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 1. Contexte et positionnement du projet / Context and 
positionning of the proposal

This project concerns the modeling and mathematical analysis of snow avalanches, mud floods and 
torrential  lave  flows.  These  natural  hazards  causes  every  year  numerous  material  and  human 
damages (destruction of roads, buildings,...). With the expansion of tourism in mountain areas, the 
expansion of cities in exposed zones, it is important to have efficient tools to determine the main 
characteristics of this kind of flow: height, velocity, pressure, impact on defence structures, runout 
extent...One possible way of  modeling such flows  is  to  consider  a relatively thin layer  of  fluid 
flowing down a complex topography under the effect of gravity: this type of flow is described by the 
shallow water equations  which is a system of partial differential equations (P.D.E.). These models 
are commonly used for land management and in particular the determination of flood zones and 
the design of defence structures. Shallow water equations are usually derived heuristically from the 
Navier-Stokes equations under simplifying hypotheses: however a careful analysis of the Navier-
Stokes system shows that most of the models derived until now are either incomplete or correct 
under very restrictive assumptions. In the former case, some terms are missing, which may lead to 
inaccuracies, and in the latter, the model is often used out of its domain of validity requiring small 
slope and curvature  and  simple  rheology.  The aim of  this  project  is  the rigorous  derivation  of 
shallow  water  equations  from  the  Navier-Stokes  equations  taking  into  account  different 
characteristics of the flow: we will obtain  new terms involving the influence of topography, fluid 
rheology, and we will include the cases of multifluid flow and of compressible flow. We will  also 
determine precisely the domain of validity of our equations.
  

Consider  a  practical  exemple,  namely  snow  avalanches  and  dense  snow  flows.  The  snow  is 
composed of water molecules that are in several physical states, thus snow can be considered as a 
complex fluid. Moreover this « fluid » is Non Newtonian, that is the deformation rate of the fluid is 
not proportional to the strain tensor. In dense snow avalanches, two layers coexist, one composed 
of powder snow and one composed of dense snow. A complex fluid can be the superposition of 
several layers of fluids with different physical properties (such as density, rheology, physical state). 
These properties can change drastically the behaviour of the fluid and it is important to take into 
account these features to obtain correct predictions. The starting point for modeling the flows that 
we consider are the incompressible Navier-Stokes equations with a free surface: this is a very hard 
problem from the mathematical  point of  view due to the presence of the  free surface and the 
complexity  of  the fluid considered (snow,  muds,...).  Thus it  is  very  important  to obtain  simple 
models  that  are  easier  to  handle.  The  flows  under  consideration  are  all  shallow  i.e.  the 
characteristic fluid height is much smaller than the characteristic length of longitudinal variations of 
the fluid velocity and fluid height. Under this hypothesis, we will obtain  Shallow Water Equations 
that describes the evolution of the fluid height and the average velocity distribution: thus we get rid 
of the free surface problem and decrease the dimension of the problem. 

We  will  derive  new and  generalized  shallow  water  equations  in  physically  relevant  situations, 
particularly for multilayer flows and non Newtonian fluids. When possible, we will justify rigorously 
these computations to validate the models. If this is impossible, we will  compare the numerical 
solutions of our generalized shallow water equations with the numerical solutions of Navier-Stokes 
equations, in order to identify the domain of validity of our models. In order to understand the 
limitations  of  our  models  and  for  numerical  purposes,  we  will  also  study  the  mathematical 
properties of our generalized Shallow Water Equations : well-posedness of the Cauchy problem, 
existence and stability of nonlinear waves: shocks, roll-waves, wave trains.  
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 2. Description scientifique et technique / Scientific and 
technical description

 2.1. État de l'art / Background, state of  the art

This project deals with mathematical problems from fluids mechanics and we will focus on shallow 
flows. More precisely, we consider flows with a characteristic depth that is much smaller  than the 
characteristic wavelength of fluid height and velocity modulations.  This situation occurs usually for 
river, dense snow avalanches, muds floods or ocean circulation. It is important to determine the 
main  characteristics  of  avalanches  and  mud  floods,  so  as  to  manage land  more efficiently  in 
relation to natural hazards. In particular, the determination of hazard zones and defences against 
these hazards depends on an efficient analysis of these destructive flows. The analysis of shallow 
water flows that we propose in this project may also have possible applications in industry . For 
instance the control of thin flows in industrial processes is important: a single decorative layer on 
packaging, design of car windows, windscreens, food fluids...

The physical properties of the fluid, in particular its mechanical properties, can change drastically 
the characteristics of the flows and thus must be described carefully. The fluids that are of interest 
for  applications  and  that  will  be  considered  in  our  project  are  complex  fluids:  these  are  Non 
Newtonian fluids. More precisely, the deformation rate of the fluid is not proportionnal to the strain 
that is applied to the fluid. Rheology is the science which determines theoretically or experimentally 
the constitutive law of a fluid, i.e. the mathematical relation between the strain tensor applied to 
the fluid and the deformation tensor of the fluid.  Among all  the fluids with complex rheological 
properties,  let  us  mention  yield  stress  fluids like  snow or  some industrial  pastes  composed  of 
polymeres:  in  order  to  start  the  flow of  these  fluids,  the  applied  stress  must  exceed  a  given 
threshold. Other fluids like some muds (mixture of water and clay) have an apparent viscosity (the 
« ratio between the strain and the deformation ») which decreases or increases as a function of the 
strain (phenomenon of rheofluidification). The complexity of the flows that are under consideration 
may also be due to the presence of several layers of fluids with different physical properties such as 
density or physical state. This is the case of a snow avalanche, which contains a layer of powder 
snow and another layer of dense snow. This also occurs when water bodies of different salinity meet 
or when muds with disctinc physical properties flow together. 

Let us briefly describe here the state of the art concerning the modeling, mathematical analysis and 
numerical simulations of this class of problems. Further references and a detailed description of the 
objectives will be given in the next sections. 

● Modeling. We propose to study  free surface flows of  complex fluids with  Shallow Water 
equations. Those models are usually proposed in hydrology, since they are more managable 
from a numerical point of view. They are obtained heuristically from the averaged boundary 
layer equations with an assumption on the distribution of the fluid velocity along the height 
of  the fluid.  Most  of  the models  derived until  now are not complete (see e.g.  Piau  for 
Bingham fluids [38]) and may lead to some inaccuracy (see e.g. Ng and Mei for Power-law 
fluids [39]). A more direct derivation of the Shallow Water Equations from the Navier-Stokes 
equations for  Newtonian fluids with a free surface has been proposed only recently for 
horizontal bottoms and small viscosity by J.-F. Gerbeau & B. Perthame [15], and generalized 
by F.  Bouchut and M.  Westdickenberg [4]  for  arbitrary  topographies and flows that are 
almost still  (lake at rest).  For arbitrary viscosity and slope, we derived a Shallow Water 
model with a source term including gravity, a drag term that is due to the viscosity and a 
« small » viscous term (see [24,36] for inclined planes, [23] for arbitrary topographies): this 
derivation is valid for flows that are close to Poiseuille flows. Recently, we have derived new 
shallow water models for  Bingham and  Power Law fluids [28]: this was done through a 
careful asymptotic expansion of solutions to the Navier-Stokes equations in the presence of 
a singular apparent viscosity near the free surface for Power Law fluids and in the pseudo 
plug zone for Bingham fluids. These are the first shallow water models obtained using this 
methodology: we are only aware of lubrication models and inaccurate shallow water models 
obtained in this fashion (see Ng and Mei [39], Balmforth and co-workers [40]).

● Mathematical Analysis.  When writing models, a natural question for a mathematician 
when writing models is the well posedness of the Cauchy problem. The well posedness of 
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inviscid  shallow  water  equations  relies  on  the  theory  of  hyperbolic  systems  and  the 
asymptotic behaviour of solutions in the presence of a source term is analysed through the 
theory of relaxation in hyperbolic systems. When steady solutions are unstable, one can 
prove the existence of roll-waves (Dressler [14], Jin & Katsoulakis [41]): these are periodic 
and  discontinuous  travelling  waves  solutions  of  the  shallow water  equations.  We  have 
recently obtained stability and persistence results for that kind of solutions (Noble [21],[27]) 
by introducing a general framework to studying stability problems in the presence of an 
infinite number of shocks. The existence of  strong and weak solutions for viscous Shallow 
Water equations (that are similar to Barotropic compressible Navier-Stokes equations), is 
now a classical result which has first been proved for a class of unphysical viscous terms 
(see e.g. Lions [42]). The global existence of weak solutions for realistic viscosities dates 
back to 2003 and has been obtained in two space dimension by D. Bresch and B. Desjardins 
[7] with some restrictions (presence of capillarity or a turbulent drag term). There are very 
few results on the mathematical justification of shallow water equations: let us mention 
here  the  mathematical  justifications  of  Shallow  Water  models  obtained  recently  by  D. 
Lannes and co-workers [13,17,18]: the starting point in this case are the Euler equations for 
incompressible and irrotationnal fluids  (water waves). Though the proof uses hard analysis 
and justifies a hierarchy of models, these authors obtained a shallow water model that only 
takes  into  account  hydrostatic  pressure  and  convection.  This  is  not  enough  for  the 
applications we have in mind (e.g. complex fluids, non potential flows). For a mathematical 
justification  of  Shallow  Water  equations  with   a  source  term,  we  have  justified 
mathematically only recently the derivation obtained  by J.-P. Vila [24,36]. 

● Numerical  Simulations.  The  rigorous  justification  of  formal  computations  does  not 
provide any insight on the qualitative and quantitative behaviour of solutions and on the 
limitations  of  the  first  models  we  obtained.  Our  models  can  be  validated  through 
systematical  numerical  simulations  in  order  to  obtain  quantitative  results  that  may  be 
compared to experimental data and to direct numerical simulations of the full Navier-Stokes 
problem. For the numerical simulations of Shallow Water equations and  more generally 
hyperbolic equations with source terms, the design of high order methods is an extremely 
active field. These are in particular finite volumes methods such as WENO (see the works of 
Chi  Wang  Shu  and  co  workers)  and  « well  balanced »  schemes  (see  the  papers  of  B. 
Perthame, F. Bouchut and co-authors [2]) . For the full  Navier-Stokes system with a free 
surface, there are now efficient numerical methods for 2d flows and 3d flows (high order 
Lagrange Galerkin methods and ALE methods for the interface) when the fluid is Newtonian 
or Non Newtonian (see in particular the papers of P. Saramito). these methods are based 
either on finite element or finite volume methods, level set or diffuse interface methods for 
treating the free surface.   

We will  describe our flows by the Navier-Stokes equations with a  free surface: it is a very hard 
problem to analyse mathematically and numerically this kind of system because one has to deal 
with a free surface but also with complex rheology (the fluids are Non Newtonian).  However, we 
plan to study fluid flows in the shallow water regime: this hypothesis is realistic for e.g. dense snow 
avalanches, mud floods or in oceanography. This simplifies the equations: the pressure is almost 
hydrostatic inside the fluid layer and the fluid velocity is almost parallel to the bottom. We then 
obtain the so called  Shallow Water Equations,  which is a system of Partial Differential Equations 
describing the evolution of the fluid height and the discharge rate in the streamwise direction. 
Furthermore,  one  can   obtain  simpler  models  involving  only  the  fluid  height,  the  so  called 
lubrication equations. The main feature of these models is that we get rid of the free surface and 
we obtain a lower dimensional system: we drop the « vertical » space variable and the « vertical » 
component of the fluid speed. The mathematical analysis and numerical simulations are then more 
tractable. Our project will concern modeling, mathematical and numerical analysis of  shallow water 
flows. 

 2.2. Objectifs et caractère ambitieux/novateur du projet / Rationale 
highlighting the originality and novelty of the proposal

       
        The shallow water equations give a simple description of the flow of a fluid layer under gravity and 

their numerical treatment is now standard. However most of the known models are incomplete, 
which leads to inaccuracy. Consider the case of a layer of Newtonian fluid flowing down an inclined 
plane. In order to study the stability of Poiseuille flows, the physicists have obtained through long 
wavelength asymptotic shallow water equations. Linearizing these equations around a stationary 
solution,  one  gets  a  stability  criterion.  Another  procedure  consists  in  linearising  Navier-Stokes 
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equations around a Poiseuille flow and then taking long wavelength expansions. A stability criterion 
can be determined also in this case.  If  everything has been correctly done, these two stability 
criteria must coincide. Only recently, Ruyer-Quil and Manneville in [43] and J.-P. Vila in [36] formally 
derived  shallow water equations for Newtonian fluids that yields the correct stability criterion. In 
the case of Newtonian shallow flows with small viscosity and friction at the bottom, Gerbeau and 
Perthame [15] derived formally a viscous model under the assumption of flat bottom and small 
slope:  Bouchut  et  al.  [4,5]  also  derived  a  formal  model  relaxing  the  assumptions  to  arbitrary 
topographies.  Bouchut  et  al.  [4,5]  also  gave  well  balanced  schemes  for  this  class  of  models. 
However, this analysis has not been carried out yet in more complex situations like non Newtonian 
fluids and Multilayer flows; we plan to study specifically debris flows, snow avalanches and mud 
floods. There is very few studies on the quantitative comparison of the models in order to determine 
their domain of validity. Nonlinear waves will appear in numerical simulations and we would like to 
understand them theoretically  in order to validate our simulations Observe that our knowledge of 
nonlinear waves includes only some informations on roll-waves, solitions and fronts in viscous and 
inviscid shallow water models heuristically derived.

          
          Therefore, our project focuses on four mains tasks.

• Task 1: Mathematical justification of Shallow Water equations from Navier-Stokes 
equations (hydrostatic and non hydrostatic) for Newtonian fluid: we will try to show 
mathematically and numerically that in the shallow water regime,  shallow water equations 
provide a good approximation of Navier-Stokes equations, for Newtonian fluids (which have 
the simplest  rheology among fluids)  submitted to varied forces (gravity,  Coriolis  forces, 
wind traction at the surface) and several kinds of boundary conditions at the bottom (no 
slip, Navier conditions).   

• Task 2: Shallow Water equations for non Newtonian fluids. We will analyse the flow 
of non Newtonian fluids that are commonly found in the literature (Bingham, Power law, 
Carreau and Herschel Bulkley type fluids) and for which experimental data are available 
(mixtures of water and clay, some polymeric mixture, snow): we will establish a hierarchy of 
shallow water  models  for  these fluids through a  direct  asymptotical  analysis  of  Navier-
Stokes  equations.  The  shallow  water  models  and  full  Navier-Stokes  equations  will  be 
analysed both from the mathematical point of view (well posedness, nonlinear waves,...) 
and the numerical point of view (for which efficient methods will be implemented) in order 
to justify mathematically the formal computations.

• Task 3:  Modeling of multilayer flows with distinct physical properties.  We plan to 
derive  accurate  Shallow  Water  equations  from  Navier-Stokes  equations  for  a  fluid 
composed of two layers: one of the motivations is to obtain small but physically relevant 
viscous  terms  in  classical  bilayer  shallow  water  models  in  order  to  get  rid  of  the 
indetermination of non-conservative products in the presence of shocks. The other objective 
is  to  study  bi-layer  flows  when  erosion  and  sedimentation  occur:  this  is  important  for 
practical applications. We will extend these models to a larger number of fluid layers. The 
objective is to investigate (mathematically and numerically) whether multi-layer Shallow 
Water equations are useful to approximate the flow of a fluid with an  arbitrary but finite 
depth provided that the number of layers is sufficiently large. Amélie Rambaud has started 
recently a Ph. D.  thesis  on this particular aspect of our project. 

• Task 4: Analysis of hydrodynamic instabilities. We aim to describe mathematically 
some nonlinear waves that are observed in nature (mascaret, roll-waves, wave packets) 
and propose a description through the shallow water equations: we will try to prove the 
existence of such waves and analyse their stability,  and thus whether they are observable, 
using  methods  from dynamical  systems  and  the theory  of  hyperbolic  systems.   Direct 
numerical simulations on Navier-Stokes and shallow water equations shall help to explore 
the limits of these equations in the unstable regime.

• Recent developments.  A previous version of this project was submitted last year to the 
ANR programme. We point out some recent developments. As a first step, we derived an 
inviscid model in two special cases of non Newtonian flows: Bingham and Power-Law. This 
yields new criteria of stability in particular for Bingham flows [28]. For Power-Law fluids, our 
criterion is the same as the one predicted by a direct analysis of Navier-Stokes equations: 
this is part of a work in progress (P. Noble, L. Chupin, J.-P. Vila) and we aim to prove the well- 
posedness  of  free  surface  Navier-Stokes  equations  for  Power  Law  fluids  in  the 
neighbourhood  of  steady  solutions.  In  collaboration  with  E.D.  Fernandez-Nieto,  we 
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investigate numerically our Bingham shallow water equations and the influence of the new 
stability criterion. We have also obtained inviscid shallow water equations for bi-layer flows 
for an arbitrary  slope: we have derived a stability criterion for steady solutions and we are 
studying the conditions of the onset of roll-waves. More generally, during the last two years, 
we  achieved  several  important  steps  towards  the  understanding  of  the  roll-wave 
phenomenon (stability in viscous and inviscid shallow water equations for Newtonian fluids 
[21,25,27], existence in general hyperbolic systems [26]). We have also justified rigorously 
in  [24]  the shallow water  model  obtained by J.-P.  Vila  for  a two dimensional  flow on a 
inclined plane  and we have extended formally his computations to arbitrary topographies 
[23]. 

• Innovative aspects. The shallow water equations are commonly used to describe free 
surface flows because they are mathematically and numerically simpler than Navier-Stokes 
equations.  However  heuristically  derived  models  may  be  quite  inaccurate  and  their 
numerical  simulations inherits this inaccuracy. A systematic and mathematically justified 
derivation method for this class of models has not yet been performed.
The novelty of our project is (1) to tackle non Newtonian and multilayer fluids (2) to obtain 
shallow water models as mathematically proved as we can (3) to validate the domain of 
applications of the approximation by numerical comparison between our models and direct 
numerical  simulations  of  Navier-Stokes  equations  (4)  to  obtain  as  much  qualitative 
informations on coherent structures as possible also to validate our models.
Our new shallow water models may improve the physical understanding of natural hazards 
such  as  snow  avalanches,  mud  floods,  torrential  lava  and  debris  flows.  The  possible 
applications  are  likely  to  answer  pratical  problems  like  the  land  management 
(determination of the extension of an avalanche) and engineering problems such as the 
design of defence structures.

 3. Programme scientifique et technique, organisation du 
projet / Scientific and technical programme, project 
management

 3.1. Programme scientifique et structuration du projet / Scientific 
programme, specific aims of the proposal

We have  divided  the  project  into  4  main  tasks  with  4  persons  who  will  be  in  charge  of  the 
coordination of each task (this shall be made precise in the scientific presentation of the tasks). The 
4 main tasks are noted T1,T2,T3,T4. If accepted, the project will last four years: in what follows, we 
have noted Tij a part of the task Ti that will treated during the year j.

• Task 1:   Mathematical justification of the derivation of shallow water equations from Navier-  
Stokes  equations  (hydrostatic  and  non  hydrostatic)  for  a  Newtonian  fluid.  The  viscous 
shallow water equations obtained formally by Gerbeau and Perthame [15] provide a good 
approximation of Navier-Stokes equations and we will try to understand the quality of this 
approximation.  We  plan  to  analyse  first  the  derivation  procedure  applied  to  the  2d 
hydrostatic  Navier-Stokes  equations  with  free  surface  (T11).  Next  step  will  be  the  3d 
problem in the presence of Coriolis forces and wind traction: we will first try to establish the 
well-posedness of these equations and estimate the quality of approximation by viscous 
shallow water equations (T12). Finally, we plan to analyse the derivation procedure when 
applied to the full 2d Navier-Stokes system with free surface (T14). We will also determine 
the limits of this approximation through a direct numerical investigation of the problem. We 
will first compare numerical simulations of the inviscid shallow water obtained in [24,36] 
and direct simulations of the Navier- Stokes system with a no-slip condition at the bottom 
(T12,  T13).  Then  we  will  investigate  numerically  the  approximation  of  Navier-Stokes 
equations with a Navier slip condition at the bottom by viscous shallow water equations 
derived in [15] (T13). 
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• Task 2:   Shallow Water equations for non Newtonian fluids. We will analyse the flow of non 
Newtonian fluids commonly found in the literature and for which experimental  data are 
available (mixtures of water and clay, some polymeric mixture, snow). We will establish a 
hierarchy of Shallow Water models for non Newtonian fluids : Herschel Bulkley, Carreau, 
biviscous fluids, and for this purpose we will use a direct asymptotical analysis of Navier- 
Stokes system.  As in the Newtonian case [24],  we will  first  try to derive shallow water 
equations for  non Newtonian fluids  (T21) and this  will  give a first  stability  criterion of 
stationary solutions. We will also try to understand and analyse Poiseuille flow in the non 
Newtonian case and if  possible we will  linearize Navier-Stokes system around Poiseuille 
flow,  look  for  a  stability  criterion  and  hopefully  validate  thus  the  above  shallow water 
models  (T22). In the simpler cases (e.g. Power-Law fluids), we will  investigate the well-
posedness of Navier-Stokes equations with free surface, the spectral stability being the first 
step of the analysis. We hope that, as in the Newtonian case, this analysis will help up to 
justifiy rigorously the shallow water models for some particular non Newtonian fluids (T23-
T24). As in task 1, we will try to determine numerically the quality of approximation by 
comparing numerical simulations on our shallow water models (T21) and direct numerical 
simulations of Navier-Stokes system (T23-T24).

• Task 3:   Modeling of multilayer flows with distinct physical properties.  We aim to derive 
shallow water equations from Navier-Stokes equations for a fluid composed of two layers of 
fluid (T31). The existing models are either inaccurate or inviscid. These inviscid models are 
hyperbolic non conservative systems, and they are obtained by stopping the expansion at a 
small numbers of terms. Pares and co-workers [8,29] have worked on shock solutions of 
these non conservative systems, they basically construct a path in order to determine the 
shock and they find that their  shocks are path dependent.  Vanishing viscosity methods 
allow for a unique shock of the path, but the question is to determine a physically relevant 
viscosity. This can be accomplished by obtaining more terms in the expansion (see the work 
of Vila [36] in the single layer case) Then we will simulate non conservative flows with a 
path  justified  by  physical  viscosity  or  directly  the  viscous  models  of  the  flow  (T32). 
Moreover,  we  will  investigate,  at  least  formally,  the  mass  transfer  between  two  layers 
(sedimentation,  erosion):  including  this  phenomenon  in  the  model  and  the  numerical 
simulations is of great  practical importance if one wants to understand snow or submarine 
avalanches and their impact on the bottom (T33). Next step is to extend the analysis to a 
larger number of layers and try to see whether multilayer Shallow Water equations can be 
used to approximate the flow of a fluid with an arbitrary but finite depth provided that the 
number of layers is sufficiently large. We will try to relate rigorously the multi layer Shallow 
Water models with primitive equations and stratified quasi-geostrophic equations that are 
commonly  used  in  oceanography  and  meteorology  (T32-T33).  We  will  also  work  on  a 
numerical validation of this approach similarly as in the single layer case (T32-T34). 

• Task 4:   Analysis of hydrodynamic instabilities. An interesting property of the shallow water 
models is  that they can describe the transition to instability in free surface flows.  One 
observes coherent structures in these flows: solitary waves (tidal bore in the river Gironde), 
roll-waves (in spillways of a dam, rivers,...) and more complicated phenomena. We aim to 
prove that some solutions of our shallow water equations describe these waves and we will 
study  their  existence  (T41-T42) and  their  stability  (T43-T44) using  the  methods  of 
dynamical systems and hyperbolic partial differential equations. Note that the question of 
existence  of  roll-waves  in  our  models  is  not  straightforward:  for  instance,  it  is  a  hard 
problem to prove the existence of inviscid roll-waves in bilayer flows (see e.g. [26] for the 
problem formulation and mathematical issues). In our project, we will focus on the stability 
of roll-waves. Indeed there are very few studies on the stability of periodic travelling waves 
in  the  conservation  laws  setting  and  the  roll-waves  phenomenon  is  a  very  interesting 
exemple of periodic travelling waves in hyperbolic systems. As a by-product of the analysis, 
we expect to prove that even in the case where the derivation of shallow water equations is 
not fully justified mathematically (as in unstable regime), these models are still usefull to 
describe shallow flow with a free surface. This analysis is an important step towards the 
validation of the models and of the numerical schemes designed for these models.
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 3.2. Coordination du projet / Project management

We  recapitulate  here  the  organisation  of  the  project  described  above.  Underlined  are  the 
coordinator(s) of the task. 

T1: Mathematical justification of shallow water equation for Newtonian fluids. 
➔ Participants: P. Noble, D. Le Roux, L.-M. Rodrigues, S. Delcourte.

T2: Shallow water equations for Non Newtonian fluids.
➔ Participants: L. Chupin, J.-P. Vila, P. Noble, S. Delcourte.

T3: Multilayers Shallow Water equations
➔ Participants: F. Filbet, P. Noble, A. Rambaud, D. Le Roux.

T4: Mathematical analysis of hydrodynamical instabilities.
➔ Participants: P. Noble, J.-P. Vila,  L.-M. Rodrigues, V. LeBlanc.

➔ First year  :  T1 : Mathematical justification of viscous shallow water equations from 2D 
hydrostatic Navier-Stokes equations  T2: Derivation of Shallow Water equations for fluids 
with Herschel-Bulkley law. Numerical simulations of the shallow water models for Bingham 
and Power Law fluids.  T3: Derivation of  viscous bilayer  Shallow Water  models and well 
posedness of the system. T4: Spectral analysis of roll-waves in the large wavelength limit. 
Existence of inviscid roll-waves in bi-layer flows and Bingham/Power law fluids.
➔ Second  Year:   T1:  Mathematical  justification  of  Shallow  Water  equations  from  3D 
hydrostatic equations for Newtonian fluids with/without capillarity and/or in the presence of 
Coriolis  forces.  Numerical  simulations  of  free  surface  Navier-Stokes  equations  and 
comparison with Shallow water equations: first tests. T2: Stability analysis of Navier- Stokes 
and  Shallow  Water  equations  for  complex  fluids  (Power  Law,  Bingham,  Carreau).  T3: 
Numerical simulations of multi-layer shallow water equations. T4: Existence and stability of 
periodic travelling waves for shallow water equations with capillarity. 
➔ Third year  : T1: Comparison of Shallow Water equations with free surface Navier-Stokes 
eqs:  test  cases  in  the  instability  regime:  formation  of  roll-waves,  dam break.  T2:  well 
posedness of  free surface Navier-Stokes equations for Non Newtonian fluids (power-law, 
Carreau  law).  T3:  Derivation  of  shallow  water  equations  in  the  presence  of 
sedimentation/erosion and numerical simulations. Mathematical convergence of multilayer 
Shallow Water equations to primitive equations and stratified quasi-geostrophic equations. 
T4: Stability of roll-waves in the vanishing viscosity limit.
➔ Fourth  year  :  T1:  Rigorous  derivation  of  viscous  shallow  water  equations 
(Gerbeau/Perthame model)  from the full  (2d)  Navier-Stokes  equationsT2:   Mathematical 
analysis  of  Shallow  water  equations  for  yield  stress  fluids.  Comparison  of  numerical 
simulations of  Navier-Stokes and shallow water equations for non Newtonian fluids.  T3: 
Numerical  comparison  of  multilayer  shallow  water  equations  and  primitive 
equations/stratified  quasi-geostrophic  equations.  T4:  Nonlinear  stability  of  roll-waves: 
analysis of slow modulations. 

 3.3. Description des travaux par tâche / Detailed description of the 
work organised by tasks

 3.3.1 Task 1: Mathematical justification of shallow water equations for 
Newtonian fluids

The purpose of this study is to prove rigorously that one can obtain the Shallow Water equations 
from the full Navier-Stokes equations with a free surface in the asymptotic « shallow waters » and for 
a Newtonian and incompressible fluid. This is the most simple situation that we can imagine for the 
type of flows we study. We shall consider different forces (gravity, Coriolis forces, wind traction) and 
different kind of boundary conditions (no-slip conditions, Navier conditions, Coulomb friction). We 
plan to focus on the derivation of shallow water equations from hydrostatic Navier-Stokes equations 
(also called primitive equations) that are commonly used in oceanography before dealing with the 
more involved case of the full Navier-Stokes system.
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       a) Rigorous Derivation of Shallow water equations 
       
• Existing results. There are very few results in the literature concerning the derivation of the 

shallow water equations from Navier-Stokes equations through an asymptotic expansion in 
the  shallow  water  regime:  see  e.g.  J.-F.  Gerbeau  and  B.  Perthame  [15]  for  a  formal 
derivation of a viscous shallow water model in the two dimensional case for a Newtonian 
fluid  with  small  viscosity  and  a  Coulomb  friction  term and  D.  Lannes  and  co-workers 
[17,18] for a rigorous derivation of Shallow Water equations without source terms from 
Euler equations.

• A  first  step  in  the  justification.  For  a  Newtonian  fluid  with  arbitrary  viscosity  flowing 
downward an inclined plane with a no slip boundary condition at the bottom, we have 
obtained formally a hierarchy of Shallow Water models with a source term containing the 
effects of  gravity and viscosity (see Vila [36] for more details).  This approach yields a 
stability criterion for steady flows that is consistant with the criterion obtained directly 
from the analysis of  the full  Orr-Sommerfeld equations in the long wavelength regime. 
These computations are justified rigorously for a low Reynolds number (laminar regime) 
and in the presence of  capillarity  (see Noble  & Bresch [24]).   However,  there are  no 
numerical simulations in this case, which determine quantitatively the limitations of this 
model (see  next section).

• Further developments.  The model that we justified rigorously does not take into account 
many relevant physical situations such as the presence of Coriolis forces for 3-dimensional 
flows, wind traction at the upper surface and other boundary conditions (Coulomb friction 
term). The model is limited to flows with a non vanishing slope and for large capillarity. 
Moreover, the model is inviscid and does not give the form of the relevant viscous terms in 
shallow water equations. We will attempt the horizontal bottom case and in particular we 
will try to justify rigourously the 1d  model proposed by J.-F. Gerbeau and B. Perthame [15] 
and generalised by F. Marche [44] in the 2d case. We will first start with the derivation of a 
viscous  shallow water  model  from 2d  hydrostatic  Navier-Stokes  equations:  we  plan  to 
extend to thin free surface flows the approach developed by Temam/Ziane in  [45]  for 
Navier-Stokes equations in thin fixed domains. When this step is achieved, we shall try to 
understand the problem in the 3d setting for hydrostatic Navier-Stokes equations and then 
for the full 2d Navier-Stokes system. 

 
    
             b) Numerical validation of the Shallow Water equations.
  

This part of the analysis is important since there is very few studies on this subject. Here 
our purpose is to validate the Shallow Water model that we have rigorously justified [24]. 
More precisely, we would like to provide numerically a quantitative limit of validity for the 
Shallow Water  model  through a  direct  comparison with  Navier-Stokes  system.  Although 
such a limit is important, it is rarely taken into account in the area of hydraulic shallow 
flows. The numerical simulations of shallow water equations in this setting will not present 
particular difficulties since there are many high order  numerical  schemes which can be 
used (finite volume methods for hyperbolic equations like WENO)  to perform simulations of 
hyperbolic Shallow Water  equations.   We will  discretize source terms so as to conserve 
exactly the steady solutions: here we will  use   well balanced  schemes. There is a huge 
literature on this kind of  methods: let us mention the works of Pares, Castro, Nieto [29] on 
the  analysis  and  implementation  of  these  schemes  and  the  papers  of  B.  Perthame,  F. 
Bouchut and co-workers on their mathematical properties [5]. Concerning the numerical 
simulations of Navier-Stokes equations and in order to simplify the problem, we will restrict 
our attention to the 2d vertical case, for which there exists different numerical methods: 
finite elements methods (ALE), level set or diffuse interface methods in order to treat the 
free surface motion. The results of numerical simulations of 2d Navier-Stokes systems with 
free  surface  corresponding  to  the  hydrostatic  and  non  hydrostatic  cases  (with  finite 
elements methods, diffuse interface, level set methods) will be compared with those of the 
Shallow Water equations. The simulation of dam break flows and roll-waves generation will 
be performed. A particular attention will  be dedicated to the instability threshold in the 
presence of a varying bottom topography.

 
Task 1 will be supervised by P. Noble (theoretical part) and D. Le Roux (numerical part) in 
collaboration with L.M. Rodrigues (mathematical justification) and S. Delcourte (numerical 
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analysis of the problem). P Noble and L.M Rodrigues will be in charge of the mathematical 
justification of derivation of viscous shallow water equations from Navier-Stokes equations: 
P.  Noble  has  already  an  experience  in  the  mathematical  justification  of  shallow  water 
equations and L.M. Rodrigues has studied during his Ph.D. thesis compressible barotropic 
Navier-Stokes equations that are close in structure to viscous shallow water equations. We 
plan a   collaboration on this particular part of the project with D. Bresch (University of 
Savoie).  D. Le Roux and S. Delcourte will  be in charge of the numerical comparison of 
Navier-Stokes and Shallow Water equations and will supervise a post-doc student on this 
subject:  they  have  a  strong  experience  in  the  numerical  simulation  of  Navier-Stokes 
equations with finite elements methods and we will collaborate with E.D. Fernandez-Nieto 
who is an expert in the numerical simulation of shallow water equations.  

         3.3.2 Task 2: Shallow Water equations for non Newtonian fluids

a) Formal derivation of Shallow Water equations for non Newtonian Fluids

• Position of the problem. Fluids like muds, dense snow, lava, some paints and polymeres are 
non Newtonian fluids: in general, the deformation tensor of the fluid is not proportional to 
the strain tensor. In several cases, the strain must be larger that a given threshold for the 
fluid to start to flow: these fluids are called yield stress fluids. The apparent viscosity of the 
fluid (the ratio between the norm of strain tensor and the norm of deformation tensor) is an 
increasing or nonincreasing fonction of the deformation tensor; in other words, the viscosity 
of such fluids depends on strain. From experimental  measurements on simple Poiseuille 
flows, one can determine the rheology of the fluid: this is a mathematical relation between 
the strain tensor and the deformation tensor.  The models that are usually found in the 
literature are Bingham model and Hershel Bulkley  model for yield stress fluids. For fluids 
with an apparent viscosity depending on the deformation rate,  one usually  uses either 
power-law models  or regularized versions of  power laws (like Ladyzhenskaia or Carreau 
laws). For the applications we have in mind, we plan to analyse the flow of non Newtonian 
fluids in the  shallow water limit.  Most of  the models that are used in this situation are 
lubrication models with one equation on the fluid height. However their domain of validity is 
restricted to small modulations of the free surface: we have to obtain models with a wider 
domain of validity. The only models of Shallow Water type we are aware of, which are used 
for non Newtonian fluids are derived heuristically from the boundary layer equations: they 
are not incomplete and inaccurate from a physical point of view [38],[39],[40].

• Aims and methodology.  As a first step,  we aim to derive shallow water  equations from 
Navier-Stokes  equations  using  the  formal  asymptotic  method  already  applied  in  the 
Newtonian case.  Then we will  see what  are  the new terms due to the non Newtonian 
rheology.  Recently,  in  collaboration  with  E.D.  Fernandez-Nieto  (Univ.  Sevilla),  we  have 
obtained shallow water models both for  Bingham fluids  and  Power-Law fluid with similar 
methods: the main issue here is the singularity of the apparent viscosity either near the 
free surface (for Power law fluids) or in the interface between the viscous and the plug zone 
(for Bingham fluids) [28]. As a by-product of this analysis, we have obtained new criteria of 
stability under long wavelength perturbations. We plan to investigate the physically more 
relevant case of Herschel Bulkley fluids, whose constitutive law combines a power- law with 
yield stress, the Carreau type law, which is commonly used to regularize the Power-Law 
model and bi-viscous models, which are regularized versions of Bingham fluids: the main 
purpose is to obtain shallow water equations for physically relevant situations and to see 
whether the resulting models are close to the ones we have obtained for Bingham and 
Power-Law  fluids.  We  will  determine  whether  it  is  admissible  to  use  these  regularized 
versions to describe Power-Law and Bingham fluids in the long wavelength limit. We will 
also develop numerical methods for this new type of Shallow Water flows in order to fit our 
model to experimental data. We have contacted G.M. de Freitas , University of Sao Paulo 
(Brazil) who will carry out experiments for this kind of fluids.
            
b)  Well  posedness  of  Navier  Stokes  equations  with  free  surface  and shallow 
water equations in the non Newtonian case.    
 

• Position of the Problem. We aim to perform the most rigorous possible derivation of shallow 
water equations for non Newtonian fluids from Navier-Stokes equations. To our knowledge, 
there are no mathematical results on the existence of solutions for Navier- Stokes equations 
for Non Newtonian fluids  in the presence of a free surface. The only known results 
concern fixed domains in the non Newtonian case: see the work of L. Chupin, C. Guillopé 
and J.C. Saut [6,9,10,16] for viscoelastic fluids  or the papers of Malek, Necas [46] and co-
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workers for Power-law fluids and regularized version like Ladyzhenskaia law. One possible 
way  to  compare  the  two  models  is  to  consider  the  linearized  equations  in  the 
neighbourhood  of  steady  solutions:  in  the  Newtonian  case,  one  can  see  that  the  two 
linearized systems predicts the same linear instability threshold in the long wavelength 
limit.  In  the  non  Newtonian  case,  the  computation  of  the  analogue  of  Orr-Sommerfeld 
equations  (linearized  Navier-Stokes  equations)  is  harder  since  in  general  the  steady 
solutions cannot be extended above the free surface (in contrast to  Newtonian fluids). The 
problem is even worse in the case of Bingham fluids where a linearization procedure has to 
be written rigorously: for this case, we will use the formulation established by D. Bresch and 
co-workers [37] to derive rigorously linearized equations for Bingham fluids. As of now, the 
only stability results for Navier-Stokes system are consequence of results for shallow water 
models! It is important here to provide a mathematical framework for the direct study of 
the linear stability of steady solutions of Navier-Stokes system. This is an important step 
towards the well-posedness of free surface Navier-Stokes equations and the mathematical 
justification of shallow water equations.

• Purpose and methods.  In order to avoid the singularity due to yield stress, we will first 
restrict our attention to power-law fluids and generalized version like Ladyzhenskaia and 
Carreau type laws: the purpose is to obtain well-posedness results in the presence of a free 
surface and thus to generalize results, which were obtained only in fixed domains. In the 
particular case of power-law fluids, the viscosity diverges to infinity in the neighbourhood of 
the free surface:  it  is important here to give a rigorous meaning to the linearization of 
Navier-Stokes equations. We will also analyse the case of Carreau laws, for which no such 
problem occurs in the linearization process, but, of course, the linear problem degenerates 
when the Carreau fluid is « close » to a power-law fluid. In the case of a Carreau fluid, we 
will  investigate the Orr-Sommerfeld equations both numerically  and through asymptotic 
calculations in the long wavelength limit in two regimes: either almost Newtonian or  Power-
Law. In order to clarify this description let us observe that the Orr-Sommerfeld equations are 
linear  equations obtained after  Fourier transform in the longitudinal  space variable and 
Laplace transform in time. This still contains differentials in the vertical direction. The long 
wavelength limit corresponds to an approximation for small wave numbers, we will analyse 
in this limit the spectrum of this equation. We will compare this spectrum with the spectrum 
of  linearized  Shallow  Water  equations.  We  believe  that  this  process  will  enable  us  to 
validate the asymptotic expansions. When Poiseuille flows are spectrally stable, we expect 
to prove the well-posedness of Navier-Stokes equations as for Newtonian fluids.This is the 
first  step of  a mathematical  justification of  Shallow Water  equations (see [24]  for more 
details in the Newtonian case). We will then focus on the Bingham case and use the weak 
formulation of Bresch and co-workers [36]. First we will write a linearization of Navier-Stokes 
equations  near  a  Poiseuille  type  flow  and  then  we  will  possibly  obtain  well-posedness 
results for Navier-Stokes equations with a Bingham fluids assuming the flow is shalllow and 
close to a Poiseuille.  

           
Task  2  will  be  supervised  by  J.-P.  Vila  (modeling  and  numerical  simulations)  and  L.   Chupin 
(theoretical  aspects)  in  collaboration  with  P.  Noble  (formal  derivation  of  SW  eqs,  analysis  of 
linearized  Navier-Stokes  equations  for  non  Newtonian  fluids,  well  posedness  aspects)  and  E.D. 
Fernandez  Nieto  for  numerical  aspects  concerning  the  numerical  simulation  of  shallow  water 
equations for  non-Newtonian fluids.   J.-P.  Vila  will  be  in  charge of  the modeling and numerical 
aspects of that task: he has a strong experience on modeling aspects of shallow water flows and 
numerical  simulations  of  free  surface  flows  (Navier-Stokes/Shallow  Water  equations).  Sarah 
Delcourte will  also work on the numerical  aspect of  this task,  extending the work done in the 
Newtonian case. L. Chupin will be in charge of the theoretical aspects of the task especially the well 
posedness of Navier-Stokes equations for Non Newtonian fluids: his experience in thin films of non 
Newtonian fluids (Hele Shaw type) will be usefull here to tackle the main issues of this task. 

        3.3.3 Task 3: Multilayers Shallow Water Equations.

a) Multilayer Shallow Water equations with no mass exchange.

• Position  of  the  problem.  Snow  avalanches,  mud  floods  or  torrential  lava  are  usually 
composed of several layers of fluids or different phases with distinct physical properties 
(density,  viscosity,  salinity,  powder  snow/dense  snow,  sediments).  One  also  finds  this 
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stratification phenomenon in oceanography and meteorology, where ocean or atmosphere 
are constituted of several layers of fluid with different densities. It is thus important to take 
into account this situation in order to obtain realistic models. The simplest case concerns bi-
layer  flows.  Most  of  the bi-layer  Shallow Water  models  that are commonly used in the 
literature  are  non  conservative  hyperbolic  systems.  This  could  be  the  source  of 
mathematical  and numerical  problems in the presence of shocks: one has to define an 
admissible shock (see e.g. the papers of Pares [8,29] for the special case of bi-layer shallow 
water  equations).  Admissible  shocks  are  not  uniquely  defined:  one  possibility  is  to 
regularize the problem by inserting a vanishing viscosity, as in to the conservative case, in 
order to obtain admissibility conditions. However, the admissibility conditions highly depend 
on the form of the viscosity. We have to write physically relevant viscous terms.  The known 
extensions of bi-layer models to more layers suffer from the same indetermination. 
The second application we have in mind for multi-layer flows is the description of a fluid 
with a free surface and an  arbitrary depth.  We think particularly of a fluid with vertically 
varying density. The main idea is to cut the layer into thin layers of fluid of constant density, 
and use thin layer models (lubrication models,  shallow water models):  this method has 
been introduced by Pedloskii to describe density stratified geostrophic flows. Starting from a 
description  with 3d Euler equations, a coupled system of 2d quasi geostrophic equations is 
obtained.  However this kind of models are only valid in the geostrophic limit and it could be 
useful to consider multilayer shallow water equations that are valid in a wider range. Note 
that we have to be careful in the approximation process since for an homogeneous fluid 
(constant density) the resulting system is not hyperbolic (see Audusse [1,2]).

• Aims ans Methods. The method that we introduced  (see the paper of J.-P. Vila [36] and [24]) 
has the advantage of giving  physically relevant viscous terms in the case of a single layer 
of fluid. We aim to apply this method to obtain a bi-layer shallow water model  from Navier-
Stokes equations for two fluids with distinct densities and viscosity. We will expand up to 
second order with respect to the aspect ratio, in order to determine which viscous terms 
must appear in shallow water models. We plan to study different physical situations: the 
easiest one is the case with friction at the bottom and at the interface between the two 
fluids. We expect to obtain in this particular case a natural extension of the single layer 
model derived by Gerbeau and Perthame [15]. We will try to understand the case of an 
arbitrary slope with a no slip condition at the bottom and at the interface: as shown by J.-P. 
Vila [36] in the single layer case, we expect a complicated viscous term and we plan to 
explore the case of small amplitude solutions in order to simplify the situation. 
The second part of the analysis concerns the approximation of a fluid of arbitrary depth as a 
superposition of thin layers of fluids for which simple models exists. We plan to continue the 
first modeling step that E. Audusse initiated [1,2]: he obtained  a multilayer Shallow water 
system, which approximates the boundary layer equations. This formal result is « optimal » 
in the sense that one cannot obtain an approximation of the full Navier-Stokes system with 
a superposition of  layer  of  fluids modeled by Shallow Water  equations:  the pressure is 
necessarily hydrostatic within the whole fluid. The system obtained by E. Audusse is not 
hyperbolic.  Therefore,  we  will  analyse  a  regularized  version  of  it  by  adding  a  physical 
viscous  term in  the  momentum equations  in  each  layer:  actually,  we  consider  here  a 
multilayer approximation of the primitive equations with a free surface. We will try to prove 
the existence of weak/strong solutions for this system following the methods introduced by 
P.L. Lions [42] for compressible fluids and D. Bresch & B. Desjardins [7] for shallow water 
equations  with  a  physically  relevant  viscosity.  When  this  step  is  achieved,  we  plan  to 
consider the limit of an infinite number of fluid layers and we will try to prove convergence 
to the primitive equations. We will investigate the effects of Coriolis forces and explore the 
geostrophic limit in order to connect the multilayer Shallow water model with the multilayer 
quasi-geostrophic  models   written  by  Pedloskii  [47].  This  asymptotic  analysis  will  be 
validated by numerical simulations comparing multilayer models with models possessing a 
free surface (here the primitive equations). Amélie Rambaud has started a Ph. D. thesis on 
this particular problem in September 2008.  

 
     b) Sedimentation and erosion: multiphase modeling.

• Position of the problem. We plan to focus on the special problem of the exchange of mass that 
occurs e.g. between two layers of snow with an avalanche of powder snow and a snow mantle 
composed of dense snow. In fact, in such cases the dense snow mantle is eroded at the front of 
the avalanche, which raises the height of the avalanche. Meanwhile, sedimentation occurs at 
the tail of the avalanche with deposits of snow on the ground and mass loss. When the mass 
loss is large enough, the propagation of the avalanche is stopped. One also finds this kind of 
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behavior with the sediment transport within rivers and this can dramatically change the river 
bed.  It  is  then important to take into account the mass exchange in the equations,  when 
considering  multilayer  models.  Even  if  the  notions  of  erosion  and  sedimentation  may  be 
intuitively captured, a physical description remains a difficult task (and could be the subject of 
a full project). However, there exist now phenomenological descriptions like BCRE or BRDG 
models  (see [48],  [49],  [50]  for  more details)  and shallow water  models  (with  erosion)  of 
Savage Hutter type: the fluid is supposed to satisfy a Mohr Coulomb law. They were derived  in 
[51] assuming smallness of bottom curvature.  

• Purposes. In order to take into account the transportation of sediments and erosion in shallow 
water models, we will follow the methodolgy developed by Bouchut and co-workers in [51]. 
Instead of  working with Euler  equations,  we will  work  with  Navier-Stokes equations (with 
possibly  several  rheologies):  the  first  step is  to  write  the  equations  in  a  reference  frame 
attached to the bottom, namely the interface between fluid and sediment and then to derive 
shallow  water  equations  in  that  setting.  We  will  follow  the  calculations  performed  in  the 
Newtonian case for  arbitrary  topographies [23]. In order to close the equations, we need an 
equation for the evolution of the bottom surface: we will  employ here the classical models 
found in the literature (BCRE, BRDG models). The aim of this study is to extend the study in 
[51] to more general fluids (Newtonian and Non Newtonian flows) and for arbitrary bottom 
topography  (no restriction on curvature) and to determine precisely the new terms describing 
the influence of sedimentation and erosion. From the numerical point of view, we plan to the 
work with E. Fernandez-Nieto who already developed numerical schemes dealing with such 
models  [51].  We will  also  analyse  the  mathematical  properties  of  these  models,  giving  a 
particular  attention  to  the  influence  of  sedimentation/erosion  on  the  stability  of  steady 
solutions and possible formation of nonlinear waves.

Task  3  will  be  supervised by F.  Filbet  (numerical  aspects);  who is  a  specialist  of  finite volume 
methods and hyperbolic systems and P. Noble (theoretical aspects): more precisely a Ph. D. thesis 
on the relation between multilayer flows and primitive equations with free surface and an arbitrary 
depth has started in september 2008 (Ph. D. student: Amélie Rambaud) with P. Noble and F. Filbet 
as advisors.  J. -P. Vila will also work on the modeling aspects of multilayer flows. We plan also to 
collaborate with the groups of Sevilla and Malaga (E. Fernandez-Nieto, C. Pares, M. Castro).  These 
groups use very simple paths for the shocks in non conservative bi-layer models and we want to 
compare their approach with ours.

        3.3.4 Task 4: Mathematical Analysis of Hydrodynamic instabilities 
        
     

a) Existence of travelling waves.

• Position of the problem. Many nonlinear wave propagation phenomena at the free surface of a 
fluid are observed like tidal waves in the river Gironde, roll-waves in river and channels. It is a 
difficult task to construct solutions of Navier-Stokes equations which possess these behaviours. 
Therefore simplified models are usually considered. As an exemple, in the problem of water 
waves,  one usually uses the Korteweg deVries equations to describe the propagation of  a 
solitary wave at the free surface.  In the situations under consideration, a similar approach 
would lead to single equation models like Burgers equations or Benney type equation, which 
do  not  admit  such  waves  as  solutions:  in  fact  Benney  equations  only  predict  the  correct 
behaviour  of  small  amplitude solutions  in  the stable regime.  In  the unstable regime,  it  is 
important to use the shallow water model to obtain roll-waves [14,41] and other travelling 
waves. The main task here will be to understand the conditions of formation of these particular 
waves as solutions of the shallow water equations since they are usually undesirable: think of 
high pressures on protection devices or in fish passes, floodin rivers or artificial channels. It is 
important to eliminate or at least control the formation of such waves.  We plan to study the 
formation of nonlinear waves in shallow water flows of complex fluids with the models that we 
will develop. It is also important to understand the main properties of these waves, since they 
can enable us to validate the numerical schemes for shallow water models. We will focus on 
two types of travelling waves that are commonly observed in nature: solitary waves (such as 
tidal wave in the river Gironde) and periodic travelling waves (like roll-waves in channels). This 
type of solutions is known to exist for a particular class of Shallow Water equations since the 
seminal work of Dressler [14]: typically, there is a family of periodic solutions parametrized by 
the discharge rate and the period, which converges to a solitary wave as the period goes to 
infinity.  These  waves  are  discontinuous;  they  admit Lax  shocks.  Considering  a  viscous 
perturbation of the shallow water equations analyzed by Dressler [14], we have proved that an 
analogous scenario takes place with continuous roll-waves and solitary waves  that are close to 
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Dressler roll-waves for vanishing viscosity. 

• Aims and methods. We wish to complete the analysis by considering the shallow water models 
obtained within this project and possibly to try to understand the existence of  wavelength 
selection. We will focus on the models for complex fluids such as  Bingham fluids, Power-law 
fluids,  fluids with  capillarity and multi-layer  fluids.  We plan to separate the study into two 
parts: (1) roll-waves in inviscid shallow water models and (2) roll-waves in viscous or capillar 
shallow water equations. Concerning inviscid equations and in particular Bingham fluids, there 
is very few existence results for periodic travelling waves: let us mention the work of G.M. 
Maciel and J.-P. Vila [19] on the existence of roll-waves in a restricted range of wavelength for a 
particular  Shallow Water  model  of  Bingham fluid.  We plan  to  extend  these  results  to  the 
Shallow water models for complex fluids that will be obtained within this project: we will also 
investigate this problem numerically with the numerical  methods developed previously.  An 
important task is  to see whether at  the numerical  level,  these waves can be observed.  A 
second important case is bi-layer inviscid shallow water models: here the existence of inviscid 
roll-waves is not so obvious. In this case, the admissibility conditions for the shock is a system 
of two equations and four unknows. The unknows are the values of the two heights on either 
side of the shock. In order to find a periodic solution, we have to construct a fixed point of the 
composition  of  two  successive  transformations  (1)  the  before/after  transformation  defined 
above and (2) the evolution in space of the solution. Right now we just don't know how to do 
that  in  general.  However,  for  small  shocks  and  conservative  hyperbolic  systems  [26],  we 
proved the existence of these fixed points and therefore of periodic solutions. We would like to 
remove  thie  conservativity  assumption.This  should  provide  a  more  complete  picture  of 
transition to instability than the one given by Kliakhandler [52] for systems of Benney and 
Kuramoto-Sivashinky models..
Of  particular  interest  also  is  the  case  of  regularized  shallow  water  type  equations.  The 
regularization could come from viscosity or capillarity. Concerning viscous models, we would 
like to know whether the bi-layer and mono-layer scenarios are similar for the onset of periodic 
modulation at the free surface. Moreover, we will also investigate the emergence of internal 
waves  in  the  presence  of  an  unstable  distribution  of  density.  The  case  of  shallow  water 
equations with capillarity is particularly interesting since, until now this is the only case where 
we have a rigorous justification. The existence of periodic travelling waves  is a classical result 
for the Euler-Korteweg model, which is a particular version of shallow water equations when 
gravity and friction are neglected: we will  try to prove the existence of  periodic travelling 
waves when these source terms are not neglected. In this case, the analysis is harder since the 
source terms destroy the underlying Hamiltonian form of the ordinary differential system for 
travelling waves in the Euler-Korteweg model. We will analyse the problem with the help of 
dynamical systems techniques: center manifold reduction, local  bifurcation theory so as to 
obtain periodic travelling waves in this case. We will also explore the possiblity of getting large 
amplitude  roll-waves  when  the  capillary  terms  are  small,  using  the  theory  of  singular 
perturbations in ordinary differential equations. 

 b) Stability of roll-waves.

• Statement  of  the  problem.  The  stability  analysis  of  solitary  waves  and  periodic  travelling 
waves  has  known  spectacular  developments  during  these  last  ten  years.  Stability  is  a 
necessary condition for the observativity of waves. Concerning fronts and solitary waves, the 
theory  has  been  essentially  settled  now in  the reaction  diffusion  and  in  the  conservative 
settings: the spectrum is composed of essential spectrum determined by the limits of solutions 
at infinity and point spectrum studied with an Evans function. There is a huge literature giving 
estimates on the linearized evolution semi group, and nonlinear stability has been inferred 
from the strong spectral stability (see e.g. papers of Métivier, Zumbrun in conservation setting, 
D. Henry in reaction diffusion setting). The theory is far from being as complete in the case of 
periodic travelling waves: one of the main difficulty is the fact that the spectrum is essential 
and hard to compute. Since the seminal work of Gardner and co-workers, which introduces an 
Evans function to study the spectrum in this setting, much effort has been spent to compute 
the  spectrum in  several  asymptotic  regime:  a  periodic  solution  close  to  a  soliton  (in  the 
reaction diffusion setting)  [31]  or  long wavelength limit  (see [32]  in the reaction diffusion 
setting, [33,35] in the conservative case). In the case of reaction-diffusion equations, one can 
deduce nonlinear stability from strong spectral  stability through the analysis of modulation 
equations introduced by Whitham [53] (a viscous Burgers equation in this case: see [32] for 
more details).  The situation is  less clear  for conservation laws:  Oh and Zumbrun obtained 
pointwise estimates on the linear semi-group assuming strong spectral stability [35]. However, 
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these estimates are not sufficient to conclude nonlinear stability. On the other hand, Serre [33] 
established a relation between the well-posedness of modulation equations and the spectral 
stability  of  periodic  travelling  waves.  The  case  of  roll-waves  for  viscous  shallow  water 
equations is of particular interest since it is at the intersection of the two fields: source terms 
and physical viscosity. We obtained spectral stability under long wavelength perturbations [25] 
and derived pointwise estimates on the semi-group: one of the purpose of this study is to 
establish stability results in this case. We will  explore several asymptotics: in particular the 
dynamic of slow modulations, following the ideas of Serre [33] and Doelman and co-workers 
[32]. Of particular interest also is the vanishing viscosity limit: viscous roll-waves converge to 
inviscid roll-waves. We recently obtained a full description of the spectrum in this case: the 
main issue is to formulate a stability problem in the presence of an infinite number of shocks 
[21]. From this analysis, we deduced the persistence of inviscid roll-waves [27]. The aim of this 
project is also to deduce information on the stability of viscous roll-waves in the vanishing 
viscosity limit.

      
Nonlinear stability of roll-waves and slow modulations. Following the strategy introduced in the 
reaction-diffusion, we analyse directly the question of nonlinear stability of roll-waves through 
the derivation  of  modulations equations: following the homogeneization strategy introduced 
by Whitham [53] and Serre [33], one can use a formal asymptotic expansion to prove that 
these perturbations satisfy, up to leading order, a system of conservation laws. In the case of 
roll-waves, we expect that this system is hyperbolic and thus well-posed. It is a consequence of 
[33] that relates the hyperbolicity of the slow modulation system to the spectral stability of 
periodic travelling waves in the conservation laws setting and [21] where spectral stability of 
viscous roll-waves under long wavelength perturbations is proved. We will try to construct an 
approximate solution of the shallow water model, starting from a smooth solution of the slow 
modulation  systems  so  that  this  approximate  solution  will  be  close  to  a  roll-wave  on 
asymptotically large time. This method has been applied successfully in the reaction-diffusion 
setting and mimics a centre manifold reduction [32]. We plan also to analyse this problem 
numerically by direct computations on the Shallow Water system. 
 

• Vanishing Viscosity.  We will  analyse the full  nonlinear problem of roll-waves stability in the 
vanishing  viscosity  limit.  In  this  case,  we  proved  that  continuous  roll-waves  are  close  to 
Dressler roll-waves. We also proved that these discontinuous periodic waves are stable in the 
following sense: starting from initial data close to a roll-wave and in particular possessing an 
infinite distribution of shocks, the Cauchy problem is well posed on a sufficiently small time 
interval [21,27]. We will show that these generalised roll-waves have a continuous counterpart 
in the vanishing viscosity limit. Then we will obtain a nonlinear stability result of roll-waves. We 
will  adapt  the  methods  of  matched  asymptotics  used  by  F.  Rousset  in  the  case  of  large 
amplitude shocks [54]. 

Task 4 is supervised by P. Noble and J.-P. Vila: both have a strong experience in the analysis of 
roll-waves, both from an analytical point of view (P. Noble) and numerical point of view (J.-P. 
Vila). Valérie Le Blanc has staerted a Ph. D. Thesis on the nonlinear stability of viscous and 
inviscid roll-waves. L.M Rodrigues will also work on stability aspects of the problem since some 
techniques are quite reminiscent with the one he employed to prove nonlinear  stability of 
Oseen vortices in 2d Navier-Stokes equations. We will also collaborate with S. Benzoni (ICJ) on 
the mathematical aspects involving capillarity.  

 4. Stratégie de valorisation des résultats et mode de 
protection et d’exploitation des résultats / Data 
management, data sharing, intellectual property and 
results exploitation

The main purpose of this project is to validate mathematically, numerically (and experimentally for 
particular situations)  the  shallow water  equations  in  some well-controlled  situations  which are 
elementary components of real flow phenomena. We will contact physicists in CEN (Centre for the 
study of snow), CEMAGREF (a research institute on engineering in agriculture and environment) in 
order to prepare the exploitation of our results in realistic situations: we plan to integrate our models 
in numerical codes that are used to design protection devices and determine the main characteristics 
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(velocity, pressure, extension) of natural hazards such as dense snow avalanches or  mud floods, 
debris flows. Observed that this is a project in mathematics and transfering our knowledge to people 
performing industrial applications could be in itself a project submitted to ANR in the future, we will 
first publish our results in high quality journals in direction of applied mathematicians (SIAM J. Math 
Anal, SIAM J. Scien. Comp., JCP, Comm Part. Diff Eq, Journ Math Pur App, Indiana Univ. Math. Journ, 
ARMA,...) and physicists (Journal of Fluid Mechanics, Journal of Rheology,..). We also plan to organize 
regularly workshops gathering specialists in areas of applied mathematics, fluid mechanics (theory 
and experimentations). The participants to this project are all members of research groups that 
gather applied mathematicians in the Region Rhone Alpe (JERA) and France (GdR MOAD: research 
network in partial differential equations): this ensures a real diffusion of our results. We will design a 
web page that will present our main results, the evolution of the project and the organisation of 
workshops and conferences.

 5. Organisation du projet / Consortium organisation and 
description

 5.1. Description, adéquation et complémentarité des participants / 
Relevance and complementarity of the partners within the 
consortium

• Scientific  environment in  Lyon. The  Institut Camille Jordan  of the University of Lyon is a 
laboratory  that  gathers  more  than  a  hundred  mathematicians  of  different  specialities. 
Within  this  institute,  the  group  MMCS  (Mathematical  Modeling  and  Numerical  Analysis) 
gathers  almost  all  specialists  of  numerical  analysis,  applied  P.D.E.'s  and  scientific 
computations in Lyon that all we join recently (P. Noble, L. Chupin: 2005, F. Filbet: 2006, D. 
Le Roux, L.M. Rodrigues, S. Delcourte: 2008). 

• If  accepted,  this  project  would promote,  inside MMCS,  the  emergence of a  research 
group focused on the dynamic of  shallow fluid flows  by the  combination  of  our 
respective skills in the domains of asymptotical and mathematical analysis (Noble, Chupin, 
Vila, Rodrigues), numerical simulations (Vila, Le Roux, Delcourte, Filbet) and fluid mechanics 
and with the recruitment of Ph.D. students and post-doc students that will be involved in 
this project. Moreover, the presence of S. Benzoni in the team MMCS enforces the skills of 
the group in the domain of transition of phase, capillar fluids and hyperbolic systems. 
The analysis of complex fluid flows is also a domain that is constantly developed in the 
other universities of the Region Rhone Alpes inside the applied mathematical laboratory of 
Grenoble (LJK) and Chambery (LAMA).  In Lyon, a seminar dedicated to the  Mechanic of 
compressible fluids is organised regularly by D. Bresch, P. Mironescu and C. Villani at the 
Ecole Normale Supérieure.  We have frequent contacts with the applied mathematicians of 
all  these  teams  especially  through  the  organization,  every  year,  of  a  workshop  JERA  
(namely « P.D.E. in  Rhone Alpes region »), the 2007 edition having been held in Lyon. At 
the national level,  we are all  members of the research group « GdR MOAD » (Modeling, 
Asymptotics  and  nonlinear  Dynamics),  managed  by  S.  Benzoni  that  brings  together  in 
particular applied mathematicians in P.D.E., numerical analysis and fluid mechanics (Paris, 
Bordeaux, Marseille,Toulouse, Lille, Nice, Rennes).  
 

• Scientific  environment  in  Toulouse.  J.-P.  Vila  is  a  specialist  of  the  mathematical  and 
numerical analysis of hyperbolic systems and in particular shallow water equations and has 
many interactions with industry (he is consultant at ONERA: the French Aerospace Lab) and 
with  physicists  specialized  in  hydrology  (contact  ONERA:  P.  Villedieu,  contact  Fluid 
Mechanics Institute of  Toulouse: O.  Thual).  Marc Boutounet has started in 2006 a Ph.D. 
thesis supervised by J.-P. Vila and he is working on shallow water equations over complex 
topographies with applications to industry and multilayer models.

•  International collaborations. We are working with a group of applied mathematicians from 
the Universities of Sevilla and Malaga (Spain), who are interested in numerical simulations 
of  shallow  water  equations  with  possible  applications  to  the  analysis  of  submarine 
avalanches and tsunamis. The researchers that are involved are Enrique Fernandez  Nieto 
(junior researcher) and professors C. Pares and M. Castro. They specialize in the numerical 
simulations of shallow water equations  and their presence will be helpful for the analysis of 
the problems of multilayer models, sediment transport and dry fronts.  On the numerical 
side of this project, let us also mention that F. Filbet works in collaboration with Chi-Wang 
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Shu (Brown University, Providence, USA) on finite volume schemes for hyperbolic equations 
(WENO and well balanced schemes). Concerning the experimental validation of the models, 
J.-P. Vila works with a laboratory of hydrology in Brazil: the contact is G. F. Maciel (Sao Paulo) 
who proposed to conduct some experiments on muds (mixture of water and clay). We have 
also a contact at the EPFL (Polytechnic School of Lausanne), with C. Ancey for experiments 
in situ for snow avalanches.

 5.2. Qualification du porteur du projet / Qualification of the principal 
investigator

My main research domain is fluid mechanics with a particular focus on shallow water equations. My 
interest for this kind of models is twofold: analysis of nonlinear waves and mathematical derivation of 
models. During my Ph.D. thesis, I analysed the hydrodynamical instabilities of these equations, which 
are called roll-waves. The main issue was the formulation of a stability problem in the presence of an 
infinite number of shocks: this was done through an original formulation of  the equations where the 
possible perturbations  have  their  shocks fixed.  This  framework was  particularly fruitful since  I 
obtained spectral stability  and persistence results for an interesting class of perturbations [21],[27]. 
Furthermore, this framework provides a general method for obtaining roll-waves solutions in different 
situations: small amplitude pulsating roll-waves in a fluid flowing down a periodically modulated 
bottom, small amplitude roll-waves in general hyperbolic equations. After getting a position at the 
University  of  Lyon in 2005, I  extended my investigation to viscous roll-waves,  generalizing the 
estimates obtained by Oh-Zumbrun [34,35]: in the case of shallow water equations, I had to deal 
with physical viscosity.  This analysis of  nonlinear  waves naturally lead me to consider also the 
question of  the physical relevance of  such equations and the question of  their  derivation from 
Navier-Stokes  equations.  In  2006, I  started a  collaboration with J.-P.  Vila, L.  Chupin and E.D. 
Fernandez Nieto, in view of a formal derivation new Shallow Water equations for different situations 
of physical interest, using the methodology introduced by J.-P. Vila [36]: Newtonian fluids down 
arbitrary  topographies  and  Bingham/Power-Law  fluids  down  inclined planes.  Meanwhile and  in 
collaboration with D. Bresch, we proved that the mathematical introduced by Vila is rigorous and thus 
obtained the first justification of shallow water equations from Navier-Stokes equations. Since Vila's 
methodology is rigorous and efficient, we would like to apply it to a number of core problems forming 
the basis of the present proposal. 

Let me also mention that I have also worked on applications of dynamical systems theory in finite 
dimension (singular perturbations methods, Lyapounov reduction) and infinite  dimension (centre 
manifold reduction) to the analysis of localized oscillations in discrete (finite or infinite) Hamiltonian 
systems (FPU chains, spins chains, molecules). This kind of techniques will be particularly useful for 
the analysis of nonlinear waves, especially the existence of periodic travelling waves (see e.g. the 
existence of  viscous roll-waves close to inviscid roll-waves using singular pertubations theory in 
O.D.E. [22] and existence of inviscid roll-waves in general hyperbolic systems [26]).

Concerning my abilities to coordinate this project, I  participated to the organization of  different 
conferences and workshop (HYP 2006, JERA 2007, GdR MOAD 2008, SIAM Roma 2008). I am also 
the organiser of the seminar of the group « Mathematical Modeling and Scientific Computing » in 
Lyon. I am now familiar with the administrative and management aspects of research groups and 
scientific meetings. Moreover, I have also supervised students writing their master's thesis and I 
advise two Ph.D. students who work in the present project (A. Rambaud & V. Le Blanc). Finally, I 
have proposed and started several collaborations with a number of participants of the project, in 
particular with L. Chupin, J.-P. Vila  on non Newtonian fluids: this provides a natural basis to develop 
the project.

I have published 15 research papers in well know journals (Archive for  Rationale Mechnics and 
Analysis, Communications in  Partial  Differential  Equations,  SIAM Journal  of  Applied Math, SIAM 
Journal on Mathematical Analysis, Annales of IHP (C): Nonlinear analysis, Nonlinearity, Journal of 
Nonlinear Science, Physica D) and I have given 16 oral presentations in internation conferences (6) 
and seminar of applied mathematics (10) .  

 5.3. Qualification, rôle et implication des participants / Contribution and 
qualification of each project participant
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Nom Prénom Emploi 
actuel

Unité de 
rattachement et 

Lieu

Personne
.

mois

Rôle/Responsabilité dans le projet

4 lignes max

NOBLE Pascal Maitre de 
Conférence
s

Institut Camille 
Jordan, UMR CNRS 
5208, Lyon

36 Coordination des taches 1 
(justification rigoureuse des 
équations de Saint Venant) et 4 
(ondes non linéaires)

CHUPIN Laurent Maitre de 
Conférences

Institut Camille 
Jordan, UMR CNRS 
5208, Lyon

16 Coordinateur tache 2: équations 
Shallow Water pour les fluides non 
newtoniens

VILA Jean-Paul Professeur Institut de 
Mathématique de 
Toulouse, INSA

24 Coordinateur tache 2: fluides non 
newtoniens. Tache 3: modeles bi 
couches

FILBET Francis Professeur Institut Camille 
Jordan, UMR 5208, 
Lyon

16 Coordinateur tache 3: modeles 
Shallow Water multi couches. 
Aspects Numériques

LE ROUX Daniel Professeur Institut Camille 
Jordan, UMR 5208, 
Lyon

24 Coordinateur tache 1: aspects 
numériques de la comparaison 
Navier-Stokes/ Shallow Water

RODRIGUES Luis Miguel Maitre de 
Conférences

Institut Camille 
Jordan, UMR 5208, 
Lyon

16 Tache 1: obtention rigoureuse des 
équations type Shallow Water à 
partir de Navier-Stokes.

DELCOURTE Sarah Maitre de 
Conférences

Institut Camille 
Jordan, UMR CNRS 
5208, Lyon

16 Tache 1: aspects numériques de la 
comparaison des équations Navier-
Stokes/Shallow Water

 6. Justification scientifique des moyens demandés / 
Scientific justification of requested budget

" Équipement / Equipment
As described in the scientific part,  the aim of the present project is to develop new numerical 
alogrithms for the approximation of oceanographic or avalanche models. The computational cost 
for  the  numerical  simulations  of  fluid  mechanic  models  is  very  heavy  (2d/3d  Navier-Stokes 
equations with free boundary or Multi-Layer shallow water models). Of course, before performing 
numerical simulations on parallel super computers, it is necessary to perform preliminary numerical 
tests on simpler situations on Personal Computers, which will be used in the first steps of algorithm 
validation. Therefore, we would like to buy 7 or 8 Personal Computers (2 per years) allowing the 
development of numerical codes (around 5000 euros per years).

" Personnel / Staff
In order to achieve the objectives presented in this project, it would be important to obtain a post 
doc position of 1 year in order to work specifically on the numerical aspects of that project: in 
particular  the  comparison  between  free-surface  Navier-Stokes  equations  and  Shallow  Water 
equations. The post doc student will be advised by D. Y. Le Roux and S. Delcourte and would benefit 
of a particularly stimulating scientific environment since we have also contact with physicists of the 
CEMAGREF (Grenoble), ONERA (Toulouse) and the CEN (EPFL Lausanne) and the post doc student 
would benefit of an interdisciplinar formation.

" Missions / Missions
Most of  the expenses will  be dedicated to the invitation of  foreign researchers (C.W. Shu, E.D. 
Fernandez  Nieto,  C.  Pares,...)  and  local  researchers  (D.  Bresch,  F.  Bouchut,  E.  Audusse,  J.F. 
Gerbeau,J.-P.  Vila...)  at  the  Institut  Camille  Jordan  for  workshop  sessions  in  order  to  exchange 
techniques  and  tools  in  fluid  dynamics,  numerical  analysis.  This  will  also  pay  missions  in  the 
different laboratories associated to that project through different collaborations (with D. Bresch, 
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Chambery, E.D. Fernandez-Nieto, Sevilla, missions Toulouse/Lyon,...) and expenses for national and 
international conferences dedicated to Partial Differential Equations, Fluid Mechanics,...to ensure a 
large diffusion of our results.  

" Autres dépenses de fonctionnement (in french)

Nous demandons pour chaque année le montant maximum (10.000 euros) au titre de la dispense 
d'enseignement de 96h/an: en effet, ceci permettra de dégager en partie du temps pour chaque 
membre  investi  dans le  projet  et  coordonnant une  tache du  projet  et  pour  l'encadrement des 
étudiants en thèse et post doc. Ces dispenses permettront également de faciliter le départ pour des 
missions à l'étranger et pour des conférences. Enfin, une partie de ces heures seront réservées au 
jeunes maitres de conférences qui viennent de démarrer leur carrière (Rodrigues, Delcourte) pour leu 
r permettre de s'investir au mieux dans le projet que nous proposons. 
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