Chapitre 5

Schrodinger

Llopérateur de Schrodinger est donné par la formule Su = 1u; + A, u.

Groupes, semi-groupes

Commencons par quelques considérations générales. Considérons une équation autonome
dépendant du temps : ca peut étre une EDO autonome, L, [, S, etc. 1 Notons S(#)(x) I'état
a l'instant ¢ de la solution valant x a 'instant ¢ = 0. Sous hypothese d’existence et unicité des
solutions, on a S(¢+s)(x) = S(¢)(S(s)(x)), ou encore S(t+s) = S(¢)S(s); (S(¢));=0 est donc un semi-
groupe agissant sur 'ensemble des x admissibles. Si le temps est reversible, alors (S(¢))er est
un groupe.

Quelques exemples.

1. L'équation des ondes s’écrit sous la forme d'un systéme du premier ordre : en posant
v =us, on a (u,v); = (v,Aru). Si on prend comme espace d’états X = C°(R") x C*°(R"),
alors on peut voir (a partir des formules de d’Alembert, Poisson, Kirchhoff et leurs gé-
néralisations aux dimensions supérieures) que la solution de (4.1) est C*°. Si on désigne
par S(¢)(f,g) le couple (u,u,) a 'instant ¢ € R, alors S(¢) : X — X et, par unicité et réver-
sibilité du temps, (S(%));cr est un groupe; c’est le groupe des ondes.

2. Pour I’équation de la chaleur, on ne peut raisonner de cette facon, car il n’y pas unicité.
Prenons X = LP(R"), 1 < p < 00, ou X = Co(R"), et soit St)f =P ;xf € X, feX, ou
1

P(x) = We_lxlz/(‘m.z En notant que gx(P\/;)(g‘) = e‘tlflz, on trouve gzx(P\/;)SZ(P\/;) =
T

F(P jr5), dou P ;xP =P, ce quiimplique S(t+s) = S(£)S(s). (S(¢))s=0 est le semi-
groupe de la chaleur.

3. Pour S, il est a nouveau impossible d’'invoquer I'unicité. En effet, on peut reprendre
la construction de la fonction u dans la preuve de la Proposition 3.17 et modifier les
coefficients c; afin d’obtenir une solution non triviale de 'équation de Schriodinger avec
donnée initiale nulle dans le demi-espace. Pour construire le groupe de Schriédinger, on
procéde comme pour I’équation de la chaleur. Si on reprend la preuve de la Proposition
1.5, on voit que, pour f € C2°(R"), la solution mild? de (1.10) est donnée par

u(,t) = F; 1 [(e—”'fl2 f(s)] . (5.1)

Par le théoreme de Plancherel, le membre de droite appartient a L? si f € L2. Ceci

1. Autonome : de la forme % = F'(x).
2. Ce qui est suggéré par la solution mild de (1.1) donnée par le Théoréme 1.1.
3. Par analogie avec I’équation de la chaleur.
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suggere de procéder ainsi : on prend X = L2(R") et on définit (S(¢));er par :
S@f =F; | fo) e LA®™; (5.2)
c’est le groupe de Schrodinger.
Une application immédiate du théoréme de Plancherel donne le résultat suivant.
5.1 Proposition. (S(¢)).cr est un groupe d’opérateurs unitaires dans L%(R™).

Nous verrons plus tard que, si f € L2, alors u(-,¢) = S(¢)f est solution (dans un sens appro-
prié) de (1.10).

Effets dispersifs

Dans cette partie, nous étudions la décroissance de S(¢) lorsque ¢ — +oo.

5.2 Proposition.

Hypothéses. feL'NnL2R"). 1<p<2. q= Ll
p —
Conclusion. On a

1
ISOf 21 = o 1 e (5.3)

Démonstration. On commence par le cas p = 1. La formule (1.12) donne (56.3) si p=1et f €
CP[R").Sif e L1 L2, alors il existe une suite (f;) < C® telle que f; — f a la fois dans Ll et
L2. La convergence f 7 — f dans L2 donne S(t)f i — S(t)f dans L? et donc, & une sous-suite pres,
S@)f; — S@)f p. p. Lestimation (5.3) appliquée a f; avec p = 1 donne, par passage a la limite
p-p., (6.3)pour p=1let f.

Le cas p = 2 est donné par la Proposition 5.1. Le cas général s’obtient par le théoreme
d’interpolation de Riesz-Thorin (Théoréme 8.37) appliqué avec : X =Y =R”" (avec la mesure de

Lebesgue), po =1, p1=2, CI0=00,Q1=2,9=;. O
p

Cas d’un domaine

A nouveau, la théorie de Hille-Yosida fournit des résultats d’existence, et le bon cadre n’est
pas celui des fonctions C*. Un exemple.

5.3 Théoreme. o
Hypothéses. Qe C® borné. f € C®(Q). A*f =0 sur dQ, VEeN.
Conclusion. Le probleme

Su=0 dans R" xR
u=0 sur 002 xR (5.4)
up=0=f dansQ

a une (et une seule) solution u € C°(Q x R).
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