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Bi-Hamiltonian nature of the equation

utx = uxy uy − uyy ux

V. Ovsienko

Abstract

We study non-linear integrable partial differential equations naturally arising as bi-Hamiltonian Euler

equations related to the looped cotangent Virasoro algebra. This infinite-dimensional Lie algebra (con-

structed in [16]) is a generalization of the classical Virasoro algebra to the case of two space variables.

Two main examples of integrable equations we obtain are quite well known. We show that the rela-

tion between these two equations is similar to that between the Korteweg-de Vries and Camassa-Holm

equations.
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1 Introduction

The differential equation
utx = uxy uy − uyy ux, (1.1)

where u = u(t, x, y) and where ux, uy, etc. are the partial derivatives, is a nice example of a
non-linear integrable model. This equation is quite well known and appears in the Mart́ınez
Alonzo-Shabat “universal hierarchy” (see [13], formula (8)).

The main purpose of this note is to show that this equation (coupled together with another
differential equation, see formula (3.6) below) naturally appears as a bi-Hamiltonian vector field
(in particular, the variable t plays the rôle of time while x, y are space variables). More precisely,
we will show that this equation is an Euler equation on the space dual to the “looped cotangent
Virasoro algebra” introduced in [16]. This, in particular, implies its integrability in the (weak
algebraic) sense of existence of a hierarchy of first integrals in involution.

The bi-Hamiltonian approach to the same Lie algebra has already been considered in [16]
and led to another non-linear differential equation:

ft = fx ∂−1
x fy − fy u + c ∂−1

x fyy,

which can be rewritten without non-local terms:

utx = uxx uy − uxy ux + c uyy, (1.2)

after the substitution f = ux. Here c ∈ R is an arbitrary constant (the “central charge”). Note
that this equation is also a quite well known integrable system (see [5, 6] and also [4]) that
appears both in differential geometry and hydrodynamic.
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Equations (1.2) and (1.1) look alike but they are not equivalent to each other. We will show
that the relation between these equations is similar to that between the classical Korteweg-de
Vries equation (KdV) and the Camassa-Holm equation (CH). Recall that both KdV and CH
are bi-Hamiltonian systems on the dual of the Virasoro algebra, see [12, 3, 11, 14, 10]. An
interesting “tri-Hamiltonian” viewpoint was suggested in [15], in order to establish a certain
duality between KdV and CH. Equations (1.2) and (1.1) are dual in the same sense.

This paper fits into the general framework due to V.I. Arnold, see [1]. Non-linear partial
equations are viewed as Euler equations on the dual of a Lie algebra (for instance, the Lie
algebra of vector fields). This approach explains the geometric meaning of the equations: every
Euler equation describes geodesics of some left-invariant metric on the corresponding group (of
diffeomorphisms).

The bi-Hamiltonian Euler equations are of special interest. Most of the known bi-Hamiltonian
non-linear partial differential equations (KdV,CH, etc.) are of dimension 1+1 (i.e., contain only
one space variable). Equations (1.1) and (1.2) provide with examples of such equations in the
(2 + 1)-dimensional case.

2 The bi-Hamiltonian formalism on the dual of a Lie algebra

In this section we recall the general construction of pairs of compatible Poisson structures on
the space dual to a Lie algebra. We also give the standard construction of bi-Hamiltonian vector
fields on this space, due to F. Magri [12].

Let a be a (finite-dimensional) Lie algebra, the canonical Lie-Poisson(-Berezin-Kirillov-
Kostant) bracket on a∗ is given by

{F,G} (m) = 〈[dmF, dmG] ,m〉, (2.1)

where m ∈ a∗ and where dmF and dmG are the differentials of F and G at m understood as
elements of a, namely dFm ∈ (a∗)∗ ∼= a. This Poisson structure is linear, i.e., the space of linear
functions equipped with the bracket (2.1) is a Lie subalgebra of C∞(a∗) (isomorphic to a).

Given a skew-symmetric bilinear form ω : a ∧ a → R, one defines another Poisson structure
on a:

{F,G}ω (m) = ω (dmF, dmG) . (2.2)

This structure is with constant coefficients, i.e., the bracket of two linear functions is a constant
function on a∗.

Two Poisson structures are called compatible (or a Poisson pair) if their linear combination
is again a Poisson structure. The following simple fact is well known (see, e.g., [2], Section 5.2).

Proposition 2.1. The Poisson structures (2.1) and (2.2) are compatible if an only if ω is a
2-cocycle on a.

The simplest example of a constant Poisson structure (2.2) corresponds to the case where
the 2-cocycle ω is trivial (i.e., a coboundary). Every such structure is of the following form. Fix
a point m0 ∈ a∗ and set

ω(x, y) = 〈m0, [x, y]〉 . (2.3)

It worth noticing that one can understand this particular case of constant Poisson structure on
a∗ as the most general one. Indeed, it suffices to replace a by its central extension.

Every function H on a∗ defines two vector fields that we denote XH and Xω
H on a∗: the first

one is Hamiltonian with respect to the linear structure (2.1) and is given by

XH(m) = ad∗

dmH m, (2.4)
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while the vector field Xω
H is Hamiltonian with respect to the constant bracket (2.2). In the

particular case (2.3), one has explicitly

Xω
H(m) = ad∗

dmH m0. (2.5)

Given two compatible Poisson structures, a vector field which is Hamiltonian with respect to
the both structures is called bi-Hamiltonian. The usual way to construct bi-Hamiltonian vector
fields on a∗ is as follows. Consider the following 1-parameter family of Poisson structures

{ , }λ = { , }ω − λ { , },

(parameterized by λ ∈ R). Assume that H is a Casimir function of this bracket, i.e., one has

{H, F}λ = 0, for all F ∈ C∞(a∗).

Assume also that H is written in a form of a series

H = H0 + λH1 + λ2 H2 + · · · (2.6)

One immediately obtains the following facts:

1. the function H0 is a Casimir function of { , }ω;

2. the Hamiltonian vector field corresponding to Hk are bi-Hamiltonian, namely

XHk
= Xω

Hk+1
,

for all k;

3. all the functions Hk are in involution with respect to the both Poisson structures, indeed,
for k ≤ $ one has

{Hk, H#} = {Hk+1, H#}ω = {Hk+1, H#−1} = · · · = 0,

and therefore are first integrals of every vector field XHk
.

Let us summarize the method. To construct an integrable hierarchy, one chooses a function
H0 which is a Casimir function of the constant Poisson structure { , }ω; one then considers
its Hamiltonian vector field, XH0

, with respect to the Lie-Poisson structure. This vector field
is again Hamiltonian with respect to the constant Poisson structure, with some Hamiltonian
function H1, so that one has: XH0

= Xω
H1

. One then iterates the procedure to find H2,H3, etc.

3 The looped cotangent Virasoro algebra and its dual

In this section we recall the definition [16] of the looped cotangent Virasoro algebra. We also
describe its coadjoint representation.

Let us start with the definition of the classical Virasoro algebra. Consider the Lie algebra,
Vect(S1), of vector fields on the circle: f(x) ∂

∂x where f ∈ C∞(S1) and x is a coordinate on S1,
we assume x ∼ x + 2π. To simplify the formulæ, we will identify Vect(S1) with C∞(S1); the
Lie bracket in Vect(S1) is then given by

[f, g] = f gx − fx g.
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The Virasoro algebra, Vir, is a (unique up to isomorphism) one-dimensional central extension
of Vect(S1). It is defined on the space Vect(S1) ⊕ R, the commutator being given by

[(f, α), (g, β)] =

(
f gx − fx g,

∫

S1

f gxxx dx

)
. (3.1)

Note that the constants α and β do not enter the right hand side of the above formula since
they belong to the center of Vir.

The Virasoro algebra was found by Gelfand and Fuchs [8], the constant term in the right
hand side of (3.1) is called the Gelfand-Fuchs cocycle. This Lie algebra plays an important
rôle in mathematical physics, essentially because of the applications of its representations to
conformal field theory, but also because of its applications to integrable systems.

The dual space, Vect(S1)∗, is the space of distributions. One often considers only a subspace,
Vect(S1)∗reg, called the “regular dual” (cf. [9]). As a vector space, this regular dual is, again,
isomorphic to C∞(S1), the pairing 〈., .〉 : Vect(S1) ⊗ C∞(S1) → R being give by

〈
f(x)

∂

∂x
, a(x)

〉
:=

∫

S1

f(x) a(x) dx.

The regular dual to the Virasoro algebra is Vir∗reg = C∞(S1)⊕R; the coadjoint action of Vir on
its regular dual is:

ad∗

(f,α)(a, c) = (f ax + 2 fx a + c fxxx, 0) .

This formula easily follows from (3.1) and the definition of ad∗, see [9]. Note that the constant
c is preserved by the action, it is therefore a parameter called the central charge.

Remark 3.1. The Virasoro algebra is, indeed, exceptional. The reason is that the Lie algebras
of vector fields on a manifold of dimension ≥ 2, has no central extensions, cf. [7]. The problem
of generalization of the Virasoro algebra is an interesting subject studied by many authors.

The looped cotangent Virasoro algebra [16] is a generalization of Vir in the case of two
variables. We consider the 2-torus T2 and define a Lie algebra structure on the space

g = C∞(T2) ⊕ C∞(T2) ⊕ R
2.

given by the commutator











f

a

(α,α′)






,






g

b

(β,β′)











=






f gx − fx g

f bx + 2 fx b − g ax − 2 gx a
( ∫

S1×S1

f gxxx dxdy ,

∫

S1×S1

(f by − g ay) dxdy
)






(3.2)

where (x, y) are the usual coordinates on T2 and where f, g, a, b are smooth functions in x, y;
the constants α,α′,β,β′ ∈ R are elements of the center. Note that, unlike the Virasoro algebra,
the center of g is two-dimensional.

Remark 3.2. One notices that the quotient-algebra g/R2 (by the center) is the loop algebra
with coefficients in the semidirect sum Vect(S1) ! Vect(S1)∗reg. The dependence in y-variable
in this quotient-algebra is somehow trivial. The second 2-cocycle in (3.2), however, makes this
dependence in y non-trivial. Note also that this cocycle is rather similar to the Kac-Moody
cocycle.
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We will need the coadjoint representation of g and the notion of regular dual space. Consider
the pairing 〈., .〉 : g ⊗ g → R

〈




f

a

(α1,α2)




 ,






g

b

(α1,α2)






〉

=

∫

S1×S1

(f b + g a) dxdy + α1β1 + α2β2,

that identifies g with a part of its dual space: g ↪→ g∗, we call this subspace the regular dual
space of g and denote it by g∗reg. The coadjoint action of g on g∗reg can be easily calculated:

âd
∗
0

B

B

@

f
a
(α1,α2)

1

C

C

A






g

b

(c1, c2)




 =






f gx − fx g + c2 fy

f bx + 2 fx b − ax g − 2 a gx + c1 fxxx + c2 ay

(0, 0)




 . (3.3)

Note that the center R2 ⊂ g acts trivially.
The Lie algebra g is infinite-dimensional. In order to define the brackets (2.1) and (2.2) in

this case, we consider only the space of so-called pseudodifferential polynomials on g∗reg:

H(f, a) =

∫

S1×S1

h
(
f, a, fx, ax, fy, ay, ∂−1

x f, ∂−1
x a, ∂−1

y f, ∂−1
y a, fxy, axy, . . .

)
dxdy,

where h is a polynomial and f, a, fx, ax, fy, ay, ∂−1
x f, . . . are understood as independent variables.

The differential dmH is replaced by the standard variational derivative:

d(f, a)H := (δaH, δfH)

understood as element of g/R2. The Lie-Poisson structure (2.1) then makes sense on g∗reg and
the Hamiltonian vector fields are again given by (2.4).

Example 3.3. Recall that the Euler-Lagrange equation provides an explicit formula for varia-
tional derivatives. For instance, one has

δaH = ha − ∂x (hax) − ∂y

(
hay

)
− ∂−1

x

(
h∂−1

x a

)
− ∂−1

y

(
h∂−1

y a

)

+(∂x)2 (haxx) + ∂x∂y

(
haxy

)
+ (∂y)

2
(
hayy

)
± · · ·

where, as usual, hu means the partial derivative ∂h
∂a , similarly hax = ∂h

∂ax
, etc..

One of course should be careful with the definition of the non-local operators ∂−1
x and ∂−1

y .
We use the expression

(∂−1
x f)(x, y) =

∫ x

0
f(ξ, y) dξ −

∫ 2π

0
f(x, y) dx,

and similarly for ∂−1
y .

We refer to [3] for further details on Hamiltonian formalism on infinite-dimensional (func-
tional) Lie algebras.
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3.1 Calculating the bi-Hamiltonian equations

Let us fix the following point of g∗reg:

m0 = (f(x), a(x), c1, c2)0 = (1, 1, 0, c) , (3.4)

with arbitrary c ∈ R, and consider the constant Poisson structure (2.2) corresponding to the
coboundary (2.3). The Hamiltonian vector field Xω

H with the Hamiltonian H is then given by

ft = − (δaH)x + c (δaH)y

at = 2 (δaH)x − (δfH)x + c (δfH)y .

The limit case c → ∞ corresponds to the following structure

ft = (δaH)y

at = (δfH)y .
(3.5)

We are ready to formulate our main result.

Theorem 3.4. The following system on g∗reg

utx = uxy uy − uyy ux

vtx = 2 (uyy vx − uxy vy) + uy vxy − ux vyy

−2 (uyy ux + 2uxy uy)

(3.6)

is bi-Hamiltonian with respect to the standard Lie-Poisson structure on greg, together with (3.5),
where f = uy and a = vy.

Proof. The simplest class of Casimir functions of this constant Poisson structure are linear
combinations of the functionals

∫
f dxdy and

∫
u dxdy. We will choose the Casimir function

H0(f, a) =

∫

S1×S1

(a − f) dxdy.

The Hamiltonian vector field, XH0
, with respect to the Lie-Poisson structure defines the following

vector field
ft = fx

at = 2 fx + ax.
(3.7)

Indeed, one obviously has (δaH0, δfH0) = (−1, 1) (understood as an element of g/R2) and one
then applies the definition (2.4).

One thus looks for a function H1(f, a) on g∗reg such that its Hamiltonian vector field with
respect to the constant Poisson structure satisfies

Xω
H1

= XH0
,

which leads to the following system of equation on the variational derivatives δfH1 and δuH1:

− (δaH1)x + c (δaH1)y = fx

2 (δaH1)x − (δfH1)x + c (δfH1)y = 2 fx + ax.
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Introducing the first-order differential operator

Λ = −∂x + c ∂y,

one shows by a simple straightforward calculation that following function:

H1(f, a) =

∫

S1×S1

(
Λ−1(fx) a + Λ−1(fx) f − Λ−2(fxx) f

)
dxdy (3.8)

is a solution of the above system.
The Hamiltonian vector field XH1

is then as follows

ft = Λ−1(fx) fx − Λ−1(fxx) f + c2 Λ−1(fxy)

at = Λ−1(fx) ax + 2Λ−1(fxx) a − Λ−1(axx) f − 2Λ−1(ax) fx

−2
(
Λ−1(fxx) − Λ−2(fxxx)

)
f − 4

(
Λ−1(fx) − Λ−2(fxx)

)
fx

c1 Λ−1(fxxxx) + c2
(
Λ−1(axy) + 2Λ−1(fxy) − 2Λ−2(fxxy)

)

In the same way as in [14], we substitute to this equation f = Λ(u) and a = Λ(v) and rewrite it
in the following form:

−utx + c uty = c (uxy ux − uxx uy) + c2 uxy

−vtx + c vty = c (2uxx vy − 2uxy vx + ux vxy − uy vxx)

2
(
uxx − Λ−1(uxxx)

)
(ux − c uy) + 4

(
ux − Λ−1(uxx)

)
(uxx − c uxy)

c1 uxxxx + c2
(
vxy + 2uxy − 2Λ−1(uxxy)

)
.

(3.9)

It is very easy to check that, in the limit case c → ∞, this system coincides with (3.6) with
exchanged notation for the variables (x, y) ↔ (y, x).

Theorem 3.4 implies the existence of an infinite series of first integrals in involution for the
equation (1.1), as well as of an infinite hierarchy of commuting flows, see [16], Section 5.5.

Remark 3.5. 1) The special case c = 0 in (3.4) was considered in the details in [16]. This case
is related to the equation (1.2).

2) One can also choose a non-zero value of the first central charge c1 in (3.4). This will,
however, only change the second equation in (3.9).

3) Consider the first equation in (3.9). The term c2 uxy can be removed by the transformation
u /→ u − c2

c x. Furthermore, the coordinate transformation (x, y) → (x, y + c x) leads to the
following family:

utx = c (uxy uy − uyy ux) + uxx uy − uxy ux

depending on c as parameter. This family gives one an interpolation between the equations (1.1)
and (1.2), but with zero central charge.
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