Indication : séparer les j tels que ; > 0 des j tels que
a; < 0.
fy Etablir la conséquence suivante de (4) : si deux vecteurs aléatoires (avec le méme nombre

de coordonnées) ont la méme fonction caractéristique, alors ils ont la méme loi. (Voir
'exercice # 34 c) de la feuille # 3).
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Exercices d’auto-controle

Dans les exercices suivants, préciser le cadre si nécessaire (par exemple, si X apparait
dans I'énoncé, préciser s'il s’agit d'un ensemble sans structure, d’'un espace mesurable, me-
suré, ou métrique).

Exercice #1. Si A < BetC < D, montrer que A\D < B\C.
Exercice # 2. Montrer que AAB = A°AB°.

Exercice # 3. Montrer 'équivalence des propriétés suivantes.

1. AuvCcBuC,vVC.
2. Ac B.

Exercice # 4. Déterminer les ensembles suivants :
sin~*(0) ; sin ([0, 1]) ; sin"*([a, b]), avec a,b € R.

Exercice # 5. Dansun espace normé, écrire les boules (ouvertes, fermées) comme desimages
réciproques de fonctions numériques.

Exercice # 6. Soit (z,,),, — R une suite. Montrer 'équivalence des propriétés suivantes.
1. (x,), est bornée.
2. limsup,, z,, € Retliminf, z, € R.

Exercice # 7. Calculer sup x,, et lim inf,, 2;,,, ot z;,, := In (nm e_") ,Vn e N*,
n>1

Exercice # 8. Proposer et montrer une formule pour lim inf(A4,, U B).
n

Exercice # 9. Rappelons quun nombre réel est rationnel si et seulement si son écriture
décimale est périodique. En utilisant cette propriété, proposer une fonction injective f :
Q n]0, 1] — N2 (Indication : prendre comme I'une des deux composantes de f(x) la partie
périodique de I'écriture décimale.)

Exercice # 10. Montrer que si ¢ estunclanet A;,..., A, € €,alors A; u ... U A, € F.
De méme si on remplace clan par tribu.

Exercice #11. Si (.<7;);c; estune famille d’ensembles o, = &7( X)) telle que chaque <7 soitun
clan (ou tribu, ou classe monotone), alors N;c;.<7% est un clan (ou tribu, ou classe monotone).

Exercice #12. a) Si &/ < B, alors € (&) < €(B), #(H) < M(PB)et T () <
T (B).

b) Ona¥% (¢ (<)) = € (). Propriété analogue pour la classe monotone et la tribu engen-
drées.

Exercice # 13. Dans cet exercice, nous considérons un espace mesurable (X, 7). Prouver

ou réfuter les assertions suivantes.

a) Une fonction f : X — R qui ne prend quun nombre fini de valeurs est étagée.



b) Sif: X — R"estmesurable, etsig : R® — Restborélienne étagée,alorsgof : X — R
est étagée.

¢) Sif: X — Resttelleque f~}(F) € .7 pour tout F' = R fermé, alors f est mesurable.

d) Sif: R — Restborélienne et ne s’annule pas, alors 1/ f est borélienne.

e) SiAc X, alors x4 : X — R est mesurable si et seulementsi A € 7.

r+1, sizx>0

) , est borélienne.
—, siz <0

f) Lafonction f: R — R, f(x) := {

g) Lafonction f : X — R est mesurable < |f| est mesurable.

Exercice # 14. Soient f : X — R mesurableet g : X — R définie par:

o(a) i {1, si fla) eQ

0, sinon
Montrer que g est mesurable.

Exercice # 15. Soit A — X. Alors Y 4 est mesurable si et seulement si A I'est.

Exercice # 16. Prouver ou réfuter les assertions suivantes.
a) SiAe 7, alors u(X) = p(A) + u(A°).
b) Si(A,)n>0 est une suite décroissante d’éléments de .7 et 1(Az) < o0, alors

% (ngOAn) = hTILn M(An)

c) SiA,Be Tetu(Au B) = u(A)+ u(B), alors A et B sont disjoints.

d) Ilexiste un espace mesuré (X,.7, u) tel que {u(A); Ae 7} ={0,1,2}.

e) Il existe un espace mesuré (X, .7, u) telque {u(A); Ae 7} ={0,1,3}.

f) La mesure de comptage sur N est finie, respectivement o-finie.

g) Soient &/ une famille qui engendre .7 et y1, s deux mesures sur .7 . On suppose que
pour tout Adans .o/ ona iy (A) = ps(A). Alors pour tout T'dans .7 ona g (T') = us(T).

Pour cette derniere question : y a-t-il des hypotheses raisonnables a ajouter ou enlever?

Exercice # 17. (Mesure image) Soient (X, .7) un espace mesurable et f : X — R" une

fonction mesurable. Soit i une mesure sur .7 . Nous définissons fui : Brn — [0, 0] par

fapp(A) = u(f~Y(A)), VA € PBgn. Rappelons que f,u est une mesure sur Bgn. Cest la

mesure image de p par f.

a) Déterminer f,d,, aveca € X.

b) Soit ;s une probabilité sur X (donc p(X) = 1). Nous prenonsn = 1. Si B € 7, détermi-
ner (Xp)x«/t-

Exercice # 18. Prouver ou réfuter les assertions suivantes.

a) Une partie d’'un ensemble négligeable est négligeable.
b) Une union a. p. d. d’ensembles négligeables est négligeable.
¢) Une union d’ensembles négligeables est négligeable.

Exercice # 19. Prouver ou réfuter. Une partie d'un ensemble Lebesgue mesurable de R" est
Lebesgue mesurable.

Exercice # 20. Ecrire de maniére plus simple la quantité / f lorsque :

2



a)  est une mesure de Dirac.
b) westla mesure de comptage sur N.

Exercice # 21. Soit (X, .7, ) un espace mesuré. Prouver ou réfuter les assertions suivantes.
a) Sif=xaavecAe 7, alors [ f = p(A).

b) Sif=axa+bxp aveca,be Ret A, Be 7,alors [ f =ap(A)+ bu(B).

¢) Sif:X — [0, 0] estintégrable, alors u(f~!(e0)) = 0.

d) Sif:X — [0, 0] est mesurable et satisfait u(f~'(c0)) = 0, alors f est intégrable.

e) Sif:X — [0, 00] est mesurable et satisfait [ f = 0, alors f = 0.

f) Sif:X — [0, 0] est mesurable et satisfait [ f = 0, alors f = 0 u-p. p.

g Sif:X — [0,0]est mesurable et satisfait f = 0 p-p. p., alors [ f = 0.

h) Le produit de deux fonctions intégrables est intégrable.

Exercice # 22. Dans cet exercice, ] désigne un intervalle de R, muni de sa tribu borélienne
et de la mesure de Lebesgue.

5 1
a) Soit I := ]0,1[. Soit 0 < a < oo. A quelle condition la fonction = — — est-elle inté-
:L»a
grable sur /?

b) Méme question avec [ := [1,00[ et [ := |0, o0].

Exercice # 23. a) On considere la fonction f : [0, 1] — R définie par

_Jz, sizeQ
fa) = {gﬂ, siz¢Q

Montrer que f est Lebesgue intégrable sur [0, 1] et calculer son intégrale.
b) Mémes questions pour la fonction f : [0, 7/2] — R définie par

sin?z, sicoszr¢Q’

F@) = {sinx, si cosx € Q

Exercice # 24. Soit P une probabilité sur (R, Zg). Pourn € N, soit [,, := [ (cosmt)*" dP(t).
a) Montrer que /,, < o0, Vn.

b) Montrer que la suite (/,,),~0 est décroissante.

c¢) Déterminer liin I,.

Exercice # 25. Nous munissons l'intervalle [0, 1] de sa tribu borélienne et de la mesure de
Lebesgue \.
Soit (f,,)n=2 une suite de fonctions définies sur [0, 1] par

n’z, si0<x<1/n
fo(z) =% —n?(x —2/n), sil/n<z<2/n.
0, sinon

a) Tracer le graphique de f,,.

b) Calculeretcomparerliminf, [ f,d\, [liminf, f, d\ limsup, [ f,d\, [limsup, f,dA.

¢) Mémes questions avec la suite de fonctions (g, ),~1 définie par go,, 1= X[0,1/(2p)], V P € N¥,
Gop+1 = X[1/(2p+1),1], VP € N.



Exercice # 26. Soient (X, .7, 1) un espace mesuréet f : X — [0, o[ une fonction mesu-
rable. Posons

Fy(t) := u(f " (b)) = u(lf > 1)), ¥t > 0.

Pour traiter les questions suivantes, on pourra commencer par le cas ot f est une fonc-
tion étagée.
a) Montrer que F'; est borélienne.
b) Montrer que [, fdu = [, Fy(t)dt.
c) Plus généralement, soit ¢ : [O w[— [0, oo[ une fonction croissante de classe C! avec
®(0) = 0. Montrer que [, ®(f)du = [, ®'(t)Fy(t) dt.

Exercice # 27. (Lexercice précédent, vue probabiliste) En théorie des probabilités, 1 est une
probabilité, et on travaille plutot avec la fonction de répartition G4(t) := p([f < t]),Vt = 0.
«Traduire » 'exercice précédent en fonction de G ;.

Exercice # 28. a) Ecrire l'inégalité de Jensen dans les cas suivants :
@) I:=R,o(t) :=¢€",VteR.
(i) I :=]0,00[, ®(t) :=Int, ¥t €]0, oof.
(i) I =R, 1 <p< 0, ®(t):=|t]P,VteR.

b) Obtenir, a partir de I'inégalité de Jensen appliquée a un espace probabilisé et a une fonc-
tion convexe convenables, 'inégalité

n n 2
nZ(aj)Qz <Zaj> ,VneN* Vay,...a, €R.
j=1

j=1

Exercice # 29. En considérant, sur R, les fonctions f,(xz) := —(z + n)_, montrer que
Ihypotheése f,, > 0 est essentielle pour avoir la conclusion du lemme de Fatou.

Exercice # 30. En considérant, dans R, la suite f,, := X[nn+1[, montrer que 'hypotheése de
domination est essentielle pour la validité du théoréme de convergence dominée.

Exercice # 31. (Transformée de Laplace) Soit f : [0, co[— R une fonction borélienn et bor—
née. Montrer que la transformée de Laplace de f, deﬁnle par Zf(a) = fo T f(x
¥ a > 0, est une fonction continue sur |0, co|.

z—1

1
Exercice # 32. Soit f(z) := /
o 1+t

a) Montrer que f est finie si et seulement si x > 0.

dt,Vx e R.
b) Montrer que f est continue sur |0, o|.
¢) Calculer f(z) + f(x + 1) pour z > 0. En déduire la valeur de li\ri%x f(z).

Exercice #33. a) Calculer > _ (—1)"2", |z < 1.
b) Calculer )} _,(—1)"na"', |z| < 1.

0 . 2
Exercice # 34. Soit f la fonction définie sur R, par f(¢) := / <sm x) e " dx.
0 x

a) Montrer que f est continue sur R, et deux fois dérivable sur R* .
b) Calculer f” etles limites a I'infini de f et f’.

4



¢) En déduire une expression simple de f.

exp(—x) — exp(—tx)
" .
a) Montrer que pour tout ¢ > 0, la fonction z — f(t, x) est Lebesgue intégrable sur R .

b) Pourt > 0, soit F'(t fo f(t,x)du.
¢) Montrer que F est continue sur |0, o].

Exercice #35. Pourx > Oett > 0, soit f(¢,z) :=

d) Montrer que I est dérivable sur |0, oo|.
e) Calculer F'(t) et en déduire la valeur de F'(¢) pour tout ¢ > 0.

Exercice # 36.
a) SiXetYsonta.p.d.,alors Z(X)® Z(Y) = Z(X xY).

b) De plus, si i1 et v sont les mesures de comptage sur X et Y respectivement, alors y ® v
est la mesure de comptage sur X x Y.

Exercice # 37. Prouver ou réfuter les assertions suivantes.

) I®Y ={AxB; Ae T ,Be .Y}

b) Brn @ Brm = Bgrn+m.

A% %Lm =Lnim-

d) v, QUi = Vpien-

e) M ® A\ = Aym-

f) Soient (X, .7, pu)et(Y, ., v)desespaces mesurés, avec u et v o-finies. Soit £ € T ®.7.
Siv(E,) = 0 pour (presque) tout z € X, alors y ® v(F) = 0.

g) Sip et v sont des mesures o-finies, alors ;1 ® v est o-finie.

Exercice # 38.
a) Calculer f[o \p ve™ dudy.

> R 2. 2 2
b) Calculer/AHx—dedy,ouA ={(z,y) eR*; 0 <2,y < 1,0 <a®+y* <1}
Exercice # 39. Calculer I'aire d’'un disque.

Exercice # 40. Pour (z,y) € R?, soit
/(x+1)? siz>0etx<y<2r

flx,y) =< =1/(x +1)?, siz>0et2z <y < 3z.
0, sinon

a) Montrer que f : R? — R est borélienne.
b) Montrer que pour touty € R, f(-,y) est Lebesgue intégrable.

c) Soit p(y) := [, f(x,y)dz, y € R. Montrer que ¢ est Lebesgue intégrable et calculer
oy )dy

d) Montrer que pour toutz € R, f(z, ) est Lebesgue intégrable.

e) Soit w = [o f(x,y)dy, x € R. Montrer que ¢ est Lebesgue intégrable et calculer

Jr ¥

f) Quen pensez-vous?
Exercice # 41. Soit U la partie de R? définie par

U:={(u,v,w)eR®;u>0v>0w>0,uv<1,uw<1,vw < 1}.

5



a) Montrer que U est borélien.
b) Calculer I := [, uvw dudvdw.

On pourra, apres 'avoir justifié, utiliser le changement de variables suivant :

(2,9, 2) = @(u,v,w) = (Vow, Vwu, vuv).

Exercice # 42. Soient f, g : X — R mesurables. Montrer les propriétés suivantes.
a) [tfll, = It| | flp, ¥t e R (avecla convention 0 - co = 0).

b) Sif =gp.p.,alors|f —gf, = Oet|f], = |gl,.
) ||f|l, = Osietseulementsi f = 0p.p.

d) La définition de | f|, est correcte, au sens suivant. Soit A := {M € [0,00]; |f(z)| <
M p.p.}. Alors A est non vide et A a un plus petit élément, m. Cet m est le plus petit
nombre C de [0, 0] avec la propriété | f(z)| < C'p. p.

e |f +glp < Iflp + |gly pourp = Tetp = oo.(Ici, f, g : X - R.)

Dans les trois exercices suivants, ajouter les hypothéses manquantes et montrer les résultats
énoncés.

Exercice # 43. Soient 1 < ps,...,pp < 0 tels que 2521 1/p; = 1. Alors

Lfife o felle < [ fillpy [ f2llps - [ fkllps ¥ fos for oo os fro 0 X

Exercice # 44. Nous supposons y finie. Sil < p < r < oo, alors || f|, < (u(X))Y*~V" | f],,
v f.
Exercice # 45. Soient 1 < pg < p < p; < 0.
1 6 1-46
a) Montrer quil existe un unique 6 6]0, 1| telque — = — + .
P Po b
b) Montrer que | f|, < [ f[7, [ ]}, °,

Exercice # 46. Soit p un noyau régularisant standard. Alors pour toute > 0:

a) p-(x) = 0si|z| <e.
b) p.(x) =0si|z| > e.
C) fpa = 1.

Exercice # 47. Développer en série de Pourier la fonction 27-périodique définie sur | — 7, 7]
par f(x) := |z|. En déduire la valeur de Z — et Z vy

n>1 n>1

Exercice # 48. Soit f : R — Rla fonction 27-périodique définie sur | — 7, ] par f(x) :=

x>

a) Déterminer Sfet Sf(z), z € R.

)" 1
b) En déduire les valeurs des séries Z ot Z Z ORI Z —
n n4
n= n>1

n>1 n>1

Exercice # 49. Soit « €]0, 7| et f : R — Ra fonction 27-périodique définie sur | — 7, 7]
par

f(x) = {1, s%x €[—a,a] .

0, sinon



a) Dessiner le graphe f sur [—27, 27].
b) Calculer SfetSf(x),z eR.

0. 2
¢) En déduire la somme de la série Z M.

2
n=1 n

Exercice # 50. Soit f : R — R Ia fonction 27-périodique, impaire et telle que f(z) =
(m —x)/2sur |0, x|.
a) Dessiner le graphe de f sur une période.

b) Calculer SfetSf(x),z eR.

P ) sinn 1
¢) Endéduire la valeur des sommes suivantes : Z et Z —-

n>1 n>1

Exercice # 51. a) Soient f € L'(R™) ete > 0. Soit f.(z) := e " f(x/e),Vx € R".
(i) Montrer que f. € L'.
(i) Montrer que f.(¢) = f(e&).
(iii) Montrer que |ﬁ(§)] <|fli,Ve >0,V eR".
b) Soient f € L'(R™) et h € R™. Soit 71, f(z) := f(xz — h),Vz e R".
(i) Montrer que 7, f € L.
(i) Montrer que 7, f(£) = e~""€ f(£),V & € R™,
¢) Soit f € LY(R™).
(i) Montrer que f € L.
(ii) Montrer que ?(5) = ?(—f), VEeR
d) Soit f € L'(R"). Soit f(z) := f(—z),Vz e R".

(i) Montrer que f e L',

~
~ ~ A~

(ii) Montrer que f(§) = f(=&) = f(£),VE e R™.
Exercice # 52. Soit f : R" — R, f(z) := e~*l, otta > 0.

a) A partir de la transformée de Fourierde R 5 z + 1/(1 + z?) et de l'identité

1
1+ 22

a0

= / 6_(1+x2)tdt, VzeR,
0

montrer que

IR T Ay
e "= e dt, Vr > 0. (1)
0

wl/2 t1/2

b) Enutilisant (1) et la transformée de Fourier des fonctions R 5 z — ¢~9°°, ¢ > (), montrer
que

F©) = 27T (04 10/2) ey

avec ['(z) := [[” t*~! e~* dtla fonction d’Euler.
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Exercices corrigés

Exercice # 1. Soit (t,),>0 une suite de nombre réels telle que ¢, — oo. Montrer que I'en-
semble A := {t,,; n > 0} a un plus petit élément.

Démonstration. Soit M > tq. Il existe ng > Otel quet,, > M,V n > ng. Si

a = min{tg, ..., tn,—1},
alors il existeun k € {0,...,no — 1} tel que @ = ¢. Par construction, t, < t;,Vj =1 <
ng — 1. Parailleurs, a = t, < tg < M < t,, Vn > ng. Il Sensuit que t; est le plus petit
élément de A. O

Exercice # 2. Déterminer les bornes sup et inf des ensembles ci-dessous :

) A = {COS (n%) i nE N};

b) As = %;nel\] ;
c) Az := {(1+sin <ng)>lnn; neN*}.

Solution.
a) A = {cos <ng> ineE N} ={0,+1,—1}. A est fini, donc sup A; = max A; = +1et

inf Ay = min 4; = —1.

12n + 107" 8 —107" ) , .
b) Nous avons gn—+2 =4—vy,, 00y, = m La suite (1, ),>0 est décroissante.
7 8—10™"
Lavaleur maximale de v, estdoncyy = —. Deplus, lim, v, = 0. Doncinf{ ———;ne N} =
2 3n+2
7 1
0. Il s’ensuit que sup Ay = 4etinf Ay =4 — 5= 5

c) Ona (1 + sin <4ng>> In(4n) = Inn+In4. Doncsup A3 > sup {lnn +In4; n e N*} =

+00, car Inn tend vers +o0. De plus inf A3 = min A3 = 0, car (1 + sin (n%)) Inn est
positive pourn > 1 et 0 pourn = 1.

Exercice # 3. Montrer que x,, < y,, Vn = ny = limsup,, x, < limsup,, ¥,
Solution. Nous allons utiliser le fait (énoncé en cours) que

lim sup z,, = max {lilgn Tp, ; (zn, )k est une sous-suite de (z,,),, ayant une limite} .

n

Ici, on autorise les valeurs +co pour la limite.

Soit donc (z,, ), une sous-suite pour laquelle le max est atteint. Quitte a passer encore
une fois a une sous-suite, on peut supposer que (v, ) 2 une limite. Comme z,,, < y,, pour
tous sauf un nombre fini de &, on a que

limsupz, = lilgn T, < lilgn Yn,, < lim sup y,,. O



Autre solution. Soient X,, := SUpy~, Tk, Yn 1= SUDp>y, Yk-
Pour k > n > ng, nous avons x, < y, < Y,,, dou, en prenantlesup surk, X,, < Y,. 1l
s’ensuit que

limsupx, = lim X,, <limY,, = limsup y,. O

Le lemme suivant sera utilisé dans la résolution de I'exercice # 4.

Lemmel. Soit (z,), une suite de nombres réels et soit (ny ), et (my), des suites strictement
croissantes d’entiers telles que

N = {ng; ke N}u {my; (N}
et les deux sous-suites (z,, ) et (x,, ), ont des limites. Alors

limsup z,, = max(lillcrn T, liin T, ), liminf z, = min(liin Ty li§n Ty )-
n n

Enoncé analogue pour un nombre, fini mais arbitraire, de sous-suites.

Avant de procéder a la preuve du lemme, décrivons un

Principe de preuve. Sia et b sont des réels, pour montrer que a < b, il suffit de montrer que
a < b+ e, Ve > 0.Pour montrer que a > b, il suffit de montrer quea > b —¢,Ve > 0

Lorsque a,b € R U {—0}, pour montrer que a < b, il suffit de montrer que a < M,
VM > b(avec M € R).

De méme, sia,b € R U {oo}, pour montrer que a > b, il suffit de montrer que a > M,
VY M < b(avec M € R).

Démonstration du lemme. Nous allons faire la preuve uniquement pour lim sup et deux sous-
suites, les autres cas étant analogues.

Soit z := max(limy, z,,, , limy x,,, ). Linégalité lim sup,, z, > z suit de (1) ci-dessus. En
particulier, si z = o0, alors nous avons nécessairement égalité.

Supposons z € Ru{—w}. Pour montrer que lim sup,, z,, < z, considérons (comme dans
le principe de preuve décrit ci-dessus) un réel M tel que M > z, de sorte que M > limy x,,
et M > limy x,,,. Par définition de la limite, il existe ko, {y € N satisfaisant z,,, < M,
Vk > ko, eta,, < M,Yl > {.Soit py := max(ny,, my,). Sip > py, alors soit z,, = x,,
pour un k > ko, soit x, = x,,, pour un ¢ > {,. Dans les deux cas, nous avons x, < M. Il
s’ensuit que

X, :=supz, < M,Vn = py,

p=n
dott
limsupx, =limX, <M, VM > z.
Le principe de preuve permet de conclure. O

Exercice # 4. Calculer lim sup,, x,, et lim inf,, z,, pour les suites définies, pour toutn € N,
respectivement par les formules :



Q) 7, = (n+ 1)V,
b) z, = (2 + cos <ng>) 2n7:— T

Solution.

a) Considérons les sous-suites xo,, = 2n + 1 et xy,.1 = 1/(2n + 2). Nous avons lim,, s, =
o et lim,, x9, 1 = 0;le lemme implique lim sup,, x,, = o etliminf,, x,, = 0.

b) Lapreuve dulemme s’adapte a un nombre fini arbitraire de sous-suites (ala place de deux
sous-suites).

Considérons les sous-suites x4, = (12n)/(8n + 1), zo,11 = 2(2n + 1)/(2(2n + 1) + 1)

et Tynio = (4n + 2)/(2(4n + 2) + 1). On a que lim,, x4, = 3/2, lim, x9,41 = let

lim,, 4,42 = 1/2. On conclut que lim sup,, z, = 3/2 etliminf, x,, = 1/2. O
Exercice # 5.

a) Montrer que = € limsup A, si et seulement si = appartient a une infinité d’ensembles
A,.

b) Montrer que x € lim inf A, si et seulement siil existe un n; (qui peut dépendrede x € X)
telquexz € A,,¥Yn > ny.

¢) Pourtout z € X, montrer les égalités

Xlim sup A, (z) = limsup x4, (%), X1im inf An(x) = liminf x4, ().
d) Soit (A,,)n=>n, une suite croissante de parties de X . Montrer que

limsup A, = liminf A,, = Upsn, An, Y11 = ng.

Quel est 'analogue de cette formule pour une suite décroissante?
e) Montrer que

limsup A,, = (lim sup As,,) U (lim sup Agp, 1),

liminf A, = (liminf Ay,) N (liminf Ag, 1) .

Solution.
a) v € limsup A, < T € N, Upapn A <= T € UpzpAp, Vn < Vn, Ik >
ntel que x € Ay.

Prenons la négation

r¢limsup A, < dn,Vk>n:x¢A,.

Lénoncé a droite veut dire quil existe n tel que, si x € Ay, alors k < n, c’est-a-dire, que
x appartient au plus 2 un nombre fini d’ensembles. Donc x € lim sup A,, veut dire que =
appartient a une infinité d’ensembles Ay.

b) z € liminfA, <= x € U, "psn A <= dntelquexr € N, A <=
dntelquex € Ag, Yk > n.

c) Justification de la premiére égalité. De a), nous obtenons

Xlimsup A, (%) =1 <= Vn, 3k = ntelquex € A

<= Vn, 3k >ntelque x4, (z) =1

a b
PN Vn, sup xa,(z) =1 L, limsup x4, (z) =1
k>n " k>n

2)

<= limsup ya,(z) = 1.
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Justification de (@) : une fonction caractéristique x 4 ne prend que les valeurs 0 et 1. Donc

supxa,(z) =1 < 3Jk = ntelque x4, (z) = 1.

k>n

Justification de (b) : la suite (supj~,, X4, (z)), décroit et ne prend que les valeurs 0 ou 1.
Donc soit elle ne prend que la valeur 1, et a la limite 1, soit elle prend la valeur 0, et dans

ce cas elle tend vers 0.

Finalement, comme les fonctions x;;,, sup A,, €t lim sup,, x 4, ne peuvent prendre que
n

les valeurs 0 ou 1, on déduit de (2) que x5, sup A, (x) = limsup,, xa,(z), doule résul-

tat.

Justification de la deuxiéme égalité.

Xlim inf An(x> =1 =

<
<

<

De b), nous obtenons
dntelquex € Ay, Yk >n
dntelque xa,(z) =1, Vk>n
. (¢) .. .
Intel que égﬁXAk(I) =1 < 117511é121£)<14k(x) =1

liminf y 4, () = 1.

Lajustification de (c) est similaire a celle de (b) :la suite (infy~,, x4, (7)), croit et ne prend
quelesvaleurs 0 ou 1. Donc soit elle ne prend que lavaleur 0, et alalimite 0, soit elle prend
lavaleur 1, et dans ce cas elle tend vers 1.

Nous concluons comme pour la premiére égalité.
d) Lasuite (A,)n=n, étant croissante, nous avons Ugs, Ax = Ugsn, Ak, V1 = ny, dolt

lim sup An = NMnp>ng Yk>n Ak = MNn>ng Yk>n, Ak = UanAn-

n

La suite (A,,)n>n, étant croissante, nous avons Ny, Ar = A,,, d’olt
=210 =

lim inf An = Un>ng Nk>n Ak = UnZnoAn = UnanAn-
n

Preuves similaires pour les suites décroissantes.

e) De a), nous avons

x appartient a limsup A4,

n

<= r appartient 3 A,, pour une infinité de n

<= x appartient a A,, pour une infinité de n pairs
ou pour une infinité de n impairs

<= x € limsup Ay, ou x € limsup As, 41
n n

<= x € limsup Ay, U limsup Ay, ;1.
n n

Pour la lim inf, procédons par double inclusion.

x €liminf A, = In, telquex e Ay, Vk >n

= dntelquexr € Ayetx € Aypy1, YVl =>n

= z € liminf Ay, et x € liminf Ay, 1
n n

= x € liminf Ay, N liminf Ay, 1.
n n
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Par ailleurs,
T € limn inf A, N limn inf Agy, i1
— e lirr; inf Ay, etz € limn inf Aoy, i1
= Jdny, natelsquex € Aoy, Vk > nyetz € Agpr1, Vk > no
—xe Ay, Vl{>=n:=max(2ny,2n, + 1) = x € lirnniann.

Exercice # 6. Déterminer la tribu .7 (o7) sur R engendrée par ./ := {{n}; n € Z}.

Solution. Etapel.SiA < Z,alors A € 7 (/). Eneffet, nousavons Aa.p.d. (car A = ZetZ

est dénombrable). Comme A = U, {n}, il Sensuit que A est une union a. p. d. d’éléments
de o7 (donc d’éléments de .7 (7)), dou A € T ().

Etape2.SiA < Ret A < Z,alors A € T (). En effet, la premiére étape montre que
A e T (/). Enutilisant 'axiome ii) d’'une tribu, nous obtenons A = (A°)¢ € I ().

Conclusion provisoire. Nous avons

T ={AcR;AcZouA°cZ}c T (). 3)

Le lemme qui suit montre que .7 est une tribu. Par ailleurs, nous avons & < .7, car
Acod — AcZ — Ac T.

Nous concluons comme suit : de &7 < .7, nous déduisons que 7 (/) ¢ T(T) = T
(la derniere égalité découlant du fait que .7 est une tribu). En comparant cette inclusion a
(3), nous obtenons que I (&) = 7. O

Lemme 2. Soient Y = X deux ensembles. Soit

T ={AcX;AcYouA‘cVY}
Alors .7 est une tribu.

Démonstration. Etape 1. Je T, cargcy.

Etape2.Si A € 7, alors A° € 7. Nous avons deux cas 2 examiner.
1. SiAcY,alors (A°)°= Ac Y,etdonc A€ 7.
2. Si A¢ < Y, alors, clairement A€ € 7.

Dans tous les cas possibles, si A € .7, alors A° € 7.

Etape 3. Si(A,) = 7, alors U, A, € 7. Anouveau, nous avons deux cas 2 examiner.
1. SiA, cY,Vn,alors u,A, c Y,etdoncu,A, € 7.
2. Silexisteunng € Ntelque A, ¢ Y, alors (A4,,)¢ < Y. Il s’ensuit que

(Undn) = nu(A) < (A,,)° Y,

etdonc U, A, € 7.

Dans tous les cas possibles, si (4,) < 7, alors U, A, € 7.

7 vérifie donc les axiomes d’une tribu. O

Exercice # 7. Soit (X, .7) un espace mesurable. Soit (A4,) = .7 une suite d. d. d. telle que
X = u,A,. Pour chaque n, soit f,, : A, — R une fonction mesurable. Soit f : X — R,
f(z) := fu(x)sixz € A,. Montrer que f est mesurable.
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Solution. Posons fn : X > R, fn(m) = . Par définition, la fonction fn

0, sinon

{fn(x), siz e A,

est mesurable.

Notons I'égalité suivante, vraie pour tout ensemble B < R :

(f)"X(B) 0 A, = (f2)"H(B) 0 A, Vn. 4)

Soit B € %. Nous avons (via (4))

F7HB) = un (fu)7H(B) = un ((£2) 7' (B) 1 An)

— U ((fn)*l(B) A An> c7. ®

Pour justifier l'appartenance finale, nous invoquons dans l'ordre : (ﬁl)‘l(B) € 7 (en
utilisant le fait que f,, est mesurable et le théoréme de caractérisation des fonctions mesu-
rables), puis (f,,) "' (B) n A, € 7 (de ce qui précede, A,, € 7 etle fait que .7 est une tribu),

dott, finalement, U, ((f,)"*(B) n An> € .7 (de ce qui précede et I'axiome iii) de la tribu).
De (5) et du théoréme de caractérisation des fonctions mesurables, f est mesurable. [J

Exercice # 8. Soit f : X — R mesurable. Pour 0 < M < o0, soit

f(@), silf(z)l =M
fu(x) =3 M, sif(x)>M
—M, sif(x)<-—-M

Montrer que f est mesurable si et seulement si f); est mesurable, V M > 0.

t sift| <M
Solution. « = »Soitgy : R — R, gy () := < M, sit > M . Alors g, est continue.
—M, sit<-—-M

Il sensuit que fyy = gar © f est mesurable (composée d’une fonction continue et d'une
fonction mesurable).

« <= »8in > |f(x)], alors f,,(z) = f(x). Il sensuit que lim,, f,(x) = f(z). Chaque f,
étant mesurable, f I'est également (comme limite — simple — de fonctions mesurables). [

Exercice # 9. Soit (X, .7) un espace mesurable. Si f : X — R" est mesurableet g : R" —
R est borélienne étagée, montrer que g o f est étagée.

Solution. Soienta; € RetA; € HBgn,j=1,...,k, telsqueg = Z§=1 a;j x4, Alors
k k
gonZGjXAjOfIZanf—l(Aj)- (6)
j=1 j=1

Comme f : X — R" est mesurable et A; € gn, nous avons ffl(Aj) e 7,V
(théoréme-définition des fonctions mesurables a valeurs dans R™). De (6), nous obtenons
que g o f est étagée. O]



Exercice # 10. Soit ¥ un clan sur X. Soit Y < X. Soit %y := {AnY ;Y < X}. Montrer
que Gy estunclansur Y.

Solution. Etapel. & € Gy,car J = & nY et € € (axiome i) du clan).
Etape2. Si B € Gy, alorsY\B € %y. Eneffet, soit A € € telque B= AN Y. Alors

Y\B=YnB'=Yn(AUY) =Y nA)u (Y nY) =ANY € Gy,
car A¢ € € (axiome ii) du clan).

Etape3. Si By, By € 6y, alors Byu B, € 6y. Eneffet, soient Ay, Ay € € telsque B; = A;nY,
j =1,2. Alors

B1UB2= (AlﬂY)U(AgﬂY) = (AluAg)ﬁYEng,
car A; U Ay € € (axiome iii) du clan).
Il s’ensuit que ¥y vérifie les axiomes du clan sur Y. O

Exercice # 11. Soit (X,,),>1 une suite de parties de X. Montrer que U}_, X; / U, X,.
Solution. Nous avons clairement u?lej /. PosonsY := unug?lej, desorteque ug;lXj /
Y. Nous montrons par double inclusion que Y = u,, X,,.

Etapel. NousavonsY — U, X,,. Eneffet, pour chaquen, U}_, X; c U, X;,dottu, U X; ©
Uij = Uan.

Etape 2. Nous avons U, X,, < Y. En effet, nous avons X,, < u?lej, Vn,dou u,X,
Unp u}‘zl X; =Y. O]

Exercice # 12. a) Montrer que la fonction

FA0,0[~ R, fla) i= ===, Vo >0,

est Lebesgue intégrable sur |0, oo|.
b) Montrer que pour tout > 0 nous avons f(z) = >, _, e "*sinw.

© sinx |
En dédui dr = .
¢) En eulreque/0 ] x Zn2+1

Solution. Préliminaire. Notons le calcul suivant d’intégrale généralisée :

®© 1 1
/ e Ydr =—— [e*ax]cfoo = —,VaeCtelque Rea > 0. @)
0 o

«

a) f étant continue, il suffit de montrer que l'intégrale généralisée de f est absolument
convergente (proposition 6.43 b)).

| sin x|

T __

Etude de fol | f(z)| dz. Nous avons ~o+ 1. Le critere de Riemann combiné avec le

théoréme des équivalents donne la convergence de I'intégrale.
Etudede [” | f(z)| dz. Nous avons

@) €~

et —1 e




b)

c)

. , , , . o0 _ . _ . 7
La convergence de l'intégrale généralisée [~ e™* dx (qui vaut 1 — e') combinée avec

1
dzx,
et —1

a0
le théoreme des équivalents donne d’abord la convergence de I'intégrale /
1

|
puis celle de / [sinz]

1 et —1

dz.

o |
. , sinx
En combinant les deux études, nous obtenons la convergence de / H dx.
o ¢ —

Autre approche. En utilisant la majoration |sin x| < |z|, Vx € R, la monotonie des inté-
grales généralisées, une intégration par parties et (7), nous obtenons

0 o0 o0
/ |sinxe$\dx£/ xexdxz—[xez]go—k/ e fdr=1< 0.
0 0 0

Comme e *| = e * < 1,V > 0, nous avons

1 1 1 —x —x\n —xr—nx —nx
e“”—lze_xl—e—xze 2(6 ) :26 :26 ’

n=>0 n>0 n>1

d’ott la conclusion, en multipliant ce qui précede par sin z.

De (7), nous obtenons
o0 1 0
/0 e P sin(yx) dr = %/ e P [e7" — e "] da
1 1 1 Y (8)
- - — v B €0
2 [ﬁ—w BH’V] B2+ 4% pelo.eel:
Yy e R\{0}.

Il s’ensuit de (8) que

w0 1
/ e " sinzdr = —; , Vn e N,
0 n*+1

et donc (au vu de la question b)) I'identité a montrer revient a

oo 0]
/ Z e " sinxdr = Z / e " sinxdr. 9)
0 0

n>1 n>1

Nous présentons deux preuves de (9), 'une utilisant le théoréme de convergence dominée
(théoréme 7.2), lautre le théoréme 7.18.

Preuve de (9) via le théoréme de convergence dominée. Par linéarité des intégrales généralisées,
nous obtenons

e0) e0) o0
/ 2 e "™ sinxdx — 2 / e " sinxdx = / 2 e ™ sinxdx
0 0 0

n>1 n<N n>N

- /0 " (o) d,

1 . 1
msmxz e(zv——l):(;f<x)’ VN >1,Vz>0.

fn(z) = Z e sing = e N

n>N



La majoration |fy(z)| < [f(x)|, VN > 1,Vz > 0, montre que 'intégrale généralisée
de fn est absolument convergente, et donc coincide avec f]()’ o | fv| dv1 (proposition 6.35
b)). De ce qui précede, nous devons montrer que

IRP ‘fN|dV1=:0.

10,00

Ceci s’obtient par convergence dominée (théoreme 7.2), en notant que :
« Az > 0fixé, fy(x) — 0;

+ Nous avons la majoration |fx(z)| < [f(z)|, VN = 1,Va > 0, et|f] est v;-
intégrable (question a)).

Preuve de (9) via le théoréme 7.18. Nous devons montrer que Y, [i [fu| dvy < 0. En uti-
lisant la proposition 6.35 b), la majoration |sinz| < |z|, Yz € R, la monotonie des in-
tégrales généralisées, une intégration par parties, l'identité (7) et le critére de Riemann
pour les séries, nous obtenons

0 0
Z / | ful dvn = Z/ le™™| |sinz|dz < Z/ re " dr
R 0 0

n>1 n>1 n>1
1 —nx]P 1 * —nzx 1 * —nx
= ——[aze ]0—|—— e "dx 22— e ™dxr O
n n Jo n Jo
n>1 n>1
= 1<OO
= "
n>1

0 . 2
Exercice # 13. Soit f la fonction définie sur R, par f(t) := / <Sm x) e " dx.
0 x

a) Montrer que f est continue sur R, et deux fois dérivable sur R* .
b) Calculer f” etles limites a I'infini de f et f’.
¢) En déduire une expression simple de f.

Solution.

a) Etapel. f est continue. Lintégrande (en x) étant continue et positive, nous avons (proposi-
tion 6.35 a))

. 2
f(t)z/ (Sm> et duy (), ¥t > 0.
10,0 \

Pour vérifier la continuité de f, nous appliquons le théoréme 7.10 a la fonction

sin x

k(z,t) = ( >2em, v €]0, o0f, Vit e [0, o0].

T

+ At fixé, v — k(w, 1) est (clairement) continue, donc borélienne.
Az fixé, t — k(x,t) est (clairement) continue.

*

Nous avons

*

Ik(z, )] < (Si”> .= g(z), Y €]0, [, Yt € [0, 0.

X

*

La majorante g est continue, donc borélienne, et (preuve plus bas) intégrable.



De ce qui préceéde et du théoréme 7.10, f est continue sur [0, oo|.

Il reste a vérifier que g est intégrable. La proposition 6.35 a) montre qu'il suffit de vérifier
que l'intégrale généralisée fooo g(x) dx est finie.

Etudede [, g(x) dz. Nous avons g(z) ~o4 1. Le critére de Riemann combiné avec le théo-
reme des équivalents donne la convergence de I'intégrale.

, 1
Etudede [,” g(x) dx. Nous avons g(z) < — - Le critére de Riemann combiné avec le cri-

tere de comparaison donne la convergence de l'intégrale.

En combinant les deux études, nous obtenons la convergence de fooo g(x)dz.

Etape2. f € C'. Nous appliquons le théoréme 7.14.
« At fixé, v — k(x,t) est intégrable (ceci suit de I'étape 1).
+ Axfixé, t — k(x,t)est (clairement) de classe C'.
+ Soit [a, b] ]0, o[ un intervalle compact arbitraire (ce qui correspond a considérer

une boule fermée arbitraire dans |0, «o[). Six €]0, 00| et t € [a, b], nous avons (en
utilisant le fait que ¢t > a et l'inégalité |sinz| < |z|,Vz € R):

)
—tx sSim- T —azx

sin’ z
- e

’atk(xa t)‘ =

x
<ze “:=h(x), Ve >0, Yte|a,bl]

La majorante h est continue, donc borélienne. Par ailleurs, elle est Lebesgue inté-
grable. En effet, son intégrabilité revient (proposition 6.35 a)) a fooo h(z)dx < o0, ce
qui suit de la solution de la question a) de I'exercice # 12.

De ce qui précéde et du théoréme 7.14, f est de classe C'! sur |0, oo[ et (en utilisant égale-
ment le fait que, de ce qui précede, J;(x, t) est intégrable en x et la proposition 6.35 b)) :

* ¢in?

) = / Ok (z,t) dvy(x) = —/ e " dz. (10)
10,00[ 0 T

Etape 3. f € C?. Nous appliquons le théoréme 7.14 2 f/, donnée par (10).
« Atfixé, v — 0;h(x,t) est intégrable (ceci suit de I'étape 2).
« Axfixé, t — 0;k(z,t) est (clairement) de classe C.
« Soit [a, b] =]0, o[ un intervalle compact arbitraire. Nous avons

04(0ik(,1))] = | sin® x e ™| < {(x) := e, YV €]0,0[,Vt € [a,b].

¢ étant intégrable (voir I'exercice # 12), il s’ensuit, de ce qui précede, du théoreme
7.14 et de la proposition 6.35 b), que f € C%(]0, o[ et

o0
)= / sin’ z e din (1) = / sin? z e~ da.
ol )

b) Etapel. Calculde f”. En utilisant la formule

o el _ o 2 6213: 4 e—2m )
smrTr=\\———— = —

21 4

10



c)

et (7), nous obtenons

(8) = 1 1 . 1 2] 1(1 t "
o4 t—2u t+2 4 2t 2+4f

Etape2. Calculdelim,_,, f(t). Soit (t,) = [0, oo| telle que t,, — o0. Soit f,,(z) := k(x,t,),
Vx> 0, desorte que f(t,) = f]o ol fndvy.

« Nous avons f,(z) — 0,V z > 0.
+ Nous avons |f,| < g, avec g la majorante de la question a), qui est intégrable.

De ce qui précede et du théoréme de convergence dominée 7.2, nous avons

lim f(t,) = lim fndry = / 0dv, = 0.
n n ]7’w[

10,00

La suite t,, — oo étant arbitraire, nous obtenons que lim;_,, f(¢) = 0.

Etape 3. Calcul delim,_,, f'(t). Raisonnement similaire a celui de 'étape 2. Le seul chan-
gement vient de la majoration. Soit (¢,,) |0, o[ telle que ¢,, — 0. Le lemme ci-dessous
montre qu'il existe « > 0 tel que ¢,, > a, ¥ n. Nous avons alors la majoration

.9
sinx _
et <ge ™ Vx>0, Vn.

Ok (x, t,)| =

T

La majorante étant intégrable (exercice # 12), nous obtenons, comme dans I'étape 2, que

Etape1. Calcul de f’. De la formule de f”, nous obtenons que
f’(t)—1 lnt—lln(t2+4) +C’—lln v +C,Vt>0 (12)
S 2 2 4 +4 ’

avec C' € R une constante a déterminer. En faisant ¢ — oo dans (12) et en utilisant la
question précédente, nous obtenons C' = 0.

Etape 2. Calcul de f. En intégrant (12), nous obtenons, par intégration par parties :

/f’(t)dt:/{%lnt—iln(t2+4)} dt

1 1 1 1 12
= —tlnt——= [ dt — =t In(t> +4) + = dt
' ™ 2/ 4n(+)+2/t2+4

1 1 1 1 4
= —tInt——t—~tIn(t>+4) + = 1— dt
gt It =gt =gt + )+2/{ t2+4}

1 1
= §t Int — Zt In(t* + 4) — arctan(t/2) + D

— _it In (1 + %) —arctan(t/2) + D,
d’ou
1 4
ft) =5t (1 ; t—) — arctan(t/2) + D, (3

avec une constante D € R a déterminer.
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En utilisant le fait que

4 4
et la question b), nous obtenons, en faisant ¢ — oo dans (13), que D = 7/2, d’out

1 4 T
ft) = _Zt In (1 + t_2) — arctan(t/2) + §’Vt > 0. (14)

Il reste a déterminer f(0). En utilisant la continuité de f sur [0, co[ (question a)) et en
faisant t — 0+ dans (14), nous obtenons

f(0) = lim {—it In <1 + %) — arctan(t/2) + g}

t—0+
1
- g — 7 lim (4/2) 2 In(1 + @) = g

par croissances comparées.

Au passage, nous avons obtenu la formule de Fresnel

0 . 2
[ e -
0 T 2

Exercice # 14. (Fonction Gamma d’Euler)

a) Montrer que, pour tout z > 0, lapplication ¢ — t*~'e~" est Lebesgue intégrable sur R* .

Pour z > 0, soit I'(z) := [,” t*"'e~" dt;T estla fonction Gamma d’Euler.
b) Montrer que I" est continue sur R%.
c¢) Montrer que I" est de classe C™ sur R¥ .
d) Montrer que I" est strictement convexe.

Solution.

a) Il suffit de montrer la convergence de I'intégrale généralisée fooo t*=1 et dt (cfla proposi-
tion 6.35 a)).

= 1,1 — 1 _ _ RN . .
Etudede [, t*~' e~ dt. Nous avons t*~' e~" dt ~o, t*~'. Le critére de Riemann combiné
avec’hypothése x > 0 etle théoreme des équivalents donne la convergence de l'intégrale.

= 0¢] _ _ . 7 — —

Etudede [” t"~' e~" dt. Par croissances comparées, nous avons t“~ ' e~* = o(1/t*) quand
t — oo. Le critére de Riemann combiné avec le critere de comparaison donne la conver-
gence de l'intégrale.

En combinant les deux études, nous obtenons la convergence de fooo t*"te~t dz. En uti-
lisant la proposition 6.35 a) (ou b)), nous obtenons que

o0
[(z) = / t" e tdt = / t"tetdy(t) eR, Vo > 0.
0 10,00[

b) Nous appliquons le théoreme ??. Soit
f(t,z) :=t""te " Vte]0, oo, Vaelo, .

« Az fixé, t — t* 1 et est continue, donc borélienne.

12



c)

« Atfixé, x — t* 1 et est continue.
« Soit [a, b] =]0, o[ un intervalle compact. Nous avons

et si0<t<1
(e < {tb_l :_t’ Gt 1 = g(t), Yt €]0,0[, V€ [a,b].

La majorante g est borélienne (exercice # 32 c), feuille # 2). Nous avons (proposition 6.27
b) et proposition 6.35 a))

1 0
/ gdv, = / gdu —i—/ gdv = / g(t)dt +/ g(t) dt.
10,00[ 10,1] 11,00( 0 1

Létude de la question a) montre que les deux intégrales généralisées ci-dessus sont finies,
et donc g est Lebesgue intégrable.
Ce qui précede et le théoréme 7.10 impliquent la continuité de I".
Nous utilisons le corollaire 7.15.
« Axfixé, t — t*~!e~! est intégrable (ceci suit de I'étude faite au point b)).
« Atfixé, o — t* e test C”.
+ Soit [a, b] <]0,0|. Sik € N*etx € [a,b], alors

dkz
’W (t,z)| = |(Int)*t* e
T

|Int|Ftete™t si0<t<1
< = h(t), Vt €|0, 0], Yz € |a,b].
{(lnt)ktb_le_t, sit>1 0 10,0l Ve a,b

Par ailleurs, & est borélienne (voir la question b)) et nous allons montrer plus bas que &

est intégrable. Le corollaire 7.15 donne que I' € C*(]0, «0[) et (en utilisant le fait que, de
dk
Wf (t,x)

ce qui précede, t — est intégrable, et la proposition 6.35 b))

oe}
r®(z) = / (Int)* ==L e dvy(t) = / (Int)kt*~Le tdt, Vo > 0, Vk e N*.
10,00[ 0

Pour établir I'intégrabilité de h, nous raisonnons comme pour la question c), en se rame-
. . . St 1 1
nant 2 la finitude des intégrales généralisées [; |Int| t*~te~tdtet [[“(Int)F t=~L et dt.

Etude de fol |Int|*t*=1e~t dt. Nous avons | Int|*t*~te~tdt ~o, |Int|*t*~1. Le critére
de Bertrand combiné avec 'hypothése x > 0 et le théoréme des équivalents donne la
convergence de l'intégrale.

Etude de [,”(Int)* t*~! e~* dt. Par croissances comparées, nous avons (Int)f t*~l e =
0(1/t?) quand t — co. Le critére de Riemann combiné avec le critére de comparaison
donne la convergence de I'intégrale.

d) Dela question c), nous avons

I(z) = /]0 (0?67 e ()
,00
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de sorte que, clairement, I'(z) > 0, V2 > 0. Montrons que ['’(z) > 0, V2 > 0 (ce qui
permet de conclure). Preuve par 'absurde : sinon, il existe un x > 0 tel que I'’(z) = 0.
La proposition 6.50 a) implique (In¢)*¢*~' e~* = 0 v;-p. p. sur |0, o0[. Dot

vi({t>0; (Int)*t* e #0}) =0,
ou encore v(]0, 1[u]1, o) = 0, contradiction qui achéve la preuve. O

Exercice # 15. Pour x > 0, soient

Flz) = ( /0 " exp(—£2) dt>2 et G(z) i /0 (- (14 1)

1+¢2

a) (i) Montrer que F' et G sont de classe C' surR,.
(i) Calculer F'(x) + G'(x) pour z > 0.
b) Endéduire lavaleurde I = [ exp(—t?) dt.

Solution.

a) (i) Le théoreme de Leibniz-Newton donne que l'intégrale qui apparait dans F' est de
classe C' en x, et donc F T'est également.

Nous étudions (G, qui est une intégrale a parametre x :

1 a2 2 ) 2
G(x) :/ exp(—z (12—1—15 ) gt — / exp(—z (12+t ) n
0 1+t [0,1] 1+t

par égalité des intégrales de Riemann et Lebesgue pour des fonctions continues sur
un intervalle compact.

En notant f(¢,z) l'intégrande dans GG, nous avons que : ¢ — f(t,z) est continue,
donc borélienne, = — f(t, z) est continue, et la majoration |f(¢, )| < 1. Comme 1
est intégrable sur [0, 1], nous obtenons la continuité de G.

. 0 : :
Par ailleurs, z — ﬁ_f (t,2) = —2x exp(—a*(1 + %)) est continue. Si z € [a,b] =
T

[0, o[, alors
| — 22 exp(—2?(1 + t%))| < 2b,

et 20 est intégrable. Il s'ensuit que G € C.
(i) De ce qui précéde et le théoréeme de Leibniz-Newton, nous avons

F'(z) = 2exp(—2?) /01’ exp(—t?) dt,
G'(r) = -2z 1eX —22(1 +t3))dt = -2z exp(—z%(1 + %)) dt,
(@) = =20 [ exp(=a(1+ ) [, e

anouveau par égalité des intégrales de Lebesgue et Riemann.

Pour z = 0, nous avons F’(0) + G’(0) = 0. Pour = > 0, nous obtenons, par le
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changement de variable ¢ = 7/x (dans une intégrale de Riemann) :
F'(z) + G'(z) =2 exp(—2?) /01‘ exp(—t?) dt
— 2z /1 exp(—z?(1 + %)) dt
0
=2 exp(—a?) /Ox exp(—t?) dt
— 2z exp(—2?) /01 exp(—zt?) dt
=2 exp(—x?) /0r exp(—t?) dt
— 2exp(—2?) /Ox exp(—72)dr = 0.

b) Par définition de I'intégrale généralisée, nous avons

dt — lim G(z)

1+¢2 T—00

2 = lim F(z) € lim (F(0) + G(0) — G(x)) = /0 1

r—00 xr—00

1
= [arctan t] — lim G(x) = T lim G(z);
0 T—>00 4 Tr—00
pour (a), nous utilisons le fait, qui découle de la question précédente, que = — F'(z) +
G(z) est constante.

Pour conclure, nous allons montrer que la derniére limite vaut 0 ; ce qui donne I = /4 et
donc (comme I > 0), [ = y/7/2. Une fagon de procéder consiste a appliquer le théoreme
de convergence dominée. Plus simplement, nous avons

exp(—z(1 + t?))

0<
1+¢2

< exp(—z?), Vo =0, Vte0,1],
et donc
1
0<G(x) < / exp(—2?) dt = exp(—z?),
0

d’ott la conclusion, par encadrement. O

Exercice #16. Soit D := {(z,y) e R?; . >0,y > 0,z +y < 1}.
a) Déterminer D, et DY,V x,y € R.
b) Montrer que D est borélien.

c) Calculer laire de D.
d) Calculer [, (2* + y?) dady.

Solution.

a) Siz < 0,alors D, = J. Les contraintes x > Oetx + y < 1 impliquent z < 1, et donc
siz > 1,alors D, = . Enfin, si0 < x < 1, alors

D,={y;y=0etz+y <1} =1[0,1—z].

<, siy <Oouy > 1

De méme, DY = ]
[0,1—y], si0<y<1
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