
Dispersive shock wave: title and abstract

Christophe Besse: “Artificial boundary conditions for Schrödinger equations: Part I”

We consider here the derivation of artificial boundary conditions (ABCs) to solve numerically
Schrödinger equations on a bounded computational domain with a fictitious, non-physical boundary.
After a general survey of various existing methods, we present the construction of ABCs based on
pseudodifferential techniques. In this first part of the presentation we address the one dimensional
case with a variable potential V (x, t). We propose efficient numerical schemes associated to frac-
tional operators involved in the expression of the ABCs.

Rémi Carles: “An asymptotic preserving scheme based on a new formulation for NLS in the semi-
classical limit.”

We consider the semiclassical limit for the nonlinear Schrodinger equation. We introduce a phase/
amplitude representation given by a system similar to the hydrodynamical formulation, whose nov-
elty consists in including some asymptotically vanishing viscosity. This system overcomes the tech-
nical drawback of Madelung transform, which breaks down in the presence of vacuum. We prove
that the system is always locally well-posed in a class of Sobolev spaces, and globally well-posed for
a fixed positive Planck constant in the one-dimensional case. We propose a second order numerical
scheme which is asymptotic preserving. Before singularities appear in the limiting Euler equation,
we recover the quadratic physical observables as well as the wave function with mesh size and time
step independent of the Planck constant. This approach is also well suited to the linear Schrodinger
equation. This is a joint work with Christophe Besse and Florian Mehats.

Frédéric Chardard: “On the Stability of Travelling Waves Arising in the Kawahara Equation”

The Kawahara equation is a weakly nonlinear model for capillarity-gravity water waves which admits
solitary-wave type solutions. For each solitary wave, there exists a family of periodic waves which is
asymptotic to the solitary wave when the period tend to infinity. In this talk we study the stability
of these travelling waves.

Florent Chazel: “Mathematical and numerical modelling of dispersive water waves”.

In this talk we introduce two models for the propagation of dispersive water waves : a Green-
Naghdi-type model and a generalized Boussinesq-type model. While the Green-Naghdi model is
able to handle weakly dispersive and degenerates into the shallow water equations in the surf zone,
the Boussinesq-type model allows for considering highly dispersive waves but fails to properly de-
scribe highly nonlinear waves. The numerical strategies are presented and discussed, and the two
models are compared on some experimental test cases.

David Chiron: “On the (KdV)/(KP-I) and the (gKdV)/(gKP-I) asymptotic regime for the Non-
linear Schrödinger equation”
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We consider the Nonlinear Schrödinger equation with the non standard condition that the wave
function Ψ has modulus one at infinity. For small amplitude and long wavelength perturbations of
the trivial constant solution Ψ = 1, the dynamics can be approximated by the (KdV) or the (KP-I)
equation. For some particular nonlinearities, we may obtain an asymptotic regime governed by the
(gKdV)/(gKP-I) equation. We shall give some results on these regimes. The same approximation
formally holds for the travelling waves, and we shall give a numerical example in two space dimension.

Gennady El: “Whitham modulation theory and dispersive shock waves”

In mid-1960s G.B. Whitham developed an asymptotic theory to treat the problems involving the
generation and propagation of slowly modulated, fully nonlinear wavetrains in dispersive media.
Locally, these wavetrains are described by periodic or quasi-periodic solutions of nonlinear dispersive
PDEs. The Whitham equations then govern slow variations of the wavetrain parameters, such as
amplitude, wavenumber, mean etc., on the spatio-temporal scale much larger than the medium
characteristic scales (the typical wavelength and period of the periodic solution).

One of the most important applied aspects of the Whitham modulation theory is a mathemat-
ical description of dispersive shock waves (DSWs) — coherent unsteady nonlinear wave structures
providing dispersive regularisation of the wave breaking singularities in conservative media. The
fundamental role of DSWs in such media is similar to that of viscous shocks in classical gas and fluid
dynamics. At the same time, DSWs are sharply distinct from their well-studied dissipative counter-
part both in terms of physical significance and mathematical description. Physical manifestations
of DSWs include undular bores on shallow water, nonlinear diffraction patterns in laser optics, and
blast waves in Bose-Einstein condensates.

In this mini-course I shall describe the Whitham method in several formulations applicable to in-
tegrable and non-integrable nonlinear dispersive PDEs. The problem of the formation and evolution
of a dispersive shock wave will be first presented in the framework of the Korteweg - de Vries and
defocusing nonlinear Schrödinger equations and then extended to a general dispersive-hydrodynamic
context by constructing a system of DSW closure conditions playing the role analogous to the clas-
sical shock conditions in viscous fluids. We then consider some applications of the developed theory
to shallow water waves, nonlinear optics and superfluid dynamics.

Sergey Gavrilyuk: “Non-classical description of the classical hydraulic jump.”

The classical hydraulic jump is a natural phenomenon appearing in open fluid flows and charac-
terizing by an abrupt transition from a supercritical flow to a subcritical one. Defining the Froude
number as F = U/ gh, where U is the flow velocity, h is the water depth, and g is the gravity
acceleration, one can express the supercritical-subcritical transition in terms of the Froude number
as F1 > 1 and F2 < 1. Here the subscripts 1 and 2 correspond to the upstream and downstream flow
variables, respectively. The classical shallow water model (Saint-Venant model) fails to explain this
phenomena. It is not able to predict the principal characteristics of the hydraulic jump : the form,
the length and even the sequent depth ratio. This is a reason why hydraulicians Óhave long ago come
to regard the various phenomena of rapidly varied flow as a number of isolated cases each requiring
its own specific empirical treatment (Chow 1959). The aim of this work is to propose a mathematical
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model able to calculate gradually varied flows and, at the same time, some rapidly varied flows such
as hydraulic jumps. The hydraulic jump features depend on the upstream Froude number (see, for
example, Binnie and Orkney 1954, Chow 1959). When the Froude number F1 is smaller than about
1.26, the hydraulic jump is undular, i.e. the free surface is oscillating in the downstream part. The
analytical and numerical study of unsteady undular bores was recently performed by El et al. (2006,
2010) and Lemetayer et al. (2010). They used the Green-Naghdi to study this phenomena. For the
Froude number larger about 1.75 the wholly turbulent jump is formed with a monotonic structure of
the free surface. We derive a conservative hyperbolic two-parameters model of shear shallow water
flows to study the classical turbulent hydraulic jump (Richard, Gavrilyuk, 2012). The parameters
of the model, which are the wall enstrophy and the roller dissipation coefficient, are determined
from measurements of the roller length and the deviation from the Bélanger equation of the sequent
depth ratio. Stationary solutions to the model describe with a good accuracy the free surface profile
of the hydraulic jump. The model is also capable to predict the oscillations of the jump toe. We
show that if the upstream Froude number is larger than about 1.5, the jump toe oscillates with a
particular frequency, while for a Froude number smaller than 1.5 the solution becomes stationary. In
particular, we show that for a given flow discharge, the oscillation frequency is a decreasing function
of the Froude number. This is joint work with G.L. Richard.

Philippe Gravejat: ”Stability for the solitons of the one-dimensional Gross-Pitaevskii equation.”

We present two results in collaboration with F. Béthuel and D. Smets concerning the orbital sta-
bility of multi-solitons and the asymptotic stability of single solitons for the one-dimensional Gross-
Pitaevskii equation.

Mariana Haragus: “Transverse dynamics of gravity-capillary periodic water waves”

The gravity-capillary water-wave problem concerns the irrotational flow of a perfect fluid in a domain
bounded below by a rigid bottom and above by a free surface under the influence of gravity and sur-
face tension. In the case of large surface tension the system has a family of traveling two-dimensional
periodic waves for which the free surface has a periodic profile in the direction of propagation and
is homogeneous in the transverse direction. We show that these periodic waves are linearly un-
stable under spatially inhomogeneous perturbations which are periodic in the direction transverse
to propagation. As a consequence, the periodic waves undergo a dimension-breaking bifurcation
generating a family of spatially three-dimensional solutions which are periodic in both the direction
of propagation and the transverse direction.

Johannes Höwing: “Stability of Solitary Waves in generalized Korteweg-deVries, Boussinesq, and
Euler-Korteweg equations.”

We establish stability of solitary waves for the generalized KdV and for the generalized Boussinesq
equation under the assumption that the nonlinearity p satisfies p′′ > 0 and p′′′ ≤ 0. In particular,
the Boussinesq equation with p(v) = kv−γ with γ ≥ 1 and k > 0 describes the flow of an inviscid
isothermal ideal (barotropic) fluid with capillarity. Under the sole assumption that p is strictly con-
vex, we still can conclude stability of small-amplitude solitary waves in Euler-Korteweg equations,
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such as the generalized Gross-Pitaevskii equation.
At last, we will present a result on stability of solitary waves in an extended Boussinesq equation
with quadratic-cubic nonlinearity which was recently proposed as an alternative to the FitzHugh-
Nagumo equation in the modeling of pulse propagation in nerves.
Joint work with H. Freistühler.

A.M. Kamchatnov: Effects of instabilities and perturbations in the dispersive shock waves theory.

Dispersive shock wave is a nonlinear oscillatory wave structure connecting two flows with different
parameters in a dispersive medium. Theory of dispersive shock waves is well developed for one-
dimensional systems described by completely integrable evolution equations. In Whitham approach,
dispersive shock wave is normally represented as a modulated nonlinear periodic wave within a finite
range of the space coordinate and at one its edge this wave degenerates into linear wave and at the
other edge to solitons. Evolution of this structure as a whole is governed by the Whitham modula-
tion equations. In this talk, we shall discuss generalization of this scheme to taking into account of
small perturbations in the evolution equations and consider effects of several dimensions. We show
that the well-known ”snake” instability of multi-dimensional solitons and, hence, of dispersive shock
waves, can be effectively stabilized by a fast enough flow along solitons so that unstable modes are
convected by flow away from the region of shock generation in experimentally feasible situations.
Besides multi-dimensional effects, small perturbations in the evolution equations can play the role
comparable with the effects of small modulations at asymptotically large time of evolution. The
theory is illustrated by applications to dispersive shock waves in polariton physics.

Christian Klein: “Numerical treatment of nonlinear dispersive partial differential equations.”

We present an overview on numerical methods for dispersive PDEs. For the spatial discretization
of the PDEs, we use spectral methods, i.e. discrete Fourier transforms and expansions in terms of
orthogonal polynomials. We discuss how important analytic information on the solutions can be
obtained from the spectral expansions. Boundary conditions are enforced with tau-methods. The
spatial discretization leads for dispersive PDEs typically to large systems of stiff ODEs. We discuss
stability issues in the time integration and present adapted integration schemes to deal with stiffness.
Concrete examples of numerical studies of dispersive PDEs are presented.

Pauline Klein: “Artificial boundary conditions for Schrödinger equations: Part II”

This talk is the continuation of the talk of Christophe Besse. We consider now generalizations to
nonlinear Schrödinger equations and to the two dimensional case.

L.-M. Rodrigues: “Slow modulations of periodic waves in Hamiltonian PDEs, with application to
capillary fluids.”

In a joint work with Pascal Noble and Sylvie Benzoni-Gavage, we provide in an abstract frame-
work for Hamiltonian PDEs the expected link between the weak hyperbolicity of a slow modulation
averaged system — the well-known Whitham system — and the spectral stability of periodic trav-
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eling waves to side-band perturbations.
Our abstract framework is general enough to recover a wealth of already known results (for

instance for the KdV equation) but most importantly to us general enough to include the Euler-
Korteweg system (EK), a system involved among other things in the description of the evolution of
capillary flows. For the EK system, we’ve carried out numerical investigations of spectral stability
through the verification of the obtained necessary condition.

Kristel Roidot: “Numerical Study of Asymptotic behavior and Blow-up phenomena in NLS equa-
tions.”

Rapid oscillations in solutions are observed in dispersive PDEs without dissipation where solutions of
the corresponding PDEs without dispersion present shocks. To solve numerically these oscillations,
the use of efficient methods without using artificial numerical dissipation is necessary, in particular in
the study of PDEs in some dimensions. As studied PDEs in this context are typically stiff, efficient
integration in time is the main problem. We focus in this talk on NLS equations, mainly the Davey
Stewartson II equations (DS II) (a two-space dimensions generalization of the cubic NLS equation).
In semiclassical limit, the DS II equations show a similar behavior as the nonlinear Schrödinger
equation (NLS) in (1+1) dimensions, i.e. which is characterized by the appearance of dispersive
shocks and the possibility of blowup in the solutions. So far there are no analytic predictions about
solutions of DS in this regime, and it is unclear whether there will be blow-up in this case. Numerical
studies are supposed to provide more insight into these questions. After discussing efficient time
integration of these equations, we present few numerical results about the asymptotic behavior and
blow-up phenomena in their solutions.

Frédéric Rousset: “Multi-solitons solutions of the water-waves system.”

I will describe the construction of semi-global solutions of the full water waves system with surface
tension that behave like a sum of decoupling solitary waves for large times.

Jean-Claude Saut: ”Weakly dispersive perturbations of quasilinear hyperbolic equations”.

Many relevant physical models are weakly dispersive perturbations of quasilinear hyperbolic equa-
tions or systems. This leads to questions of spaces of resolution, existence time, blow-up, existence
of solitary waves, etc,.. We will review the (few) available results and the (many) open questions.
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