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Devoir maison no 3

On se propose de montrer que (pour I =] —1,1[) l'inclusion W?(I) < L?(I) est compacte
(ici, 1 < p < o0).

a) On suppose d’abord 1 < p < 0. Soit (g,) C LP(I) une suite telle que g, — g. On
pose fn(z) ::/ gn(t)dt, f(x) ::/ g(t) dt. Montrer que f, — f dans LP(I).
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b) On suppose p = 1. Soit (g,) C L'(I) une suite telle que g, — p € .#(I). On pose
ful(z) ::/ gn(t) dt, f(z) := u([—1,x]). Montrer que f, — f dans L'(I).
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c¢) Conclure.

d) Si p > 1, montrer que l'inclusion W'P(I) < C([—1,1]) est compacte. (Penser a un
critére célebre de compacité.)

e) Retrouver, pour p > 1, la conclusion du devoir & partir de la derniére question.



