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1. Les deux types de fonctions définies comme intégrales. 
 
On distingue deux types principaux de fonctions définies comme intégrales, ces intégrales 
pouvant être définies, ou généralisées. Ces fonctions se rencontrent souvent en analyse et en 
physique mathématique. 
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   Type II  : Les fonctions de la forme F(x) =∫I dttxf ).,( , où x est un paramètre. 

C’est le cas des fonctions eulériennes :  
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des transformées de Laplace et de Fourier, de la convolution. 

Il ne faut pas confondre la variable d’intégration, notée ici t, et la variable x de la fonction F. 
Lorsque F(x) ne se calcule pas élémentairement, il est très important de bien distinguer ces 
deux types de fonctions : elles ne relèvent pas du tout des mêmes théorèmes.  
La première chose à faire est de chercher le domaine de définition de F(x), autrement dit, 
pour quels x l’intégrale est définie ou convergente. 
 

2. Intégrales fonctions des bornes. 
 

Rappelons le théorème de Newton-Leibniz : 

Théorème : Soient I un intervalle de R, f : I → R ou C une fonction continue, c un point quelconque 

de I. La fonction F(x) = ∫
x

c
dttf ).(  est une primitive de f, en ce sens que  ∀x ∈ I  F’(x) = f(x). 

Remarque : Si f est seulement continue par morceaux sur I, la fonction F est alors  
   a) continue sur I,  
   b) dérivable en tout point x où f est continue, et alors  F’(x) = f(x). 
   c) dérivable à droite et à gauche en tout point de I, et alors  

          F’g(x) = f(x – 0)   ( limite à gauche )      F’g(x) = f(x – 0)   ( limite à gauche ) 



Conséquence : Soit I un intervalle de R, f : I → R ou C une fonction continue par morceaux, α et β 

deux fonctions continues X → I, où X est un espace métrique. La fonction F(x) = ∫
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définie dans X et continue, comme composée de fonctions continues, puisque l’on peut écrire  

                              F(x) = Φ(β(x)) − Φ(α(x)) ,  où  Φ(y) = ∫
y

c
dttf ).( .  

Si f est continue, et α et β sont dérivables : X → I  ( X et I intervalles de R ), alors F est dérivable 
comme composée, et  (∀x)  F’(x) = β’(x).f(β(x)) − α’(x).f(α(x)). 
  

3. Intégrales à paramètres. 
 

Nous allons étudier les fonctions de la forme F(x) = ∫I dttxf ).,( , où x joue le rôle d’un paramètre, 

l’intervalle I = (a, b) pouvant être de nature quelconque. Attention, ce ne sont pas des fonctions 
composées. Elle relèvent de théorèmes spécifiques que nous allons énoncer.   

   • La première chose à faire est d’examiner si F(x) peut se calculer élémentairement. 
   • La deuxième est de se demander si l’on peut mettre x dans les bornes. 
   • La troisième est d’étudier avec soin le domaine de définition de F, c’est-à-dire de discuter selon 

les valeurs de x la convergence, absolue ou non, de l’intégrale∫I dttxf ).,( . 

Une fois cela fait, on dispose des deux théorèmes suivants : 

   3.1. Théorème de continuité des intégrales impropres à paramètres. 

Théorème : Soient (X, d) un espace métrique, I un intervalle de R, f : (x, t) ∈ X×I → f(x, t) ∈ R ou 
C une fonction vérifiant les trois hypothèses : 
     i)  Pour tout x ∈ X, t → f(x, t) est continue par morceaux intégrable sur I ; 
    ii)  Pour tout  t ∈ I , x → f(x, t)  est continue sur X ; 
   iii)  Il existe une fonction ϕ continue par morceaux et intégrable sur I et telle que : 
                                      ∀(x, t) ∈ X×I      | f(x, t) | ≤ ϕ(t). 

Alors  F(x) = ∫I dttxf ).,(  est définie et continue sur X. 

   3.2. Théorème de dérivation des intégrales impropres à paramètres. 

Théorème : Soient X et I deux intervalles de R, f : (x, t) ∈ X×I → f(x, t) ∈ R ou C une fonction 
vérifiant les hypothèses : 
    i)  Pour tout x ∈ X, f(x, .) est continue par morceaux intégrable sur I ; 

   ii)  f admet une dérivée partielle 
x
f

∂
∂

(x, .) vérifiant les hypothèses du théorème précédent, c’est-à-

dire continue en x, continue par morceaux en t, et dominée sur X×I par une fonction intégrable ψ(t).  

                                     ∀(x, t) ∈ X×I      |
x
f

∂
∂

(x, t) | ≤ ψ(t). 

Alors F(x) = ∫I dttxf ).,(  est définie et de classe C
1
 sur X, et :  ∀x ∈ X   F’(x) = ∫I x

f
∂
∂

(x, t).dt. 

Remarque : Il n’y a pas toujours de majorante intégrable sur X×I, mais seulement sur K×I, où K est 
un segment (ou un compact) quelconque inclus dans X. La fonction F est alors continue ou C

1
 sur K, 

mais comme tout point de X est à l’intérieur d’un certain K, F est continue ou C
1
 sur X. 

 
 
 
 
              



4. Exercices corrigés. 
 

Exercice 1 : On considère la fonction F donnée par F(x) = ∫ +
1

0 ²² xt
dt   ∀x > 0. 

  i) Montrer que F est finie, et continue. 
 ii) Montrer que F est dérivable, et calculer F’(x). 
iii) Calculer limx→+∞ F(x) et limx→0+ F(x). 
iv) Calculer F(x) en fonction de fonctions continues et retrouver les résultats précédents. 

Solution : 

i) La fonction F est définie sur R*, car, pour tout x ≠ 0, la fonction t → 
²²

1
xt +  est continue sur [0, 1]. 

F est n’est pas définie pour x = 0, car l’intégrale ∫
1

0 ²t
dt  diverge. 

La fonction F est paire.  
Pour montrer la continuité de F, plaçons-nous sur (x, t) ∈ [a, +∞[×[0, 1], où a > 0 est quelconque 
mais fixé.  

La fonction f : (x, t) ∈ [a, +∞[×[0, 1] → 
²²

1
xt +  est  

continue par morceaux en t à x fixé, continue en x à t fixé,  

et vérifie la majorante intégrable  0 < 
²²

1
xt +  ≤

²²
1
at +  pour x ≥ a. 

En vertu du théorème de continuité des intégrales à paramètres, F est continue sur [a, +∞[.  
Comme a est aussi petit qu’on veut, F est continue sur ]0, +∞[ 

ii) La fonction f : (x, t) ∈ ]0, +∞[×[0, 1] → 
²²

1
xt +  a pour dérivée partielle en x 
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Elle est continue par morceaux en t à x fixé, continue en x à t fixé,  

et vérifie la majorante intégrable | ),( tx
x
f

∂
∂ | ≤

²)²²(
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+  pour a ≤ x ≤ A. 

En vertu du théorème de dérivation des intégrales à paramètres, F est C
1
 sur [a, A].  

Comme a est aussi petit qu’on veut, et A aussi grand qu’on veut, F est C
1
 sur ]0, +∞[, et  

                                                     F’(x) = ∫ +
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0
.

²)²²(
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tx
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On en déduit que F est décroissante sur ]0, +∞[, ce qu’on pouvait noter directement. 

iii) Pour x > 0, 0 ≤ F(x) ≤ ∫
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dt  = 

²
1
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, donc F(x) → 0 quand x → +∞. 

Mais on peut aussi raisonner par convergence dominée, car 

(
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1
xt +  < 

1²
1
+t

 pour x ≥ 1. 

Formellement F(x) → ∫
1
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dt  = +∞ quand x ↓ 0. Cela découle du théorème de convergence monotone 

car 
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simplement quand x ↓ 0 (c’est au fond de l’associativité de bornes supérieures). 

iv) Le changement de variable t = xu donne   
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Et l’on retrouve tous les résultats précédents. 



D’une façon générale, lorsqu’on peut calculer élémentairement F(x), il est inutile de recourir à des 

théorèmes généraux. Mais les questions i) à iii) s’appliquent aussi à F(x) = ∫ +
1

0 44 xt
dt , etc. 

plot(1/x*arctan(1/x),x=-4..4,0..3,thickness=2); 

 
 

Exercice 2 : On considère la fonction F donnée par  F(x) = ∫
+∞ −

+0 4 .
1
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t
xte t

  ∀x ∈ R. 

  i) Montrer que F est finie, et continue. 
 ii) Montrer que F est indéfiniment dérivable. 

iii) Calculer limx→+∞ F(x). 

iv) Montrer que  F(4)(x) + F(x) = 21 x
x

+ . 

Solution : 

i) Pour tout réel x, la fonction t → 41 t
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sin(xt) est continue et intégrable sur R+, car 
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La fonction f(x, t) = 41 t
e t

+
−

sin(xt) est séparément continue en x et en t, et a une majorante intégrable 

uniforme en x, te− . Donc F est continue sur R. 

ii) f a des dérivées partielles en x à tous ordres ),( tx
x
f
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Donc F est indéfiniment dérivable et pour tout x, et : 
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iii) Montrons que limx→+∞ F(x) = 0. 



Les spécialistes reconnaîtront le lemme de Riemann-Lebesgue, que l’on peut démontrer rigoureu-

sement ainsi. Soit ε > 0. Choisissons A tel que  ∫
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 → 0 quand x → +∞, en vertu du théorème de Riemann-
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Autre solution, par intégration par parties :  
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F est solution d’une équation différentielle linéaire d’ordre 4, et  

                              F(0) = F’’(0) = 0   ,   limx→+∞ F(x) = 0. 
 

Exercice 3 : On considère la fonction  F(x) = ∫
∞+ −

+0

²

.
²1

dt
t

e xt
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   1) Domaine de définition de F ?  
   2) Montrer que F est continue sur R+, de classe C1 sur R*+, et vérifie une équation diffé-
rentielle.  

   3) En déduire la valeur de l’intégrale de Gauss  I = ∫R dte t .²− . 

Solution : 1) La fonction fx : t → 
²1

²

t
e xt

+
−

 est continue positive sur R+. 

• Si x ≥ 0, elle est intégrable, car 0 ≤ fx(t) ≤ 
²1

1
t+  intégrable. 

• Si x < 0, elle tend vers +∞ en +∞, donc n’est pas intégrable. 
Conclusion : F est définie sur R+. 

2) La fonction f : (x, t) → 
²1

²

t
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+
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 obéit aux hypothèses  

   (H 1) pour tout x ≥ 0, f(x, . ) est intégrable ; 
   (H 2) pour tout t ≥ 0, f(. , t) est continue ; 

   (H 3) majorante intégrable : ∀(x, t)  0 ≤ f(x, t) ≤ 
²1

1
t+ . 

Par conséquent, F est continue sur R+ . 
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x
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 obéit aux hypothèses : 



   (H 1) pour tout x > 0, 
x
f

∂
∂

(x, .) est intégrable (car ≤ e
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 au V(+∞)) ; 

   (H 2) pour tout t ≥ 0, 
x
f

∂
∂

(. , t) est continue ; 

   (H 3) majorante intégrable  ∀a > 0  ∀(x, t) ∈ [a, +∞[×R+  0 ≤ f(x, t) ≤ 
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²

t
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+
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Par conséquent, F est C
1
 sur [a, +∞[, donc sur R*+, et F’(x) = − ∫
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Du coup,  F(x) – F’(x) = ∫
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−
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².dte xt  = 
x

I   ( chgt de var t x  = u ). 

Ajoutons que F(x) → 0 en +∞, soit par convergence dominée (majorante intégrable),  

soit par les gendarmes :  0 ≤ F(x) ≤ ∫
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3) Intégrons cette équation différentielle. 
Equation homogène : F(x) = C.e

x
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Je dis que  e
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Comme F(x) → 0 en +∞, A = 0 et   F(x)  =  I e
x
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Mais F est continue en 0 et F(0) = 
2
π . Donc 

2
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 = 2 I
2
 et    I = 

2
π  . 

 
5. Exercices. 

 
Exercice 1 : Etudier et représenter les fonctions : 

   a) F(x) = ∫
x

dttY
0

).(  ,  où Y(x) = 1 si x > 0, Y(x) = 0 si x < 0  ( Y est la fonction de Heaviside ) 

   b) F(x) = ∫
x

dtt
0

).sgn(      c) F(x) = ∫
x

dtt
0

].[ . 

Exercice 2 : Étudier les fonctions : 

                  F(x) = ∫ +
x

t
dt

0 1²
 + ∫ +

x

t
dt/1

0 1²
     ,     F(x) = ∫

x
dttArc

²sin

0
.sin  + ∫

x
dttArc
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0
.cos   ,  

Exercice 3 : Domaines de définition, variations, limites aux bords, des fonctions suivantes : 

   F(x) = ∫ −
x

t dte
0

².    ,    F(x) = ∫
−x t

dt
t

e
1

.   ,   F(x) = ∫
x

dt
t

t
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.
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  ,   F(x) = ∫
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t

t
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.
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  ,   F(x) = ∫
²
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x

x t
dt .  

Exercice 4 : Etudier les fonctions : 

             F(x) = ∫− +
1

1 2/3²)²( tx
dt   ,  G(x) = ∫− ++

1

1 ²)1²)(²( ttx
dt   ,  H(x) = ∫

+∞
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xtt

t .
²)²)(1²(
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Exercice 5 : Soit f ∈ C(R, R). Montrer que F(x) = ∫ +
b

a
dtttxf ).cos().(  est de classe C

1
. 



Exercice 6 : Soit f ∈ C([0, 1], R). Montrer que F(x) = ∫ −
1

0
).(. dttftx  est de classe C

2
 sur [0, 1] ; 

calculer F’ et F’’. 

Exercice 7 : Soit f une fonction ]0, +∞[ → R continue par morceaux. On suppose qu’il existe un réel 
a tel que t → f(t).exp(−a.t) soit intégrable. Montrer que la transformée de Laplace de f : 

                          F(x) = ∫
+∞

−
0

.).( dtetf xt   est définie et continue sur [a, +∞[. 

Exercice 8 : Soit f une fonction R → R ou C continue par morceaux et intégrable.  

Montrer que sa transformée de Fourier F(x) = ∫
+∞

∞−
− dtetf ixt.).(  est définie, continue et bornée sur R. 

Exercice 9 : Etudier la fonction F(x) = ∫
∞+ −

+0
.dt

xt
e t

. Domaine, propriétés, variations, graphe.  

   Montrer qu’au V(0+), F(x) = − ln x + ∫
+∞

−
0

.ln. dtte t  + o(1). 

Exercice 10 : On considère la fonction :   F(x) = ∫
+∞

−
0

².).cos( dtext t .  

   Domaine de définition ? Montrer que F est de classe C
1
 et vérifie une équation différentielle.  

   En déduire une expression de F(x) ( On admet que  ∫
+∞

∞−
− dte t .² = π  ).  

Exercice 11 : On considère la fonction :   F(x) = ∫
+∞

−
0

².).( dtextch t . 

   Domaine de définition ? Par une méthode ou une autre, établir que :   F(x) = 4/²xe 2/π  . 

Exercice 12 : Montrer l’identité de Legendre :  ∫
+∞

−
0

2/² .).sin( dtext t  = 2/²xe− ∫
x

t dte
0

2/² .   (∀x ∈ R) 

Exercice 13 : On considère la fonction F(x) = ∫
∞+ −

+0

²

.
²1

dt
t

e xt

. 

   Domaine de définition de F ? Montrer que F est de classe C
1
 et vérifie une équation différentielle.  

   En déduire la valeur de l’intégrale de Gauss  I  = ∫
+∞

∞−
− dte t .² . 

Exercice 14 : Montrer les formules :  (∀x > 0)   ∫
+∞

+0
.

²1
)cos(

dt
t
xt

 = ∫
+∞

+0
.

²1
)sin(.

dt
t
xtt

 = 
2
π xe− . 

Exercice 15 : Montrer que F(x) = ∫
+∞

−
0

.²).cos( dtext t  est C
∞

, mais sa série de Taylor en 0 diverge. 

                                                       _____________ 


