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Lecture # 1
THE DIRECT METHOD: A FEW EXAMPLES

In what follows, @ C RY is a bounded open set. Additional smoothness, if needed, is
explicitly assumed.

(2) Functional analytical preliminaries

[4, Corollary 3.9] Let E be a Banach space. Let ¢ : E — (—o00, o0] be convex and lower
semicontinuous. Then ¢ is weakly lower semicontinuous.

[4, Corollary 3.23] Let E be a reflexive Banach space. Let A C F be a closed convex set.
Let o : A — (—00, 00| be convex and lower semicontinuous. Assume that:

(@) Either A is bounded.
(b) Or lim ¢(x) = co.

zEA,||z||—o00
Then ¢ achieves its minimum on A.

[4, Theorem 3.18] Let £ be a reflexive Banach space. Let (z,,) C E beabounded sequence.
Then (z,,) contains a weakly convergent subsequence.

[D| Fundamental exercise. Let 1 < p < oc. Let o : W'(Q) — R be convex, lower semicon-
tinuous, and coercive, i.e., limjj, | ©(u) = co. Then p achieves its (global) minimum.

Fundamental exercise. Let 1 < p < oc. Prove that a bounded sequence (u,,) C Wy (Q)
contains a subsequence (u,,) such that:

@ un, — ua.e., forsomeu € W(]l’p(Q).
(b) Vu,, — Vuin L7().

Same for WP (Q) if Q2 is assumed Lipschitz.

Can one replace, in item (b), weak convergence with strong convergence?

(b) Basic examples

Initems[A][B}[C|a € C(Q),a > 0,and f € C(Q).
The problem

—Au+a(z)u=f inQ
u=20 on 0f2

has a unique weak solution u € Hj ().



Same for the problem

, with1 < ¢ < o0.

—Au+a(z)|ul”t sgnu=f inQ
u=70 on 0f2

In this case, give a meaning to the notion of solution, and specify a space in which this
solution is unique.

Useful results:

Exercise. Let 1 < ¢ < oo. Then
LIX, T, 1) > ur Gu) = |ul?! sgnu e LYV(X, T )

1s continuous.

Lemma. Let 1 < ¢ < oo. Then
LYX, T, pu) 3 ur Flu) := / |u|? dpis C*, and
X

F'(u)(g) = g / = (sgn ) o, Vo, € LUX, T, ).

The problem

—div (|VulP=2Vu) + a(z)|u|T! sgnu = f inQ
u=0 on 90’

with 1 < p,q < oo, has a unique distributional solution in the space u € W, ”(Q) N
Li(Q).

Useful result:

Exercise. Let 1 < p < oco. Then
IP(X, T, ;RN S f s F(f) = / |f|P dpuis C*, and
X

F(f)9) = p / P2 f 9.5 g € DX, T, 1 R,

|D| Definition. A Carathéodory function is a function f : Q x R™ x R? such that

@) 2 — f(x,u,§)is (Lebesgue) measurable, V (u, £) € R™ x R,

i) (u,&) — f(z,u,§)is continuous, for a.e. x € (.

Theorem. (Tonelli, Mac Shane, Morrey, ...) Let 1 < p,q < oo. Let f be a Carathéodory
function such that:



a) f(x,u, &) > a(x) - u+ b(z) - & Vu,§ forae. z, forsomea € LY (QR™), b €
LP (S RY).

b) £ — f(x,u,£)isconvex fora.e. z € Q2 and every u € ().

Set

L R™) x LR 5 (u,€) — Liu, €) = /Qf(:c,u(a:),f(x)) dz € RU {oo}.

Then

[uj = win LY R™), & — Ein LP(Q;RY)] = liminf L(uy, &) > L(u, £).

(When p = 0o, we may replace — by —.)
Useful results:

Exercise. If f is a Carathéodory function and (u, £) : 2 — R™ x R?is measurable, prove
that Q 3 x — f(z,u(x),&(x)) is measurable. (Hint: start with the case where v and £
are step functions.)

Exercise. If f is a non-negative Carathéodory function, u :  — R? is measurable,
1 <p<ooand§; — {in LP(Q)), then

/Qf(x,u(x),f(x))dxgliminf/gf(x,u(:c),fj(x))dx.

Exercise.

1. Let f be a Carathéodory function. Prove that, for each ¢, M > 0, there exist: some
d = d(e, M) > 0 and some compact set K = K (g, M) C €2 such that:
L |Q\ K| <e.
ii. [z € K,u,v € R™ &n € R |u| < M, |§] < M, |u—nv| <6]6—n <=
|f(x,u, 6) - f(%Uﬂ?)\ S €.
(Hint: prove first the statement for some Lebesgue measurable (instead of compact)
set.)

2. Prove the Scorza-Dragoni theorem: f is a Carathéodory function if and only if for each
¢ > 0 there exists some compact set L. C €2 such that:

L |Q\ L <e.

ii. fiscontinuouson L. x R™ x R,
(Hint: Consider u, £ with rational coordinates and use Vitali’s theorem to find a large
set L C Qsuchthat L 5 x — f(z,u,§) is continuous.)

Useful references: [6, Theorem 3.4, Section 3.3.1], [4, Corollary 3.9], [3, Theorem 2.2.10].



(c) Notions of convexity

Definition. A continuous function f : RN™ — R is quasi-convex if

U f(&) < / f(&+ Dy(x))dzr, YU C RY bounded open set, o
U

VEERN™ Ve C(U;R™).
Exercise. Prove that a convex function is quasi-convex.
Exercise. Prove that the f is quasi-convex iff (1) is satisfied for one non empty U.
Exercise. Assume that U is bounded and convex.
1. Prove that Wh>°(U) = Lip (U).
2. Prove that (1) still holds when ¢ € Whee (U, R™).

3. Provethat, with (p;) C W1>(U; R™), we have p; — 0iff (¢;) has uniformly bounded
Lipschitz constants and ¢; — 0 uniformly on U.

Lemma. (Morrey) If f is quasi-convex and Q C R" is a cube, then

(p)) C WH(Q:R™), ¢; 0] = limin /Q F(6+ Doy () dz > Q] F(6).

Ve e RV™,

Useful reference: [11, Lemma 2.2].

Exercise. Prove a version of Morrey’s lemma with () replaced with a finite volume open
set.

Theorem. (Morrey, ..., Acerbi-Fusco) Let f be a Carathéodory function on 2 x R™ x RV™
such that:

a) fora.e.r € Qandeachu € R™, RY™ 5 € s f(z,u, €) is quasi-convex.

b) 0 < f(z,u, &) <a(x)+ bu, &), witha € LY(Q),b € L (R™ x RN™),

loc

If (u;) € Wh*(Q; R™) and u; — u, then

liminf/gf(x,uj(x),Duj(x))dx2/Qf(x,u(a:),Du(:L‘)) dx.

Useful result:

Exercise. (Easy version of Lebesgue’s differentiation theorem) Let ) := (0, 1)" and let
g € L'(Q). Let £ > 1 be an integer and

ge(x) == ][ g(y) dy if z belongs to the dyadic cube C of size 27*.
c
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Then, up to a subsequence ¢,, — oo, g; — g a.e.
Useful references: [1, Theorem II.1], [13, Corollary, p. 13].

Theorem. (Acerbi-Fusco, [I, Theorem I1.4]) Let 1 < p < oo. Let f be a Carathéodory
function on Q x R™ x RN™ such that:

a) fora.e.x € Qandeachu € R™,RY™ 5 £ s f(x,u, &) is quasi-convex.
b) 0 < f(z,u, &) < a(z)+ C(lulP + |§|P), witha € L'(2) and C finite.

If (u;) € W?(Q; R™) and u;—u, then
liminf/ f(x,uj, Duj(x)) de > / f(z,u, Du(z)) dx.
Q 0

Theorem. (Morrey) Let f : Q x R™ x RY™ be continuous. If, for every open set U C €,
[u; = win WH(U)] =
lim inf/ f(z,u;(z), Duj(z)) dz > / f(z,u(z), Du(x)) dz,
U U
then, foreachz € Qandu € R™, RY™ > € — f(x,u, ) is quasi-convex.

Useful result:

Lemma. Let Q := (0,1)Y and let ¢ € C>(Q;R™), extended as a smooth 1-periodic
function to R™. Let U C (2 be relatively compact. Let ug € C(£;R™), & € C(; RN™).

Set (j(x) :=279¢(2/x),Vj > 1,Va € R, Then

lim / F (2, u0(2), £0(x) + DG () dr = / /Q F (@, u0(w), &0(x) + DC(y)) dyda
and
i | @, wa(e) + i), ola) + DG () da
-/ /Q £, (), &o(@) + DC(y)) dyda.

Theorem. (Acerbi-Fusco, [I, Theorem I1.2]) Let f :  x R™ x R™™ be a Carathéodory
function such that0 < f(z,u, &) < a(z)+b(u,§),Vr € Q,V (u, &) € R™ x RV™, where
a € LY(Q)and b € L2 (R™ x RN™). If, for every open set U C (2,

[ Suin WhHe(U)] =

lim inf/ f(x,uj(x), Duj(x)) dx > / f(z,u(z), Du(x)) dz,
U U
then, fora.e.z € Qandeachu € R™, RN™ > € — f(z,u, £) is quasi-convex.
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[D] Proposition. Assume that N = 1and let f : R™ — R be continuous. Then f is quasi-
convex if and only if f is convex.

Theorem. [6, Theorem 3.1, Section 3.3.1] Assume that m = 1 (i.e., we work with scalar
functions u) and let f : RY — R. Then f is quasi-convex if and only if f is convex.

We identify RV™ with M,, x(R). Let A € M,, y(R). Given 1 < ¢ < K := min(m, N),
and I ={iy <is < ...<ip C{l,....om}, J={j1 <jo<...<j}C{l,...,N},

let A; ; denote the minor of order ¢ of A formed with the rows iy, . . . , iy, respectively the
columns ji, ..., j,. Let M be the number of all possible minors. We order the minors as
Al AM,

Definition. (Morrey, Ball) A function f : R¥™ — R is polyconvex if there exists some
convex function g : RM — R such that f(A) = g(A!, ..., AM).

Proposition. (Morrey, Ball) A polyconvex function is quasi-convex.
A useful result:

Lemma.

1. IfQ C R*is open bounded and u, v € C*(Q; R¥) are such that u = v near 9, then

/Q det (Vu)(z) dz = / det (Vv)(z) da.

Q

2. LetU C RY beopenbounded. If I, Jareasabove, A € M,, y(R)and( € C*(U;R™),
then

/(A + DSD(.I))I’J dl’ = |U‘ A[’J.
U
Useful references: [2, Section 4], [6, Section 4.1].

(d) Passing to the weak limits in nonlinear quantities
Theorem (Reshetnyak) If v/, u € WLV (Q,RY) and v/ — win WH¥, then
det (Vu!) — det (Vu) in 2/(9).
Useful reference: [12].
Definition. (Ball) Let . = (uy, ..., uy) € WHV/(N+D(Q RV). Then
Det (Vu) := *d(uidus A -+ AN duy) € 2'(Q).
Exercise. Using the Sobolev embeddings, prove that the above definition makes sense.
Exercise. If u € WHY (Q, RY), prove that Det (Vu) = det (Vu).
Equivalently, prove that, if u € W1V (Q, RY), then

/det(Vu)cp:—/det(gp,uz,...,uN)ul,VgDGC?(Q,R).
Q Q



Theorem. (Reshetnyak, Ball, Brezis-Nguyen) Let N?/(N + 1) < p < N. Letw/,u €
Whr(Q, RY) be such that v/ — u in W'?, Then

Det (Vu?) — Det (Vu) in 2'(Q).

Useful result:

Lemma. Letp > N — landletq > Isatisfy (N —1)/p+1/q = 1. Ifu,v € C®(Q,RY),
then

| et (Vo) - det (Vo] < Cvalo = ul, (IVal, + [01,)¥ Vel
Ve C(Q,R).

Useful reference: [5, Theorem 1].

Exercise. When N = 2, establish the above theorem by proving the following stronger
statement: if p > 4/3 and v/ = (u}, ul) — u = (uy, us) in WHP(Q, R?), then v} Vuj —
Uy VUQ in 9’(9)

@ Theorem. (Edelsen, Ericksen, Ball) Let f : RV — R be a continuous function such
that, for some 1 < p < oo,

[/ — win WHP(Q,R™)] = [f(Dv!) — f(Du)in 2'(Q)].
Then f is an affine function of the minors of Du. Similarly when p = oo, for the >
convergence.
Useful reference: [6, Theorem 1.5 in Section 4.1.2, and Section 4.2.2].
Gap (or Lavrentiev) phenomen

Theorem. (Mania) Let
1
F(z):= / (23(t) — t)? 2'%(t) dt, Yo € WH'((0,1)) with 2(0) = 0Oand z(1) = 1.
0

Then we have the following Lavrentiev phenomenon
inf{F(z); . € C'([0,1])} > inf{F(z); » € W"((0,1))}.

Useful reference: [8].

(e) Concentration-compactness
Useful general reference: [14, Section 1.4].

Exercise. Let F},, : [0,00) — [0, 1], m > 0, be non decreasing functions. Prove that, up to
a subsequence, F;,, converges simply.

First concentration-compactness lemma (Lions) Let (1,,) be a sequence of Borel prob-
ability measures on RY. Then, up to a subsequence, one of the following holds:
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(a) (Compactness) There exists a sequence (,,,) C RY such that, foreverye > 0, there
exists some R = R(e) satisfying pt,,(Br(x,,)) > 1 — &, Vm.

(b) (Vanishing) For every R > 0, sup p,(Bgr(x)) — 0asm — oo.

rERN

(c) (Dichotomy) There exists some 0 < A < 1 and sequences (x,,) C RY, R,, — oo
such that

i (Br,, (7)) = A, pn (RY \ Bag, (z)) — 1 — A,
tim (Bag,, (¥m) \ Bg,, (7)) — 0.

Moreover, in the above we may replace 2R, with any p,,, > R,,.

Brezis-Lieblemma Let (X, .7, i) be a measured spaceand 0 < p < oo. Let f;, f : X —
C be measurable functions such that:

@ f; — fae.
(i) For some finite C, / IfilP <C,Vj.
X

Then
[ =15 =15, 171 >0
X
In particular, if p > 1, X = R with the Lebesgue measure, and we set

wi = (|f5P = 1fIP = |f; — fIP) du,

* .
then 11; — 0 in the sense of measures.

Useful references: [7, Theorem 1.9], [10, Exercice de synthese #10].

Theorem (Lions) Let a = a(x) € C(RY, (0, c0)) be such that

lim a(r) = asx > 0.
|z|—o00

N+2
Letl <p< N+2andset

[ = inf{/ (IVul2 + au?): u € Hl(RN),/ ! = 1},
RN RN
I, :=inf {/ (|Vul* + asor?®); uw € HY(RY), / u|Ptt = 1} .
RN RN

If I < I, then the inf in I is attained. Up to a multiplicative constant, a minimizer is a
non trivial solution v € H(RY) of

—Au+ au = |ufPtuin RY.



D] Exercise. Let 1 be a finite diffuse Borel measure in RY. Prove that

11_1% sup u(B,(x)) =0.

zERN

Exercise. Let w, \ be finite Borel measures in R and 1 < p < ¢ < oo. Assume that, for
some 0 < S < oo, we have

p/q
S (/ ’f|qdw) < / |f|Pd), V Borel function f : R — R. Q)
RN RN
Prove that:

(a) w is a purely atomic measure, i.e., there exist a; > 0, z; € R" such thatw =

Zj O./j(sxj.

© A= 8Y (a;)P96,,.
(d) (2) holds if and only if it holds for f € C>°(RY).

Hint. Step 1. Assume first that ) is diffuse. Using the previous exercise, prove that, for
every cube C' C RY, w(C) = 0, and thus w = 0.
Step 2. Apply Step 1 to wy and Ao, where wy, respectively )\, is the diffuse part of w, re-
spectively \.

. 1 1k
Exercise. Let 1 < p < oo and k > 1be such thatkp < N. Let — := — — N

q p

Set

Whe .= {u e 2'(RY); D*u € LP,u € L7},

Prove that, if we endow WW*? with the norm u — HD’“u

,» then CZ°(RY) is dense in
WP In particular, prove that we have the Sobolev inequality

Slully < [[D*ul]?, Vu € W, 3)
for some (optimal Sobolev constant) 0 < S < oo.

Useful reference for k = 1: [9, Lemma 14]. Hint for k > 2: prove the following result:

Exercise. Let k, p, and ¢ be as above. For R > 0, set Az := {z € RY; R < |z| < 2R}.If
v € C*(Ag), then for every ¢ > 0 there exists some finite C'(¢) (independent of R and
v) such that
k-1
—(k—0)|| ¢ k
> REIND |0 < ElD 0]l g + CEN agar.
(=0

Exercise. Let ;. be a finite measureon X and 1 < p < ¢ < oo. If (f,,) € LYUX) is
bounded and f,,, — Oa.e, then f,, — 0in LP(X).

Second concentratipn-compactngss lemma (Lions) Let 1 < p < oo, k, ¢, and S be as
above. Let (u,,) C W"? and u € W*P be such that:
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A u,;, — win W*P and u,,, — v a.e.

(ii) |um|?dz = |u|?dz + w in the sense of measures, for some (non-negative) Borel
measure w.

(iii) |D*u,,[Pdz = |D*ulPdz + p in the sense of measures, for some (non-negative)
Borel measure .

Then:
(@) wisapurely atomic measure: w = Zj 0y, witha; > 0, 7; € RN,
(b) We have Zj(aj)P/q < 00.
(c) We have u > Szj(aj)p/qéxj.

Theorem (Aubin, Talenti, Lions) Let k > 1and 1 < p < oo be such that kp < N. Then

there exists some u € W% \ {0} such that equality holds in (3).
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