

Lecture # 1
THE DIRECT METHOD: A FEW EXAMPLES

In what follows, $\Omega \subset \mathbb{R}^N$ is a bounded open set. Additional smoothness, if needed, is explicitly assumed.

(a) Functional analytical preliminaries

- A [4, Corollary 3.9] Let E be a Banach space. Let $\varphi : E \rightarrow (-\infty, \infty]$ be convex and lower semicontinuous. Then φ is weakly lower semicontinuous.
- B [4, Corollary 3.23] Let E be a reflexive Banach space. Let $A \subset E$ be a closed convex set. Let $\varphi : A \rightarrow (-\infty, \infty]$ be convex and lower semicontinuous. Assume that:
 - (a) Either A is bounded.
 - (b) Or $\lim_{x \in A, \|x\| \rightarrow \infty} \varphi(x) = \infty$.

Then φ achieves its minimum on A .

- C [4, Theorem 3.18] Let E be a reflexive Banach space. Let $(x_n) \subset E$ be a bounded sequence. Then (x_n) contains a weakly convergent subsequence.
- D **Fundamental exercise.** Let $1 < p < \infty$. Let $\varphi : W^{1,p}(\Omega) \rightarrow \mathbb{R}$ be convex, lower semicontinuous, and *coercive*, i.e., $\lim_{\|u\| \rightarrow \infty} \varphi(u) = \infty$. Then φ achieves its (global) minimum.
- E **Fundamental exercise.** Let $1 < p < \infty$. Prove that a bounded sequence $(u_n) \subset W_0^{1,p}(\Omega)$ contains a subsequence (u_{n_j}) such that:
 - (a) $u_{n_j} \rightarrow u$ a.e., for some $u \in W_0^{1,p}(\Omega)$.
 - (b) $\nabla u_{n_j} \rightharpoonup \nabla u$ in $L^p(\Omega)$.

Same for $W^{1,p}(\Omega)$ if Ω is assumed Lipschitz.

Can one replace, in item (b), weak convergence with strong convergence?

(b) Basic examples

In items A, B, C, $a \in C(\overline{\Omega})$, $a \geq 0$, and $f \in C(\overline{\Omega})$.

- A The problem

$$\begin{cases} -\Delta u + a(x)u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

has a unique weak solution $u \in H_0^1(\Omega)$.

B Same for the problem

$$\begin{cases} -\Delta u + a(x)|u|^{q-1} \operatorname{sgn} u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}, \text{ with } 1 < q < \infty.$$

In this case, give a meaning to the notion of solution, and specify a space in which this solution is unique.

Useful results:

Exercise. Let $1 < q < \infty$. Then

$$L^q(X, \mathcal{T}, \mu) \ni u \mapsto G(u) := |u|^{q-1} \operatorname{sgn} u \in L^{q/(q-1)}(X, \mathcal{T}, \mu)$$

is continuous.

Lemma. Let $1 < q < \infty$. Then

$$\begin{aligned} L^q(X, \mathcal{T}, \mu) \ni u \mapsto F(u) := \int_X |u|^q d\mu &\text{ is } C^1, \text{ and} \\ F'(u)(\varphi) = q \int_{\Omega} |u|^{q-1} (\operatorname{sgn} u) \varphi, \forall u, \varphi \in L^q(X, \mathcal{T}, \mu). \end{aligned}$$

C The problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2} \nabla u) + a(x)|u|^{q-1} \operatorname{sgn} u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases},$$

with $1 < p, q < \infty$, has a unique distributional solution in the space $u \in W_0^{1,p}(\Omega) \cap L^q(\Omega)$.

Useful result:

Exercise. Let $1 < p < \infty$. Then

$$\begin{aligned} L^p(X, \mathcal{T}, \mu; \mathbb{R}^d) \ni f \mapsto F(f) := \int_X |f|^p d\mu &\text{ is } C^1, \text{ and} \\ F'(f)(g) = p \int_{\Omega} |f|^{p-2} f \cdot g, \forall f, g \in L^p(X, \mathcal{T}, \mu; \mathbb{R}^d). \end{aligned}$$

D **Definition.** A *Carathéodory function* is a function $f : \Omega \times \mathbb{R}^m \times \mathbb{R}^d$ such that

- (i) $x \mapsto f(x, u, \xi)$ is (Lebesgue) measurable, $\forall (u, \xi) \in \mathbb{R}^m \times \mathbb{R}^d$.
- (ii) $(u, \xi) \mapsto f(x, u, \xi)$ is continuous, for a.e. $x \in \Omega$.

Theorem. (Tonelli, Mac Shane, Morrey, ...) Let $1 \leq p, q \leq \infty$. Let f be a Carathéodory function such that:

a) $f(x, u, \xi) \geq a(x) \cdot u + b(x) \cdot \xi, \forall u, \xi$, for a.e. x , for some $a \in L^{q'}(\Omega; \mathbb{R}^m)$, $b \in L^{p'}(\Omega; \mathbb{R}^d)$.

b) $\xi \mapsto f(x, u, \xi)$ is convex for a.e. $x \in \Omega$ and every $u \in \Omega$.

Set

$$L^q(\Omega; \mathbb{R}^m) \times L^p(\Omega; \mathbb{R}^d) \ni (u, \xi) \mapsto L(u, \xi) := \int_{\Omega} f(x, u(x), \xi(x)) dx \in \mathbb{R} \cup \{\infty\}.$$

Then

$$[u_j \rightarrow u \text{ in } L^q(\Omega; \mathbb{R}^m), \xi_j \rightharpoonup \xi \text{ in } L^p(\Omega; \mathbb{R}^d)] \implies \liminf L(u_j, \xi_j) \geq L(u, \xi).$$

(When $p = \infty$, we may replace \rightharpoonup by $\xrightarrow{*}$.)

Useful results:

Exercise. If f is a Carathéodory function and $(u, \xi) : \Omega \rightarrow \mathbb{R}^m \times \mathbb{R}^d$ is measurable, prove that $\Omega \ni x \mapsto f(x, u(x), \xi(x))$ is measurable. (Hint: start with the case where u and ξ are step functions.)

Exercise. If f is a non-negative Carathéodory function, $u : \Omega \rightarrow \mathbb{R}^d$ is measurable, $1 \leq p < \infty$, and $\xi_j \rightharpoonup \xi$ in $L^p(\Omega)$, then

$$\int_{\Omega} f(x, u(x), \xi(x)) dx \leq \liminf \int_{\Omega} f(x, u(x), \xi_j(x)) dx.$$

Exercise.

1. Let f be a Carathéodory function. Prove that, for each $\varepsilon, M > 0$, there exist: some $\delta = \delta(\varepsilon, M) > 0$ and some compact set $K = K(\varepsilon, M) \subset \Omega$ such that:

- i. $|\Omega \setminus K| < \varepsilon$.
- ii. $[x \in K, u, v \in \mathbb{R}^m, \xi, \eta \in \mathbb{R}^d, |u| \leq M, |\xi| \leq M, |u - v| \leq \delta, |\xi - \eta| \leq \delta] \Rightarrow |f(x, u, \xi) - f(x, v, \eta)| \leq \varepsilon$.

(Hint: prove first the statement for some Lebesgue measurable (instead of compact) set.)

2. Prove the *Scorza-Dragoni theorem*: f is a Carathéodory function if and only if for each $\varepsilon > 0$ there exists some compact set $L_{\varepsilon} \subset \Omega$ such that:

- i. $|\Omega \setminus L_{\varepsilon}| < \varepsilon$.
- ii. f is continuous on $L_{\varepsilon} \times \mathbb{R}^m \times \mathbb{R}^d$.

(Hint: Consider u, ξ with rational coordinates and use Vitali's theorem to find a large set $L \subset \Omega$ such that $L \ni x \mapsto f(x, u, \xi)$ is continuous.)

Useful references: [6, Theorem 3.4, Section 3.3.1], [4, Corollary 3.9], [3, Theorem 2.2.10].

(c) Notions of convexity

A **Definition.** A continuous function $f : \mathbb{R}^{N^m} \rightarrow \mathbb{R}$ is *quasi-convex* if

$$|U| f(\xi) \leq \int_U f(\xi + D\varphi(x)) dx, \forall U \subset \mathbb{R}^N \text{ bounded open set,} \quad (1)$$

$$\forall \xi \in \mathbb{R}^{N^m}, \forall \varphi \in C_c^\infty(U; \mathbb{R}^m).$$

Exercise. Prove that a convex function is quasi-convex.

Exercise. Prove that the f is quasi-convex iff (1) is satisfied for *one* non empty U .

Exercise. Assume that U is bounded and convex.

1. Prove that $W^{1,\infty}(U) = \text{Lip}(U)$.
2. Prove that (1) still holds when $\varphi \in W_c^{1,\infty}(U, \mathbb{R}^m)$.
3. Prove that, with $(\varphi_j) \subset W^{1,\infty}(U; \mathbb{R}^m)$, we have $\varphi_j \xrightarrow{*} 0$ iff (φ_j) has uniformly bounded Lipschitz constants and $\varphi_j \rightarrow 0$ uniformly on U .

Lemma. (Morrey) If f is quasi-convex and $Q \subset \mathbb{R}^N$ is a cube, then

$$[(\varphi_j) \subset W^{1,\infty}(Q; \mathbb{R}^m), \varphi_j \xrightarrow{*} 0] \implies \liminf \int_Q f(\xi + D\varphi_j(x)) dx \geq |Q| f(\xi),$$

$$\forall \xi \in \mathbb{R}^{N^m}.$$

Useful reference: [11, Lemma 2.2].

Exercise. Prove a version of Morrey's lemma with Q replaced with a finite volume open set.

B **Theorem.** (Morrey, ..., Acerbi-Fusco) Let f be a Carathéodory function on $\Omega \times \mathbb{R}^m \times \mathbb{R}^{N^m}$ such that:

- a) for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^m$, $\mathbb{R}^{N^m} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
- b) $0 \leq f(x, u, \xi) \leq a(x) + b(u, \xi)$, with $a \in L^1(\Omega)$, $b \in L_{loc}^\infty(\mathbb{R}^m \times \mathbb{R}^{N^m})$.

If $(u_j) \subset W^{1,\infty}(\Omega; \mathbb{R}^m)$ and $u_j \xrightarrow{*} u$, then

$$\liminf \int_\Omega f(x, u_j(x), Du_j(x)) dx \geq \int_\Omega f(x, u(x), Du(x)) dx.$$

Useful result:

Exercise. (Easy version of Lebesgue's differentiation theorem) Let $Q := (0, 1)^N$ and let $g \in L^1(Q)$. Let $\ell \geq 1$ be an integer and

$$g_\ell(x) := \int_C g(y) dy \text{ if } x \text{ belongs to the dyadic cube } C \text{ of size } 2^{-\ell}.$$

Then, up to a subsequence $\ell_n \rightarrow \infty$, $g_\ell \rightarrow g$ a.e.

Useful references: [1, Theorem II.1], [13, Corollary, p. 13].

Theorem. (Acerbi-Fusco, [1, Theorem II.4]) Let $1 \leq p < \infty$. Let f be a Carathéodory function on $\Omega \times \mathbb{R}^m \times \mathbb{R}^{Nm}$ such that:

- a) for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^m$, $\mathbb{R}^{Nm} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
- b) $0 \leq f(x, u, \xi) \leq a(x) + C(|u|^p + |\xi|^p)$, with $a \in L^1(\Omega)$ and C finite.

If $(u_j) \subset W^{1,p}(\Omega; \mathbb{R}^m)$ and $u_j \rightharpoonup u$, then

$$\liminf \int_{\Omega} f(x, u_j, Du_j(x)) dx \geq \int_{\Omega} f(x, u, Du(x)) dx.$$

C **Theorem.** (Morrey) Let $f : \Omega \times \mathbb{R}^m \times \mathbb{R}^{Nm}$ be continuous. If, for every open set $U \subset \Omega$,

$$\begin{aligned} [u_j \rightharpoonup u \text{ in } W^{1,\infty}(U)] &\implies \\ \liminf \int_U f(x, u_j(x), Du_j(x)) dx &\geq \int_U f(x, u(x), Du(x)) dx, \end{aligned}$$

then, for each $x \in \Omega$ and $u \in \mathbb{R}^m$, $\mathbb{R}^{Nm} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.

Useful result:

Lemma. Let $Q := (0, 1)^N$ and let $\zeta \in C_c^\infty(Q; \mathbb{R}^m)$, extended as a smooth 1-periodic function to \mathbb{R}^m . Let $U \subset \Omega$ be relatively compact. Let $u_0 \in C(\Omega; \mathbb{R}^m)$, $\xi_0 \in C(\Omega; \mathbb{R}^{Nm})$. Set $\zeta_j(x) := 2^{-j}\zeta(2^j x)$, $\forall j \geq 1$, $\forall x \in \mathbb{R}^N$. Then

$$\lim \int_U f(x, u_0(x), \xi_0(x) + D\zeta_j(x)) dx = \int_U \int_Q f(x, u_0(x), \xi_0(x) + D\zeta(y)) dy dx$$

and

$$\begin{aligned} \lim \int_U f(x, u_0(x) + \zeta_j(x), \xi_0(x) + D\zeta_j(x)) dx \\ = \int_U \int_Q f(x, u_0(x), \xi_0(x) + D\zeta(y)) dy dx. \end{aligned}$$

Theorem. (Acerbi-Fusco, [1, Theorem II.2]) Let $f : \Omega \times \mathbb{R}^m \times \mathbb{R}^{Nm}$ be a Carathéodory function such that $0 \leq f(x, u, \xi) \leq a(x) + b(u, \xi)$, $\forall x \in \Omega$, $\forall (u, \xi) \in \mathbb{R}^m \times \mathbb{R}^{Nm}$, where $a \in L^1(\Omega)$ and $b \in L_{loc}^\infty(\mathbb{R}^m \times \mathbb{R}^{Nm})$. If, for every open set $U \subset \Omega$,

$$\begin{aligned} [u_j \rightharpoonup u \text{ in } W^{1,\infty}(U)] &\implies \\ \liminf \int_U f(x, u_j(x), Du_j(x)) dx &\geq \int_U f(x, u(x), Du(x)) dx, \end{aligned}$$

then, for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^m$, $\mathbb{R}^{Nm} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.

D **Proposition.** Assume that $N = 1$ and let $f : \mathbb{R}^m \rightarrow \mathbb{R}$ be continuous. Then f is quasi-convex if and only if f is convex.

Theorem. [6, Theorem 3.1, Section 3.3.1] Assume that $m = 1$ (i.e., we work with scalar functions u) and let $f : \mathbb{R}^N \rightarrow \mathbb{R}$. Then f is quasi-convex if and only if f is convex.

E We identify \mathbb{R}^{Nm} with $M_{m,N}(\mathbb{R})$. Let $A \in M_{m,N}(\mathbb{R})$. Given $1 \leq \ell \leq K := \min(m, N)$, and $I = \{i_1 < i_2 < \dots < i_\ell\} \subset \{1, \dots, m\}$, $J = \{j_1 < j_2 < \dots < j_\ell\} \subset \{1, \dots, N\}$, let $A_{I,J}$ denote the minor of order ℓ of A formed with the rows i_1, \dots, i_ℓ , respectively the columns j_1, \dots, j_ℓ . Let M be the number of all possible minors. We order the minors as A^1, \dots, A^M .

Definition. (Morrey, Ball) A function $f : \mathbb{R}^{Nm} \rightarrow \mathbb{R}$ is *polyconvex* if there exists some convex function $g : \mathbb{R}^M \rightarrow \mathbb{R}$ such that $f(A) = g(A^1, \dots, A^M)$.

Proposition. (Morrey, Ball) A polyconvex function is quasi-convex.

A useful result:

Lemma.

1. If $\Omega \subset \mathbb{R}^k$ is open bounded and $u, v \in C^\infty(\bar{\Omega}; \mathbb{R}^k)$ are such that $u = v$ near $\partial\Omega$, then

$$\int_{\Omega} \det(\nabla u)(x) dx = \int_{\Omega} \det(\nabla v)(x) dx.$$

2. Let $U \subset \mathbb{R}^N$ be open bounded. If I, J are as above, $A \in M_{m,N}(\mathbb{R})$ and $\zeta \in C_c^\infty(U; \mathbb{R}^m)$, then

$$\int_U (A + D\varphi(x))_{I,J} dx = |U| A_{I,J}.$$

Useful references: [2, Section 4], [6, Section 4.1].

(d) Passing to the weak limits in nonlinear quantities

A **Theorem** (Reshetnyak) If $u^j, u \in W^{1,N}(\Omega, \mathbb{R}^N)$ and $u^j \rightharpoonup u$ in $W^{1,N}$, then

$$\det(\nabla u^j) \rightarrow \det(\nabla u) \text{ in } \mathcal{D}'(\Omega).$$

Useful reference: [12].

B **Definition.** (Ball) Let $u = (u_1, \dots, u_N) \in W^{1,N^2/(N+1)}(\Omega, \mathbb{R}^N)$. Then

$$\text{Det}(\nabla u) := *d(u_1 du_2 \wedge \dots \wedge du_N) \in \mathcal{D}'(\Omega).$$

Exercise. Using the Sobolev embeddings, prove that the above definition makes sense.

Exercise. If $u \in W^{1,N}(\Omega, \mathbb{R}^N)$, prove that $\text{Det}(\nabla u) = \det(\nabla u)$.

Equivalently, prove that, if $u \in W^{1,N}(\Omega, \mathbb{R}^N)$, then

$$\int_{\Omega} \det(\nabla u) \varphi = - \int_{\Omega} \det(\varphi, u_2, \dots, u_N) u_1, \forall \varphi \in C_c^\infty(\Omega, \mathbb{R}).$$

C Theorem. (Reshetnyak, Ball, Brezis-Nguyen) Let $N^2/(N + 1) < p \leq N$. Let $u^j, u \in W^{1,p}(\Omega, \mathbb{R}^N)$ be such that $u^j \rightharpoonup u$ in $W^{1,p}$. Then

$$\operatorname{Det}(\nabla u^j) \rightarrow \operatorname{Det}(\nabla u) \text{ in } \mathcal{D}'(\Omega).$$

Useful result:

Lemma. Let $p \geq N - 1$ and let $q \geq 1$ satisfy $(N - 1)/p + 1/q = 1$. If $u, v \in C^\infty(\bar{\Omega}, \mathbb{R}^N)$, then

$$\left| \int_{\Omega} [\det(\nabla v) - \det(\nabla u)] \varphi \right| \leq C_{N,\Omega} \|v - u\|_q (\|\nabla u\|_p + \|\nabla v\|_p)^{N-1} \|\nabla \varphi\|_\infty, \\ \forall \varphi \in C_c^\infty(\Omega, \mathbb{R}).$$

Useful reference: [5, Theorem 1].

Exercise. When $N = 2$, establish the above theorem by proving the following stronger statement: if $p > 4/3$ and $u^j = (u_1^j, u_2^j) \rightharpoonup u = (u_1, u_2)$ in $W^{1,p}(\Omega, \mathbb{R}^2)$, then $u_1^j \nabla u_2^j \rightarrow u_1 \nabla u_2$ in $\mathcal{D}'(\Omega)$.

D Theorem. (Edelsen, Erickson, Ball) Let $f : \mathbb{R}^{N^m} \rightarrow \mathbb{R}$ be a continuous function such that, for some $1 \leq p < \infty$,

$$[u^j \rightharpoonup u \text{ in } W^{1,p}(\Omega, \mathbb{R}^m)] \implies [f(Du^j) \rightarrow f(Du) \text{ in } \mathcal{D}'(\Omega)].$$

Then f is an affine function of the minors of Du . Similarly when $p = \infty$, for the \rightharpoonup^* convergence.

Useful reference: [6, Theorem 1.5 in Section 4.1.2, and Section 4.2.2].

E Gap (or Lavrentiev) phenomenon

Theorem. (Maniá) Let

$$F(x) := \int_0^1 (x^3(t) - t)^2 x'^6(t) dt, \quad \forall x \in W^{1,1}((0, 1)) \text{ with } x(0) = 0 \text{ and } x(1) = 1.$$

Then we have the following *Lavrentiev phenomenon*

$$\inf\{F(x); x \in C^1([0, 1])\} > \inf\{F(x); x \in W^{1,1}((0, 1))\}.$$

Useful reference: [8].

(e) Concentration-compactness

Useful general reference: [14, Section I.4].

A Exercise. Let $F_m : [0, \infty) \rightarrow [0, 1]$, $m \geq 0$, be *non decreasing* functions. Prove that, up to a subsequence, F_m converges simply.

First concentration-compactness lemma (Lions) Let (μ_m) be a sequence of Borel probability measures on \mathbb{R}^N . Then, up to a subsequence, one of the following holds:

- (a) (Compactness) There exists a sequence $(x_m) \subset \mathbb{R}^N$ such that, for every $\varepsilon > 0$, there exists some $R = R(\varepsilon)$ satisfying $\mu_m(B_R(x_m)) > 1 - \varepsilon, \forall m$.
- (b) (Vanishing) For every $R > 0$, $\sup_{x \in \mathbb{R}^N} \mu_m(B_R(x)) \rightarrow 0$ as $m \rightarrow \infty$.
- (c) (Dichotomy) There exists some $0 < \lambda < 1$ and sequences $(x_m) \subset \mathbb{R}^N, R_m \rightarrow \infty$ such that

$$\begin{aligned} \mu_m(B_{R_m}(x_m)) &\rightarrow \lambda, \quad \mu_m(\mathbb{R}^N \setminus \overline{B}_{2R_m}(x_m)) \rightarrow 1 - \lambda, \\ \mu_m(\overline{B}_{2R_m}(x_m) \setminus B_{R_m}(x_m)) &\rightarrow 0. \end{aligned}$$

Moreover, in the above we may replace $2R_m$ with any $\rho_m > R_m$.

[B] Brezis-Lieb lemma Let (X, \mathcal{T}, μ) be a measured space and $0 < p < \infty$. Let $f_j, f : X \rightarrow \mathbb{C}$ be measurable functions such that:

- (i) $f_j \rightarrow f$ a.e.
- (ii) For some finite C , $\int_X |f_j|^p \leq C, \forall j$.

Then

$$\int_X ||f_j|^p - |f|^p - |f_j - f|^p \rightarrow 0,$$

In particular, if $p \geq 1$, $X = \mathbb{R}^N$ with the Lebesgue measure, and we set

$$\mu_j := (|f_j|^p - |f|^p - |f_j - f|^p) dx,$$

then $\mu_j \rightharpoonup 0$ in the sense of measures.

Useful references: [7, Theorem 1.9], [10, Exercice de synthèse #10].

[C] Theorem (Lions) Let $a = a(x) \in C(\mathbb{R}^N, (0, \infty))$ be such that

$$\lim_{|x| \rightarrow \infty} a(x) = a_\infty > 0.$$

Let $1 < p < \frac{N+2}{N-2}$ and set

$$\begin{aligned} I &:= \inf \left\{ \int_{\mathbb{R}^N} (|\nabla u|^2 + au^2); u \in H^1(\mathbb{R}^N), \int_{\mathbb{R}^N} |u|^{p+1} = 1 \right\}, \\ I_\infty &:= \inf \left\{ \int_{\mathbb{R}^N} (|\nabla u|^2 + a_\infty u^2); u \in H^1(\mathbb{R}^N), \int_{\mathbb{R}^N} |u|^{p+1} = 1 \right\}. \end{aligned}$$

If $I < I_\infty$, then the inf in I is attained. Up to a multiplicative constant, a minimizer is a non trivial solution $u \in H^1(\mathbb{R}^N)$ of

$$-\Delta u + au = |u|^{p-1}u \text{ in } \mathbb{R}^N.$$

D **Exercise.** Let μ be a finite *diffuse* Borel measure in \mathbb{R}^N . Prove that

$$\lim_{r \rightarrow 0} \sup_{x \in \mathbb{R}^N} \mu(B_r(x)) = 0.$$

Exercise. Let ω, λ be finite Borel measures in \mathbb{R}^N and $1 \leq p < q < \infty$. Assume that, for some $0 < S < \infty$, we have

$$S \left(\int_{\mathbb{R}^N} |f|^q d\omega \right)^{p/q} \leq \int_{\mathbb{R}^N} |f|^p d\lambda, \quad \forall \text{ Borel function } f : \mathbb{R}^N \rightarrow \mathbb{R}. \quad (2)$$

Prove that:

- (a) ω is a purely atomic measure, i.e., there exist $\alpha_j > 0, x_j \in \mathbb{R}^N$ such that $\omega = \sum_j \alpha_j \delta_{x_j}$.
- (b) $\sum_j (\alpha_j)^{p/q} < \infty$.
- (c) $\lambda \geq S \sum_j (\alpha_j)^{p/q} \delta_{x_j}$.
- (d) (2) holds if and only if it holds for $f \in C_c^\infty(\mathbb{R}^N)$.

Hint. *Step 1.* Assume first that λ is diffuse. Using the previous exercise, prove that, for every cube $C \subset \mathbb{R}^N$, $\omega(C) = 0$, and thus $\omega = 0$.

Step 2. Apply Step 1 to ω_0 and λ_0 , where ω_0 , respectively λ_0 , is the diffuse part of ω , respectively λ .

Exercise. Let $1 \leq p < \infty$ and $k \geq 1$ be such that $kp < N$. Let $\frac{1}{q} := \frac{1}{p} - \frac{k}{N}$.

Set

$$\dot{W}^{k,p} := \{u \in \mathcal{D}'(\mathbb{R}^N); D^k u \in L^p, u \in L^q\}.$$

Prove that, if we endow $\dot{W}^{k,p}$ with the norm $u \mapsto \|D^k u\|_p$, then $C_c^\infty(\mathbb{R}^N)$ is dense in $\dot{W}^{k,p}$. In particular, prove that we have the Sobolev inequality

$$S \|u\|_q^p \leq \|D^k u\|_p^p, \quad \forall u \in \dot{W}^{k,p}, \quad (3)$$

for some (optimal Sobolev constant) $0 < S < \infty$.

Useful reference for $k = 1$: [9, Lemma 14]. Hint for $k \geq 2$: prove the following result:

Exercise. Let k, p , and q be as above. For $R > 0$, set $A_R := \{x \in \mathbb{R}^N; R \leq |x| \leq 2R\}$. If $v \in C^\infty(A_R)$, then for every $\varepsilon > 0$ there exists some finite $C(\varepsilon)$ (independent of R and v) such that

$$\sum_{\ell=0}^{k-1} R^{-(k-\ell)} \|D^\ell v\|_{L^p(A_R)} \leq \varepsilon \|D^k v\|_{L^p(A_R)} + C(\varepsilon) \|v\|_{L^q(A_R)}.$$

Exercise. Let μ be a finite measure on X and $1 \leq p < q \leq \infty$. If $(f_m) \subset L^q(X)$ is bounded and $f_m \rightarrow 0$ a.e., then $f_m \rightarrow 0$ in $L^p(X)$.

Second concentration-compactness lemma (Lions) Let $1 < p < \infty, k, q$, and S be as above. Let $(u_m) \subset \dot{W}^{k,p}$ and $u \in \dot{W}^{k,p}$ be such that:

- (i) $u_m \rightharpoonup u$ in $\dot{W}^{k,p}$ and $u_m \rightarrow u$ a.e.
- (ii) $|u_m|^q dx \xrightarrow{*} |u|^q dx + \omega$ in the sense of measures, for some (non-negative) Borel measure ω .
- (iii) $|D^k u_m|^p dx \xrightarrow{*} |D^k u|^p dx + \mu$ in the sense of measures, for some (non-negative) Borel measure μ .

Then:

- (a) ω is a purely atomic measure: $\omega = \sum_j \alpha_j \delta_{x_j}$, with $\alpha_j > 0$, $x_j \in \mathbb{R}^N$.
- (b) We have $\sum_j (\alpha_j)^{p/q} < \infty$.
- (c) We have $\mu \geq S \sum_j (\alpha_j)^{p/q} \delta_{x_j}$.

E **Theorem** (Aubin, Talenti, Lions) Let $k \geq 1$ and $1 < p < \infty$ be such that $kp < N$. Then there exists some $u \in \dot{W}^{k,p} \setminus \{0\}$ such that equality holds in (3).

References

- [1] Emilio Acerbi and Nicola Fusco. Semicontinuity problems in the calculus of variations. *Arch. Rational Mech. Anal.*, 86(2):125–145, 1984.
- [2] John M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. *Arch. Rational Mech. Anal.*, 63(4):337–403, 1976/1977.
- [3] Vladimir I. Bogachev. *Measure theory. Vol. I.* Springer-Verlag, Berlin, 2007.
- [4] Haim Brezis. *Functional analysis, Sobolev spaces and partial differential equations*. Universitext. Springer, New York, 2011.
- [5] Haim Brezis and Hoai-Minh Nguyen. The Jacobian determinant revisited. *Invent. Math.*, 185(1):17–54, 2011.
- [6] Bernard Dacorogna. *Direct methods in the calculus of variations*, volume 78 of *Applied Mathematical Sciences*. Springer-Verlag, Berlin, 1989.
- [7] Elliott H. Lieb and Michael Loss. *Analysis*, volume 14 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, second edition, 2001.
- [8] Philip D. Loewen. On the Lavrentiev phenomenon. *Canad. Math. Bull.*, 30(1):102–108, 1987.
- [9] Petru Mironescu. The role of the Hardy type inequalities in the theory of function spaces. *Rev. Roumaine Math. Pures Appl.*, 63(4):447–525, 2018.
- [10] Petru Mironescu. *Measure et intégration*. http://math.univ-lyon1.fr/~mirone/ressources/complet_mesure_integration.pdf, 2023.
- [11] Charles B. Morrey, Jr. Quasi-convexity and the lower semicontinuity of multiple integrals. *Pacific J. Math.*, 2:25–53, 1952.

- [12] Yuriĭ G. Reshetnyak. Mappings with bounded distortion as extremals of integrals of Dirichlet type. *Sibirsk. Mat. Ž.*, 9:652–666, 1968.
- [13] Elias M. Stein. *Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, volume 43 of *Princeton Mathematical Series*. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.
- [14] Michael Struwe. *Variational methods*, volume 34 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]*. Springer-Verlag, Berlin, fourth edition, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems.