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                    Convolution, transformée de Fourier    
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      2. Propriétés de la convolution.  

      3. Transformation de Fourier. 

      4. Transformation de Fourier inverse. 

      5. Exercices corrigés. 

      6. Avec Maple. 

           Pierre-Jean Hormière 
     ____________ 
 

1. Produit de convolution. 
 
Soient f et g deux fonctions définies sur R, à valeurs réelles ou complexes. On nomme 
convolée de f et g, et l’on note f ∗ g , la fonction définie sur R par : 

                              ∀x ∈ R         ( f ∗ g )(x) = ∫
+∞

∞−
− dttgtxf ).()( . 

Cette définition est incomplète : des hypothèses sur f et g sont nécessaires pour assurer 
l’existence et la convergence, pour tout x, de l’intégrale à paramètre ci-dessus.  

Certains espaces fonctionnels E sont stables pour la convolution ; celle-ci induit dans E une 
loi de composition interne bilinéaire, commutative, associative. Dans d’autres cas, f ∗ g est 
définie pour (f, g) ∈ E×F, où E et F sont des espaces fonctionnels différents ; elle est alors 
seulement bilinéaire. 

Commençons par des exemples. 

Exemple 1 : fonctions-portes Pab ( a < b ).  
On nomme ainsi la fonction en escaliers positive d’intégrale 1 définie par : 

                Pab(x) = 
ab−

1   pour a ≤ x ≤ b  ,  Pab(x) = 0  pour  x ∉ [a, b]. 

Soit f une fonction R → R ou C continue par morceaux sur tout segment. Alors  f ∗ Pab est 
bien définie sur R, et : 

            ( f ∗ Pab)(x) = ∫
+∞

∞−
− dttPtxf ab ).()(  = 

ab−
1 ∫ −

b

a
dttxf ).(  = 

ab−
1 ∫

−

−

ax

bx
duuf ).( . 

La convolée f ∗ Pab associe à tout x la valeur moyenne de f sur le segment [x – b, x – a]. 
C’est une moyenne glissante. Notons que : 
  i) f ∗ Pab est continue.  

 ii) Si f est continue, f ∗ Pab est C1 et  ( f ∗ Pab )’(x) = 
ab

bxfaxf
−

−−− )()(  

iii) Si f est Ck, f ∗ Pab est Ck+1 et  ( f ∗ Pab )
(k+1)(x) = 

ab
bxfaxf kk

−
−−− )()( )()(

 

iv) Si b → a+,  ( f ∗ Pab)(x) → f(x – a). 

Cas particuliers : Pour h > 0 

( f ∗ P0,h)(x) = 
h
1 ∫ −

x

hx
duuf ).(  , ( f ∗ P−h,0)(x) = 

h
1 ∫

+hx

x
duuf ).( , ( f ∗ P-h,h)(x) = 

h2
1 ∫

+

−

hx

hx
duuf ).( . 
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Calculons la convolée de deux fonctions portes : 

           ( Pab ∗ Pcd )(x) = 
cd−

1 ∫
−

−

cx

dx
ab duuP ).(  = 

))((
1

abcd −− long( [x – c, x – d] ∩ [a, b] ). 

Si d – c ≤ b – a, on trouve : 
                                   0   si x – c ≤ a , i.e.  x ≤ a + c. 

                              
))(( abcd

acx
−−

−−   si x – d ≤ a ≤ x – c , i.e.  a + c ≤ x ≤ a + d. 

( Pab ∗ Pcd )(x) =        
ab−

1     si a ≤ x – d ≤ x – c ≤  b, i.e.  a + d ≤ x ≤ b + c. 

                              
))(( abcd

xdb
−−

−+   si x – d ≤ b ≤ x – c , i.e.  b + c ≤ x ≤ b + d. 

                                     0   si x – d ≥ b , i.e.  x ≥ b + d. 

C’est une fonction continue, affine par morceaux, à support fini. 
En particulier, pour a > 0 : 

                                       0            si x ≤ – 2a 

 ( P-a,a ∗ P-a.a )(x) =       )2(
²4

1 xa
a

−     si |x| ≤ 2a     On trouve une fonction-chapeau Cha. 

                                         0           si x ≥ 2a. 

 
                                      Exemple 1 : graphes de P−−−−1,1 et P−−−−1,1 ∗∗∗∗ P−−−−1,1 . 

Il résulte de ce qui précède, par linéarité, que si f et g sont des fonctions en escaliers à 
support borné, c’est-à-dire nulles en dehors d’un segment de R, f ∗ g est continue affine par 
morceaux et à support borné.   
 

Exemple 2 : gaussiennes. 
Notons ga ( a > 0 ) la gaussienne ga(x) = ²axe− .  

Je dis que la convolée de deux gaussiennes est encore une gaussienne :   

                                          ga ∗ gb  = 
ba+

π gab/(a+b) .  

En effet,    ( ga ∗ gb )(x)  = dtee bttxa .²)²(∫
+∞

∞−
−−−   = dte axaxttba .²2²)(∫

+∞

∞−

−++− . 

On peut alors conclure à l’aide du : 

Lemme : Si a > 0 ,  ∫
+∞

∞−

++−
dte

cbtat

.2
²

 = 
a
π2 exp 

a
acb

8
4²−  . 

Ce lemme suppose connue l’intégrale de Gauss ∫
+∞

∞−
− dte t .²  = π , et se montre par mise du 

trinôme sous forme canonique et changement de variable. 
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∫
+∞

∞−

++−
dte

cbtat

.2
²

 = ∫
+∞

∞−

−++−
dte a

acb
a

bta

.8
4²)²

2
(

2  = exp 
a
acb

8
4²− ∫

+∞

∞−

+−
dte a

bta

.
)²

2
(

2  = 
a
π2 exp 

a
acb

8
4²−   

( poser u =  t + 
a
b
2

, puis s = u
2
a ). 

Notons Gm,σ² ( σ > 0 ) la fonction  Gm,σ² (x) = 
πσ 2

1 ²2
)²(

σ
mx

e
−−

. 

C’est une fonction continue, positive, intégrable, d’intégrale 1, et vérifiant : 

                       ∫
+∞

∞−
dxxxGm ).(²,σ  = m    ,   ∫

+∞

∞−
− dxxGmx m ).()².( ²,σ  = ²σ . 

Je dis que                       Gm,σ² ∗ Gm,σ²  = Gm+m’,σ²+σ’² . 
Il s’agit de vérifier que : 

               
πσ 2

1
πσ 2'

1 ∫
+∞

∞−

−−−−−
dtee

mtmtx

.'²2
)²'(

²2
)²(

σσ   = 
πσσ 2'²²

1
+

'²)²(2
)²'(

σσ +
−−− mmx

e . 

Cela découle du lemme précédent, ou du fait que  Gm,σ² (x) = 
πσ 2

1
²2

1
σ

g (x – m). 

> with(plots): 
> p:=(m,s)->plot(1/sqrt(2*s*Pi)*exp(-(x-m)^2/(2*s)),x=-5..5,thickness=2, 
color=COLOR(RGB, rand()/10^12, rand()/10^12, rand()/10^12)); 
> display({p(-1,2),p(2,1),p(1,3)}); 

 
                                  Graphes de G-1,2, G2,1 et G1,3 = G –1,2 ∗∗∗∗ G2,1 

Ce résultat a une conséquence importante en théorie des probabilités : si deux variables 
aléatoires indépendantes X et Y suivent les lois normales NNNN(m, ²σ ) et NNNN(m’, '²σ ) respec-
tivement, leur somme X + Y suit la loi normale NNNN(m + m’, ²σ + '²σ ). 
 

Exemple 3 : fonctions nulles sur ]−−−−∞∞∞∞, 0[. 
Soient f et g deux fonctions continues par morceaux sur R, nulles sur ]−∞, 0[. 

Alors  f(x – t).g(t) = 0  pour t ∉ [0, x] ; si x < 0,  f(x – t).g(t) = 0 pour tout t.  

Du coup, pour tout x, l’intégrale ∫
+∞

∞−
− dttgtxf ).()(  converge. 

   ( f ∗ g )(x) = ∫ −
x

dttgtxf
0

).()(   pour tout x ≥ 0 . ( f ∗ g )(x) = 0  pour tout x < 0 

Exercice : Pour (n, λ) ∈ N*×R, soit  fn,λ définie par  fn,λ(x) = x
n

e
n
x λ.

)!1(

1

−
−

 si x > 0, 0 si x < 0. 

Vérifier que  ∀(n, p) ∈ N*×N*   ∀λ ∈ R   fn,λ *  fp,λ = fn+p,λ . 
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2. Propriétés de la convolution. 
 

   2.1. Fonctions c.p.m. à support borné. 

Une fonction f : R → R est dite à support borné s’il existe un segment [a, b], dépendant de 
f, tel que :   x ∉ [a, b] ⇒ f(x) = 0.  

Soit KKKK l’espace vectoriel des fonctions continues par morceaux sur R à support borné. 

Théorème 1 : Si f et g sont éléments de KKKK, f ∗ g est définie sur R, continue, à support 

compact. (KKKK, +, * ) est une algèbre commutative et associative.  

De plus,              ∫
+∞

∞−
∗ dxxgf ).)((  = (∫

+∞

∞−
dssf ).( )( ∫

+∞

∞−
dttg ).( ). 

Preuve :  
Supposons f nulle hors de [a, b], g nulle hors de [c, d],   
Fixons x. La fonction t → f(x – t).g(t) est continue par morceaux nulle hors de [c, d]. 

Donc  ( f ∗ g )(x) = ∫ −
d

c
dttgtxf ).()(  est définie pour tout x.   

∀x ∉ [a+c, b + d]   ∀t ∈ R   f(x – t).g(t) = 0, donc  ( f ∗ g )(x) = 0. 

L’application (f, g) → f ∗ g est bilinéaire, commutative (changement de variable u = x – t). 

Si f et g sont continues, ( f ∗ g )(x) = ∫ −
d

c
dttgtxf ).()(  est continue en vertu du théorème de 

continuité des intégrales à paramètres. Si g est en escaliers à support borné, g est combi-
naison linéaire de fonctions-portes, donc f ∗ g est continue. On en conclut que si f et g sont 
continues par morceaux, f ∗ g est continue.  
L’associativité se montre par intégrales doubles. 

Proposition 2 : Si l’une des fonctions f ou g est Ck
 (0 ≤ k ≤ ∞), il en est de même de f ∗ g. 

Définition  : On appelle suite en delta toute suite (ϕn) d’éléments de KKKK vérifiant les trois 
axiomes : 

 (∆1)  ∀n ∀x  ϕn(x) ≥ 0    (∆2)  ∀n  ∫
+∞

∞−
dttn ).(ϕ = 1    (∆3)  (∀α > 0) limn→∞ ∫ ≥α

ϕ
t

n dtt).( = 0. 

Exemples : Soit ϕ un élément de KKKK à valeurs ≥ 0 et tel que ∫
+∞

∞−
dtt).(ϕ  = 1. 

Il est facile de montrer que ϕn(x) = n.ϕ(nx) est une suite en delta.  
Les plus simples des fonctions ϕ sont les fonctions-portes P-a,a et les fonctions chapeau Cha. 

Admettant que la fonction θ(x) = exp
1²

1
−x

 si |x| < 1, 0 si |x| ≥ 1, est C∞, on en déduit qu’il 

existe une suite en delta formée de fonctions C∞
. 

Théorème 3 : Soit (ϕn) une suite en delta. Pour toute f continue à support borné, la suite ( f *  
ϕn ) converge simplement vers f sur R.  

Indication de preuve : Noter que  

           ( f *  ϕn )(x) − f(x) = ∫
+

−
−−

α

α
ϕ dtxftxftn )].()().[(  + ∫ ≥

−−
α
ϕ

t
n dtxftxft )].()().[( . 

Corollaire 1 : L’algèbre (KKKK, +, * ) est sans élément unité. 

Preuve : Supposons que (KKKK, +, * ) ait un élément unité.  
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Il existerait une fonction δ telle que    ∀f ∈ KKKK    f *  δ = f . 

Considérons alors la suite en delta ϕn(x) = n.ϕ(nx), où ϕ est la fonction chapeau Ch1. 

On aurait  ∀n ∈ N   ϕn *  δ =  ϕn . En vertu du théorème 3, (ϕn *  δ)(0) =  ϕn(0) → δ(0). 

Or  ϕn(0) = n/2 → +∞. Impossible. 

Remarque : Le grand physicien P.A.M. Dirac a introduit une « fonction » δ définie par  

                    δ(x) = 0 pour x ≠ 0   ,    δ(0) = +∞   et   ∫
+∞

∞−
dxx).(δ  = 1. 

Une telle fonction n’existe pas, mais les mathématiciens ont montré qu’il existe bien un « objet » 
(une mesure, une distribution) satisfaisant à ces propriétés. La convolution a un élément neutre δ, 
mais cet objet n’est pas une fonction, il n’appartient pas aux espaces fonctionnels usuels, un peu 
comme l’unité imaginaire n’appartient pas aux nombres réels. Cette mesure de Dirac, on peut la voir 

comme « limite » d’une suite en delta (ϕn). C’est pourquoi les suites en delta s’appellent aussi 
« approximations de l’unité ».   

Corollaire 2 : Toute fonction f continue à support borné est limite simple (et même 

uniforme) d’une suite de fonctions C∞
 à support borné. 

Preuve : Il suffit de choisir une suite en delta formée de fonctions C∞ à support borné. 
  
   2.2. Fonctions intégrables nulles à l’infini. 

Espaces fonctionnels : 

   • LLLL∞ est l’espace vectoriel des fonctions continues et bornées sur R. 

   • CCCC0  est l’espace vectoriel des fonctions continues sur R, tendant vers 0 en ±∞. 

   • LLLL1 est l’espace vectoriel des fonctions continues et intégrables sur R.  
   • MMMM = CCCC0 ∩ LLLL1 l’espace des fonctions continues sur R, intégrables et tendant vers 0 en ±∞. 

   • LLLL2 est l’espace vectoriel des fonctions continues et de carré intégrable sur R.  

Proposition : Si f est élément de LLLL∞ et g est élément de LLLL1, leur convolée f *  g est définie sur 

R, et est élément de LLLL∞ .  

Si de plus f est élément de CCCC0 , il en est de même de f *  g. 

Si f est Cn
 et a toutes ses dérivées f

(k)
 ( 0 ≤ k ≤ n ) bornées sur R, il en est de même de f *  g. 

Proposition : MMMM est stable par convolution. (MMMM, +, * ) est une algèbre commutative, associa-
tive, sans élément unité. 

Proposition : Si f et g sont éléments de LLLL2, leur convolée f *  g est définie sur R.  
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3. Transformation de Fourier. 
 
Soit f une fonction définie sur R, continue par morceaux sur tout segment, à valeurs réelles 

ou complexes. On appelle transformée de Fourier de f, la fonction F, notée aussi FFFF f ou f̂ , 
définie sur R par : 

                          ∀x ∈ R      F(x) = FFFF f (x) = f̂ (x) = ∫
+∞

∞−
− dttfe ixt ).( . 

Cette définition est incomplète : des hypothèses sur f sont nécessaires pour assurer la 
convergence, pour tout réel x, de l’intégrale à paramètre ci-dessus. Voici la plus simple : 

Proposition 1 : Si la fonction f est intégrable sur R, sa transformée de Fourier est définie, 
continue et bornée sur R. De plus, elle tend vers 0 quand x tend vers ±∞.  

Preuve : Si f est intégrable, c’est-à-dire si l’intégrale ∫
+∞

∞−
dttf .)(  converge, alors pour tout réel 

x, l’intégrale ∫
+∞

∞−
− dttfe ixt ).(  est absolument convergente. Donc F est définie sur R. 

Elle est continue en vertu du théorème de continuité des intégrales à paramètre : 
La fonction (x, t) → )(tfe ixt−  est : 

  i) Pour tout x, continue par morceaux en t ; 
 ii) Pour tout t, continue en x ; 
iii) Enfin, elle possède la majorante intégrable  | )(tfe ixt−  | = | f(t) | . 

De plus, F est bornée, car   | F(x) | ≤ ∫
+∞

∞−
dttf .)( . 

Enfin, pour montrer que F(x) tend vers 0 quand x tend vers ±∞, cassons F(x) en trois : 

                       F(x) = ∫
−

∞−
−

A
ixt dttfe ).(  + ∫−

−
B

A

ixt dttfe ).(  + ∫
+∞

−
B

ixt dttfe ).( . 

Soit ε > 0. Choisissons A et B > 0 tels que ∫
−

∞−

A
dttf .)(  ≤ ε et ∫

+∞

B
dttf .)(  ≤ ε. 

A et B étant ainsi choisis, nous savons que ∫−
−

B

A

ixt dttfe ).(  → 0 quand x → ±∞, en vertu du 

lemme de Riemann-Lebesgue. Par conséquent  

           ∃α > 0   ∀x   |x| ≥ α  ⇒  |∫−
−

B

A

ixt dttfe ).( | ≤ ε , et alors  | F(x) | ≤ 3ε. Cqfd 

Proposition 2 : Si la fonction t → tn f (t) est intégrable sur R, la transformée de Fourier de f 

est de classe Cn, et  F(n)(x) = ∫
+∞

∞−
−− dttfeit ixtn ).()( . 

Si toutes les fonctions t → tn f (t) sont intégrables sur R, la transformée de Fourier de f est de 

classe C∞, et, pour tout n,  F(n)(x) = ∫
+∞

∞−
−− dttfeit ixtn ).()( . 

Remarque : C’est le cas en particulier si pour tout n, lim t→±∞ tn f (t)  = 0. De telles fonctions 
sont dites « à décroissance rapide ». Au fond, plus f tend vite vers 0 à l’infini, plus sa 
transformée de Fourier F est régulière. 

Proposition 3 : Si f est paire, F(x) = ∫
+∞

∞−
− dttfe ixt ).(  = 2∫

+∞

0
).().cos( dttfxt   

Si f est impaire, F(x) = ∫
+∞

∞−
− dttfe ixt ).(  = − 2i ∫

+∞

0
).().sin( dttfxt  . 

Théorème 4 : Si f et g sont éléments de MMMM, c’est-à-dire intégrables et tendent vers 0 en ±∞,  

                                          F                                          F                                          F                                          F ( f *  g ) = ( F F F F f ).( FFFF g ). 
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Preuve : Une preuve formelle est facile, par intégrales doubles.  

Elle est rigoureuse et élémentaire si f et g sont à support borné. Dans le cas général, il faut 
recourir à une version plus forte du théorème de Fubini.  

Exemples :  

   1) Fonction porte.  

Soit a > 0,  P−a,a(t) = 
a2
1  si |t| < a, 0 pour |t| > a  ( peu importent les valeurs en ± a ),  

alors        FFFF P−a,a(x) = F(x) = 
a2
1 ∫

+

−
−

a

a

ixt dte .  = 
a2
1 aa

ixt

ix
e

+−

−

−  = 
iax

ee axiax

2

−−
 = 

ax
ax)sin(  pour x ≠ 0,  

et            F            F            F            F P−a,a(0) = F(0) = 1. 

Bien entendu, P−a,a est à décroissance rapide, donc F est C∞. 

Remarque : Si a → 0+, P−a,a → δ, mesure de Dirac (en 0), et FFFF P−a,a(x) = 
ax

ax)sin(  → 1. 

Ce qu’on peut noter  FFFF δ = 1. Ceci n’a pas de sens rigoureux dans le cadre de cet exposé.  

   2) Fonction chapeau. 

Il s’agit de la fonction définie par Cha(t) = 
²4

1
a

(2a − | t |) pour |t| ≤ 2a, Cha(t) = 0 sinon. 

Par parité, F(x) = 
²2

1
a ∫ −

a
dtxtta

2

0
).cos().2(  = ( une IPP ) = 

²²
)²(sin

xa
ax . 

Remarque : Cha = P−a,a *  P−a,a  et  FFFF(Cha) = FFFF (P−a,a).F(F(F(F(P−a,a). 

   3) Fonction exponentielle. 
Soit a > 0,  f(t) = tae− . f est à décroissance rapide. 

Par parité, F(x) = 2∫
+∞

−
0

.)cos( dtext at  = 2 Re∫
+∞

−
0

.dtee atixt  = 
²² xa

a
+ . 

   4) Fonctions gaussiennes. 
Nous démontrerons en exercice que la gaussienne ga(t) = ²ate− a pour transformée de Fourier 

ĝ a(x) = 
a
π a

x

e 4
²−
. C’est encore une gaussienne… 

 
4. Transformation de Fourier inverse. 

 

Définition  : Soit F une fonction définie sur R, continue par morceaux sur tout segment, et 
intégrable, à valeurs réelles ou complexes. On appelle transformée de Fourier inverse de 

F, la fonction f, notée aussi FFFF f  ou f̂ , définie sur R par : 

                         ∀x ∈ R      f(t) = FFFF
−1F(t) = F

(
(t) = π2

1 ∫
+∞

∞−
dxxFeixt ).( . 

Sous certaines hypothèses sur f,  ( FFFF
−1 o F  F  F  F ) f  = f. 

Ce résultat peut être vérifié élémentairement sur les fonctions-porte, les fonctions-chapeaux, 
et les gaussiennes, et donc sur leurs combinaisons linéaires.  

Théorème : Si f est continue et intégrable sur R, si FFFF f  est intégrable et si f est de classe C1, 

alors :   ( FFFF
−1 o F  F  F  F ) f  = f. 
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5. Exercices corrigés. 
 

Exercice 1 : Calculer, en fonction de f̂ , les transformées de Fourier des fonctions suivantes  

                              )(tf   ,   f(−t)  ,   f(t – a)  ,   f(at) ( a > 0 )  ,  iate f(t). 

Solution : 

Notons F =f̂ la transformée de Fourier de f, G la transformée de Fourier demandée. 

a) G(x) = ∫
+∞

∞−
− dttfe ixt .)(  = ∫

+∞

∞−
dttfeixt ).(  = )( xF − . 

b) G(x) = ∫
+∞

∞−
− − dttfe ixt ).(  = ∫

+∞

∞−
duufeixu ).(  = F(−x)                        ( chgt de var u = − t ) 

c) G(x) = ∫
+∞

∞−
− − dtatfe ixt ).(  = ∫

+∞

∞−

+− duufe auix ).()(  = ixae− F(x)            ( chgt de var u = t – a ) 

d) G(x) = ∫
+∞

∞−
− dtatfe ixt ).(  = 

a
1 ∫

+∞

∞−
− duufe aixu ).(/  = 

a
1 F(

a
x )               ( chgt de var u = at ) 

e) G(x) = ∫
+∞

∞−
− dttfee iatixt ).(  = ∫

+∞

∞−

−− dttfe taxi ).()(  = F(x – a). 

 
Exercice 2 : Transformée de Fourier d’une gaussienne. 

On se donne a > 0. Calculer la transformée de Fourier de ²ate− . 

Solution : La fonction ²ate−  est intégrable et à décroissance rapide.  

En vertu de ce qui précède, F(x) = ∫
+∞

∞−
−− dtee atixt .²  est définie, C∞ sur R, et tend vers 0 en ±∞.  

Reste à calculer F(x).  
1ère méthode : équation différentielle. 

F’(x) = ∫
+∞

∞−
−−− dteite atixt .²  = ( IPP ) = − 

a
x

2
F(x) . 

C’est une équation différentielle linéaire homogène d’ordre 1.  

Comme F(0) = ∫
+∞

∞−
− dte at .²  = 

a
π ,  F(x) = F(0). a

x

e 4
²−
 = 

a
π a

x

e 4
²−
. 

2ème méthode : développement en série. Formellement :  

∫
+∞

∞−
−− dtee atixt .²  = ∫ ∑

∞+

∞−
−

+∞

=

−
dte

n
ixt

at

n

n

.
!
)(

²

0

 = ∑
+∞

=

−
0 !

)(

n

n

n
ix

∫
+∞

∞−
− dtet atn .²   

                      = ∑
+∞

=

−
0

2

)!2(
)(

p

p

p
ix

∫
+∞

∞−
− dtet atp .²2   ( si n est impair, ∫

+∞

∞−
− dtet atn .²  = 0 ) 

                      = ∑
+∞

=

−
0

2

)!2(
)1(

p

pp

p
x

2∫
+∞

−
0

²2 .dtet atp   = … =  
a
π ∑

+∞

=

−
0

2

)4(!
)1(

p
p

pp

ap
x

 = 
a
π a

x

e 4
²−
. 

car les intégrales  ∫
+∞

−
0

²2 .dtet atp  se ramènent à ∫
+∞

−
0

².dte at  par des IPP. 

Il reste à justifier l’intégration terme à terme des séries au moyen du théorème ad hoc.  
3ème méthode : intégration complexe. 

F(x) = ∫
+∞

∞−
−− dtee atixt .²  = ∫

+∞

∞−

−+−
dte a

x
a
ixta

.4
²)²(

 = a
x

e 4
²−

∫
+∞

∞−

+−
dte a

ixta
.

)²(
 par mise sous forme canonique. 

Le changement de variable u = t + 
a
ix  donne alors : F(x) = a

x

e 4
²−

∫
+∞

∞−
− due au .²  = 

a
π a

x

e 4
²−
. 
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Cette méthode est hélas erronée, car la variable d’intégration n’est pas réelle ! 
On peut cependant la rendre rigoureuse, mais il faut passer par l’intégration complexe, en 
introduisant une intégrale curviligne convenable… 

Commentaires : 1) La transformée d’une gaussienne est encore une gaussienne. 
2) On constate que pour a et b > 0 , FFFF( ag ∗ bg ) = FFFF( ag ).FFFF(gb). 

3) On constate que  FFFF(FFFF( ag )) = 2π ag . 

4) La fonction Gm,σ² a pour transformée de Fourier 
imxx

e
−− ²

2
²σ

. 

et l’on retrouve  FFFF(Gm+m’,σ²+σ’²) = F F F F(Gm,σ²).FFFF(Gm’,σ’²). 
 
Exercice 3 : Calculer les transformées de Fourier des fonctions suivantes : 

          f(t) = tn ate− Y(t)    ,    f(t) = t tae−    ,    f(t) = t ²ate−  ,   f(t) = 
²²

1
at +    ( a > 0 ). 

Solution :  
i) Y est la fonction de Heaviside ( 1 si t > 0, 0 si t < 0 ). 

F(x) = ∫
+∞

∞−
−− dttYete atnixt ).(  = ∫

+∞ +−
0

)( .dtet tixan  = 
ixa

n
+ ∫

+∞ +−−
0

)(1 .dtet tixan  par IPP,  

donc                         F(x) = nixa
n

)(
!

+ ∫
+∞ +−
0

)( .dte tixa  = 1)(
!

++ nixa
n . 

ii) Rappelons que, si a > 0,  f(t) = tae−  a pour transformée de Fourier : 

On a vu F(x) =  ∫
+∞

∞−

−− dtee taixt .  = 
²² xa

a
+ .  Dérivons !  F’(x) = − i ∫

+∞

∞−

−− dttee taixt .  = 
²)²²(

2
xa
ax

+
− . 

Par conséquent, t tae−  a pour transformée de Fourier 
²)²²(

2
xa

iax
+

− . 

iii) De même, ²ate−  a pour transformée de Fourier F(x) = ∫
+∞

∞−
−− dtee atixt .²  = 

a
π a

x

e 4
²−
. 

Dérivons ! F’(x) =  − i ∫
+∞

∞−
−− dttee atixt .²  =  −

a
π

a
x

2
a

x

e 4
²−
.  

Par conséquent, t ²ate−  a pour transformée de Fourier  −
a
π

a
ix
2

a
x

e 4
²−
. 

iv) Je dis que ∫
+∞

∞−

−

+ dt
at

e ixt

.
²²

 = 
a
π xae−  = 

a
π [ Y(x). axe−  + Y(−x). 

a
π axe ] 

Il n’est pas facile de démontrer directement cette identité.  
La méthode de l’équation différentielle pose des difficultés.  

La fonction F(x) = ∫
+∞

∞−

−

+ dt
at

e ixt

.
²²

 satisfait formellement   − F’’( x) + a2 F(x) =  ∫
+∞

∞−
− dte ixt. ,  

mais cette intégrale diverge !  
On peut sortir du cadre de cet exposé en notant que : 

                   − F’’( x) + a2 F(x) =  ∫
+∞

∞−
− dte ixt.  = FFFF(1)(x) = 2πδ(x), 

où δ est la distribution de Dirac… 
On peut rester dans le domaine élémentaire, en introduisant la suite de fonctions : 

Fn(x) = ∫
+

−

−

+
n

n

ixt

dt
at

e
.

²²
 , qui satisfont  − Fn’’( x) + a2 Fn(x) =  ∫

+

−
−

n

n

ixt dte .  = 2
x
nx)sin( , 

Puis intégrer cette équation différentielle et faire tendre n vers l’infini. 

Le plus simple cependant est d’utiliser la formule d’inversion de Fourier. 
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6. Avec Maple. 

Maple contient un package de transformations intégrales (Laplace, Fourier, Mellin, Hilbert, 
Hankel), qui confirme les résultats précédents. 
> with(inttrans); 

addtable fourier fouriercos fouriersin hankel hilbert invfourier invhilbert, , , , , , , ,[

invlaplace invmellin laplace mellin savetable, , , , ]  

> assume(a>0);fourier(exp(-a*t^2),t,x); 
fourier(t*exp(-a*t^2),t,x); 
fourier(exp(-a*abs(t)),t,x); 
simplify(fourier(t*exp(-a*abs(t)),t,x)); 

π
a~

eeee










− /1 4
x2

a~
 

-1
2

I π x eeee










− /1 4
x2

a~

a~
( )/3 2

 

2
a~

 + a~2 x2
 

-4 I a~ x

( ) + a~2 x2
2

 

> simplify(invfourier(sqrt(Pi/a)*exp(-x^2/(4*a)),x,t)); 
invfourier(2*a/(a^2+x^2),x,t); 

eeee
( )−a~ t2

 

 + eeee
( )−a~ t

( )Heavisidet eeee
( )a~ t

( )Heaviside−t  
> fourier(1,t,x); 

2 π ( )Dirac x  
> invfourier(2*Pi*Dirac(x),x,t); 

1  
 


