
Explicit solutions for integrable systems and
applications

Pol Vanhaecke

Université de Poitiers

Lyon, November 27, 2009



Introduction : two theorems

Two types of “integrable” systems in this talk
I A vector field ẋ = f (x) on a smooth manifold M
I A PDE ut = F (u,ux ,uxx , . . . )

“Explicit” solutions
I Rational solutions ; theta functions ; Schur polynomials
I Formal solutions ; Laurent series
I Univalent, periodic, quasi-periodic solutions
I Solitons, · · ·

Applications
I Abelian varieties, moduli spaces
I Random permutations, brownian motions
I Minimal surfaces, · · ·
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The Liouville theorem

I (M, ω) a symplectic manifold of dimension 2n
I (F1, . . . ,Fn) independent functions in involution

Then for a generic point m0 in M, the integral curve (solution) of
each XFi starting from m can be determined by quadratures.

Functions in involution : all the Poisson brackets {Fi ,Fj} = 0,
where

{F ,G} =
n∑

i=1

∂F
∂qi

∂G
∂pi
− ∂G
∂qi

∂F
∂pi

in terms of canonical coordinates, ω =
∑n

i=1 dqi ∧ dpi .

Independent functions : the open subset of M where the
differentials dF1,dF2, . . . ,dFn are independent is dense in M
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The Hamiltonian vector fields XH : the ω-duals to the dH :

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

By quadratures : using only the three operations
1. Algebraic operations (inversion of linear systems).
2. Inverse function theorem.
3. Integration (of an exact differential form).

The integration :
1. Where the differentials are independent the vector fields XFi

define an involutive, hence integrable, distribution.
2. On the integral manifolds, the forms ωi , dual to the XFi are

closed, hence locally exact, ωi = dti .
3. By integration, then local inversion, the coordinates on the

integral manifolds can be expressed in terms of the ti .
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The Adler-Kostant-Symes theorem
I g = g+ ⊕ g− Lie algebra splitting
I 〈· | ·〉 symmetric, non-degenerate, ad-invariant
I A the algebra of ad-invariant functions

Then

(1) A Poisson bracket on C∞(g) is defined by

{F ,G} (x) := 〈x | [(∇xF )+, (∇xG)+]− [(∇xF )−, (∇xG)−]〉
(2) For H ∈ A, the Hamiltonian vector field XH :

ẋ = [x , (∇xH)−]

(3) For x0 ∈ g and for small |t |, let g+(t) and g−(t) be the smooth
curves in G+ resp. G− such that

exp(−t∇x0H) = g+(t)−1g−(t)

with g±(0) = e. Then the integral curve of XH starting from x0
is given for small |t | by

x(t) = Adg−(t)x0.
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The Euler top : elliptic solutions

Rigid body spinning around a fixed point, which is its center of
gravity, with moments of inertia I1, I2, I3. In terms of the angular
velocity Ω :

I1Ω̇1 = (I2 − I3)Ω2Ω3

I2Ω̇2 = (I3 − I1)Ω1Ω3

I3Ω̇3 = (I1 − I2)Ω1Ω2

Without parameters :

u̇1 = u2u3

u̇2 = u1u3

u̇3 = u1u2

Constants of motion : H1 := u2
1 − u2

2 and H2 := u2
1 − u2

3 .



One uses the constants of motion to integrate : let u2
1 − u2

2 = a and
u2

1 − u2
3 = b then

(u̇1)2 = u2
2u2

3 = (u2
1 − a)(u2

1 − b).

sn(u1) =

∫
du1√

(u2
1 − a)(u2

1 − b)
= t .

This integral is an elliptic integral and its inverse is an elliptic
function, u1 = sn−1(t).

Main fact : the elliptic function sn−1(t) is doubly periodic . . .over C.
It is a meromorphic function on the elliptic curve / elliptic Riemann
surface

y2 = (x2 − a)(x2 − b).



One uses the constants of motion to integrate : let u2
1 − u2

2 = a and
u2

1 − u2
3 = b then

(u̇1)2 = u2
2u2

3 = (u2
1 − a)(u2

1 − b).

sn(u1) =

∫
du1√

(u2
1 − a)(u2

1 − b)
= t .

This integral is an elliptic integral and its inverse is an elliptic
function, u1 = sn−1(t).

Main fact : the elliptic function sn−1(t) is doubly periodic . . .over C.
It is a meromorphic function on the elliptic curve / elliptic Riemann
surface

y2 = (x2 − a)(x2 − b).



The Toda lattice : Moser’s integration

Lax equation
L̇ = [L,B]

where

L =


b1 a1 0
a1 b2

. . .
bn−1 an−1

0 an−1 bn



B =


0 a1 0
−a1 0

. . .
0 an−1

0 −an−1 0





Let f (λ) := (λIn − L)−1
nn then

f (λ) =
n∑

k=1

r2
k

λ− λk

with rk > 0 and
∑

r2
k = 1. This defines

L = (a1, . . . ,an,b1, . . . ,bn−1)↔ (λ1, . . . , λn, r1, . . . , rn)

bijection and
λ̇i = 0, ṙi = −λi ri .

Inverse map : with continued fractions

f (λ) =
1

λ− bn −
a2

n−1

λ−bn−1−
a2
n−2

λ−bn−2−

. . .
a2
1

λ−b1
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For example : if n = 2 then

b1 = −r2
1λ2 − r2

2λ1

b2 = r2
1λ1 + r2

2λ2

a1 = r1r2(λ1 − λ2)



KdV solitons

Korteweg-de Vries equation : ut = uux + uxxx .

Lax form : Lt = [L3/2
+ ,L] where L = ∂2

∂x2 + u.

The KdV hierarchy : for n odd : Ltn = [Ln/2
+ ,L]

n-solitions : For J ⊂ I := {1, . . . ,n} denote cJ :=
∏

j∈J cj and

kJ :=
∏

i<j∈J

(
ki−kj
ki+kj

)2
where c1, . . . , cn and k1, . . . , kn constants.

τ(t1, t3, . . . ) :=
∑
J⊂I

cJkJ exp

2
∑
i∈J

∞∑
j=0

k2j+1
i t2j+1


The function u := 2 ∂2

∂x2 log τ(t1, t3, . . . , ) is a solution of KdV.
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KdV solitons and vertex operators

The n-soliton can be written in terms of vertex operators :

X (p,q) = exp

 ∞∑
j=1

(pj − qj)tj

exp
∞∑

j=−1

(
pj − qj

j
∂

∂t−j

)
.

τ = ec1X(k1,−k1) . . . ecnX(kn,−kn)1

Hence the vertex operator X (p,−p) permits to add a solition !
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KP : theta solutions

KP = generalization of KdV

uyy = (ut − uux − uxxx )x

There exists for every Riemann surface Γ a solution of KP :

u(x , y , t) :=
∂2

∂x2 logϑ(ax + by + ct | Z )

Here, the theta function of Z ∈ Mat(g × g) (symmetric, =Z > 0)

ϑ(z | Z ) =
∑
l∈Zr

eπi〈l,Zl〉e2πi〈l,z〉.

The matrix Z associated to Γ : the period matrix

Zij :=

∫
γi

ωj .



Application : Schotky problem (1903)

Charaterize the variety of matrices Z which are the period matrix
of a Riemann surface.

Novikov conjecture (1981) : Z comes from a Riemann surface iff

∂2

∂x2 logϑ(ax + by + ct | Z )

is a solution to the KP equation for some a,b, c.

In 1986 Shiota proves the conjecture.
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Reduction : the Mumford system

Phase space Mg :

L(λ) =

(
V (λ) W (λ)
U(λ) −V (λ)

)
with U and W monic polynomials and

deg V < deg U = deg W − 1 = g.

The integrable vector fields (for i = 1,2, . . . ,g) :

d
dt2i−1

L(λ) =

[
L(λ),

(
L(λ)

λg−i+1

)
+

−
(

0 0
Ug−i 0

)]



The moment map

H : M → C2g+1

L(λ) 7→ det(L(λ)− µ) = µ2 − U(λ)W (λ)− V (λ)2

For f (λ) =
∏5

i=1(λ− λi), generic, the fiber above µ2 − f (λ) is

Jac(µ2 = f (λ)) \Θ.

Generic solution

U(λk ) = ck

ϑ
[
δk
εk

]
(A~t + b)

ϑ(A~t + b)


2

V (λ) =
d

dt1
U(λ)

W (λ) =
f (λ)− V 2(λ)

U(λ)
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Link KdV-Mumford

Let (U(λ,~t),V (λ,~t),W (λ,~t)) solution to the Mumford system,
U(λ) = λg + Ug−1λ

g−1 + · · ·+ U0, etc.

Then

u(~t) := 2
∂2

∂t2
1

log Ug−1(~t)

is a solution to the KdV hierarchy (with x = t1). For f (λ) such that
µ2 = f (λ) is smooth, one recovers the solutions in terms of theta
functions.



Algebraic integrability

In 1980 Adler and van Moerbeke introduced the notion of
algebraic integrability : an a.c.i. system is a complex integrable
system such that

(1) the generic fibers of the (complex) momentum map are affine
parts of complex algebraic tori Cr/Λc

(2) the flow of the integrable vector fields is linear on these tori.

Example : the Mumford system is a.c.i.
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Laurent solutions for a.c.i. systems

Theorem [Adler, van Moerbeke, V., 2004]
An a.c.i. system on a manifold M admits Laurent solutions which
depend on dim M − 1 free parameters.

Laurent solution of ẋi = f (x1, . . . , xn) :

xi(t) =
∞∑

j=ki

αij t j i = 1, . . . ,n

convergent for t ∈ B(0; ε) \ {0}.
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Application : obstruction to algebraic integrability

Let e0,e1, . . . ,e` ∈ R`+1 such that
I e0,e1, . . . ,e` are dependent
I ∀i : e0, . . . , êi , . . . ,e` are independent.

Let A = (aij) be its Cartan matrix

aij :=
2〈ei |ej〉
〈ej |ej〉

On C2(`+1) the vector field V :

ẋ = x · y ẏ = Ax .

Theorem [Adler, van Moerbeke]
If V is a.c.i., then A is the Cartan matrix of an affine (twisted) Lie
algebra.
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Application : projective embeddings of Kummer
surfaces (with L. Piovan)

For the Riemann surface Γ :

µ2 =
5∏

i=1

(λ− λi) =
5∑

i=0

σiλ
5−i ,

Kum(Γ) := Jac(Γ)/(−1). Surface with 16 singular points.

Embeddings as quartic surface in P3 :

a2
1(θ2

0θ
2
2 + θ2

1θ
2
3) + a2

2(θ2
0θ

2
1 + θ2

2θ
2
3) + a6

0(θ2
0θ

2
3 + θ2

1θ
2
2)

+2a1a2(θ0θ1 − θ2θ3)(θ0θ2 − θ1θ3)

+2a3
0a2(θ0θ1 + θ2θ3)(θ0θ3 − θ1θ2)

−2a3
0a1(θ0θ2 + θ1θ3)(θ0θ3 + θ1θ2)

+2δθ0θ1θ2θ3 = 0,

where a2
0 = λij , a2

1 = λikλimλin and a2
2 = λjkλjmλjn.
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In terms of the σi

0 = (4σ3σ5 − σ2
4)θ4

0

+2[−2σ2σ5θ1 + (σ2σ4 − 2σ1σ5)θ2 + 2σ5θ3]θ3
0

+[4σ1σ5θ
2
1 − (2σ4 + σ2

2)θ2
2 + (4σ5 − 2σ1σ4)θ1θ2

−2σ4θ1θ3 + 4σ3θ2θ3]θ2
0

+2[−2σ5θ
3
1 + 2σ4θ

2
1θ2 + (σ1σ2 − 2σ3)θ1θ

2
2

+σ2θ
3
2 + 2θ2θ

2
3 − σ2θ1θ2θ3 − 2σ1θ

2
2θ3]θ0

−(θ2
2 − σ1θ1θ2 + θ1θ3)2.

Embedding as quartic in P3 with 6 singuliar points :

4∑
i=1

∑
1≤j<k≤4

j,k 6=i

λ2
ijλ

2
jkλ

2
kiλimλinθ

2
i θjθk = 0,

where {i , j , k ,m,n} = {1,2,3,4,5}.
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Rational solutions (Mumford and KdV)

Before : if the curve µ2 = f (λ) is smooth, solution to Mumford and
KdV in terms of theta fonctions.

Here : the other extreme : the very singular curve µ2 = λ2g+1. The
corresponding fiber of the momentum map H−1(0) : the affine
variety of (U(λ),V (λ),W (λ)) such that U(λ)W (λ)− V (λ)2 = 0.

Theorem [Inoue, V., Yamazaki, 2009]
I H−1(0) is stratified by g + 1 manifolds of dimension

0,1, . . . ,g, generated by the integrable flows ;
I The g + 1 corresponding solutions are (explicit !) rational

functions ;
I Each stratum compactifies into the generalized Jacobian of

the curve µ2 = λ2i+1 where i = 0, . . . ,g ;
I One recovers the rational solutions to the KdV hierarchy (for

every g).
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The rational solutions of KdV for small g

u(~t) = 2 ∂2

∂t2
1

log τg(~t)

τ2(~t) =
t3
1
3
− t3

τ3(~t) =
t6
1

45
−

t3
1 t3
3
− t2

3 + t1t5

τ4(~t) =
t10
1

4725
−

t7
1 t3

105
− t1t3

3 +
t5
1 t5
15

+ t2
1 t3t5 − t2
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Witten’s conjecture / Kontsevich’s theorem

Mg,n moduli space of smooth curves of genus g with n marked
points.Mg,n is an algebraic variety of dimension 3g − 3 + n.
Every marked point defined a line bundle Li onMg,n. For
Σ = (Σ, (pi)) ∈Mg,n the fiber of Li at Σ is T ∗pi

Σ.
For d1 + · · ·+ dn = 3g − 3 + n one defines the intersection number

〈
τd1τd2 . . . τdn

〉
:=

∫
Mg,n

c1(L1)d1 ∧ · · · ∧ c1(Ln)dn

Generating function

F (~t) =
∑

(n0,n1,...n`)

tn0
1

n0!

tn1
3

n1!
. . .

tn`
2`+1

n`!
〈
τn0

0 τn1
1 . . . τn`

`

〉
Theorem [Witten/Kontsevich (1990)]
The function u := ∂2F/∂t2

1 is a solution to KdV.



Non-intersecting Brownian motions

0

t

1

a1 a2 a3 aq−1 aq

b1 b2 b3 bp−1 bp

P(t ,E) ∼
∫

EN
det(p(t ,ai , xj)) det(p(1− t , xi ,bj))

N∏
i=1

dxi

p(t , x , y) =
e−(x−y)2/2t
√

2πt



A solution to KP

After coalescence and some transformations :

P(t ,E) ∼ det

(∫
E

y i+je−y2/2e(ãα+b̃β)ydy
)

06i<mα
06j<nβ


16α6q
16β6p

Deformation :

ãαy → ãαy −
∞∑

k=1

sα,kyk

b̃βy → b̃βy −
∞∑

k=1

tβ,kyk

Theorem [Adler, van Moerbeke, V., 2008] One obtains a solution to
the (p + q)-KP hierarchy, where the sα,k and the tβ,k are time
variables.
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)

06i<mα
06j<nβ


16α6q
16β6p

Deformation :
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