Estimates of li(€(x)) — n(x)
and the Riemann Hypothesis
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Abstract Let us denote by m(x) the number of primes < x, by li(x) the logarith-
mic integral of x, by 6(x) = Zpsx log p the Chebyshev function and let us set
A(x) = 1i(8(x)) — 7 (x). Revisiting a result of Ramanujan, we prove that the asser-
tion “A(x) > O for x > 11" is equivalent to the Riemann Hypothesis.
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1 Introduction

Let us denote by 7 (x} the number of primes < x and by li(x) the logarithmic integral
of x (see, below, §2.2). It has been observed that, for small x, 7 (x) < li(x) holds,
but Littlewood (cf. [7] or [5, chap. 5]) has proved that, for x tending to infinity, the
. difference 7 (x) — li(x) oscillates infinitely many often between positive and negative
values.
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588 J.-L. Nicolas
Letusset (x) = ), log p, the Chebyshev function, and
| AGx) = li(@(x)) — m(x). (1.1)

What is the behavior of A(x)? In {11, (220), (222), (227), and (228)], under the
Riemann Hypothesis (RH), Ramanujan proved that

245437 0 ( AT )
2 + g 3
log*(x) log*(x)

Alx) = (1.2)

where p runs over the nontrivial zeros of the Riemann ¢ function. Moreover, in [11,
(226)], Ramanujan writes under the Riemann Hypothesis

RN ) v e RN i er)

2
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= 2J% Z% — /X2 + yo — log(d)) = 0.046../%  (13)
o

xP
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where ¥ is the Euler constant and concludes
under RH, 3 xp such that, for x > xo, A(x) is positive. (14)

The aim of this paper is to make these results effective and, in particular, to show
that Ramanujan’s result (1.4) is true for xo = 11.
Letusset A=Y ” Ip_llf Under the Riemann Hypothesis, we have (see below

(2.26)) 1 1
foum Y et 28V O.8461614179322490...., (15
2 |2 Z ol —p) )

We shall prove

Theorem 1.1. Under the Riemann Hypothesis, we have

log?

lim sup 20187 ) 9 L2 —2.046..., (L6)
x—500 o
1 2

liminf 2B o5 5 1083, (17)
X0 &%

A(x) is positive for x = 11, - (1.8)

\/_ forx > (1.9)

Alx) 22—

og’(x) .



Estimates of 1i(#(x)) — 7r(x) and the Riemann Hypotﬁesis 589
and
Ax)< M \f? ToFx =2 (1.10)
log®(x)

where M = A(3643)(log? 3643)/+/3643 = 5.0643569138 . . .

Corollary 1.2. Each of the five assertions (1.6)-(1.10) is equivalent to the Riemann
Hypothesis.

Proof. In 1984, Robin (cf. [10, Lemma 2 and (8)] has shown that, if the Riemann
Hypothesis does not hold, there exists & > 1/2 such that

A(x)

A
A(x) = Qu(x?), ie. lim sup §;

—— > Oand lim inf <0
x—00 X 00 X
and the five assertions of the theorem are no longer satisfied. £l

1.1 Notation

) = Z 1 is the prime counting function.

psx
1 . w(xlky log x
= -_— = th = .
thp) Z k E k i L]ogEJ
pr<x k=1
%) = Zlogp and ¥ (x) = E log p = Ze(x”") are the Chebyshev func-
p<x pr<x k=1
tions.
logp ifx=pr, ' :
Alx) = . is the von Mangoldt function.
0 if not
~ 1 o A
V) =9 ) - 5A@) and i) =) - 21(5;1.

li(x) denotes the logarithmic integral of x (cf. below §2.2).

: ! L B |
L) =1i(@) — E)E? La(2) = li(z) ozt Togts
F@) = L) Fo(t) = La(t) ¢ > 1).

t/log?t’ t/log’t



590 J.-L. Nicolas

F,(2) and F,(¢) are defined below in (3.16).
yo = 0.57721566.. .. is the Euler constant. A is defined in (1.5), cf. also (2.26).

Z flp) = Tlim E f(p) where f : C — Cis a complex function and p runs
» 7% gt -
over the nontrivial zeros of the Riemann ¢ function,

1.2 Plan of the article

In §2, we shall recall some definitions and prove some results that we shall use in
the sequel, first, in §2.2, about the logarithmic integral, and, further, in §2.3, about
the Riemann ¢ function and explicit formulas of the theory of numbers.

In §3, the proof of Theorem 1.1 is given. First, we write A(x) = A, (x) + Aa(x)
with

Ayx) =1li(¥(x) =T(x) and  Ax(x) = 1)) — LY (x)) + T(x) — nx).

In §3.1, under the Riemann Hypothesis, an estimate of A{x) is given, by applying
the explicit formulas. In §3.2, it is shown that A»(x) depends on the quantity B(y) =
mw(y) — 6(y)/logy which is carefully studied.

In §3.3 (resp. §3.4), an effective lower (resp. upper) estimate for A(x) is given
when x > 105 ‘

In §3.5, for x < 10%, estimates of A(x) are given by numerical computation.

Finally, Theorem 1.1 is proved in two steps, depending on the cases x < 108 or
s IOE.

The computations, both algebraic and numerical. have been carried out with
Maple. On the website [13], one can find the code and a Maple sheet with the

results.

We often implicitly use the following result : for # and v positive, the function

loght . . . : .
P ot i increasing for 1 < t < e"/*and decreasing for ¢ > ¢*/”. (1.11)
Moreover
log" t 1 \u
MK e = (—) . 1.12)
izl ev 7 :
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2 Preliminary results

2.1 Effective estimates

Without any hypothesis, Platt and Trudgian [9] have shown by computation that
B(x) < x for0 < x < 1.39 x 10'7 2.1

so improving on results of Schoenfeld [12] and Dusart [3]. Under the Riemann
Hypothesis, for x > 599, we shall use the upper bounds (cf. [12, (6.3)])

1 1
lw(x)—'xlgé—;\/flogzx and l@(x)—xlss—JT-ﬁlogzx. (2.2)

2.2 The logarithmic integral

For x real > 1, we define li(x) as (cf. [1, p. 228])

1—e
= logt A1, ([ f ke logt) f 1“75“1(2)

We have the following values:

x| 1 145136... 2 3.8464... 8.3 599 2.3)
li(x)|—o0 0 1.145163 ... 2.8552...5.39671 ... 117.49 ... ”
From the definition of li(x), it follows that
d 1 d2 1
— li(x) = d —li(x) =— : 2.4
dx 1x) logx 0 dx? 16) x log® x e
We also have
oo
) (log x)*
1 = log(l
i(x) = yo + log(log(x)) +§I S

(where yp = 0.577 ... is the Euler constant) which implies

li(x) = log(log(x)) + o +0(1), x— 1T, (2.5)
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Let N be a positive integer. For ¢ > 1, we have (cf. [13D

dt 1 NS |
loght (N =1 (h(t) - t) 29
and, for x — ©0,
k — 1)'x X
M= Z’ Gos ) (W_‘) ' ¢

Lemma 2.1. Fort > 1, we have

t t t
L) =1i{t) — — — =R ——) <405 . 2.8
201) ® logz log*t 28 (Iog3t) log?t &3
Fort > tg = 381, we have |
t
Ly(t) < Fo(t0) — 29)
log”t
Fort > 29, we have
' Ly(t) > 2—5—. (2.10)
log’ ¢

Proof. let us set (cf. the Maple sheet [13])

_ 2t t 12 F(t)
t) =3 —logt) li(t) +1t — - =
fi@)=@=logt) WO+ =g~ ot o2l

R t
) = 2 —~1i{t) = tfi(t

and

8
A= [0 = og" ()’

Since f,(t) = f3(r) is negative, f2(t) decreases énd vanishes for

t, = 28.19524 . ..

It follows that f{(t) = fa(t)/t is positive for 1 <t < t, and negative for t > 1, s0
that f(¢) has a maximum for t = 13, :

fity) = 4.54378...
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and f; vanishes (and so does F;) in two points
t3 = 3.384879... t; =380.1544...

From (2.5), we getlim,_, ;+ F,(f) = Oand the variation of F, is given in the following
array:

3.38... 10.39...  380.05... oo
4.040415 ..
— _La@)
e 1369496 7 \2

t

O =

(2.11)

The proof of (2.8) and (2.9) follows from Array 2.11 and also the proof of (2.10),
after deducing from f>(t;) = 0 that F,(;) = 2 holds. ‘ O

In the same way, it is possible to study the variation of the function

L) - B0 =g
(t/log?t) = (t/log?t)’

The details can be found on [13]. We have

Fi(t) =

t 1 55 3.8464... 946... 00
‘ - 1.784 ...

. 2 : 2.12
Fio = Lo (22)| S0 %, [

—0.448 ... 1

Since L;(10.3973...) = 1, Array (2.12) yields
t

t>104 == Li{ti=lit)— (2.13)

log ¢ g log?t’

The derivative of li(s)/# is L °80=80 — _ _FG). which from Array 2.12, is positive

tlog*t
for 1 <t < 3.8464 and negative for t > 3.8465. Therefore, we have

1i(3.8464 . . .)

3
t=07423... t < —. 2.1
3.8464 .. R4 < (2ks)

t>1 = 1@<

Lemma 2.2. Let a and x be two real numbers satisfying exp(1) €< a < a® < x. Let
ky and k2 be two integers such that

lo
2%1{1 <.'{2=“" ng.
loga
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Then we have

K2

| _
}: ZLl(x”") < 1.785 (4 05

k=K 41

3 1/&q

- Lg(a)) a (2.15)

log® x

Probf. Let us set
=1 :
T= =L (x"®y.
Z X 1{x _)

‘ k=f{{+]

It follows from Array 2.12 that, fort > 1. L, (f) = tF (1)) log?t < 1 785—-T holds
and therefore,

. LT85 i Y
lng X i ‘

Now, as x = exp(l) > 1, the function ¢ > 1x17 s positive and decreasing for 0.<
t < log x so that

logx 1/x
1.785 [* : 1.785 [ie:c S,
T€—; ] tx''dt < — ]1 rxiidt = '1.785/ ;‘
log*x Jy, log®x Jy, o & ¢ Jeslit

by the change of variable 1 = x!/’. Finally, by (2.6) and (2.8), we get

lﬁq
ey . e
T < 1.785 (La(x'/*) — La(a)) < 1.785 (4.0510g3(x! 75 Lz(a))

which ends the proof of Lemma 2.2. O

Lemma 2.3. Leta > 2.11 and x > a° be real numbers and k3 = L%J Then we

have

Z 1x1/(2k) £ i ]/4. ) (2-16)

k=2

Proof. Let us set

K2

A, s
e 1720
T._Ekx .

k=2

Since x > a3 > 1, the function ¢ = x!/" /1 is positive and decreasing for t > 0so
that |

ML y/(2e) i
2 A:3 2 ' 2 ¢ 2 Ja logu
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by the change of variable u = x'/®). Finally, by (2.6) and (2.14), we get

T < é—x”’" + Ly —1i(va) < gx”“ — li(v/a)

and (2.16) follows since /a > +/2.11 > 1.452 so that, from Array (2.3), li(/a) > 0
holds. 5

Lemma 2.4. Under the Riemann Hypothesis, for x > 599, one has

6(x) —x 9log’x . ) 6(x) — x
og x o000 < HOG) ~1itx) < o (2.17)
v(x)—x 9log’x : vi{x) —x
e e S AT :
log x 10000 S H(F) log x s
and
Y(x) —6(x) 9log’x . _ Y(x) —60(x) 9log’x
logx 10000 < MW~ < 10000 °
(2.19)

Proof. Let us suppose that x > 599 holds. From (2.2) and (1.11), we get

2 2 2
e S0 . 1 (x _ —['ﬂﬁ—x) [ OB o 0B  omns,

% x X 8w 8w /x 8w +/599
(2.20)
Further, for # > 1 — x, Taylor’s formula and (2.4) yield
lix + A) = li(x) + L i (2.21)
i(x = lilx —_ , :
logx 2&log’k

with & Z min(x,x + A). Let us set A = G(x) —x; we have h+zx =8(x)
2 0(599) > 1. From (2.20), we get & > bx with b = 0.9335 and

| logb\?
& logzé > bxlog?(bx) = bx log?(x) (l + IZEI)

logb
log(599)

2
> bx log?(x) (1 +- ) > 0.9135 x log? x.

From (2.2), it follows that

- G x log* x log? x y 9log? x
T 28log?E 1287 loglt - 0.9135 x 12872 10000
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which, with (
{2.18). ar 1d {2.19) follows by subtracting (2.17) from (2.18). 0

2.3 The Riemann ¢ function

We shall use the two explicit formulas valid for x > 1
o 1 "y 1 1
Yx) =y &x)— -iA(x) == K = ; e log(2m) =5 log (1 — ;) (2.22)

and

AG) , f°° d1
=li(x) — Y lix") — log?2 . S
S lore . Zp: ) —log2+ | @ T Dlogs

(2.23)

O] =

which can be found in many books in analytic number theory, for instance [5, chap.
4]. To Formula (2.23), we prefer the form described in [6, p. 361 and 362, with
R =]z

. _ S dt
Mx) = hix) - —10g2+/ —_—, x>1. (224)
X

t(t?2 —1)logt

We also have (cf. [4, p. 67] or [2, p. 272])

Z — =1 + L -Iz-log:vr —log2 = 0.02309570896612103...  (2.25)

and (cf. (1.5))

1 1 1 1
Zp:p(l—p) Zp:(p 1_,,) Z,,:P vo —log(4m). (226

3 Proof of Theorem 1.1

3.1 Study of A1(x) = li(¥ (x)) — II(x)

Under the Riemann Hypothesis, we write

2.21), proves (2.17). In the same way, sefting h=vy(x)—x yields
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: L.
y=23p ie. ,0=5+£Jf-

Lemma 3.1. Under the Riemann Hypothesis, we have

Z_l_<i
lyB ~ 300

p

Proof. 1t is possible to get better estimates for the sum 2 #, but, for our purpose,
the above upper bound will be enough. By observing that

|
Ip12=p(1—p)=z+y2

and that the first zero of £ (s) is 1/2 4 14.134725 .. .i (cf. [4, p. 96] or the extended
tables of [8]), we get

1 14 1/(4y?) 1+ 1/(4 x 14.1342) 800 1
— =) ——g < .
| ;yz ; 1/4 + y2 2 1/4 + 2 799;,0(1-—p)

Further, from (2.26), we get

i 1 1 800 1 '
< —~— = (0.00327...
Xp: lvPP ~ 14.134 Zp: ¥2 799 x 14.134 ; p(1 — p)

which completes the proof of Lemma 3.1. 03 -

Lemma 3.2. For x > 1, under the Riemann Hypothesis, we have

00 =t xP x?
) dr = K
> = Y it L e + W)
P P o
with 2 Ui
x .
Kx) € — . 3.1
K (x)] 300 og' 2 3.1)

Proof. By partial integration, one has

Sl < 4 xP xP 2 Sl 4
_ 7 s t
/(; p—t plogx +p210g2x +]0g2x/9 (p—1)?

oo p—t
f & -
¢ (p—1t)

and

<& fooxfﬁ“’dt: 3
RRYIENA 1303 logx
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so that we get

K 2 L i Z

X =

Kol ;logzx o (p—1)p3 Iog x |3ﬂl3

and (3.1) follows from Lemma 3.1. O

Proposition 3.3, Under the Riemann Hypothesis, for x 2 599, we have

. x*
A(x) = II(W(.X)) —II(x) = ; p2 logzx + J(x)
with ) VR 2 JE d
X
— 0.00091 - £ Jx) < log 2. 3
o’ x 300 Iog % s 300 log? x +log G2

Proof. Let us write

U(x) — x4+ Ax)/2
logx‘

Li(y (x)) = li(x) + - 1#( ;: + Ji(x) = li(x) +

+ J1(x)

with, from (2.18), for x = 599,
—0.0009 Iog? x < J1(x) <O. (33)

Therefore, from (2.22) and (2.24), we have

1 1 1
A(x) =1li(x) + — ( Z — —log(27) — —log( xz) + EA(x))

ogx
= dt A(x)
—_— —log2
j_; i(t2 —1)logt i 210gx)

+J;(x)—(11(x) }:
_Z/x t logz +J.(x)+J—m)+Ju)

with
log{(2m) log(1 — 1/x%) f"“ -+l
»(x) = log2 — d Bp)eeetite 02
2= 10 ogx 4. dgte 2logx . t(@Er—1)logt

Further, from Lemma 3.2, one gets

S (4)
p




Estimates of 1i(9(x)) — 7 (x) and the Riemann Hypothesis : 599

with
J(x) = K@)+ Ji(x) + H(x) + J(x) (3:5)

and K (x) is as in Lemma 3.2.
It remains to bound J,(x) + J3(x). We have

s = [t (He -
By == x t(*—1) \logx logt?

which, for x > 599, implies

L ™ dt log(1+1/(x* —1))
logx r(e2—1) 2log x
P 1 _ log2m)
2(x- —1)logx log x

< f3(x) €

and 0 < Jo(x) + Ja(x) < log2. Therefore, (3.2) results from (3.1), (3.3), (3. 4), and
(3.5). ~

3.2 Study of Az(x) =10 (x)) — (¥ (x)) + I (x) — z(x)

For y > 2, let us set
(}) ( log p)
B(y) = n(y) — Z ony )

Note that B(y) is nonnegative. If g < g’ are two consecutive primes, B(y) is increas-
ing and continuous on [g. ¢’) and

8 !_I !
lim BUO—H@) 0@) G =T (g") @q

y=q', y< gq’ logg

= B(q")

so that B(y) is continuous and increasing for y > 2. In the two following lemmas,
we give estimates of B(y).

Lemma 3.4. Ler y be a real number satisfying yo = 8.3 < y < 1.39 x 10'7. We
have

BO) < L) =10) - = (3.6)

while, if y 2 y; = 599, under the Riemann Hypothesis, we have

ﬁ. (3.7

B(y) < Li(y) + ”
s



600 ; w o . J.-L. Nicolas

Under the Riemann Hypothesis, for y 2 y, = 2903, we have

J7

B(y) > Li(y) — X=. (3.8)
4
Proof. By Stieljes’s integral, one has
vdle)] _ é(y) f" 9(1)
= = . 3.9
bl fg_ logt logy+ 5 tlog? r (39

Further, we have

> o) f-“’ Yoaw) ]" 6(1)
B(y) = dt = dt = B(y dt. (3.10
) ./_;, tlog?t 2 * Yo tlog?t (o) + v tlog?t G

By (2.1) and (2.6). for y < 1.39 x 10", we get

fy o) dt<fv : a’t—h(n—-—x—~h( )+———— Li(y)— Li(yp)
Yo rlogzt = Yo Iog21 log y Y0 log ¥o =L 140
so that (3.10) yields B(y) < Li(y) 4+ B(yo) — L1(yo), which proves (3.6), since

B(yo) — L1(3) = —0.001379... < 0 (cf. [13].
Replacing yp by yi in (3.10) yields

Y adr
B(y) = By) + [ Ot _ B = Lo + L) + TG ) G

w ! log?t

with T(y, y1) = fy 0=t 1t and, from (2.2) ,

|zlo:

y log? -
Jlog P g, WU (3.12)

, 8mtloglt  4m

1T (y, yI <

From (3.11) and (3.12). it follows that

B(y) < Li(y) + —-‘/l_ + B(y1) = Li(y1) — %

which proves (3.7), since B(y1) — L1 (y1) — -‘:gl = —4.80566... <0,
In the same way than the one used to get (3.11), for y > y2, we obtain

B(y) = B(y3) — L1y} + Li(3) +T(y. y2) 2 Li(y) — Z{ri + B(yz) — L1(y2) + %
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andas B(y2) — L1(y2) + %‘:1 = 0.00671... > 0, this completes the proof of Lemma
3.4. ; o

Let us set
0 ify<1.39 x 107
e(y) = g 17
1 y>1.39x 10",

It follows from (3.6) and (3.7) that, under the Riemann Hypothesis, oné has
By)< Li(y)+ «'s(y)-;r—/—nj for y = 8.3. (3.13)

Proposition 3.5, Under the Riemann Hypothesis, for x > 599, we have

K

Ax(x) =1O() — li(¥(x) + T(x) —7(x) = > %B(x”") +U(x) (3.14)

k=2
with )
log x Olog”x
= d [U < : : 15
o [mng and  [UG < 5600 )

Proof. From (2.19), for x > 599, we get

: . 6(x) = ¥ (x) : 9logx
= s (R e < .

1@ (x)) — (¥ (x)) T + U(x) with |U (x)| 10000

From the definition of ¥ (x) and IT(x), this implies
K ﬂ.(x!/k) g(xlﬂc)
Ax(x) = ( - ) + U(x)
g k log x

which, via the definition of B, proves (3.14). O

It 1s convenient to introduce the notation

4.05 ift <381
Fy(t) ift > 381

= 1785 ift < 95
d Fi(1) = 3.16)
and F1 (1) {F,(t) iFF & 05 100

R = {
so that, from Arrays (2.11) and (2.12), for ¢ > 1, F'g(t) and f‘;(r) are nonincreasing
and we have

tR(1) _ 3250, tRit) _ tE (1)

Lalt}= and L (1) = < .
2(6) 1) log?t  log®t

(el

log®t log*t
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Lemma 3.6 Let us seta = 10.4. For x > 10°, we set i = | 23], i = Liﬁ"jj and
let ic, be an integer satisfying 3 < k1 < ka. Then, under the Riemann Hypotnes:.s WE
have

K

B!ty 2

YR Iy fF(f)+Z R |

= og-x logx =

23 L#i ;
z-——-’f;—x—+235+094 ki

log” x log> x

Proof. For 2 <k < k; we have x'/¥ > x!/% > x(08@)/18% = g, and, under the
Riemann Hypothesis, it follows from (3.13) that

U(2L)

B(x!/k) Ll(xlfﬁ.)_l_g(x}fk)

which implies that

Bl
Z STh+hLh+hL+Thi+7Ts
k=2
with
1 L1 (x1/ky S Ly(x'%)
= =L 3 T T T = T
> 1(Vx), Th= Z p 3 Z =i
g k=3 . k=x+1
K . <) -
B(x/k 2 U2k
I = Z o ), T = ZS()C]'IL)%k——‘.
k=ra+1 k=2 =

From the definition of L, L, F;, F» and from (3.17), one has

Lz(ﬁ)_’_ Voo 2\/— «/—Fz(\/_) 2% 44 «/_Fz(\/—)

T =
: 2 210g? /x  log? x -~ log*x log x log® x
and
K1 Lk K1 1/k ; ] 1/k
Li(x""") kx i L
B= —‘—k——- =5 SS-REYMH <) S ReY.
k=3 k=13 log X k=3 lOg X

From Array (2.11), L;(10.4) is positive, so that, from Lemma 2.2 with a = 10.4, we
have '
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x]/i(]
Ty < 1.785 (4 gl L L2(10.4))

log x
kixl/a 723 kdxl/m

< 1.785 x 4.05 = 3
log? x log” x

Fork 2 k2 + 1 > (logx)/ loga, we have x'/* < a; since y > B(y) is nondecreas-
ing, we have B(x'/*) < B(a) = B(10.4) = 1.7166... < 1.72 and

=1.72 (log G“Zi_x) ~ log (m%gé@))

—172 (Iog GS%) +log (fblg%%))
<172 (log GZ%) * (Elgé_jﬁ B I))

=17 (log ( igig) H zo;(zija))

loga loga
<1.72(1 . = 2.34449 ...
( " (logZ) " log(los/a))

Since &(t) is nondecreasing and vanishes for x < 10'7, from Lemma 2.3, one gets

i 2 1) g
17k 1/4
;su )= )E o S T e
1 5 1034 : I
N W A logx< v o 0 i I
1671' log®x x* 167 log®x 10344 log’ x
which completes the proof of Lemma 3.6. O

3.3 A lower bound for A(x)

Proposition 3.7. Under the Riemann Hypothesis, for x > 9 x 10°, we have

: sl 1 log? x 18 log’x ))
A = 2—A+——1{7.993 — - . (3.18
) log? x ( & log x ( ~ 8xx'/4 10000 /x Sk
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Proof. Since B(y) is nonnegative, from (3.14) and (3.15), we get, for x > 599

9]og?x
10000

1
Ax(x) 2 EB(\/E) =

As x > 29032, we may apply (3.8) which yields

x‘/4) 9log? x

1
B o _
A= (L‘(ﬁ) 4z ) ~ 710000
(o
2 \log? /X
Now, as x > 292, by (2.10), it follows

1 ¥ Zolx o 9log? x
A > ( I IO ) _ 2log

2 \log’/x  log’s/x 4w 10000
_ ofx (2+ 8 log?x  9log*x )
 log?x logx 8mx/4  10000yx /)

e 9log? x
+ La(vx) - 4 ) ~ 710000

From Proposition 3.3, one has:

Y =

. p?log? x

2
—0.0009Iog” x — 5= k:gx

Ailx) =~

so that A(x) = A;(x) + A-(x) satisfies

Jx (2 3 1, 8-2/300 log? x 1810g4x)
P

Alx) 2

log? x 12| logx  8mx'/4  10000/x

which, via 1.5, implies (3.18). O

Corollary 3.8. Under the Riemann Hypothesis, for x > 108, we have

A(x) =2 % (2—l+ 5'12). (3.19)

log? x logx

Proof. From (1.11), the functions x 1%%:% and x > 135;—‘ are decreasing for x >
108 and therefore, we have

Iog3x 18 log’x 10g3 108 18 log’ 108

= >7.993 - - =5124..;
grx1/4 10000 ./x 8¥108x 10000 /108

7,993 =

(cf. [13]). O
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3.4 An upper bound for A(x)

Proposition 3.9. Under the Riemann Hypothesis, for x > 108, we have

Ax) < b?x (2 a4 Ll x)) (3.20)

log x
where iy is an integer satisfying 3 < k1 < I_I(}:u; <) and

- 2 3.05log’x N kFi(xY%)1ogx
Q1. x) = 4F(J/x) + 300 o Iz o 2 17217k

728 .%3 L 094 x 9log® x
x172=1/k " og?x 10000/

521)

with Fy and F defined in (3.16).

Proof. From Proposition 3.3 and (1.5), for x > 599, we have

o2 E

A <A + 0.7
R A . T 5010 2
while, from Proposition 3.5, we have
K 2
1 9 log®x
A 8 =BV e
2(5) € ) T BGVR +

k=2

Therefore, from Lemma 3.6, we get the upper bound (3.20) for A(x) = A;(x) +
Az (x). O

Corollary 3.10. Under the Riemann Hypothesis, for x > 108, we have

Ax) < “/f (2-1—.\—!— 25'22)- (3.22)
log” x log x

Proof. We choose ¥; = 5 and observe that, from (3.16) and (1.11), all the terms
of the right-hand side of (3.21) are positive and nonincreasing for x > 10% so that
0(5,.x) < Q(5,108) =25.2119.... (cf. [13]). O

Corollary 3.11. Under the Riemann Hypothesis, for x tending to infinity, we have

Jx (2 N4 7.993+0(1)) < AG) < 4T, (2_}_14_ 8.007—{—0(1)).
log” x log x log? x log x
(3.23)
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Proof. The lower bound of (3.23) follows from Proposition 3.7. From Array (2.11),
from (2.1}) and from (3.16), one sees in (3.21) that lim,_, o F2(/x) =2 and
lim,—, e F1(x'/3) =1 so that (3.21) yields lim,, o @(3,x) = 8 +2/300 and the |
upper bound of (3.23) follows from Proposition 3.9 with «; = 3.

0

3.5 Numerical computation

Let us denote by p~ and p™ the primes surrounding the prime p.

Proposition 3.12. Forx < 1.39 x 10'7, A(x) isnondecreasing. There exists infinitely

many primes p for which A(p) < A(p~) holds.

Proof. Let us consider a prime p satisfying 3 < p < 1.39 x 107, From (2.1), one
has

: B dt
AGp) - AP = Ti@(p) —li@p ) 1= -1+ [ Lo
a(p—) 1081

>_]+9(p)—9(P)__ logr_ _ ;..

logb(p)  logb(p)

From Littlewood (cf. [7] or [5, chap. 5]), we know that there exists C > 0 and a
sequence of values of x going to infinity such that

6(x) = x + C/xlogloglog x.
Let p be the largest prime < x. For x and p large enough, one has
8(p) =0(x) > x + C/xlogloglogx > p+logp

and '
log p log p 1 <0

Al alpr ) = e =i = -
? 7= logb(p) log(6(p) — log p)
which completes the proof of Proposition 3.12. O

Remark. In [9, p. 8], Platt and Trudgian have proved the existence of u satisfying
727 < u < 728 and 6(e*) — e* > 10'2, If P is the largest prime < e, this implies

8(P) =0(") > e+ 10 >P+uz>P+logP

log P B
log(6(P) — log P)

and A(P) < A(P7) + 1= AC(P™).
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Proposition 3.13. (i) For 11 < x < 1.39 x 10'7 we have
A(x) > 0. (3.24)

(i) Under the Riemann Hyporhes:s for x 2 2 we have

27.7269. ..
A(x) < f (2 + X+ ————-—~—~—-—) (3.25)
log x log x '
with equality for x = 33647.
(iii) Under the Riemann Hypothesis, for x = 520 878 we have
25.22
A(x) € Jf (Z—i— A+ ) ; (3.26)
log® x log x
{iv) For 2 < x < 10000 we have
A{x) £5.0643 .. “/22 ; (3:.21)
log?x
with equality for x = 3643.
(v) Under the Riemann Hypothesis, for x > 84.11 we have
3.12
Alx) 2 \/f (2——A -+ ) g (3.28)
log® x log x
(vi) For 37 < x < 89 we have
Alx) 2 \/7; (3.29)
log” x

Proof. First, for x > 2, we define C(x) and ¢(x) by

A= Y (2 A+£-(——l) and A(x):l‘/zT (2—A+c(x))

log? x log x og°x log x

so that

2
C(x) = (log x) (‘-4—(5%/1_;-51 =0 A)

and

c(x) = (log x) (@%ﬁf =04 x) .
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(i) (3.24) follows from Proposition 3.12 and A(11) = 0.1301 ... Note that A(7) =
—0.1541 < 0 (cf. [13]).

(i) If x > 108, (3.25) follows from Corollary 3.10.
If2 < x < 409, from (1.12), one has (log? x)/+/x < 16/¢* and, from Proposition
3.12, A(x) < A(401) < 2.52 so that

1 2
Cix) = (logx) (A(x) Oj?x

16
—-2- A) < (log409) (2.52 poi 2= }u) < 20.51

which proves (3.25).
If409 < x < 108, let p be the largest prime < x. As 409 > € holds, from (1.11),

forx € [p, pT), thefunctionx > (logx) (A(p)—"j;—" 2~ JL) is decreasing, which
implies
C(x) < C(p) (3.30)

and, by computation,

max  C(x)= max C(p)=C(33647) =27.7269...
409<x <108 409< p<10® '

which completes the proof of (3.25).

(iii) For x > 108, (3.26) follows from Corollary 3.10.

We compute pp = 520 867 the largest prime < 108 such that C(pg) > 25.22. For
p§ = 520889 < x < 108, we denote by p the largest prime < x and, from (3.30),
one has C(x) < C(p) < 25.22, which implies (3.26). Then, one calculates

2 .+
lim  C(x) = (log py) (A(po)log Fo -—2-—)&) =25.21964 ...

x-pg. x<py AR
[ C po

As the above value is < 25.22, we have to solve the equation C(t) = 25.22 for
po <t < pg and find t = 520877.54...

(iv)For ¢t > 1 the functiont — (log?¢)/+/t is maximal fort = e* =54.59. .. where
its value is 16/e? = 2.16... (cf. (1.11) and (1.12)). As A(x) is nondecreasing, for
x < 59, we have

logzx 16 16
A(x) vk ——A(53) —21.155 310 ) TR
For p > 59and p < x < p™, one has
log? x g x @p
A(x) = A(p ) < A(P)
Vx Jf VP
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and we compute the maximum of A( p)%ﬁ for 59 € p < 10000 which is equal to
5.064. .. for p = 3643.

(v) Let us set

foy =Y (2—l+§:£).

log? x log x

Forx 2 108, A(x) > f(x) follows from Corollary 3.8.
Let p be a prime satisfying ¢ < 409 < p < 108, For p < x < p*t, one has

A(x) = A(p),
log? x

Jx

A(p)(log® x)(6 — log x) — 2(2 — A)/%
= < 0
2x3/2

c(x) = (logx) (A(p) -2+ }L) "

¢'(x)

so that c(x) is decreasing and

3

- . ” log® p
3 = lim c(x)=(l A(p)——— —2+Ar}.
c(x) = ¢(p) L. (x)=(logp )( (P T )

Therefore, for 409 < x < 108 one has c(x) 2 mingog p<10t €(p) and, by computa-
tion, one gets

min _¢(p) = £(409) = 15.3735 ...
409 p<108

which implies A(x) > f(x).

The function f is decreasing on (1, x; = 111.55.. .] and increasing for x > x,
(cf. [13]). Therefore, for 1 < a < b, the upper bound of f on the interval [a, b) is
max( f(a), f(b)). Wehave A(84.1) = A(83) < f(84.1) while, for84.11 < x < 89,
A(x) = A(83) > max(f(84.11), £(89)) > f(x) holds.

For 89 < p < 401 = 409, one checks that A(p) > max(f(p), f(p™)) holds
which shows that A(x) > f(x) for89 < x < 409 and completes the proof of (3.28).

(vi) From (1.11), the function o(t) = (log2 1)//1 is increasing for 1 <t < e* =
54.598 ... and decreasing fort > e*sothat, for 1 < a < b, the lower bound of @ on
the interval [a. b) is min(@(a), p(b)).

Let p be a prime satisfying 11 < p < 83. From (i), one has A(p) > 0 and, for
x € [gpr),

5
log x log~ x

A(x) T = AP) 7 Z A(p) min(p(p), p(p*)).

To prove (3.29), it remains to check that A(p) min{p(p), (p*)) > 2 — X holds for
37< p< 83 ' a
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3.6 'Proof of Theorem 1.1

Proof. The proof of (1.6) follows from Corollary 3.10 while Corollary 3.8 yields
(1.7

The proof of (1.8) results of Proposition 3.13, (i) and (v).

Inequality (1.9) results of Proposition 3.13, (v) and (vi).

If x < 10000, Inequality (1.10) follows from Proposition 3.13, (iv), while for
x > 10000, Proposition 3.13, (ii), implies

27.7269...
Ay < Y (2424 _.,__i_)
log= x logx
i3 ( 27.7269 .. ) il
< 24 A+ —m—— ] =5.0566...
oszx \" T4 Tog 10000 log® x
which ends the proof of Theorem il ad
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