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1. Produit de convolution

Soientf et g deux fonctions définies sWR, a valeurs réelles ou complexes. On nomme
convoléedef etg, et I'on notef (g, la fonction définie suR par :

OxOR (F09)x) = [ fix-t)g().dt .
Cette définition est incompléte : des hypothesesf st g sont nécessaires pour assurer
I'existence et la convergence, pour tgutle I'intégrale a paramétre ci-dessus.

Certains espaces fonctionnels E sont stables potorivolution ; celle-ci induit dans E une
loi de composition interne bilinéaire, commutatiassociative. Dans d’autres c&§]g est
définie pour {, g) O ExF, ou E et F sont des espaces fonctionnels ditfereglle est alors
seulement bilinéaire.

Commencons par des exemples.
Exemple 1 : fonctions-portesP,p (a<b).
On nomme ainsi la fonction en escaliers positivetégrale 1 définie par :
B(X) = bfla pourasx<b , BPp(X) =0 pourx]a, b].
Soitf une fonctionrR — R ou C continue par morceaux sur tout segment. AlbrsP,, est
bien définie suR, et :

(f OP)(X) = j: f(x-t)Py(t).dt = 313 jb f(x-t).dt = 313 j:_‘baf(u).du.

La convoléef [P, associe a tout la valeur moyenne diesur le segmentx[— b, x — aJ.
C’est une moyenne glissante. Notons que :
1) f 0Py, est continue.

ii) Si f est continuet [Py, est C et (f 0Py, )'(X) = W

K (=) — f K (y—
i) Si fest & £ 0Py est CLet (F 0Py )0 = & ag_; (xb)
iv) Sib - a+, (fOPy)(X) — f(x—a).

Cas particuliers Pourh >0

(10PN =1 [ fW).du , (FOPrg) = £ [ f(u).du, (f DP9 = 2= [ u).u.




Calculons la convolée de deux fonctions portes :
-_1 [ -1 —C X —
(R OPe)(®) = 51 L_d P,(U).du @=0(6=a) long( [x—c, x—d] n [a b]).

Sid—-c<b-a, on trouve :

[ 0O sx—c<a,i.e x<a+c.
x—c-a e e
l(d—c)(b—a) six—d<asx-c,ie.a+tcsx<a+d
( Pap OPsg)(¥) = 14 bfla siasx—d<x—c< b,i.e.a+d<x<b+c.
b+d—x v P
l(d—c)(b—a) six—-d<b<x-c,i.e.b+c<x<b+d.
) sk—d=Db,ie x=b+d.

C’est une fonction continue, affine par morceausyport fini.
En particulier, poua> 0 :

[0 sk<-2a
(PaaOPag)(® =1 ﬁ( 2a+¥) sikl<2a On trouve une fonction-chapeau,Ch

| 0 X = 2a.
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Exemple 1: graphes deP_;; et P_;; OP-; ;.

Il résulte de ce qui précede, par linéarité, qué etig sont des fonctions en escaliers a
support borné, c’est-a-dire nulles en dehors dagnmeent deR, f (g est continue affine par
morceaux et a support borné.

Exemple 2 : gaussiennes
Notons g (a> 0) la gaussienng@) = e2¢.
Je dis que la convolée de deux gaussiennes eseam® gaussienne :

aldd = aTﬂb Jab/(a+b) -

Eneffet, (gOgy)(X) = fwe_a(x—t)ze_btz_dt — '[+°°e_(a+b)t2+2axt—ax2. dt .

—00

On peut alors conclure a l'aide du :

+oo _at?+bt+c
Lemme: Sia> 0, j_ e 2 dt = ,/%exp% .

- ’ +o0 2 -
Ce lemme suppose connue l'intégrale de sz'ysst.dt = Jm, et se montre par mise du
trindbme sous forme canonique et changement deblkaria



+oo _at?tbt+c +00 a = b 2, b>=4ac +oo a + by

—00

— +4b iss=y/d
( poser u = t+2—a,pU|ss—L{/;).

_(x=m)2
Notons G2 (0 > 0) la fonction G2 (X) = —1l g
o2

C’est une fonction continue, positive, intégrall@tégrale 1, et vérifiant :
jij%,d(x).dx =m , foo(x—m)Z.Gm,oz(x).dx =2

Je dis que m@& OGmgz = Gnem o2+072 -
Il s’agit de vérifier que :

o (Xt-m)2 (t-m)? _(x-m-m)?

-1 1 J' e 22 @ 27 gt = o Ao
ON271T ON2T1T «/ +02\ 2717

Cela découle du lemme précédent, ou du fait quge: ) = 1 g, (x—m).
ON2IT 22

>wi th(plots):
>p:=(ms)->plot(1/sqrt(2*s*Pi)*exp(-(x-m~2/(2*s)),x=-5..5,thickness=2,
col or=COLOR(RGB, rand()/10712, rand()/10712, rand()/10"12));

>di Spl ay({p(-l, 2),p(2, l),p(l,3)}),
0.44

-4 2 2 4

__Graphes @21 5 G2,1etG1,3=G_120G21

Ce résultat a une conséquence importante en thdeseprobabilités : si deux variables
aléatoires indépendantes X et Y suivent les loisnatesd(m, o?) et dY(m’, d?) respec-
tivement, leur somme X + Y suit la loi norm&gm + m’, & +0?).

Exemple 3 : fonctions nulles sur4eo, 0.

Soientf etg deux fonctions continues par morceauxRunulles sur }o, 0.
Alors f(x—t).gtt) =0 pourt [0, x] ; six< 0, f(x—t).g(t) = 0 pour tout.
Du coup, pour tout, I'intégrale fm f(x-t)g(t).dt converge.

(fOg)¥ = J.Oxf(x—t)g(t).dt pour toutx= 0. (f g )(X) =0 pour touk <0

Exercice: Pour @, A) O N*xR, soit f,, définie par fya(x) = ( 1), e*six>0,0six<O0.

Vérifier que O(n, p) ON*xN* OADOR fap * fop = fripa



2. Propriétés de la convolution

2.1. Fonctions c.p.m. a support borné

Une fonctionf: R - R est ditea support bornés’il existe un segment [a, b], dépendant de
f, tel que : xO[a, b]= f(x) = 0.

Soit K I'espace vectoriel des fonctions continues parceaux SUR a support borné.
Théoreme 1: Sif et g sont éléments d&, f Jg est définie suR, continue, a support
compact. §, +, *) est une algébre commutative et associative.

De plus, [Ceme.dx = ([ f(9.ds)([ g(t).ct).

Preuve:
Supposons$ nulle hors de [a, bly nulle hors de [c, d],

Fixonsx. La fonctiont — f(x —t).g(t) est continue par morceaux nulle hors de [c, d].

Donc (fOg)(X) = Ld f(x-t)g(t).dt est définie pour tout.

OxO[at+c, b+d] OtOR f(x—t).g(t) =0, donc (g )(x) = 0.

L’application §, g) — f [lg est bilinéaire, commutative (changement de varialex — t).

Si f etg sont continues, {0g )(X) = J'cd f(x-t)g(t).dt est continue en vertu du théoreme de

continuité des intégrales a parametresg 8st en escaliers a support borgést combi-
naison linéaire de fonctions-portes, ddri¢g est continue. On en conclut qud gitg sont
continues par morceaul1g est continue.

L’associativité se montre par intégrales doubles.

Proposition 2: Sil’'une des fonction§ oug est ¢ (O k< ), il en est de méme delg.

Définition : On appellesuite en deltatoute suite ¢,) d’éléments deX vérifiant les trois
axiomes :

(A1) OnOx 04(}) =0 @2) On f:¢n(t).dt= 1 @3) @a>0) limy_ e jt‘2a¢n(t).dt= 0.

Exemples Soit¢ un élément d&C a valeursz 0 et tel quefw¢(t).dt =1.

Il est facile de montrer quig,(X) = n.¢p(nx) est une suite en delta.
Les plus simples des fonctiofissont les fonctions-portesgR et les fonctions chapeau £h

Admettant que la fonctiof(x) = exp;zl_—1 si k| <1, 0 sij| =1, est C, on en déduit gu’il
existe une suite en delta formée de fonctiofis C

Théoreme 3: Soit () une suite en delta. Pour toditeontinue a support borni suite (f »
¢n) converge simplement veirsurR.

Indication de preuveNoter que
(F 6n)0) =109 =[O L= (91.lt + [ n().[Me-t)- T3]t

Corollaire 1 : L'algébre €X, +, ) est sans €lément unité.

Preuve: Supposons qugX, +, ) ait un élément unité.



Il existerait une fonctiod telle que OfF 0K f» d=f.
Considérons alors la suite en ddit#x) = n.¢(nx), ou¢ est la fonction chapeau €h

OnauraitInON ¢p* 0= ¢n. En vertu du théoreme J{* d)(0) = ¢$,(0) - &(0).
Or ¢n(0) =n/2 - +co. IMmpossible.
Remargue Le grand physicien P.A.M. Dirac a introduit uénction »d définie par

O(X) =0 pourxz0 , J(0) =+ et f:dx).dx =1

Une telle fonction n'existe pas, mais les mathécmats ont montré qu’il existe bien un « objet »
(une mesure, une distribution) satisfaisant a ceprigtés. La convolution a un élément neudtre
mais cet objet n'est pas une fonction, il n'appantipas aux espaces fonctionnels usuels, un peu
comme |'unité imaginaire n’appartient pas aux nogstnéels. Cette mesure de Dirac, on peut la voir

comme « limite » d’'une suite en delty,). C'est pourquoi les suites en delta s’appellamdsa
«approximations de 'unité ».

\

Corollaire 2 : Toute fonctionf continue a support bornést limite simple (et méme
uniforme) d’une suite de fonctions @ support borné.

Preuve: Il suffit de choisir une suite en delta forméefdnctions € & support borné.

2.2. Fonctions intégrables nulles a l'infini

Espaces fonctionnels
» £, est I'espace vectoriel des fonctions continueeatdes suRr.
« @ estl’'espace vectoriel des fonctions continuesRutendant vers O etro.
« & est I'espace vectoriel des fonctions continuestégrables suR.
* 9L =@ n £ I'espace des fonctions continues Byiintégrables et tendant vers Oien.

« £ est I'espace vectoriel des fonctions continueseataire intégrable siR.

Proposition : Sif est élément d&, etg est élément d&;, leur convoléd = g est définie sur
R, et est élément de, .

Si de plud est élément d&y, il en est de méme de g.

Sif estC"” et a toutes ses dérivé‘ék%( O<k<n)bornées suRr, il en est de méme de g.

Proposition : 9t est stable par convolutiorei, +, ) est une algébre commutative, associa-
tive, sans élément unité.

Proposition : Sif et g sont éléments d®, leur convoléd = g est définie suR.



3. Transformation de Fourier.

Soit f une fonction définie suR, continue par morceaux sur tout segment, a valéeltes
ou complexes. On appellnsformée de Fourierdef, la fonction F, notée aussif ouf ,
définie sumR par :

OxOR  FQ=1)=f (=] exf()..

Cette définition est incompléte : des hypothéseasfssont nécessaires pour assurer la
convergence, pour tout réelde l'intégrale a parametre ci-dessus. Voici lesgimple :

Proposition 1: Si la fonctionf est intégrable sur, sa transformée de Fourier est définie,
continue et bornée s&. De plus, elle tend vers 0 quaxtend versteo.

Preuve: Sif est intégrable, c’est-a-dire si I’intégraj_+e°°| f(t)|.dt converge, alors pour tout réel

X, l'intégrale J'_mt,rixt f(t).dt est absolument convergente. Donc F est défini®sur

Elle est continue en vertu du théoréme de conérdas intégrales a parametre :
La fonction &, t) - e™f(t) est:

1) Pour toutx, continue par morceaux ent ;
i) Pour tout t, continue ex;
iil) Enfin, elle possede la majorante intégrabéex ff(t) | = |f(t) | .

De plus, F est bornée, car XF(< j_m| f(t)ldt .
Enfin, pour montrer que ¥tend vers 0 quarnxitend versteo, cassons Kj en trois :
-A B . +00
K = '[_mt,ﬂtf(t).dt + j_Aerxtf(t).dt + jB e f(t).dt .
Soite > 0. Choisissons A et B > 0 tels qfie|f(t}ot < et [Vhet <e.
A et B étant ainsi choisis, nous savons (ﬁem f(t).dt — 0 quandx — o, en vertu du

lemme de Riemann-Lebesgue. Par conséquent
>0 Ox K=o = |J'_BA<,Tixt f(t).dt|< e, etalors | B |< 3e. Cqfd
Proposition 2: Si la fonction t— t" f (t) est intégrable swR, la transformée de Fourier fe
est de classeCet FV(x) = J'jm(—it)nc,rixtf(t).dt.
Si toutes les fonctions— t" f (t) sont intégrables s, la transformée de Fourier &lest de

classe €, et, pour toun, F(x) = J'jm(—it)nc,rixtf(t).dt.

Remarque C'est le cas en particulier si pour toufim ;1. t" f (t) = 0. De telles fonctions
sont dites «a décroissance rapide ». Au fond, pltend vite vers 0 a linfini, plus sa
transformée de Fourier F est réguliére.

Proposition 3: Sif est paire, ) = fwerixff(t).dt =2 J'Omcoséct).f(t).dt
Sit estimpaire, B) = [~ e f(t).dt =~ 2i Lmsin(xt).f(t).dt .

Théoreme 4: Sif etg sont éléments d@r, c’est-a-dire intégrables et tendent vers @en
F(fxg)=(8f).(89).



Preuve: Une preuve formelle est facile, par intégraleshdes.

Elle est rigoureuse et élémentaird st g sont a support borné. Dans le cas général, il faut
recourir a une version plus forte du théoréme dsritu

Exemples:
1) Fonction porte

Soita> 0, Ryg(t) = Z_la si |t| <a, O pour |t| 5a ( peu importent les valeurs ¢ra),

+a e—lX’[ eax_e—ax H
alors  §P_aa(X) =FK) = —235 J'_aer'xt.dt = —215 IX}*% = sn;(xax) pourx # 0,

et & P_a4(0) = F(0) =
Bien entendu, B 5 est & décroissance rapide, donc F ést C

sin(ax) 1
ax nd .

Remarque Sia - 0+, P54 — 6, mesure de Dirac (en 0), &P_5 4(X) =

Ce qu’on peut note§ 6 = 1. Ceci n'a pas de sens rigoureux dans le acieloet exposeé.
2) Fonction chapeau

Il s’agit de la fonction définie par Gf) = % (2a—| t|) pour |tk 2a, Chy(t) = 0 sinon.

_sir#(ax)
axe -’
Remarque Chy = Pga* P-ga et §(Chy) =8 (P-a.4).8(P-a,9).
3) Fonction exponentielle
Soita > 0, f(t) = ¥ . f est & décroissance rapide.

Par parité, &) = j (2a-t).cosit).dt = (une IPP)

Par parité, &) = ZJ' cosit)ea.dt =2 ReJ' exegadt = 2he +x2

4) Fonctions gaussiennes
Nous démontrerons en exercice que la gaussiefft)e=ge@ a pour transformée de Fourier

gaX) = ,/ e o . C’est encore une gaussienne..

4. Transformation de Fourier inverse

Définition : Soit F une fonction définie siR, continue par morceaux sur tout segment, et
intégrable, a valeurs réelles ou complexes. Onlepfransformée de Fourier inversede

F, la fonctionf, notée aussi f ouf , définie suR par :

OxOR  f(t) =& "F(t) = F (t) = = [TeF(x).dx.

Sous certaines hypothéses Su(&‘_l 0§)f =f.

Ce résultat peut étre verifié élémentairementesifdnctions-porte, les fonctions-chapeaux,
et les gaussiennes, et donc sur leurs combinais@asres.

Théoreme: Sif est continue et intégrable Ry si§ f est intégrable et §iest de classelc
alors: (Fod)f =f.



5. Exercices corrigés

Exercice 1: Calculer, en fonction dé , les transformées de Fourier des fonctions sudgant
f(t) , f(-t) , f(t—a) , f(at)(a>0) , exf(t).

Solution :
Notons F =f la transformée de Fourier fleG la transformée de Fourier demandée.

a) G = [ enf(at = [ erf(r).dt = F(-x).

b) G&) = [ e f(-t).dt = [ ef(u).du = F(-x) ( chgt de var u— )
0) GK) = [ emf(t-a).dt = [ e If(u).du = emF(¥) ( chgt de var u = ta)
d) G = [ e f(at).dt = 1 [Cemniu).du = 1F) ( chgt de var uat )

e) G = [ emenf(t).dt = [ e i(t).dt = Fix—a).

Exercice 2: Transformée de Fourier d'une gaussienne
On se donna > 0. Calculer la transformée de Fourierekt .

Solution : La fonctione?® est intégrable et a décroissance rapide.

En vertu de ce qui précédexf¢ J-jwerixtgatz.dt est définie, € surR, et tend vers 0 efxo.

Reste a calculer K.
1°"® méthode : équation différentielle

! = +°o_' i at? = - X
F(x) = L iteedt = (IPP) = X F().
C’est une équation différentielle linéaire homogédiwedre 1.

Comme F(0) :fweratz.dt = \/g, FK) = F(O).eTX; = \/Z eTX;.

a
méthode : développement en séri&ormellement :

[emet = jz%dt . Zﬂf“ [ e

Zéme

Y GV : , e

= WI t*edt (' sinest |mpa|r,J' trea.dt =0)

p=0 - e

+°°( l)px 2p ” B _ [z +00 (_1)PX2P _ [z —4)1%
ng p) 2["trewdt =..= X ;p!@a)" =T ex.

car les intégralesJ'0 t®e’ dt se raménent %mc,ratz.dt par des IPP.

Il reste a justifier I'intégration terme a termesderies au moyen du théoreme ad hoc.
3*™ méthode : intégration complexe

4adt = e4aj

+00 +o0 +IX2
F) = [Temendt = [T

—00

+00 _a( +M)z

.dt par mise sous forme canonique.

. _ﬁ +00 _LZ
Le changement de variable u = %4 donne alors : K = e % J'_ e2’du = ‘VET e,



Cette méthode est hélagonée car la variable d’'intégration n’est pas réelle !
On peut cependant la rendre rigoureuse, mais ilgasser par l'intégration complexe, en
introduisant une intégrale curviligne convenable...

Commentaires 1) La transformée d’'une gaussienne est enc@@aussienne.
2) On constate que poaretb > 0 ,8(g.0g,) = &( da).&(9p)-

3) On constate qU&(&( ga)) = 21 ga.

~Ze—imx
4) La fonction G,z a pour transformée de Fourier?
et I'on retrouve §(Gm+ny g2+02) = §F(Gm 02)- (G o72).-

Exercice 3: Calculer les transformées de Fourier des fonstguivantes :

ft) =t"eay(t) , f(t)y=te® |, f(t)=te= , f(t)= tzfaz (a>0).

Solution :
1) Y est la fonction de Heaviside (1sit>0,0s0).

F(x) = f:erixtt“eralY(t).dt = jmt”e‘(a”x)‘.dt =3 +|x J' tn1g @ gt par IPP,

j —(a+|x)t dt — n'

donc 8= [

(a+| x)n

i) Rappelons que, s> 0, f(t) = e¥ a pour transformée de Fourier :

Onawukg) = [ enedd =25 Dérivons! FQ=-i entedt = ﬁ'

4 ] 5 iep2iax
Par conséquente™ a pour transformée de Fourr?m.
+00 _x2
iii) De méme,e® a pour transformée de Fouriex}€ j_ eXeardt = \/ITE e,
Ari 1 F&) = —i T it aat? - _ [T X 4a
Dérivons ! F'§) [ j eMtet dt \/; 55 ©

Par conséquente®* a pour transformée de Fourleq/” 'X o

dt= Tt = = IY(3.e™ + Y(-%). Lex]

iv) Je dis queJ' rad

Il n'est pas facile de demontrer directement celeatite.
La méthode de I’équation différentielle pose déodités.

La fonction FK) = .dt satisfait formellement— F”(x)+a F(x) = J' e dt,

J- t2+ 2"
mais cette intégrale diverge !
On peut sortir du cadre de cet exposé en notant que

—F(x) +a FK) = [ edt = §(1)() = 213(x),
ou & est la distribution de Dirac...
On peut rester dans le domaine élémentaire, evdimgant la suite de fonctions :
+n g . " 2 m sin(nx
Fa(X) = J-_n@.dt , qui satisfont— F,"(x) +a” Fy(X) = J'_ner'xt.dt = Z#,
Puis intégrer cette équation différentielle etdagndren vers l'infini.
Le plus simple cependant est d'utiliser la forndiiaversion de Fourier




6. Avec Maple
Maple contient un package de transformations iatégr(Laplace, Fourier, Mellin, Hilbert,
Hankel), qui confirme les résultats précédents.
>with(inttrans);
[addtable, fourier, fouriercos, fouriersin, hankel , hilbert, invfourier, invhilbert,
inviaplace, invmellin, laplace, mellin, savetable |

>assunme(a>0); fourier(exp(-a*t"2),t,x);
fourier(t*exp(-a*t"2),t,x);
fourier(exp(-a*abs(t)),t,x);
sinplify(fourier(t*exp(-a*abs(t)),t,x));

2

X
T [‘1’4¥J
— e

a~

X2
3

—lymixe
2

32
INCE

_a

a~2+x2

-41 a~ X

2 2\2

(a~"+x)
>sinmplify(invfourier(sqrt(Pi/a)*exp(-x~2/(4*a)),x,t));

i nvfourier(2*al/ (a"2+x"2),x,t);
(-at%)
e

2

e " Heavisidét) + € ” Heaviside—t)

>fourier(1,t,x);
2 n Diraq x)

>invfourier(2*Pi*Dirac(x), x,t);
1
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