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Abstract

We show that the theory of the free group — and more generally the theory of any torsion-
free hyperbolic group — is n-ample for any n > 1. We give also an explicit description of the
imaginary algebraic closure in free groups.

1 Introduction

Work of Kharlampovich-Myasnikov [H] and Sela [L] showed that the theory of a nonabelian free
group does not depend on the rank of the free group and so we can let T, denote the theory of
nonabelian free groups. Sela [[7] showed that this theory is stable as well as the theory of any
torsion-free hyperbolic group.

Having a quantifier elimination result down to V3-formulas [[], [[J], elimination of imaginaries
down to some very restricted class of imaginaries [[[7], homogeneity [f, [J], a better understanding
of stability theoretic independence [J, and more recently a description of the algebraic closure
[l now gives us the tools for studying the model theoretic geometry of forking in the free group
and in torsion-free hyperbolic groups.

Ampleness is a property that reflects the existence of geometric configurations behaving very
much like projective space over a field. Pillay [[I(] first defined the notion of n-ampleness. We use
here the slightly stronger definition given by Evans in [B.

Definition 1.1. [JJ] Suppose T is a complete stable theory and n > 1 is a natural number. Then
T is n-ample if (in some model of T, possibly after naming some parameters) there exist tuples
ag, - - - , @y Such that:

(1) an f ao;

(’LZ) ag...q;—1 J/aiaiH cooap for1 <i<n;

(i17) acl®d(ag) Nacl®(ay) = acl®d(();

(iv) acl®(ag . ..a;—1a;) Nacl®(ag ... a;—1a;+1) = acl®Uag ... a;—1) for 1 <i <mn.

We call T ample if it is n-ample for alln > 1.
In n 4 1-dimensional projective space such a tuple aq, ... a, can be chosen as a maximal flag of
subspaces and this example can guide the intuition. It is well-known that a stable structure which

type-interprets an infinite field is ample. In this paper we study ampleness in torsion-free hyperbolic
groups and we show:

Theorem 1.2. The theory of any nonabelian torsion-free hyperbolic group is ample.
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We also state the following special case, whose proof — as we will see — implies the general
statement:

Corollary 1.3. The theory T}, of nonabelian free groups is ample.

In fact, our construction is very explicit: given a basis
{CQ, ai, bt 1 < w}

of the free group of rank w we find witnesses for ampleness as the tuples ho; = (ag;, ba;, co2;),1 < w,
where the sequence (¢;)i<w is defined inductively as follows

Civ1 = tic; Hag, b ML

We do not know whether the free group interprets an infinite field. While we do not believe this
to be the case, ampleness is certainly consistent with the existence of a field.

In [f] Pillay gave a proof showing that the free group is 2-ample. However, his proof relied on a
result by Bestvina and Feighn which has not yet been completely established. His conjecture that
the free group is not 3-ample is refuted in this paper.

The present paper is organized as follows. In Section 2 we collect the preliminaries about
elimination of imaginaries, JSJ-decompositions and related notions needed in the sequel. In Section
3, we study the imaginary algebraic closure and give a geometric characterization of those conjugacy
classes which are elements of the imaginary algebraic closure. Section 4 is devoted to the construction
of sequences witnessing the ampleness in the free group. The last section then shows how the general
theorem follows from the special case.

2 Preliminaries

In this section we put together some background material needed in the sequel. The first subsec-
tion deals with imaginaries and the two next subsections deal with splittings, JSJ-decompositions,
homogeneity, algebraic closure and independence.

2.1 Imaginaries

Let T be a complete theory and M a (very saturated) model of T'. Recall that T" has geometric
elimination of imaginaries if for any @-definable equivalence relation E on M* and any equivalence
class agp € M*? there is a finite tuple a C M with acl®(a) = acl®(ag), i.e., ap € acl®(a) and
a € acl®(ap).

For a subset £ of the set of }-definable equivalence relations in T, we let Mg denote the restriction
of M® to the sorts in £. That is, for every E € £ defined on M*, we add a new sort Sg to the
language interpreted as M*/E and a new function 7z : M*¥ — S which associates to a k-tuple
x € MPF its equivalence class . Then the Le-structure Mg is the disjoint union of M/E for E € £.
We say that T has geometric elimination of imaginaries relative to £ if Mg has geometric elimination
of imaginaries.

Remark 2.1. Suppose that T has geometric elimination of imaginaries relative to €. Then for
tuples a,b,¢ C M we have

acl®d(a) N acl®(b) = acl®l(c)
if and only if

(acl®¥(a) N Mg) N (acl®(b) N Mg) = (acl®(¢) N Mg).



In order to prove ampleness for torsion-free hyperbolic groups we can therefore restrict our
attention to some basic equivalence relations. For the theory of a nonabelian torsion-free hyperbolic
group Sela established geometric elimination of imaginaries relative to the following small collection
of basic equivalence relations: let £ denote the collection of the following (-definable equivalence
relations where C'(x) denotes the centralizer of = and m, p, ¢ are positive natural numbers:

Eo(z;y) : 322 =y

Eim(z,y;2,y) : C(x) = C(a") A 3t € C(x) such that y' = yt™
Eym(z,y;2',y') : C(x) = C(a') A3t € C(x) such that y = t™y
Espq(x,y,z;2'y',2') : Clx) = C(@') ANC(y') = Cy) ATs € C(x) ATt € C(y) such that z = sP2t7.

For an L-structure M we denote by P, (M™) the set of finite subsets of M™ of cardinality at
most n. A function f: M" — P, (M™) is said to be definable if there exists a formula ¢(Z; ) such
that for any a € M", for any b € M™, b € f(a) if and only if M = ¢(a,b).

Sela proves the following strong form of geometric elimination of imaginaries:

Theorem 2.2. [[[7, Theorem 4.6] For any 0-definable equivalence relation E(Z,y), |Z| = n in the
theory T of a torsion-free hyperbolic group M (in the language of gr_oups), there exist k,p € N and
a function f: M™ — P,(Mg") O-definable in Lg such that for all a,b € M™

M [= E(a,b) & M = f(a) = f(b).

Clearly, this implies that for any O-definable equivalence relation E in 1" with corresponding
definable function fr in Lg, the equivalence class ag is interalgebraic in Mg with the finite set
fe(@) of elements in Mg: namely, if fg(a) = (¢1,...¢) where the ¢; are tuples from Mg, then
C1,...,¢; € acl®(ag) and ag € acl®d(cy, ..., ¢;). Hence:

Corollary 2.3. [[1| The theory of a torsion-free hyperbolic group has geometric elimination of
imaginaries relative to £. U

2.2 Splittings, JSJ-decompositions

Let G be a group and let C be a class of subgroups of G. By a (C, H)-splitting of G (or a splitting
of G over C relative to H), we understand a tuple A = (G(V, E), T, ¢), where G(V, E) is a graph
of groups such that each edge group is in C and H is elliptic, 7" is a maximal subtree of G(V, E)
and ¢ : G — 7(G(V,E),T) is an isomorphism; here 7(G(V, E),T') denotes the fundamental group
of G(V, E) relative to T. If C is the class of abelian groups or cyclic groups, we will just say abelian
splitting or cyclic splitting, respectively. If every edge group is malnormal in the adjacent vertex
groups, then we say that the splitting is malnormal.

Given a group G and a subgroup H of G, G is said to be freely H-decomposable if G has a
nontrivial free decomposition G = G * G5 such that H < G;. Otherwise, G is said to be freely
H -indecomposable.

Following [f], given a group G and two (C, H)-splittings A1 and As of G, Ay dominates Ay if
every subgroup of G which is elliptic in A; is also elliptic in As. A (C, H)-splitting of G is said to
be universally elliptic if all edge stabilizers in A are elliptic in any other (C, H)-splitting of G.

A JSJ-decomposition of G over C relative to H is an universally elliptic (C, H)-splitting domi-
nating all other universally elliptic (C, H)-splittings. If C is the class of abelian subgroups, then we
simply say abelian JSJ-decomposition; similarly when C is the class of cyclic subgroups. It follows



from [[I4, fj] that torsion-free hyperbolic groups (so in particular nonabelian free groups of finite
rank) admit (relative) cyclic JSJ-decompositions.

Given an abelian splitting A of G (relative to H) and a vertex group G, of A, the elliptic abelian
neighborhood of G, is the subgroup generated by the elliptic elements that commute with nontrivial
elements of G,. It was shown in [fl, Proposition 4.26] that if G is commutative transitive then any
abelian splitting A of G (relative to H) can be transformed to an abelian splitting A’ of G such
that the underlying graph is the same as that of A and for any vertex v, the corresponding new
vertex group G, in A’ is the elliptic abelian neighborhood of G, (similarly for edges); in particular
any edge group of A’ is malnormal in the adjacent vertex groups. We call that transformation the
malnormalization of A. If A is a (cyclic or abelian) JSJ-decomposition of G and G is commutative
transitive then the malnormalization of A will be called a malnormal JSJ-decomposition. If G, is a
rigid vertex group then we call G, also rigid; similarly for abelian and surface type vertex groups.
Strictly speaking a malnormal JSJ-decomposition is not a JSJ-decomposition in the sense of [J],
however it possesses the most important properties of JSJ-decompositions that we need.

We end with the definition of generalized malnormal JSJ-decomposition relative to a subgroup
A. First, split G as a free product G = G1 * G, where A < G1 and G is freely A-indecomposable.
Then, define a generalized malnormal (cyclic) JSJ-decomposition of G relative to A as the (cyclic)
splitting obtained by adding G9 as a new vertex group to a malnormal (cyclic) JSJ-decomposition
of Gy (relative to A). We call G the free factor. In a similar way the notion of a generalized cyclic
JSJ-decomposition, without the assumption of malnormality, is defined

We denote by Auty(G) the group of automorphisms of a group G that fix a subgroup H point-
wise. The abelian modular group of G relative to H, denoted Mody (G), is the subgroup of Auty(G)
generated by Dehn twists, modular automorphisms of abelian type and modular automorphisms of
surface type (For more details we refer the reader for instance to [[]). We will use the following
property of modular automorphisms whose proof is essentially contained in [] (see for instance [ll,
Proposition 4.18]).

Lemma 2.4. Let I' be torsion-free hyperbolic group and A a monabelian subgroup of I'. Let A be
a generalized malnormal cyclic JSJ-decomposition of I' relative to A. Then any modular automor-
phisms o0 € Mody(T') retrict to a conjugation on rigid vertex groups and on boundary subgroups of
surface type vertex groups of A. O

We note that when I' is a torsion-free hyperbolic group which is freely A-indecomposable, then
any abelian vertex group in any cyclic JSJ-decomposition A of T' relative to A is rigid; this a
consequence of the fact that abelian subgroups of I' are cyclic and of the fact that edge groups of A
are universally elliptic. The same property holds also for abelian vertex groups (different from free
factors) in generalized malnormal JSJ-decompositions.

Rips and Sela showed that the modular group has finite index in the group of automorphisms.
We will use that result in the relative case.

Theorem 2.5. (See for instance [[]) Let T' be a torsion-free hyperbolic group and A a nonabelian
subgroup of T' such that T is freely A-indecomposable. Then Moda(T") has finite index in Aut 4 (T).
O

We end this subsection with the following standard lemma needed in the sequel.

Lemma 2.6. Let G be the fundamental group of an orientable surface S with boundaries such
that 2g(S) + b(S) > 4, where here g(S) denotes the genus of S and b(S) denotes the number of
boundary components. Then for any nontrivial element g which is not conjugate to any element
of a boundary subgroup, there exists a malnormal cyclic splitting of G in which g is hyperbolic and
boundary subgroups are elliptic.



Proof. The proof is by induction on g(S). If g(S) = 0, then G = (s1,--+ ,sp|s$1--- s, = 1) and
n > 4. Note that s1,---,s,-1 is a basis of G. Since ¢ is not conjugate to any boundary subgroup,
the normal form of g involves at least two elements s;,s; with 1 <7 < j < n —1. Since n > 4,
replacing the relation s;---s, = 1 by a cyclic permutation and by relabeling si,--- ,s,, we may
assume that 1 < ¢ < j < n — 1. Then g is hyperbolic in the following malnormal cyclic splitting
G = (s1,-+,8) * s s (Si+1, "+ »8n|). The geometric picture in that case is that the
curve representing ¢ intersects at least one simple closed curve which separates the surface into two
subsurfaces each of which has at least two boundary components.

Now suppose that g(S) > 1. Let ¢ be a non null-homotopic simple closed curve represented in a
handle of S. Let A be the dual splitting induced by ¢ which is in this case an HNN-extension. If g
is hyperbolic in that splitting (in particular if g is a conjugate to a power of the element represented
by ¢) then we are done. Otherwise g is elliptic and thus it is conjugate to an element represented
by a curve in the surface obtained by cutting along ¢. This new surface S’ has genus g(S) — 1 and
two new boundary components and thus we have 2¢(S’) 4+ b(S”) = 2¢(S) + b(S) > 4. By induction,
since g is not conjugate to any element of a boundary subgroup (also the new two boundaries) of S,
there exists a malnormal cyclic splitting of S” in which g is hyperbolic and the boundary subgroups
are elliptic. Since that splitting is compatible with A we get the required result. [l

2.3 Homogeneity, algebraic closure, independence

In this subsection we collect facts about algebraic closure and independence which will be used in
the sequel. We start from known facts which we cite for convenient reference and extend them for
our purposes.

Whenever there is more than one group around we may write aclg(A) and acl®lg(A) to de-
note the algebraic closure of A in the sense of the theory of GG, and similarly ALgB to describe
independence in the theory of G.

Proposition 2.7. Let G be a torsion-free CSA-group. Let A be a malnormal cyclic splitting of G.
Then for any nontrivial vertex group A we have acl(A) = A.

Proof. A consequence of [[], Proposition 4.3]. O

Theorem 2.8. [[l, Theorem 4.5| If F is a free group of finite rank with nonabelian subgroup A,
then acl(A) coincides with the vertex group containing A in the generalized malnormal (cyclic)
JSJ-decomposition of F' relative to A. O

Theorem 2.9. [ Let T' be a torsion-free hyperbolic group and A a subgroup of . Then acl(A) is
finitely generated. O

Proposition 2.10. [, Proposition 5.9] Let F' be a nonabelian free group of finite rank and @ a tuple
from F such that the subgroup A generated by a is nonabelian and F is freely A-indecomposable.
Then for any tuple b contained in F, the type tp(b/¢) is isolated. Il

Theorem 2.11. [{, (3] Let F be a nonabelian_free group of finite rank. For any tuples a,b € F™
and for any subset P C F, if lzpF((_z/P) = tp¥(b/P) then there exists an automorphism of F fizing
P pointwise and sending a to b. [

One ingredient in the proof of Theorem [.9 is a result of Sela which essentially allows us to
work in a free group. In [Sel09], Sela shows that if I is a torsion-free hyperbolic group which is
not elementarily equivalent to a free group, then I' has a minimal elementary subgroup, denoted
by EC(T'), called the elementary core of T' (see for instance [fj, Section 8] for some properties of



the elementary core). It follows from the definition of the elementary core that if I is a nonabelian
torsion-free hyperbolic group then I' is elementarily equivalent to I' x F;, for any free group of rank
n. Combined with [[I§, Theorem 7.2] it gives the following stronger result:

Theorem 2.12. Any nonabelian torsion-free hyperbolic group I' is elementarily equivalent to I" x I
for any free group F. O

We will be using the following variant of this result:

Lemma 2.13. Let I' be a torsion-free hyperbolic group not elementarily equivalent to a free group.
Let F be a free group and C a free factor of F. Then EC(I')« C < I'x F.

Proof. Suppose first that F' has a finite rank. The proof is by induction on the rank n of C. If
n = 0 then the result is a consequence of the definition of elementary cores (see [[f]). Suppose
that the result holds for free factors of rank n and set C' = (¢, cn+1|). Let ©(Z) be a formula
(without parameters) and g € EC(T") * C' such that ¢(g) holds in EC(T) x C. Then there exists
a tuple of words w(Z,;y) such that § = w(¢,;cpy1). By induction EC(T) * (¢,]) is an elementary
subgroup of EC(T) * C' and thus by [[i, Lemma 8.10], the formula ¢(w(¢,;y)) is generic. Since
by induction EC(T') * (¢,|) is an elementary subgroup of I' * F' we conclude that there exists
g1, ,gp € EC(T) % (Gy|) such that I'« F' = U;; X where X = ¢(w(¢,; '+ F')). Hence ¢, 41 € ¢;X
for some . There exists an automorphism of I' x F' fixing EC(T") * (¢,|) pointwise and sending ¢, 11
to gicnt+1 and thus o(w(éy; cpr1)) holds in I' + F' as required.

Suppose now that F' has an infinite rank and C' has a finite rank. By quantifier elimination and
Theorem P.I19 it is sufficient to show that for any formula ¢ of the form V3 or 3V with parameters
from EC(T)« C if T'x F = ¢ then EC(T) * C = .

Suppose that ¢ is of the form VzIypg(x;y) where x and y are finite tuples and g is quantifier-
free. If T x F' |= ¢ then for any g € EC(T') * C there exists a free factor C’ of F of finite rank such
that C' < C' and a tuple a € T'* C’ such that T'*x C" |= ¢o(g;a). By the previous case, EC(T') x C
is an elementary subgroup of I' x C’ and thus we get EC(T') * C' = Jypo(g;y). Hence we conclude
that EC(T") * C' = . The case ¢ is of the form 3V can be treated in a similar way. Finally, the
case F' and C both have infinite rank follows from the previous cases. O

Corollary 2.14. Suppose H = I' x F' where I' is a torsion-free hyperbolic group and F a free group
of finite rank. Then EC(T) and F are (in H ) independent over the emptyset.

Proof. If EC(T") = 1 the result is clear. So we suppose that EC(I") # 1; that is T" is not elementarily
equivalent to a free group. Combining Lemma and [f], Lemma 8.10], if e € F is a primitive
element then tp(e/EC(T)) is the unique generic type of H over EC(T). If h is a generating tuple
for EC(T") we therefore have e | 7 h for any primitive element e € F. Again combining Lemma
and [fl, Lemma 8.10] we conclude that & | A for any basis & of F. The result now follows. O

In a free group of infinite rank, we obtain the following of indepedent interest:

Lemma 2.15. Suppose that G is a group such that the theory Ty of H = G % F' is simple where F
s a free group of infinite rank. Then

G| F

Proof. Let {e;: i < w} be part of a basis for F. By using Poizat’s observation as in [{], if X is a
definable generic subset of H with parameters from G, X contains all but finitely many elements



of any basis of F. It follows that the e; form a Morley sequence in the sense of T over G. Clearly,
the e; are indiscernible over any finite subset A C G. Therefore (see e.g. [I9, Lemma 7.2.19])

A | {eiri<w}

and this is enough. O

The following characterization of forking independence over free factors in free groups was re-

cently proved by Perin and Sklinos [[[J] using [, Corollary 2.7] and Theorem R.11.

Proposition 2.16. [[3] Let F be a free group of finite rank, a, b be finite tuples from F and C a
free factor of F'. Then
a b
C

if and only if
F=AxCxBwith ac AxC and be C xB.

We will need slight extensions of the previous results to free products of a torsion-free hyperbolic
group with a free group:

Proposition 2.17. (Generic homogeneity) Let H = T' x F' where T is a torsion-free hyperbolic
group (possibly trivial) and F a free group of finite rank. Let a,b,¢ be finite tuples from F. If
tpr(a/e) = tpr(b/€) then there exists an automorphism f € Autz(F) such that f(a) = b.
In particular, B
tpu(a/c) = tpu(b/e)
if and only if )
tpr(a/c) = tpr(b/c)
if and only if B o
tpu(a/ch) = tpu(b/ch)

for any generating set h of I.

Proof. Let A (resp. B) be the subgroup generated by @ and ¢ (resp. b and &) and let E; (resp.
E5) be the smallest free factor of F' containing A (resp. B). By [[d, Proposition 7.1], either there
exists an embedding u : E; — H which fixes & and sends a to b, or there exists a noninjective
preretraction r : £; — H with respect to A, the JSJ-decomposition of Ej relative to A. If the last
case holds then by [[[J, Proposition 6.8], there exists a noninjective preretraction from E; to E; and
by [[3, Proposition 6.7] we get a subgroup E{ < E; and a preretraction r’ : E; — E; such that
(Eq, Ef,7") is a hyperbolic floor. This implies that F' has a structure of hyperbolic tower over a
proper subgroup contradicting [[3, Proposition 6.5].

We conclude that there exists u : Fy — H which fixes ¢ and sends @ to b. Symmetrically, there
exists v : By — H which fixes ¢ and sends b to @. Since Ej (resp. Fs) is freely indecomposable
relative to A (resp. B) by using Grushko theorem u : Ey — Es is an isomorphism sending @ to b
and fixing ¢ which can be extended to F' and also to H.

This shows in particular that tpr(a/¢) = tpr(b/c). Conversely, if this last property holds then
by homogeneity of F, there exists an automorphism f of F fixing ¢ and sending @ to b. Such
an automorphism can be extended to an automorphism f of H (fixing T pointwise) and thus
tpy(a/ch) = tpy(b/ch) for any generating set h of I'. Then clearly, we also have tpy(a/c) =
tpH(b/ E). [l



Corollary 2.18. Let H = T x F where F is a free group (of any rank) and T is a torsion-free
hyperbolic group not elementarily equivalent to a free group. Let a,b, ¢ be finite tuples from F'. Then
the conclusions of Proposition hold also in this case.

Proof. Let F, be a free factor of finite rank of F' containing the tuples a,b, ¢ and set H,, = I % F},.
Suppose that tpy(a/é) = tpy(b/é). By Lemma R.13, EC(T) * F,, < H, and EC(')* F,, < H
and hence we get tpy, (a/¢) = tpy,(b/¢). By Proposition there exists an automorphism
f € Auts(F,) such that f(a) = b which can be easily extended to F'. O

Theorem 2.19. Let H = I' x I where F' is a free group and I' is a torsion-free hyperbolic group
not elementarily equivalent to a free group. For finite tuples a,b € F and a free factor C (possibly
trivial) with finite basis ¢ of F we have

al

Olm
S

if and only if

O by

LB,

Proof. Let h be a generating tuple for EC(I"). By Corollary or Lemma we have a¢_| ' h and
abe | h. Using transitivity and monotonicity of forking in stable theories (see e.g. [L9, Corollary
7.2.17]) we have hence a_| h and d\Lgl_z.

Therefore, again using transitivity and monotonicity of forking we have

a | Hb

Ql

if and only if

al o
Thus it is sufficient to show that

al b
if and only if )

a|tb.

The proof is an adaptation of the argument in [[[J] by using the characterisation of forking
independence in F given in Proposition [P.1§ and Proposition .17 Write F = C % D and let
{d; : i < A} be a basis of D.

Since EC(I") x FF < I" x F' we may work in EC(I") * F' and thus without loss of generality we
assume that I' = FC(T"). Suppose that ELJ/BHEB. Let D' be another copy of D with basis {d; : i < A}
and consider H' =T« F« D' =T« Cx Dx*D’. Let w(Z;y) be a tuple of words such that a = w(d, ¢)
and consider @’ = w(d’,¢). Since H < H’', we have ELJ/}—LHE/B Then ELLBHEIE and a’ BHEIE by Corollary
and Lemma P.15.

Since by Lemma R.13, I' * C is an elementary subgroup of H’, it is algebraically closed in H'¢9.
It follows that for any a € F, tp(a/he) is stationary; that is if a’,a”,b € F, tp(a’/hc) = tp(a’ /he) =
tp(a/he) and a’J/gEl_), a”J/}—iIEl_) then t;z(d’[l_)l_zé) = tp(d”/l_)ZzE); B

By stationarity we get tpgs(a/hé,b) = tpg(a’/he,b) and in particular tpy:(a/é,b) =
tpy (@' /E,b). By Proposition .17, there exists an automorphism f of F % D’ fixing ¢ b point-
wise and sending @’ to a. We have Fx D' = f(D)*C * f(D'),a € C* f(D') and b € f(D)+C. The
conclusion now follows from Grushko’s theorem.

For the converse suppose that ' = A % C x B, such that @ € A C,b € C x B. Since a,b, ¢ are
finite tuples we have a free factor F), of finite rank with the property F,, = (AN F,) *C * (BN F,)



such that @ € (AN F,) * C,b € C* (BN F,). Set H = EC(T') * F,,. Since H' < H, it is sufficient
to show that di%l_). By Lemma and [, Lemma 8.10], if {e1, -+ ,e,} is a basis of AN F,, and

{€},--- ,el,} is a basis of BN F,, then they are independent realisations of the generic type over
hé. The result follows by the same argument as in the proof of Corollary R.14. O

3 The imaginary algebraic closure

In this section we study acl®d(A) with respect to the three basic equivalence relations conjugacy, left
(right) cosets of cyclic groups, and double cosets of cyclic groups. Note that the algebraic closure
is independent of the model. We first prove a proposition of independent interest:

Proposition 3.1. Suppose that G is a torsion-free CSA-group, A a nonabelian subgroup of G. Let
A= (G(V,E),T,p) be a malnormal abelian splitting of G relative to A. If g € G is hyperbolic with
respect to this splitting, there exist f, € Auts(G),n € N such that the f,(g),n € N are pairwise

non-conjugate and C(fn(g)) # C(fm(g)) for n # m.
We reduce the proof to the following basic configurations.

Lemma 3.2. Let G be a torsion-free CSA-group and A a nontrivial subgroup of G. Suppose that
one of the following cases holds.

(i) G = H x¢ K, C is abelian and malnormal, A < H, H is nonabelian and g is not in a
conjugate of H or K.

(it) G = (H,t|C" = ¢(C)), C (and p(C)) is abelian and malnormal in H, A < H and g is not
in a conjugate of H.

Then there exists infinitely many automorphisms f; € Auta(G) whose restriction to H is the
identity and to K a conjugation such that fi(g) is not conjugate to f;(g) and C(fi(g)) # C(f;(g))

fori#£j.

Proof. We treat the case (7). Write g in normal form g = g;---g,, with r > 2, where we may
assume that g is cyclically reduced. If C' =1 choose ¢ € H such that [c, g;] # 1 for at least one g;
appearing in the normal form of g with g; € H. Such a choice is possible since H is nonabelian and
CSA. If C # 1 we take ¢ € C nontrivial. We define the automorphism f,, by being the identity on
H and conjugation by ¢” on K. We see that f, € Auta(G).

Suppose towards a contradiction that the orbit {f,(g);n € N} is finite up to conjugacy. Hence
there exists ng and infinitely many n such that each f, is conjugate to fy,.

Suppose that C' # 1 and thus ¢ € C. In that case, we see that f,,(g1) - fn(gr) is @ normal form
of fn(g) which is moreover cyclically reduced for any n. Hence by the conjugacy theorem, there
exists d € C such that f,(g) is conjugate by d to the product of a cyclic permutation of the normal
form of fp,(g). Since the number of that cyclic permutations is finite we conclude that there exist
n # m such that f,,(9) = fm(g)? where d € C.

Suppose that g, € K. Then grc("_m)d_lgfl € C and thus we must have ¢*™d~! = 1 and
gr_lcm_”gr__ll € C. Since G is torsion-free and C' is malnormal, we conclude that ¢g._1 € C; a
contradiction.

Suppose that g, € H. Then d = 1 and gT,_lc"_””Lgr__l1 € C and the conclusion follows as in the
previous case. Hence the set of orbits of {f,(g),n € N} is infinite up to conjugacy. Using a similar
argument, we see also that C(f,(g)) # C(fm(g)) for n # m.

Suppose that C'= 1. We treat the case g, € Lo, the other case can be treated in a similar way.
Then we see that ¢ f,,(g)c™™ is a cyclically reduced conjugate of f,,(g). Proceeding as above, we
conclude that there exists n # m such that ¢" f,(g)c™"™ = ¢ f(g)c™™. Then using normal forms,



we get that [g;,c¢] = 1 for any g; appearing in the normal form of g with g; € H; a contradiction.
Using a similar argument, we see also that C(f,(g)) # C(fm(g)) for n # m.

We treat now the case (7). Let ¢ € G be a nontrivial element of Cy(C) (if C = 1, since A is
nontrivial, then we take ¢ to be any nontrivial element of H) and define for n > 1, f,, by being the
identity on H and sending ¢ to ¢"t. Then f, € Aut4(G).

Now g can be written in a normal form got®g; - - - ¢,t“ g,4+1, where ¢; = £1. Since any element
is conjugate to a cyclically reduced element, we may assume that g is cyclically reduced and we
may take g,11 = 1. We have f,(9) = gofn(t©)g1 - grfu(t), fu(t9) = "t if ¢, = 1 and
fu(t) = @(c)“™t% if ¢, = —1. Therefore f,(t)gir1 fn(tH?) = "t g, 1p(c)“ 17+ if ¢; = 1 and
€;+1 = —1. Similarly we have f,,(t%)git1 fn(t9) = p(c)“ "t % g;p 11541 if ¢, = —1 and €;41 = 1.

If C # 1 then g1+ & C and g;11p(c)“™ & p(C) and thus replacing each f,(t%) by its
value we obtain a normal form of f,,(g) which is moreover cyclically reduced.

If C = 1 then, since G is torsion-free, for all but infinitely many n, g;y1c¥+™ # 1 and
git1p(c) 1™ £ 1 and thus replacing each f,(t%) by its value we obtain as above a normal form of
fn(g) which is moreover cyclically reduced.

Suppose that the set {f,(g)|n € N} is finite up to conjugacy. Hence there exist ng and infinitely
many n such that f,(g) is cyclically reduced and is conjugate to fp,(g). By the conjugacy theorem,
there exists d € C'U p(C') such that f,(g) is conjugate by d to the product of a cyclic permutation
of the normal form of f,,(g). Since the number of that cyclic permutations is finite we conclude
that there exist n # m such that f,,(g) = fm(9)¢, where d € C U (C).

Since G is a CSA group, either C' and ¢(C) are conjugate in H and in this case we may assume
that C' = ¢(C) and thus G is an extension of a centralizer; or C' and ¢(C') are conjugately separated,
that is C" N p(C) =1 for any h € H.

Suppose first that C' = ¢(C) # 1. Since f,,(9)(fm(g)?)~" = 1, using normal forms we have

grcernterd—lt—erc—ermgr—l c C

and hence
grce"("_m)d_lgr_l eC.

By induction on 0 <1 < r, we get
gi-- - geelatrte)nmmglg il gl e O

and thus, we conclude that

C(eo—i----—i-er)(n—m)d—l _ d_l,

and we get cleotter)(n—m) — 1

Suppose that there is no indice [ such that clette)(n=m)g—1 — 1 Then it follows from
above that g; € C for any 4 and thus g = g+ g-t°T T, Hence (eg + -+ + €.) # 0 and since
cleotter)(n=m) — 1 and G is torsion-free we get a contradiction.

Suppose that there is some indice [ such that cl@t+e)(n=—m)g=1 — 1 Then for any ¢ > [ or
i <lwegetg €C. Then g = tot Fe-1gq... gt Fer If we suppose that eg +---+ ¢ = 0
then g will be a conjugate of an element of H; a contradiction. Hence (ep + -+ + ¢€,) # 0 and since
cleotter)(n=m) — 1 and G is torsion-free we get a contradiction.

Suppose that C = ¢(C) = 1. Then d = 1 and ¢™ " = 1; which is a contradiction. Suppose now
that C and Cy are conjugately separated. As in the previous case, we conclude after calculation
that ¢"~™ = 1; which is a contradiction.

We conclude that the orbit {f,(¢)|n € N} is infinite up to conjugacy as required. Using a similar
argument with normal forms we get that [f,(g), fm(g)] # 1 for n # m and thus C(f,(9)) # C(fm(9))
for n # m. O
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Proof of Proposition B.1].

To simplify, identify G with «(G(V, E),T). For an edge e; outside T, let G;(V, E;) be the
graph of groups obtained by deleting e;. Then G is an HNN-extension of the fundamental group
G; = 7(G;(V, E;), T) and we can write G = (G;,t|C* = ¢(C)) with A < G;.

Suppose that for some edge e; outside T the element ¢ is hyperbolic in the corresponding
splitting. Then we conclude by Lemma ..

Now assume that there is no edge in G(V, E) outside T such that g is hyperbolic in the cor-
responding splitting as above. Let L be the fundamental group of the graph of groups G(V, E’)
obtained by deleting all the edges outside the maximal subtree T". Since ¢ is not hyperbolic in any
splitting G = (G;,t|C! = ¢(C)), we may assume that g is in L and g is hyperbolic in L. Thus
we can write L = Lj ¢ Lo with ¢ is hyperbolic. We may suppose without loss of generality that
A < Ly. By Lemma B.J, there exists infinitely many automorphisms f; € Auta(L) whose restric-
tion to L is the identity and to Ly a conjugation such that f;(g) is not conjugate to f;(g) and
C(fi(g)) # C(f;(g)) for i # j.

Since each f, sends each boundary subgroup to a conjugate of itself, f,, has a natural extension
f, to G. If we suppose that {fn(g), n € N} is finite up to conjugacy (in G), then for infinitely many
n, fn(g) is conjugate to an element of a vertex group; which is a contradiction. Hence { fn(g); n € N}
is infinite up to conjugacy (in G) and we see also that C(f,(g9)) # C(fm(g)) for n # m (in G). This
ends the proof of the proposition. O

Definition 3.3. Let G be a group and A a subgroup of G, ¢ € G. We say that ¢ is malnormaly
universally elliptic relative to A if c is elliptic in any malnormal abelian splitting of G relative to A.

Corollary 3.4. Let G be a torsion-free CSA-group and A a nonabelian subgroup of G. If & or
C(c) is in acl®d(A), then c is malnormaly universally elliptic relative to A.

Proof. This follows from Proposition B.1. O

We write acl®(a) = acl®d(a) N Sg,, that is acl®(a) is the set of conjugacy classes bf" in acl®d(a).
For any subset A of a group G we also write A° = {b% | b € A} for the set of conjugacy classes with
representatives in A.

In the special case that G is free we do have the converse of Corollary B.4 We can formulate
the following list of equivalent criteria for a conjugacy class ¢’ to be contained in the imaginary
algebraic closure of a subset in the free group.

Proposition 3.5. Let F' be a free group of finite rank, A a nonabelian subgroup of F and ¢ € F.
The following are equivalent:

(1) ¢ € acl®(A).

(2) There exists finitely many automorphisms fi,...,f, € Auta(F) such that for any f €
Auto(F), f(c) is conjugate in F to some f;(c).

(3) ¢ is malnormaly universally elliptic relative to A.

(4) In any generalized cyclic JSJ-decomposition of F relative to A, either c is conjugate to some
element of the elliptic abelian neighborhood of a rigid vertex group or it is conjugate to an element
of a boundary subgroup of a surface type vertex group.

Proof. (1) = (2). Suppose that there exists infinitely many automorphisms f; € Aut4(F') such that
fi(c) is not conjugate to f;(c) for i # j. Then each f; has an unique extension f; to F°? and we get
that f;(c") # f;(cF) for i # j. Hence ¢! ¢ acl®d(A).

(2) = (3). This follows from Proposition or Corollary B.4.
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(3) = (4). We let A be a malnormal generalized cyclic JSJ-decomposition of F' relative to A.
Hence c is elliptic in A. Clearly c¢ is not in a conjugate of the free factor of A. If ¢ is in a conjugate
of a rigid vertex group, there is nothing to prove. Otherwise ¢ is in a conjugate of a surface type
vertex group and without loss of generality we may assume that it is included. In this case, by [g,
Proposition 7.6] (or by a general version of Lemma .6 and Proposition B.1) ¢ is in a conjugate of
a boundary subgroup.

(4) = (2). Write F = Fy x F5 where F} contains A and freely A-indecomposable. Let A be
a malnormal cyclic JSJ-decomposition of F' relative to A. Suppose that ¢ is in some conjugate
of a rigid vertex group or it is conjugate to an element of a boundary subgroup of a surface type
vertex group in a generalized malnormal cyclic JSJ-decomposition of F' relative to A. W.l.o.g, we
can assume that it is contained in a rigid vertex group or it is contained in a boundary subgroup
of a surface type vertex group. Since Moda(Fy) has finite index in Auta(F;) (Theorem P.§),
there are fi,..., f, € Auta(F') such that for any f € Auta(Fy) there exists 0 € Moda(Fy) such
that f = f; o o for some i. Since Fj is freely A-indecomposable by Grushko theorem for any
f € Auta(F), fip € Auts(F1). By Lemma P.4, any 0 € Moda(F1) sends ¢ to a conjugate of itself.
Hence f(c) = fi(c®) = fi(c)f(®) and thus for any f € Auta(F), f(c) is conjugate to some fi(c).

(2) = (1). Since acl(A) is finitely generated (Theorem P.9), we may assume that A is finitely
generated. Write F' = Fj x I where A < F; and F} is freely A-indecomposable. Since Fj is an
elementary subgroup of F, ¢ is a in a conjugate of Fj. We assume that ¢ = ¢/? where ¢’ € F}.

By Proposition let po(z) be a formula isolating the type of ¢ over @ where a is a finite
generating tuple of A. Let ¢(z) be the following formula in the language L¢?

p(z) = Fo(Po(x) Am(x) = 2),

where g is the relativisation of ¢q to the real sort of F' and 7 is the projection from the real sort
of F to the sort of the conjugacy classes. Then F° = ¢(cf'). We claim that ¢ has finitely many
realizations, which shows that cf” € acl®(A).

Let d € F® such that F® = ¢(df). Then there exists @ € F such that F = ¢g(a) and

af' = dF. Since ¢y isolates the type of ¢ over @ and F is homogeneous (Theorem R.I1), we
conclude that there exists an automorphism f € Aut(F) such that f(¢’) = o. Hence f(c) = af @)
and thus « is conjugate to some f;(c) and thus df = f;(c)!" as required. O

Remark 3.6. Let F' be the free group with basis {a,b}. The following example shows that in the
previous proposition we cannot remove the assumption that A be nonabelian. Let A be the subgroup
generated by a. We claim that acl®(A) = A¢. Indeed, let H = F * (c|). Then F is an elementary
subgroup of H as well as the subgroup K generated by (a,c). Hence acl°(A) C H*N K¢ = A°. By
a result of Neilsen (see for instance [B, Proposition 5.1]) any automorphism of F sends [a,b] to a
conjugate of [a,b] or [a,b]™'. Hence we see that the implication (2) = (1) is not true in this case.
However if we suppose that A is abelian but not contained in a cyclic free factor in Proposition
then the same proof of (2) = (1) works in this case.

For later reference we also note the following:

Corollary 3.7. Let H = T" * F where F is a free group and I' is a torsion-free hyperbolic group
not elementarily equivalent to a free group. Let a be a finite tuple from F generating a nonabelian
subgroup. Then any conjugacy class g € acl(a) has a representative g’ either in T or in F. If
g €T, then in fact ¢ € aclf; (1) = acli(1) and if ¢ € F, then ¢'* € acl%(a).

Proof. Let A to be the subgroup generated by a. The first part follows directly from Corollary
B.4 For the second part, just note that acl®dy(EC(T)) Nacl®dy (F) = acl®dy (1) since EC(T') and
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F are independent by Corollary or Lemma P.15. Since EC(T') < T and EC(T) X T x F,
we get aclf (1) = aclg(1). Let F,, be a free factor of F' of finite rank containing A. Again since
EC(T)*F,, < H any g € aclj;(a) has a representative ¢’ in EC(I')*F,. If ¢ € F and if we suppose
that g’F” ¢ aclg, (A) then by Proposition B.H, we get infinitely many f,, € Auta(F},) such the f,,(g')
are pairwise non conjugate and each f, has a natural extension to H; which is a contradiction. [

Remark 3.8. Note that if ' is elementarily equivalent to a free group then aclf-(1) = 1¢. Indeed,
by elementary equivalence it is sufficient to show this when I is free. In that case we see that any
g" € acl&(1) is also an element of aclf(a) Naclé(b) where {a,b} is a part of a basis and we see that
aclfp(a) = (a)¢; which gives the required conclusion. However it may be happen that aclf(1) = I'
when I' is not elementarily equivalent to a free group. Indeed let I' be a rigid torsion-free hyperbolic
group. Then Out(T) is finite by Paulin’s theorem [§] and T is homogeneous and prime by [G]. The
same method as in the proof of Proposition (2) = (1), shows that for any g € T, g- € acl&.(1).

For the equivalence relations E; ,,,7 = 1,2, m > 1 and E3, 4, p,q > 1 given in Theorem R.9, we
denote the corresponding equivalence classes by [z];m, = 1,2, [2]3p 4 respectively. We start with
the following lemma:

Lemma 3.9. Let H = T x F where T is torsion-free hyperbolic (possibly trivial) and F is a free
group. For a finite tuple @ from F such that acly(a) = aclp(a) and ¢ € H the following properties
are equivalent:

(1) C(c) € acl®y(a).

(2) c € acly(a).

Proof. Clearly, (2) implies (1). Let A to be the subgroup generated by a. If A is trivial the result
is clear. To prove (1) implies (2) suppose first that A is abelian; so cyclic and generated by a. Let
fo(x) = 29" If ¢ € acl(A) = C(a), then C(f,(c)) # C(fm(c)) for n # m. Hence C(c) ¢ acl®dy(A).

Suppose now that A is nonabelian. Let F}, be a free factor of finite rank of F' containing A
and which is freely A-indecomposable and set F' = Fj, * D. Let A be the malnormal cyclic JSJ-
decomposition of F, relative to A. Extend this to a decomposition A" of H = (I' * D) % F},. Then
by Theorem P.§ and Proposition P.7 the vertex group in A’ containing A is aclg, (4) = aclp(A) =
aclg(A) and by Corollary B.4 ¢ is elliptic with respect to A’.

Suppose that c is in a conjugate of I'*x D and set ¢ = ¢f with ¢g € I'x D. If a # 1, let f,, denote
the automorphism of H given by conjugation by a” on I' * D and the identity on F,. Then clearly
¢ and ¢ do not centralize each other for n # m showing that C(c) ¢ acl®dy(A). Hence a = 1
and ¢ € '« D. Again let a € F), and let f,, denote the automorphism of H given by conjugation by
a™ on I' x D and the identity on Fj,. As above ¢ and ¢ do not centralize each other for n # m
showing that C'(c) ¢ acl®ig(A).

Therefore we may assume that c is in a conjugate of F),. Proceeding as above we get ¢ € F),.
Suppose now that ¢ is not in a conjugate of acl(A). Write A = (G(V, E), T, ) and let L to be
the fundamental group of the graph of groups obtained by deleting the edges which are outside
T. Hence c is in a conjugate of L and without loss of generality we may assume that ¢ € L. Let
e1, -+ ,eq be the edges adjacent to acl(A) and let C; be the edge group corresponding to e;. Hence
we can write L = L;; *¢, Lis with acl(A) < L;;. Since c is elliptic and ¢ is not in a conjugate of
acl(A), we get, without loss of generality that ¢ € L;o for some i. If ¢ € C; then ¢ is in a conjugate
of acl(A) contrary to our hypothesis. So ¢ € C;. Proceeding as in the proof of Proposition B.1],
we take infinitely many Dehn twists f, € Auts(F,) around C; if C; # 1 and a conjugation by a
nontrivial element of L;; if C; = 1 and thus we find C(f,(c)) # C(fm(c)) for n # m. Now each f,
has a standard extension f, € Aut(H) and we see also that C(fn(c)) # C(fim(c)) for n # m. It
follows that C(c) € acl®¥(A); a contradiction.
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Hence c is in a conjugate of acl(A). Suppose that ¢ = d* with d € acl(A) and o € F}, \ acl(A).
Then we find infinitely many automorphisms f; € Auta(F),) such that f,(a) # fm() for n # m.
Clearly, these f; extend to H. Hence C(f,(c)) = C(f(d))/(®) £ C(f(c)) for infinitely many n,m
and thus C(c) ¢ acl®d(A); a contradiction. We conclude that ¢ € acl(A). O

Proposition 3.10. Let H = T x F where T' is torsion-free hyperbolic (possibly trivial) and F is
a free group. For a finite tuple a of F such that acly(a) = aclp(a) and ¢,d,e € H the following
properties are equivalent:

(1) (e, d)]1,m € acl®g(a).

(2) ¢,d € acly(a).

(3) (e, d)]2,m € acl®g(a).

Similarly we have [(c,d, e)]3pq € acl®g(a) if and only if ¢, d, e € acly(a).

Proof. Let A to be the subgroup generated by a. The implications (2) = (1) and (2) = (3) are
clear. By symmetry it suffices to prove (1) = (2). By Lemma B.9, we have ¢ € acly(A).

If A is abelian and generated by a, let fi(z) = 2% for i € N. If d € acly(A) = C(a), then
fi(d) & f;(d)C(a) for i # j. Thus for i # j, (fi(c), fi(d)) is not equivalent to (f;(c), f;(d)) relative
to the equivalence relation Fj ; and also relative to Ej ,, for all m > 1. Hence [c,d|; ,, & acl®i(A);
a contradiction. Therefore d € C(a) = acl(A).

If A is nonabelian and d € H \ acl(A), proceeding as in the proof of Lemma .9, we can again
find infinitely many automorphisms f; € Auta(F') such that fi(d) € f;(d)C(c) for i # j. Clearly,
these f; extend to H and so [(¢,d)]1,m ¢ acl®i(A). O

Recall that we write acl®(a) = acl®d(a) N Sg,. For any subset A of a group G we also write
A¢ = {b% | b € A} for the set of conjugacy classes with representatives in A.

Corollary 3.11. Let H = T' « F' where I' is torsion-free hyperbolic (possibly trivial) and F is a
nonabelian free group. For finite tuples a,b,¢ € F we have

acl®y (@) Nacl®y(b) = acl®dy(c)

if and only if

(1) aclf; (@) Nacly; (b) = acl§; (€)
and
(2) acly(a) Nacly(b) = acly(c).

Proof. By Theorem we have I' x F, is elementarily equivalent to H and thus we can apply

Theorem P.32.
One direction is clear. For the other direction, by Theorem P.3 and Remark P.1] it suffices to
show that

(acl®d(a) N Fg) N (acl®d(b) N Fg) = acl®l(¢) N Fg

where & is the set of equivalence relations given in Theorem P.3. For Ej this is assumption (1),
for E1 m, E2m, B34 this follows from (2) and Proposition B.10. O

Definition 3.12. Let G be a group and a a tuple from G. We say that a represents conjugacy (in
G) if aclg(a) = aclg(a)®.
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To verify the properties of an ample sequence in a free factor of a torsion-free hyperbolic group
it now suffices to restrict to this free factor:

Lemma 3.13. Let H = I'sF where F is a free group and I is torsion-free hyperbolic not elementarily
equivalent to a free group. For finite tuples a,b,¢ € F' generating nonabelian subgroups, representing

conjugacy in F' and such that acly(a) = aclp(a), acly(b) = aclp(b), acly(¢) = aclg(¢), we have

acl®p(a) Nacl®p(b) = acl®p(¢)

if and only if

acl®(a) Nacl®g(b) = acl®g(e).

Proof. By Corollary and the assumption on @, b and ¢ it suffices to verify that

acly(a) Naclg(b) = acl@ ()

if and only if )
acly(a) Nacly(b) = acly(e).

But this follows from Corollary B.7] and the assumption that the considered tuples represent
conjugacy: for any nonabelian subgroup A < F' the conjugacy classes in aclf;(A) have represen-
tatives either in aclf(A) or in aclf (1) and since a say represent conjugacy in F we have in fact
that g" € acl§;(a) if and only if either g7 € acl (1) or g has a representative g’ € F such that
gt € acl$(a). O

Corollary 3.14. Let H = I’ x F' where F is a free group and I' is torsion-free hyperbolic not
elementarily equivalent to a free group. Suppose that ag,...,a, are finite tuples in F, each a;
generating a nonabelian free factor of F' and witnessing that F' is n-ample and such that for 0 <i <k
we have

aclp(ag, ... a;,ar) = aclg(ag, . .. a;, ag),
acly (ag, . .. a;,ar) = aclp(ag, . .. a;, ax)".
Then ay, . . ., a, witness the fact that Th(I") is n-ample.

Proof. This follows from Lemma and Theorem P.19. O

4 The construction in the free group

In this section we will be working exclusively in nonabelian free groups and therefore all notions of
algebraic closure and independence refer to the theory T'r,. Our main objective here is to construct
sequences witnessing the ampleness. Corollary then allows us to transfer the results in Section 5
to torsion-free hyperbolic groups to obtain our main theorem.

Let
H; = (c;,d;, a;,b; | cidilag, b)) = 1),

that is H; is the fundamental group of an orientable surface with 2 boundary components and
genus 1, where ¢; and d; are the generators of boundary subgroups. Note that H; is a free group of
rank 3 with bases a;, b;, ¢; or a;,b;,d;. Let

Pn:HO*Hl*"'*Hn—l*Hny
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and
Go=Py=Hy, Gp= (P, t;,0<i<n-—1| dfi = ¢iy1) forn > 1.

Remark 4.1. Note that for any k < n we have
Gn: <Gk*Hk+1*...*Hn,t]‘,k‘§j <n-1 | d? :Cj+1>.

One of the principal properties that we will use is that gluing together surfaces on boundary
subgroups gives new surfaces. For i > 0, let h; = (a4, b;, ¢;) be the given basis of H;. We are going
to show that the sequence hg, ho, ..., hay, is a witness for the n-ample property in Ga,. The proof
is divided into a sequence of lemmas.

Lemma 4.2.
(1) For 0 < i <n, Gy is a free factor of Gy, and Gy, is a free group of rank 3(n + 1).
(2) For each 0 <i <mn, H; is a free factor of G,,.

Proof. (1) The proof is by induction on n. For n = 0, we already noted that Gy = Hy is a free
group of rank 3. For the induction step it suffices to show that G,, is a free factor of G, 1 with a
complement which is free of rank 3. We have

Gn+1 = (Gn * <tn ’>) *dfln:C7L+1 <Cn+17 an+1, bn—i—l ‘>7

and since ¢, 41 is primitive in (¢,41, @nt1,bnt1 |), the free group generated by t,,, any1,bpt1 is a free
factor in G, 1. This proves the claim.

(2) In view of (1) it suffices to show by induction on i that H; is a free factor of G; for 0 < i < n.
For ¢ = 0, there is nothing to prove. For i + 1, we have as above

Gip1 = (Gi*(ti ]) i ey (Cit1,@it1,big1 [),

and since by induction H; is a free factor of G, d; is primitive in G;. In particular, d;fi is primitive
in (G; = (t; |)) and we conclude that H;;q is a free factor of G;41, as required. O

Lemma 4.3. For n =2k > 2, we can write
(1) Gn=8x%(tg ) *...x (tn_1])-
for a surface group S with

S = (co,d,,,ap,bo,ay,b,...al, b | cod,|al,n}]...[a},b]][ao,bo] = 1)

n-n
where d), is conjugate to d,.

Proof. We have

Gn = (ao,bo |) * ({to |) * (a1,b1 |) * ... % (tn1 |}) * (dn, an, by |),

where

cn = [bny an)dy?, dp—1 = tn_1cnt; ), eno1 = [boo1,an—1]d, ..., do = tocity, co = [bo, aoldy .

1

Replacing successively and setting s;~ =ty ...t; we obtain:
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co = [bo, a(]] [bQ, CLQ]sl [b4, a4]33 ... [bn, an]s”*l (d,_Ll)&“l [an_l, bn_1]57“2 L. [al, bl]so‘

For 0 < i <n put
a,=al"' b =0b]"", and d, =d;"".

Then

co = [bo, ao] [bh, @3] [y, aj] .. [br,, @] (dr) ™ a1, br,a] - [ay, B,

Finally for i = 1,...k, put
" _ d " A
agi—1 = Gy 1, and by;_; =by? ;.

Then

G = (a0, bo [} * (to ) * (af, 07 [) = (tr [) * (ag, b5 ) * (2 [) .. % ({tn1 [) * (dpy, a, by, 1),

and

co = [bo, ao] [y, a) [0y, al] - [0, apl[an_y, 0] - e, 0] () 7

With
S = <607d;ma07b07a/1/7 /llva/27 /27 s a;wbéz | Cod;[ /1/,61/1/][ g,alg/] s [a;wbéz] s [a27b2][a07b0] = 1>
we have
(1) Gn=Sx{ty|)*...% (tn_1 ).
O

As S is the fundamental group of an orientable surface with genus > 1 and two boundary
subgroups generated by cg and d], we may apply Lemma P.§ to S and obtain the following corollary:

Corollary 4.4. Suppose n = 2k > 2 and g € G, \ {1} is not conjugate to a power of ¢y or of
dn. Then there exists a malnormal cyclic splitting of G, such that cg and d,, are elliptic and g is
hyperbolic.

Proof. Write g = g1+ g in normal form with respect to the splitting appearing in Lemma [.3.
W.l.o.g, we may assume that g is cyclically reduced. If & > 2, then g is hyperbolic in the given
malnormal splitting. Hence we may assume that g € S or g € (¢; |) for some i <n — 1.

If g € S, by Lemma P.6, there exists a malnormal cyclic splitting S in which g is hyperbolic and
co and d,, are elliptic. This yields a refinement of the cyclic splitting of G;, in Lemma [L.J in which
g is hyperbolic.

Next suppose that g € (o [). For any 1 < i < n we can write (to,t; |) = ((t;,totity " |),to |
(totityg )™ = t;) which is a cyclic splitting A in which o is hyperbolic. By replacing (to |) * (t; |) by
A in the splitting given in Lemma [£.d we obtain a cyclic splitting of G, in which g is hyperbolic.
If g € (t; |) for 1 <i < n the same proof works and we are done. O

Recall that for i > 0, h; = (a;,b;,¢;). Having diposed by some needed properties of G, in the
previous lemmas, we are now ready to show that the sequence hg, ha, .. ., ho, satisfies conditions of
Definition [T Since G; is a free factor of G}, for 0 < 4 < k which implies that G; is an elementary
subgroup of Gy, in computing the algberaic closure — as well as the imganiary algebraic closure —
of tuples of G; it is enough to work in G;.
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Lemma 4.5. For 0 <1i¢ < k we have
Gy N acl(ﬁo,ﬁg, - ,Egi,ﬁgk) = aCl(EQ,EQ, . ,Egi)

and o o o B
5 N acl®(hg, ha, . .., hoi, hor) = acl®(hg, ha, . .., ho;).

Proof. Since Gy, is a free factor we may work in Goi. Let g € Go; Nacl(hg, ha, ..., ha;, hoy) and
suppose towards a contradiction that g € Go; \acl(ﬁo, ha, ... ,Egi). Then there exist infinitely many
automorphisms f, € Aut(Gg;) which fix hg, ha, ..., he; such that f,(g) # f,(g) for p # q. Recall
that

G = (Gai * Haiy # ... Hopy % Hop, 15,20 < j < 2k — 1] d} = cjp1).

We extend each f), to Ggj * Hajt1 * ... * Hop_1 * Hoi, by the identity on the factor Ho;yq * ... *
Hyj—q * Hg,. Hence each f, has a natural extension to Ggj that we denote by fp and such that
fp(g) # fq(g) for p # q. We see that each f), fixes ho, ho, ..., h;, ho and fp(g) # fq(g) for p # q.
Therefore g & acl(hg, ho, ..., ha;, ho); which is a contradiction.

Similarly if &2 € GS; \ acl’(ho, ha, ..., ha;) there exist infinitely many automorphisms f, €
Aut(Go;) which fix hg, ha,...,ha; such that f,(g) and f,(g) are not conjugate for p # g. We
extend these f, to Goy as in the previous paragraph. Clearly fp(g) and fq(g) are not conjugate in
Go; * Hojy1 * ... x Hop_1 % Hop. Suppose towards a contradiction that {fp(g) | p € N} is finite up
to conjugacy in Ggi. By applying [f, Lemma 3.1] it follows that for p # ¢ the pair (f,(g), f,(g)) is
conjugate in Go; * Hojy1 * ... % Hop_1 % Hop to a one of the pairs (dg,cgﬂ) for 2 < j <2k —1and
r € 7; this is clearly a contradiction. By Proposition B.§ g2+ ¢ acl®(hg, ha, ..., ha;, hay); which is
a contradiction. O

Lemma 4.6. For 0 <1¢ <k we have

(i) acl(ho, ha, . . ., hai, ha) = Ho % Hy % - % Ho;  Hop,
and
(i) acl®(ho, ha, . .., hai, ho) = acl(ho, ha, .. . , hai, hop)°

Proof. We first prove (i). By rewriting the splitting
Gaok = (Ho* Hy -+ % Hopq % Hop, t5,0 < i < 2k — 1| dj = ¢i11),

as
Gop = ((Ho * Ho % -+ % Hoj % Hop) % K, ;,0 < i < 2k — 1| df = ci11),

where K is the free product of the remaining of the H;, we get a malnormal cyclic splitting in which
Hyx Ho * - -+ x Ho; x Ho is a vertex group. Hence by Proposition @

aCl(EO,EQ, e ,Egi,ﬁgk) = Hox Hy*---x Ho; x Hyp

as required.
We prove (ii). We assume inductively that

aClC(EQ,EQ, e ,Egi,ﬁgk) = aCl(EQ,EQ, e ,Egi,ﬁgk)c.
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Let G20 ¢ aclc(ﬁo,ﬁg, - ,Egi,ﬁgk) and consider the malnormal cyclic splitting of Ggp with
vertex groups K = (Go; * Hop) and L = (Hojp1 % ... % Hop—1,t5,2i +1 < j < 2(k —1) | d;j = Cjt1)
given by

Gop = (K * L,t;,j = 2i,2k — 1| d = cji1).

By Corollary B4, c is in a conjugate of K or of L. Suppose first that ¢ is in a conjugate of L and
thus w.l.o.g, we may assume that ¢ € L. Note that L & Gy, with m =k —i — 1. By Corollary [1.4
when 2m > 2 and Lemma P.6 when 2m = 0, if ¢ is not conjugate to an element of (co;41) or (dog_1)
then L has a malnormal cyclic splitting such that cs;41 and dor_1 are elliptic and c is hyperbolic.
Hence we get a refinement of the previous splitting of Go where K is still a vertex group and such
that c is hyperbolic, contradicting Corollary B-4.

Therefore ¢ is either conjugate to an element of (cg;+1) or of (dgg—1). But since dgzlckjll =
Coks d?; = c9;4+1 we conclude that either G2 ¢ acl(ﬁgi)c = HS§; or G2 ¢ acl(ﬁgk)c = HS, and hence
c%2 € acl(hg, ha, . .., hog, hop)© as required.

Suppose now that ¢ is in a conjugate of K and thus w.l.o.g, we may assume that ¢ € K. Write
¢ = g1 gm in normal form with respect to the free product structure of K = Go; * Hoi. Since
any element is conjugate to a cyclically reduced one, w.l.o.g, we may assume that c is cyclically
reduced. If m = 1, then ¢ € Hyy, or ¢ € Ga; and hence %2 € acl(hoi )¢ or ¢ € acl(hg, ha, . . . , ha;)°
by Lemma [L.] and induction hypothesis. If m > 1, we claim that for any 1 <[ < m if g; € Go; then
a1 € acl(hg, ha, ..., hy;) and so ¢ € acl(hg, ha, .. ., hai, hay). Suppose towards a contradiction that
g1 € Go;\acl(hg, ha, . . ., ho;) for some 1 < I < m. Then proceeding as in the proof of Lemma [L.§ there
exist infinitely many automorphisms f, € Aut(K) fixing ho, ha, ..., ha, hog and with f,(c) # f,(c)
for p # q. Each f, has a natural extension to G, that we denote by fp and such that fp(c) #* fq(c)
for p # q.

Suppose that the set {f,(c) | p € N} is finite up to conjugacy in K. Hence there exists an
infinite set I C N and po such that fy,(c) is conjugate to fp,(c) for every p € I. We see that
fo(e) = folg1) -+ fp(gk) and (fp(g1),.. .. fp(gk)) is a normal form and fp(c) = fp(g1) - fp(gk) is
cyclically reduced. Therefore (f,(g1),..., fp(gr)) is a cyclic permutation of (fp,(g1),- .-, fpo(9k))-
Since the number of such cyclic permutations is finite, we conclude that there exists p # ¢ € I such

that f,(c) = fy(c) and thus f,(g;) = f4(g1), a contradiction.

Hence the set {f,(c) | p € N} is infinite up to conjugacy in K. Suppose towards a contradiction
that {fp(c) | p € N} is finite up to conjugacy in Gog. Since {fp(c) | p € N} is infinite up to conjugacy
in K, we conclude that there exists p # ¢ such that f,(g) is conjugate to f,(c) in Goi and f,(c) is
not conjugate to f,(c) in K * L. By applying [H, Lemma 3.1] it follows that the pair (f,(c), fy(c))
is conjugate in K x L to a one of the pairs (dy;, ch; ), (dy;,_,,ch,) for some r € Z; this is clearly a
contradiction as f,(c), f,(c) € K. Hence the set {f,(c) | p € N} is infinite up to conjugacy in Goy
and by Proposition B.5 %2 & acl®(hg, ha, ..., ha;, hoy); which is a contradiction. O

Lemma 4.7. We have

acl(hg) Nacl(hg) = acl()

and

acl®(ho) Nacl®(hy) = acl().

Proof. As Gy is a free factor, we work in F' = Ga. Let a € acl(hg) N acl(hg). Since acl(hg) = Ho,
acl(hg) = Ho and a € acl(hg, ho) = Hg * Ho we conclude that a = 1. We note that acl(1) = acl(f).

Let af’ € acl®(hg) Nacl®(hy). Therefore a” € H§ N HS. Hence there exists a € Hy, 3 € Hy such
that of = g = af'. Suppose that a # 1. Clearly o and 8 are not conjugate in Py = Ho * Hy % Ho.
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By applying [f, Lemma 3.1] it follows that the pair («, 8) is conjugate in P, to a one of the pairs
(db, ch), (ch,db), (dy,ch), (ch,di) for some r € Z; this a contradiction. Therefore af” = 1¥. By
Remark B.§ we have acl®(f)) = acl®(1) = {1¥'} which concludes the proof. O

Lemma 4.8. For i > 0 we have the following:
aCI(Eo,EQ, ce ,Eg(i_l),ﬁgi) N aCI(Eo,EQ, ce 752@—1)752(1'—1-1)) = aClEO,EQ, ce yE2(z’—1))

and

aClc(Eo, Eg, ‘e ,Eg(i_l),ﬁgi) N aclc(ﬁo,ﬁg, ‘e 752(i—1)7ﬁ2(i+1)) = aclc(ﬁo,ﬁg, ‘e 7h2(z'—1))-

Proof. We may work in F' = Gy(;;1). The first result follows from Lemma [.§ and normal forms: if
L=AxBx*Cthen Ax BN AxC = A. For the second part let ¢/’ € acl®(hg, ha, ... ,Eg(i_l),ﬁm) N
aClC(Eo,EQ, oo 752@—1)7%2(1'—1-1))7 C 75 1. o _ _

By Lemma [L§ (ii) there exist a €  acl(ho,ho,... yhaii—1),he) and B €
acl(hg, ha, ... ,E2(Z’_1),E2(i+l)) such that of” = g = ¢, We have

Gg(i+1) = <G2(i—1) * H2i—l * Hgi * H2i+l * H2(7;+1)7tj7 2(2 - 1) S] <2 +1 ’ dzj = Cj_|_1>.

First suppose that o and § are conjugate in L = Gy(;_1) * Hoi—1 * Ha; x Hajy1 * Ho(;41). Since
a € Go(i—1) * Hy; and B € Gy(i_1) * Hy(i41), it follows from properties of normal forms that « is
conjugate to an element of Gy(;_1). But since o € acl(hg, ha, . .. ,Eg(i_l)) x Hy; it follows that « is
conjugate to an element of acl(hg, ha, . .. ,Eg(i_l)); which is the required result.

Now suppose that o and § are conjugate in Gyy1) but not in L = Gy_qy * Hoj—1 * Hy; x
Hoyiy1 % Hy(iy1)- Then o (and similarly () is conjugate in L to a power of one the elements dy;—1,
C2iy da(i—1)s C2i—1, d2i; C2i41, d2i41, Co(it1)-

Since a € Ga(_1) * Ha;, we conclude that « is conjugate to a power of cg; or dy; or do(;_1).
Similarly, since 8 € Gg—1) * Hy(i41), we conclude that 8 is conjugate to a power of cy(;41) or
da(i-1)-

If « is conjugate to a power of cy; then 3 is conjugate (in L ) to a power of dg;—1; which
is a contradiction. Similarly, if « is conjugate to a power of dy; then f is conjugate (in L ) to
a power of cg;41; which is also a contradiction. Hence « is conjugate to da;—1) and thus ' e

acl®(ho, ha, . . . ,Eg(i_l)) as required. 0
By Corollary we thus have proved the following:

Corollary 4.9. We have B 3
acl®d(hg) Nacl®d(hg) = acl®Y(0)

and fori>1
aCqu(E(]yEQv s 7E2(i—1)7ﬁ2i) N aCICq(E(b E?v s 752(i—1)7ﬁ2(i+1)) = aCICq(E(b E?v s 752(72—1))' O

To finish the proof of the fact that our sequence is a witness for the n-ample property we prove
the two next lemmas which yield the required properties of independence.

Lemma 4.10. Fori=1,...,n — 1, there exists a free decomposition G, = K % Ho; x L such that
ho, ... 7h2(i—1) € K x Hy; and h2(i+1) € Ho; x L.
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Proof. Let 1 <i¢<n—1 and put
Li= (Hyip1 %% Hotj,2i+1<j<n—1]d} = cjp1).
Then
toi— i
Gy = (Goi—1 % Hoy % Ly toi—1,to; | dyi ™) = e, d = coi1)

Since Hoy;_1 is a free factor of Go;_1, d;_1 is primitive in G9;_1 and thus we can write Go;_1 =
Ky x (dg;—1) for some free group Ky. Similarly, co;4+1 is primitive in L; and thus we can write
L; = (c2i+1) * Lo for some free group L.

Therefore

Gn = Ko * (toi—1 |) * Ha; * (t2; |) * Lo,
and by setting K = Ko * (ty;_1 |) and L = (to; |) * Lo we get G,, = K * Hy; x L with h, . .. ,52(2-_1) €
K % Hy; and EQ(Z'+1) € Hoy; x L as required. O

Lemma 4.11. There is no free decomposition G, = K x L such that hg € K and h,, € L.

Proof. Suppose towards a contradiction that such a free decomposition exists. Since H; is a free
factor, it follows that Hy is a free factor of K and H,, is a free factor of L. Since ¢y is primitive
in Hy it is primitive in K and since d,, is primitive in H, it is primitive in K. We conclude that
{co,d,} is part of a basis of G,,. Therefore in the abelianisation G% = G,,/[Gy,Gr], we get that
{co,d,} is part of a basis.

However in G‘}Lb we have ¢;d; = 1 and d; = ¢;41 and thus ¢y = d,jfl depending on whether n is
odd or even, a contradiction. [l

By Proposition we have thus proved the following:
Corollary 4.12. We have
han £ ho
and fori>1
ho .. hai-1) Ly hagrr). O

Putting Corollary [L.d and Corollary together we therefore have proved the following:

Theorem 4.13. The u; = hg; € Gap,i =0,...n witness the fact that Ty is n-ample, i.e. we have
the following:

(i) un L uo;

(ZZ) UuUg ... Uj—1 J/uiuﬂ_l for1 <i< n;

(i74) acl®(ug) N acl®(uy) = acl®d(0).

() acl®d(ug, uy, . .., ui—1,u;) Nacl®(ug, u, ..., ui—1,uip1) = acl®(ug, u1, ..., ui—1). O
Remark 4.14. In fact, since

) t;
Gn+2 = <Gn * Hn+l * Hn+27tj7] =n,n+ 1 ’ djj = Cj+1>

any free group F of infinite rank contains a sequence (u,: n < w) of tuples such that
i) u; fouj fori#j;
ZZ) ug ... U;—1 \Lul Ui+1

i11) acl®d(ug) Nacl®d(uy) = acl®d(().
iv) acl®d(ug, ui, . .., ui—1, u;) Nacl®(ug, uy, ..., ui—1, ui+1) = acl®(ug, ug, ..., ui—1).

T~ N N N

In particular, F,, contains an explicit sequence (up: n < w) such that for every n the finite
sequence ug, U1, , Uy S a witness of the n-ampleness.
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5 Proof of the main theorem

We now move back to working in a torsion-free hyperbolic group. Let H = I x (G5, where I' is
torsion-free hyperbolic and Gs, is as before. In order to finish the proof of the main theorem we
just need the following observation:

Lemma 5.1. With hg, ha, ..., hay, defined as in Section 4, we have for 0 <1i < k
aclg,, (ho, ha, ..., hoi, hor) = aclg(ho, ha, . . ., hag, hop).
Proof. By Lemma [L.§ we have for 0 <i < k
aclg,, (ho, ha, haihay) = Ho * Hy ... Ha; * Hoy,.

By Theorem R.§ we know that Hg * Ho ... x Ho; x Hayy is the vertex group containing
{ho, ha, ..., ho, hat} in the generalized malnormal cyclic JSJ-decomposition A of Ga, relative to
{ho, ha, ..., ho, ha}. Using A we obtain a malnormal cyclic splitting of H = I" ¥ Ga,,. By Proposi-
tion P.7 we now see that

aclg (ho, ha, ..., hai, hog) = Ho * Ha * ... x Hy; % Hoy,.

Corollary combined with Lemma [. and Theorem now yield our main theorem:

Theorem 5.2. Let T' be a torsion-free hyperbolic group and T = Th(T'). Consider the model
H = EC(T) *xGap of T. Then u; = hg; € Gap,i = 0,...n witness the fact that T is n-ample, i.e.
we have the following:

(4) un Luo;

(1) uo ... w1 |y wit1 for 1 <i <mn;

(11) acl®d(ug) Nacl®@(uy) = acl®d(().

(1v) acl®(ug, uy, ..., ui—1,u;) Nacl®(ug, ut, ..., ui—1,ui+1) = acl®(ug, u, ..., ui—1).
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