
Chapitre 5

Schrödinger

L’opérateur de Schrödinger est donné par la formule Su = ıut +¢xu.

Groupes, semi-groupes
Commençons par quelques considérations générales. Considérons une équation autonome

dépendant du temps : ça peut être une EDO autonome, L, ⇤, S, etc. 1 Notons S(t)(x) l’état
à l’instant t de la solution valant x à l’instant t = 0. Sous hypothèse d’existence et unicité des
solutions, on a S(t+s)(x)= S(t)(S(s)(x)), ou encore S(t+s)= S(t)S(s) ; (S(t))t∏0 est donc un semi-
groupe agissant sur l’ensemble des x admissibles. Si le temps est reversible, alors (S(t))t2R est
un groupe.

Quelques exemples.

1. L’équation des ondes s’écrit sous la forme d’un système du premier ordre : en posant
v = ut, on a (u,v)t = (v,¢xu). Si on prend comme espace d’états X = C1(Rn)£C1(Rn),
alors on peut voir (à partir des formules de d’Alembert, Poisson, Kirchhoff et leurs gé-
néralisations aux dimensions supérieures) que la solution de (4.1) est C1. Si on désigne
par S(t)( f , g) le couple (u,ut) à l’instant t 2R, alors S(t) : X ! X et, par unicité et réver-
sibilité du temps, (S(t))t2R est un groupe ; c’est le groupe des ondes.

2. Pour l’équation de la chaleur, on ne peut raisonner de cette façon, car il n’y pas unicité.
Prenons X = Lp(Rn), 1 ∑ p ∑ 1, ou X = C0(Rn), et soit S(t) f = Pp

t § f 2 X , f 2 X , où

P(x) = 1
(4º)n/2 e°|x|

2/(4t). 2 En notant que Fx(Pp
t)(ª) = e°t|ª|2, on trouve Fx(Pp

t)F (Pp
s) =

F (Pp
t+s), d’où Pp

t§Pp
s = Pp

t+s, ce qui implique S(t+s)= S(t)S(s). (S(t))t∏0 est le semi-
groupe de la chaleur.

3. Pour S, il est à nouveau impossible d’invoquer l’unicité. En effet, on peut reprendre
la construction de la fonction u dans la preuve de la Proposition 3.17 et modifier les
coefficients c j afin d’obtenir une solution non triviale de l’équation de Schrödinger avec
donnée initiale nulle dans le demi-espace. Pour construire le groupe de Schrödinger, on
procède comme pour l’équation de la chaleur. Si on reprend la preuve de la Proposition
1.5, on voit que, pour f 2 C1

c (Rn), la solution mild 3 de (1.10) est donnée par

u(·, t)=F°1
x

h
(e°ıt|ª|2 bf (ª)

i
. (5.1)

Par le théorème de Plancherel, le membre de droite appartient à L2 si f 2 L2. Ceci

1. Autonome : de la forme ẋ = F(x).
2. Ce qui est suggéré par la solution mild de (1.1) donnée par le Théorème 1.1.
3. Par analogie avec l’équation de la chaleur.
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suggère de procéder ainsi : on prend X = L2(Rn) et on définit (S(t))t2R par :

S(t) f =F°1
x

h
(e°ıt|ª|2 bf (ª)

i
2 L2(Rn) ; (5.2)

c’est le groupe de Schrödinger.
Une application immédiate du théorème de Plancherel donne le résultat suivant.

5.1 Proposition. (S(t))t2R est un groupe d’opérateurs unitaires dans L2(Rn).

Nous verrons plus tard que, si f 2 L2, alors u(·, t) = S(t) f est solution (dans un sens appro-
prié) de (1.10).

Effets dispersifs
Dans cette partie, nous étudions la décroissance de S(t) lorsque t !±1.

5.2 Proposition.
Hypothèses. f 2 L1 \L2(Rn). 1∑ p ∑ 2. q = p

p°1
.

Conclusion. On a

kS(t) f kLq ∑ 1
(4º|t|)n(1/p°1/2) k f kLp . (5.3)

Démonstration. On commence par le cas p = 1. La formule (1.12) donne (5.3) si p = 1 et f 2
C1

c (Rn). Si f 2 L1 \L2, alors il existe une suite ( f j) Ω C1
c telle que f j ! f à la fois dans L1 et

L2. La convergence f j ! f dans L2 donne S(t) f j ! S(t) f dans L2 et donc, à une sous-suite près,
S(t) f j ! S(t) f p. p. L’estimation (5.3) appliquée à f j avec p = 1 donne, par passage à la limite
p. p., (5.3) pour p = 1 et f .

Le cas p = 2 est donné par la Proposition 5.1. Le cas général s’obtient par le théorème
d’interpolation de Riesz-Thorin (Théorème 8.37) appliqué avec : X =Y =Rn (avec la mesure de

Lebesgue), p0 = 1, p1 = 2, q0 =1, q1 = 2, µ = 2° p
p

.

Cas d’un domaine
A nouveau, la théorie de Hille-Yosida fournit des résultats d’existence, et le bon cadre n’est

pas celui des fonctions Ck. Un exemple.

5.3 Théorème.
Hypothèses. ≠ 2 C1 borné. f 2 C1(≠). ¢k f = 0 sur @≠, 8k 2N.
Conclusion. Le problème

8
>><

>>:

Su = 0 dans Rn £R
u = 0 sur @≠£R
u|t=0 = f dans ≠

(5.4)

a une (et une seule) solution u 2 C1(≠£R).
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