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1. Introduction

Let (a, ·) be a commutative Z2-graded algebra over K = R or C, that is, a = a0 ⊕ a1, such that
ai · a j ⊂ ai+ j and for all homogeneous elements x, y one has

x · y = (−1)p(x)p(y) y · x, (1.1)

where p is the Z2-valued parity function p|ai = i. In particular, the space a0 ⊂ a is a commutative
subalgebra while the bilinear map a1 × a1 → a0 is skew-symmetric.

Typical examples of Z2-graded commutative algebras are the algebras of differential forms on
manifolds, or, more generally, the algebras of functions on supermanifolds; these algebras are of
course associative and, in particular, the space a1 is an a0-module. Examples of commutative but
not associative algebras are Jordan algebras.

The algebras considered in this paper are not associative, however the subalgebra a0 will always
be associative. In this sense, we suggest an alternative way to extend the associativity condition of a0
to all of the a. We will try to convince the reader this leads to algebras that have quite remarkable
properties.

1.1. The definition

A Z2-graded commutative algebra a is called a Lie antialgebra if it satisfies the following identities:

α · (β · γ ) = (α · β) · γ , (1.2)

α · (β · a) = 1

2
(α · β) · a, (1.3)

α · (a · b) = (α · a) · b + a · (α · b), (1.4)

a · (b · c) + b · (c · a) + c · (a · b) = 0 (1.5)

where α,β,γ ∈ a0 and a,b, c ∈ a1. In particular, a0 is a (commutative) associative subalgebra of a.

Weaker form of (1.3)
The identity (1.3) needs a special discussion. This identity means that for every α ∈ a0 the operator

2 adα : a �→ 2α · a defines an action of the commutative algebra a0 on the space a1. Furthermore, the
identity (1.3) implies

(α · β) · a = α · (β · a) + β · (α · a) (1.6)

which is a weaker identity. The identity (1.6) together with an additional assumption that the opera-
tors of multiplication by even elements commute with each other, is equivalent to (1.3). It turns out
that the identity (1.6) has an independent algebraic meaning.
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Axioms of Lie antialgebra and derivations
Recall that D ∈ End(a) is a derivation of a if for homogeneous x, y ∈ a (i.e., x, y are either purely

even or purely odd) one has

D(x · y) = D(x) · y + (−1)p(D)p(x)x · D(y). (1.7)

This formula then extends by linearity for arbitrary x, y ∈ a. The space of all derivations of a is a Lie
superalgebra denoted by Der(a).

Let us associate to every odd element a ∈ a1 the operator Ta : a → a of right multiplication by a,

Ta(x) = x · a. (1.8)

The following observation partly clarifies the definition of Lie antialgebras.

The set of three identities: (1.6), (1.4) and (1.5) is equivalent to the condition that for all a ∈ a1 the operator
Ta is a derivation.

Associativity of a0
The associativity axiom (1.2) seems quite different from the other three axioms of Lie antialgebras.

For instance, it has no interpretation in terms of derivations. It turns out however, that this axiom can
be understood as a corollary of the axioms (1.3)–(1.5).

Assume that every even element of a is a linear combination of products of odd elements: α =∑
ai · a j . We will call such a Lie antialgebra ample. The following simple statement is obtained in [7].

If a Lie antialgebra a is ample, then the identities (1.3), (1.4) and (1.5) imply (1.2).

Note that a similar property holds for Lie superalgebras.

Remark 1.1. It was noticed in [7] that Lie antialgebras are closely related to the Kaplansky superalge-
bras, see [8]. More precisely, a half-unital Lie antialgebra is a Kaplansky superalgebra.

1.2. Examples

Let us give here a few examples of simple Lie antialgebras.

1. Our first example is a 3-dimensional Lie antialgebra called the tiny Kaplansky superalgebra1 and
denoted by K3. This algebra has the basis {ε;a,b}, where ε is even and a, b are odd, satisfying the
relations

ε · ε = ε,

ε · a = 1

2
a, ε · b = 1

2
b,

a · b = 1

2
ε. (1.9)

The algebra K3 is simple, i.e., it contains no non-trivial ideal. The corresponding algebra of derivations
is the simple Lie superalgebra osp(1|2), see [1] and Section 2.1. Moreover, this property completely
characterizes the algebra K3.

1 This algebra was rediscovered in [10] where it was denoted by asl(2,K), see also [9].
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Theorem 1. The algebra K3 is the unique finite-dimensional Z2-graded commutative algebra such that the
corresponding algebra of derivations is isomorphic to osp(1|2).

This theorem will be proved in Section 4.1.

2. The most interesting example of a Lie antialgebra we know is a simple infinite-dimensional Lie
antialgebra with the basis {εn, n ∈ Z; ai, i ∈ Z + 1

2 }, where εn are even and ai are odd and satisfy
the following relations

εn · εm = εn+m,

εn · ai = 1

2
an+i,

ai · a j = ( j − i)εi+ j. (1.10)

This algebra is called the full derivation algebra,2 see [8]. We will denote it by AK(1). We will prove
that AK(1) is closely related to the well-known Neveu–Schwarz conformal Lie superalgebra K(1)

namely

K(1) = Der
(

AK(1)
)
.

We conjecture that similarly to K3 the algebra AK(1) is the unique Z2-graded commutative algebra
satisfying this property.

The Lie antialgebra AK(1) contains infinitely many copies of K3 with the basis {ε0;ai,a−i} for
each half-integer i.

3. The subalgebra of AK(1) with the basis

{ε0, ε1, ε2, . . . ; a− 1
2
,a 1

2
,a 3

2
, . . .}

is also of some interest. This algebra is simple and can be understood as analog of the Lie algebra of
(polynomial) vector fields on R. This algebra has interesting non-trivial cohomology studied in [6].

4. Let us finally explain how to construct a large class of examples of Lie antialgebras. Given an
arbitrary commutative algebra C, there always exists an ample Lie antialgebra a such that a0 = C.
An example is provided by K3(C) = C ⊗K K3(K). This already shows that there are at least as many
ample Lie antialgebras as there are commutative algebras. However, this is not the only possibility to
realize a commutative algebra as an even par of a Lie antialgebra, so that there are much more Lie
antialgebras than commutative algebras.

We will give more concrete examples of Lie antialgebras in Section 4.

1.3. The main properties

Lie antialgebras and Lie superalgebras and their representations
Let V be a Z2-graded vector space. Consider the structure of Jordan Z2-graded algebra on End(V )

equipped with the anticommutator [A, B]+ = AB + (−1)p(a)p(b) B A. A representation of a Lie superal-
gebra is a homomorphism

χ : a → (
End(V ), [.,.]+

)
2 It was called in [10] the “conformal Lie antialgebra”.
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such that the image χ(a0) is commutative, i.e., χ(α)χ(β) = χ(β)χ(α) for all α,β ∈ a0. This differs the
notion of representation from the well-known notion of specialization of a Jordan superalgebra. Rep-
resentations of K3 were studied in [9], study of representations of AK(1) is an interesting problem,
see Section 2.3 and 3.2 for some examples.

The most interesting property of Lie antialgebras is their relation to Lie superalgebras. With each
Lie antialgebra a, we associate a Lie superalgebra ga in the following way. The odd part (ga)1 co-
incides with a1 while the even part g0 is the symmetric tensor square S2(a1)a0 , where the tensor
product is defined over the commutative algebra a0. Note that this construction is completely differ-
ent from the classical Kantor–Koecher–Tits construction.

• Every representation of a Lie antialgebra a is a representation of the corresponding Lie superal-
gebra ga .

• The Lie superalgebra ga acts on a, in other words, there is a canonical homomorphism ga →
Der(a).

One can say that the Lie antialgebra a selects a class of representations of ga that are also represen-
tations of a. This is an interesting characteristic of representations of the Lie superalgebra ga .

The properties of the Lie superalgebra ga and the universal enveloping algebras U (ga) and U (a)

will be studied with more details in [7].

Odd “Lie–Poisson” bivector
The notion of (odd) Lie–Poisson type bivector is the origin of Lie antialgebras, see Section 2.1.

For an arbitrary Lie antialgebra a, the dual space with inverse parity, Πa∗ , can be equipped with a
canonical odd linear bivector field Λa , see Section 3.3. Amazingly, the construction makes sense in
the case of (purely even) commutative associative algebra, i.e., for a = a0, but the dual space should
be understood as purely odd in this case. The bivector Λa is not Poisson in any sense. Its general
geometric characteristics is an interesting problem.

Central extensions and cohomology
In Section 3.4, we introduce the notion of central extension of a Lie antialgebra. We prove that

existence of the unit element ε ∈ a0 implies that the Lie antialgebra a has no non-trivial central
extension. Central extensions is a part of the general cohomology theory developed in [6].

Classification
In the finite-dimensional case, the classification of simple Lie antialgebras is similar to the classifi-

cation of commutative division algebras, see Section 4.1. In the infinite-dimensional case, the situation
is of course much more complicated. We also classify the Lie antialgebras of rank 1.

2. Lie antialgebras and symplectic geometry

In this section, we show the way Lie antialgebras appear in geometry. Notice that the invariant
operations we construct are odd; we recover Lie antialgebra structures using the parity inversion
functor.

2.1. The algebra K3 and the odd bivector Λ

Consider the vector space K
2|1 equipped with the standard symplectic form, see [5],

ω = dp ∧ dq + 1

2
dτ ∧ dτ , (2.1)

where p and q are the usual even coordinates on K
2 and τ is the formal Grassmann variable so that

τ 2 = 0. An equivalent way to define this symplectic structure is to introduce the Poisson bivector on
K

2|1:
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P = ∂

∂ p
∧ ∂

∂q
+ 1

2

∂

∂τ
∧ ∂

∂τ
, (2.2)

which is inverse to the symplectic form: P = ω−1.
The Lie superalgebra osp(1|2) is defined as the space of infinitesimal linear transformations pre-

serving the symplectic structure. The bivector (2.2) is the unique (up to a multiplicative constant)
even bivector invariant with respect to the action of osp(1|2).

The odd bivector
It turns out that there exists another, odd, osp(1|2)-invariant bivector on K

2|1.

Proposition 2.1. There exists a unique (up to a multiplicative constant) odd bivector invariant with respect to
the action of osp(1|2). It is give by the formula

Λ = ∂

∂τ
∧ E + τ

∂

∂ p
∧ ∂

∂q
, (2.3)

where

E = p
∂

∂ p
+ q

∂

∂q
+ τ

∂

∂τ
(2.4)

is the Euler field.

Proof. The osp(1|2)-invariance of Λ is a very easy check. Note that we will prove a much stronger
statement, see Proposition 2.9.

Let us prove the uniqueness. An arbitrary odd bivector on K
2|1 is given by

Λ = ∂

∂τ
∧ A + τ F

∂

∂ p
∧ ∂

∂q
,

where A is an even vector field and F is an even function. Let X be an even vector field, one has

L XΛ = ∂

∂τ
∧ [X, A] + τ X(F )

∂

∂ p
∧ ∂

∂q
+ τ F L X

(
∂

∂ p
∧ ∂

∂q

)
.

If, furthermore, X ∈ osp(1|2), then it preserves the even part ∂
∂ p ∧ ∂

∂q of the Poisson bivector. The
condition L XΛ = 0 then implies: [X, A] = 0 and X(F ) = 0.

The even part of osp(1|2) is a Lie algebra isomorphic to sl(2,K) and generated by the Hamiltonian
vector fields with quadratic Hamiltonians 〈p2, pq,q2〉. One checks that:

(a) an even vector field A commuting with any even element of osp(1|2) is of the form

A = c1τ
∂

∂τ
+ c2 E,

where c1 and c2 are arbitrary constants and E = p ∂
∂ p + q ∂

∂q ;
(b) an even function F such that X(F ) = 0, where X is an even element of osp(1|2) is necessary a

constant: F = c3.
The odd part of osp(1|2) is spanned by the following two vector fields:

Xτ p = τ
∂ + p

∂
, Xτq = −τ

∂ + q
∂

.

∂q ∂τ ∂ p ∂τ
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Applying any of these elements of osp(1|2) to the bivector Λ as above, one immediately gets c1 =
c2 = c3. �

The relation of the bivector Λ to the algebra K3 is as follows. Any bivector defines an algebraic
structure on the space of functions. Consider the bilinear operation associated with the bivector (2.3):

]F , G[ := (−1)p(F )

2
〈Λ,dF ∧ dG〉, (2.5)

where F and G are arbitrary functions on K
2|1, that is, F = F0(p,q) + τ F1(p,q). This is of course not

a Poisson bracket.

Lemma 2.2. The space of linear functions on K
2|1 equipped with the bracket (2.5) is a Lie antialgebra isomor-

phic to K3 .

Proof. One checks that after the parity inverting identification {ε;a,b} ↔ {τ ; p,q}, the algebra (1.9)
coincide with the bracket (2.5) restricted to linear functions. �

We proved that the Lie superalgebra osp(1|2) preserves the bivector Λ. Since osp(1|2) acts on K
2|1

by linear vector fields, it also preserves the space of linear functions. In other words, osp(1|2) is the
algebra of derivation osp(1|2) = Der(K3), cf. [1].

Remark 2.3. The bivector Λ given by (2.3), and the Lie antialgebra K3 are equivalent structures, they
contain the same information. The above lemma provides a parity inverting identification of the dual
space:

Π K ∗
3

∼= (
K

2|1,Λ
)
.

The bivector Λ is therefore analog of the “Lie–Poisson structure” corresponding to K3, cf. Section 3.3
for a general setting.

An algebraic reformulation
A purely algebraic way to reformulate the results of this section is as follows.
Consider the space of polynomials K[p,q, τ ] equipped with the standard action of the Lie su-

pergroup OSp(1|2) (or, equivalently, of the Lie superalgebra osp(1|2)). We are looking for OSp(1|2)-
invariant bilinear maps (.,.) : K[p,q, τ ]⊗K[p,q, τ ] → K[p,q, τ ] satisfying the Leibniz rule in the both
arguments, viz

(F G, H) = F (G, H) + (−1)p(G)p(H)(F , H)G

and similarly in the second argument.
This problem has exactly two solutions.

1. The first operation is even, this is nothing but the standard Poisson bracket. It can be defined at
order one by

{p,q} = 1, {p, τ } = 0, {q, τ } = 0, {τ , τ } = 1,

and then extended to K[p,q, τ ] via the Leibniz rule. Polynoms of order 1 span the Heisenberg
Lie superalgebra.
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2. The second operation is odd, it is defined at order 1 by

]p,q[ = 1

2
τ , ]p, τ [ = 1

2
p, ]q, τ [ = 1

2
q, ]τ , τ [ = τ

and, again, extends to K[p,q, τ ] via the Leibniz rule. This is the “antibracket” (2.5), note that the
homogeneous polynomials of order 1 form an algebra isomorphic to K3.

2.2. The full derivation algebra AK(1)

In this section we study the full derivation algebra AK(1) defined by formula (1.10). We show that
AK(1) is simple and that Der(AK(1)) is isomorphic to the famous conformal Lie superalgebra K(1),
also known as the (centerless) Neveu–Schwarz algebra.

We also prove that the conformal Lie superalgebra K(1) is the maximal algebra of vector fields
on R

2|1 that preserves the bivector (2.3). The algebra AK(1) can be viewed as the maximal space of
functions on R

2|1 that form a Lie antialgebra with respect to the bracket (2.5).

The algebra AK(1) is simple
We start with the following

Proposition 2.4. The relations (1.10) define a structure of a simple Lie antialgebra.

Proof. The identities (1.2) and (1.3) are evident. Let us prove the identity (1.4). One has to check that

εn · (ai · a j) = (εn · ai) · a j + ai · (εn · a j).

One obtains in the left-hand side 1
2 ( j − i)εi+ j+n and in the right-hand side the sum of two terms:

1
4 ( j − (i + n))εi+ j+n and 1

4 ( j + n − i)εi+ j+n , so that the identity (1.4) is satisfied. Furthermore, the
identity (1.5) reads:

(ai · a j) · ak + (a j · ak) · ai + (ak · ai) · a j = 0.

One obtains the sum 1
4 ( j − i)ai+ j+n + 1

4 (k − j)ai+ j+n + 1
4 (i − k)ai+ j+n = 0. We proved that AK(1) is,

indeed, a Lie antialgebra.
It is quite easy to prove that AK(1) is simple, see, e.g. [8]. We do not dwell on the details here. �

The conformal Lie superalgebra K(1) as the algebra of derivations
The conformal Lie superalgebra K(1) has the basis {xn, n ∈ Z; ξi, i ∈ Z + 1

2 } satisfying the follow-
ing commutation relations

[xn, xm] = (m − n)xn+m,

[xn, ξi] =
(

i − n

2

)
ξi+n,

[ξi, ξ j] = xi+ j. (2.6)

It contains infinitely many copies of osp(1|2) with the generators {x−n, x0, xn; ξ− n , ξ n }.

2 2
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Define the following action of K(1) on AK(1):

xn(ai) =
(

i − n

2

)
an+i,

xn(εm) = mεn+m,

ξi(a j) = ( j − i)εi+ j,

ξi(εn) = ai+n. (2.7)

Note that his formula is well known and represents the action of the algebra K(1) on the space of
tensor densities of weight − 1

2 , see, e.g., [2–4] and Section 3.2.

Proposition 2.5. The action (2.7) preserves the structure of AK(1).

Proof. Consider for instance the action of an odd element of K(1). One has

ξi(a j · εk) = 1

2
ξi(a j+k) = 1

2
( j + k − i)εi+ j+k,

together with

ξi(a j) · εk = ( j − i)εi+ j · εk = ( j − i)εi+ j+k

and

a j · ξi(εk) = a j · ai+k = 1

2
( j − i − k)εi+ j+k.

One finally gets:

ξi(a j · εk) = ξi(a j) · εk − a j · ξi(εk)

which is precisely the condition of odd derivation, see formula (1.7).
The action of other elements can be checked in the same way. Hence the result. �
We will prove in the end of this section that K(1) actually coincides with Der(AK(1)).

Lie antialgebra AK(1) and symplectic geometry
In this section we show that, similarly to K3, the Lie antialgebra AK(1) can be obtained from the

odd Poisson bivector (2.3).
Consider the bracket (2.5) given by the explicit expression

]F , G[ = (−1)p(F )

2

(
∂ F

∂τ
E (G) − (−1)p(F )E (F )

∂G

∂τ
+ τ

(
∂ F

∂ p

∂G

∂q
− ∂ F

∂q

∂G

∂ p

))
. (2.8)

One checks that the full antialgebra of functions C∞(R2|1) equipped with this bracket is not a Lie
antialgebra.

Let Fλ be the space of homogeneous functions of degree −2λ on R
2|1, that is, of the functions

satisfying the condition

E (F ) = −2λF ,
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where E is the Euler field (2.4). We will allow F to have singularities in codimension 1, for instance,
we can consider rational functions.

Note that there is a dense subspace of homogeneous functions on R
2|1 that correspond to the

space of functions on R
1|1. Indeed, given a function f (x, ξ) = f0(x) + ξ f1(x) in one even and one

Grassmann variable, one defines a homogeneous of degree λ function (with singularities at (p = 0))
by

F λ
f (p,q;τ ) = pλ f

(
q

p
,
τ

p

)
. (2.9)

Proposition 2.6. The space, F− 1
2

, of homogeneous of degree 1 functions on R
2|1 is a Lie antialgebra with

respect to the antibracket (2.8) that contains AK(1).

Proof. The space of homogeneous of degree 1 functions is obviously stable with respect to the an-
tibracket (2.8) so that F− 1

2
is an algebra. Define a bilinear operation f · g on the space of functions

in (x, ξ) by

F 1
f ·g := (−1)p( f )

2

〈
Λ,dF 1

f ∧ dF 1
g

〉
. (2.10)

One then easily checks the Lie antialgebra conditions.
Choose the following “Taylor basis”:

ai = p

(
q

p

)i+ 1
2

, εn = τ

(
q

p

)n

and substitute it into the antibracket (2.5). One obtains the commutation relations (1.10), so that the
Lie antialgebra AK(1) is a subalgebra of F− 1

2
. �

The conformal Lie superalgebra K(1) also has a symplectic realization.

Proposition 2.7. The space F−1 of homogeneous of degree 2 functions on R
2|1 is a Lie superalgebra with

respect to the Poisson bracket (2.2) that contains K(1).

Proof. The Poisson bracket of two homogeneous of degree 2 functions is, again, a homogeneous of
degree 2 function. Therefore, F−1 is, indeed, a Lie superalgebra.

A homogeneous of degree 2 function can be written in the form (2.9) with λ = 2. Choosing the
basis of the space of all such functions:

xn = p2

2

(
q

p

)n+1

, ξi = τ p

(
q

p

)i+ 1
2

and substituting it into the Poisson bracket (2.2), one immediately obtains the commutation rela-
tions (2.6). Therefore, K(1) is a subalgebra of F−1. �
Remark 2.8. (a) The Lie superalgebra F−1 is a “geometric version” of the conformal Lie superalgebra
K(1), which is a polynomial part of F−1. Similarly, AK(1) is the polynomial part of the Lie antialge-
bra F− 1

2
.

(b) The action (2.7) written in terms of homogeneous functions is, again, given by the standard
Poisson bracket (2.2).
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Lie superalgebra F−1 as algebra of symmetry

Proposition 2.9. The Lie superalgebra F−1 is the maximal Lie superalgebra of vector fields that preserves the
bivector (2.3).

Proof. Part 1. Let us first show that F−1 preserves the bivector (2.3). Given a function H ∈ F−1, the
corresponding Hamiltonian vector field is homogeneous of degree 0:

[E , XH ] = 0. (2.11)

Consider a more general case, where P is a purely even (independent of τ ) Poisson bivector and
E a purely even vector field. Assume P is homogeneous of degree −2 with respect to E , that is

LE (P ) = −2P .

Let Λ be the odd bivector field

Λ = ∂

∂τ
∧ E + τ ∧ P ,

where

E = E + τ
∂

∂τ
.

(Note that in our case E = p ∂
∂ p + q ∂

∂q , P = ∂
∂ p ∧ ∂

∂q .)
Let XH be a Hamiltonian (with respect to the Poisson structure P ) vector field satisfying the ho-

mogeneity condition (2.11). The Lie derivative of Λ along XH is as follows:

L XH Λ = L XH

(
∂

∂τ

)
∧ E + XH (τ )P + τ L XH (P ).

If H is even, the above expression obviously vanishes. Consider now an odd function H = τ H1, then
one gets from (2.2)

Xτ H1 = τ XH1 + H1
∂

∂τ
.

Lemma 2.10. One has

L Xτ H1
(Λ) = 〈P ∧ E,dH1〉 (2.12)

where d is the de Rham differential.

Proof. Using the obvious expressions[
Xτ H1 ,

∂

∂τ

]
= XH1 , L Xτ H1

(P ) = − ∂

∂τ
∧ XH1 ,

one obtains:

L Xτ H1
(Λ) = XH1 ∧ E + H1 P + τ

∂

∂τ
∧ XH1 = XH1 ∧ E + H1 P .

Finally, using the fact that E(H1) = H1, one obtains the expression (2.12). �
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The even tri-vector P ∧ E obviously vanishes on R
2|1, and so we proved that XH , indeed, preserves

the bivector (2.3).
Part 2. Conversely, one has to show that any vector field preserving the bivector (2.3) is a Hamil-

tonian vector field commuting with E .
If X is a purely even vector field, i.e.,

[
X,

∂

∂τ

]
= 0 and X(τ ) = 0,

then L X (Λ) = 0 implies that X commutes with E and preserves the even bivector P = ∂
∂ p ∧ ∂

∂q , so
that X is Hamiltonian.

If X is an odd vector field:

X = F0
∂

∂τ
+ τ X0,

where F0 is an even function and X0 an even vector field, then one obtains explicitly

L XΛ = (
E(F0) − F0

) ∂

∂τ
∧ ∂

∂τ
− τ

∂

∂τ
∧ (

X F0 + [E, X0]
) + (F0 P + X0 ∧ E).

The assumption L X (Λ) = 0 implies that each of the three summands in this expression vanishes.
It follows from the equation E(F0) − F0 = 0, that F0 is a homogeneous of degree 1 function. The
condition

X F0 + [E, X0] = 0

then implies that X0 is a vector field homogeneous of degree −1, since so is X F0 , and thus X0 = X F0 .
We proved that the vector field X is Hamiltonian and [E , X] = 0.

Proposition 2.9 is proved. �
Corollary 2.11. One has

F−1 = Der(F− 1
2
), K(1) = Der

(
AK(1)

)
.

Indeed, the first statement is a reformulation of Proposition 2.7 while the second is its algebraic
version. The subalgebra K(1) ⊂ F−1 corresponds precisely to the space of vector fields preserving the
basis of AK(1) ⊂ F− 1

2
.

2.3. Representation of AK(1) by tangent vector fields

In this section we investigate the relation of the Lie antialgebra AK(1) to contact geometry. In
some sense, AK(1) provides a way to “integrate” the contact structure.

The contact structure on S1|1
The natural projection R

2|1 \ {0} → S1|1, equips R
1|1 with a structure of 1|1-dimensional contact

manifold, see [2,4,3] for recent developments. This contact structure can be defined in terms of a
contact 1-form α = dx + ξ dξ, or, equivalently, in terms of an odd vector field3

3 This vector field is also known in physical literature as “SUSY-structure”.



JID:YJABR AID:13139 /FLA [m1G; v 1.47; Prn:11/10/2010; 17:08] P.13 (1-32)

V. Ovsienko / Journal of Algebra ••• (••••) •••–••• 13
D = 1

2

(
∂

∂ξ
+ ξ

∂

∂x

)
,

since D spans the kernel of α.
The conformal Lie superalgebra K(1) can be realized as the Lie superalgebra of contact vector

fields on S1|1. Every contact vector field on S1|1 is of the form

Xh = h(x, ξ)
∂

∂x
+ 2D

(
h(x, ξ)

)
D,

where h(x, ξ) = h0(x) + ξh1(x) is an arbitrary function. The map h �→ F 2
h , see (2.9), is an isomorphism

between Lie superalgebra of contact vector fields and F−1. The Lie superalgebra of contact vector
fields with polynomial coefficients is isomorphic to K(1).

Vector fields tangent to the contact distribution
It turns out that there is a similar relation between the algebra AK(1) and the contact geometry.
A vector field tangent to the contact distribution is a vector field proportional to D , that is, X = f D

for some function f (x, ξ).

Definition 2.12. We introduce the following anticommutator of tangent vector fields:

[ f D, g D]+ := f D ◦ g D + (−1)(p( f )+1)(p(g)+1)g D ◦ f D. (2.13)

Note that the sign in this operation is inverse to that of usual commutator of vector fields.

Remark 2.13. The space of tangent vector fields is not a Lie superalgebra since the Lie bracket of two
tangent vector fields is not a tangent vector field, this is equivalent to non-integrability of the contact
distribution.

Quite miraculously, that the anticommutator of two tangent vector fields is again a tangent vector
field.

Proposition 2.14. The space of tangent vector fields equipped with the anticommutator (2.13) is a Lie antial-
gebra that contains the Lie antialgebra AK(1). More precisely,

[χ f ,χg]+ = χ f ·g,

where f · g is the product (2.5).

Proof. Define a map from AK(1) to the space of tangent vector fields as follows. To each homoge-
neous of degree 1 function F 1

f (p,q, τ ), cf. formula (2.9), we associate a tangent vector field by

χ f = f (x, ξ)D. (2.14)

Let us calculate the explicit formula of the anticommutator (2.13).
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Consider first the case where both of the functions, f and g , are odd, i.e., f = ξ f1 and g = ξ g1.
One then has

f D ◦ g D + g D ◦ f D = 1

2
f g

∂

∂x
+ (

f D(g) + g D( f )
)

D.

The first summand is zero since it contains ξ2 = 0, while the second one is equal to ξ( f1 g1)D , so that
the anticommutator (2.13) on the odd functions coincides with f1 g1. This corresponds to the product
f1 · g1 of two elements of the even part AK(1)0, see formula (1.10).

If f = ξ f1 is odd and g = g0 is even, then the Leibniz rule D ◦ f = D( f ) − f D implies

f D ◦ g D + g D ◦ f D = g D( f )D = 1

2
f1 g0 D,

so that one gets f1 · g0 = 1
2 f1 g0, accordingly to the AK(1)0-action on AK(1)1, cf. (1.10).

If, finally, the both functions f and g are even, i.e., f = f0 and g = g0, then

f D ◦ g D − g D ◦ f D = (
f D(g) − g D( f )

)
D = 1

2
ξ
(

f0 g′
0 − g0 f ′

0

)
D,

gives the skew-symmetric product f0 · g0 = 1
2 ( f0 g′

0 − g0 f ′
0), on AK(1)1 with values in AK(1)0, see

formula (1.10). �
Remark 2.15. The map (2.14) is nothing but the bivector (2.3) contracted with the elements of AK(1).
One checks that

χ f (g) = (−1)p( f )

2

〈
Λ,dF 1

f ∧ dF 0
g

〉
, (2.15)

where F 1
f and F 0

g are functions on R
2|1 homogeneous of degree 1 and 0, respectively, obtained as the

lift of f and g according to (2.9). It is interesting to compare the above formula with (2.10).

We conclude this section with the formula for the product on the space of smooth functions
on S1|1 that coincides with (1.10) on the polynomial basis. The functions are of the form f (x, ξ) =
α(x) + ξa(x), the product is given by

(α + ξa) · (β + ξb) = αβ + ab′ − a′b + 1

2
ξ(αb + βa). (2.16)

This is the C∞-analog of AK(1).

2.4. A pair of symplectic forms on R
4|2 and the algebras K3(C) and AK(1)C

Consider the space K
2n|m with linear symplectic form. There is no analog of the odd bivector (2.3),

if n � 2 or m � 2, since the only OSp(m|2n)-invariant bivector is the Poisson bivector. In this section
we investigate the second special case: n = m = 2. It turns out that one has to fix a pair of symplectic
forms and consider the group of linear transformations preserving both of them.

Note that, if n � 3 or m � 3, then one has to consider degenerate linear 2-forms, cf. Section 3.3.
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A pair of symplectic forms on K
4|2

Consider two generic linear symplectic forms on K
4|2. There exist linear coordinates (p1,q1, p2,q2;

τ1, τ2) such that these forms are as follows:

ωε = dp1 ∧ dq1 + dp2 ∧ dq2 + 1

2
(dτ1 ∧ dτ1 − dτ2 ∧ dτ2)

and

ωσ = dp1 ∧ dp2 − dq1 ∧ dq2 + dτ1 ∧ dτ2.

This is a very simple fact of linear algebra.
Note that, in the real case, the forms ωε and ωσ are, respectively, the real and the imaginary

parts of the complex 2-form (2.1), where p,q;τ are the following complex coordinates p = p1 + iq2,
q = q1 + ip2, τ = τ1 + iτ2.

Proposition 2.16. The Lie superalgebra of linear vector fields on K
4|2 preserving the two symplectic forms ωε

and ωσ is isomorphic to:

(i) osp(1|2,C), if K = R;
(ii) osp(1|2,C) ⊕ osp(1|2,C), if K = C;

Proof. The Lie superalgebra of linear vector fields on K
4|2 preserving the two symplectic forms ωε

and ωσ is a subalgebra of osp(2|4,K) spanned by 6 even Hamiltonian vector fields corresponding to
the quadratic Hamiltonians{

p2
1 − q2

2, p2
2 − q2

1, p1 p2 + q1q2, p1q1 − p2q2, p1q2, q1 p2
}

and 4 odd bi-Hamiltonian vector fields with the Hamiltonians

{p1τ1 − q2τ2, p2τ1 + q1τ2, q1τ1 − p2τ2, q2τ1 + p1τ2}.
In the real case, this defines an osp(1|2,C)-action on R

4|2. In the complex case, this is osp(1|2,C)C
∼=

osp(1|2,C) ⊕ osp(1|2,C). �
Remark 2.17. Note that, in the case (i), osp(1|2,C) is viewed as a simple Lie superalgebra over R.
This algebra of derivations is thus obtained as intersection of two copies of the real symplectic Lie
superalgebra:

osp(1|2,C) = ospε(1,1|4) ∩ ospσ (1,1|4)

corresponding to the symplectic forms ωε and ωσ , respectively.

The bivector ΛC

The following bivector is the unique (up to a multiplicative constant) odd osp(1|2,C)-invariant
bivector on K

4|2:

ΛC = ∂

∂τ1
∧ E + ∂

∂τ2
∧ J + τ1πε + τ2πσ , (2.17)

where

E =
∑

i=1,2

(
pi

∂

∂ pi
+ qi

∂

∂qi
+ τi

∂

∂τi

)
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is the Euler vector field and

J = q2
∂

∂ p1
+ p2

∂

∂q1
− q1

∂

∂ p2
− p1

∂

∂q2
+ τ2

∂

∂τ1
− τ1

∂

∂τ2
(2.18)

and where the bivectors πε and πσ are

πε = ∂

∂ p1
∧ ∂

∂q1
+ ∂

∂ p2
∧ ∂

∂q2
, πσ = ∂

∂ p1
∧ ∂

∂ p2
− ∂

∂q1
∧ ∂

∂q2
.

It is now easy to check that the space of linear functions on (R4|2,ΛC ) form a Lie antialgebra
isomorphic to K3(C).

Algebra AK(1)C and the pair of symplectic structures on R
4|2

Let us now realize the algebras AK(1)C and K(1)C in terms of real rational harmonic functions
on R

4|2. This is related to the bi-Hamiltonian formalism defined by the pair of symplectic structures
ωε and ωσ .

The Lie antialgebra AK(1)C is represented by the homogeneous of degree 1 harmonic functions
on R

4|2 with the complex structure (2.18). The odd generators of AK(1)C are as follows

εn = 1

2n
Reτ

(
q

p

)n

, βn = 1

2n
Imτ

(
q

p

)n

,

and the even ones are

an = 1

2n
Re p

(
q

p

)n

, bn = 1

2n
Im p

(
q

p

)n

,

where p,q, τ are the complex coordinates. One then checks the relations in AK(1)C .
The conformal Lie superalgebra K(1)C is realized by homogeneous bi-Hamiltonian vector fields on

R
4|2. For each function F ∈ C∞(R4|2), denote by Xε

F and Xσ
F the Hamiltonian vector fields on R

4|2
with respect to the symplectic form ωε and ωσ , respectively.

One checks that the following three conditions are equivalent.

1. F is a homogeneous of degree 2 harmonic function:

F = Re p2 f

(
q

p
,
τ

p

)
,

where f is an arbitrary function.
2. The function F satisfies the relations: E (F ) = 2F and J (J (F )) = −4F .
3. The Hamiltonian vector fields with the Hamiltonian F commute with E and J :

[
E , Xε

F

] = [
E , Xσ

F

] = [
J , Xε

F

] = [
J , Xσ

F

] = 0

and are bi-Hamiltonian such that

Xε
F = −1

2
Xσ

J (F ), Xσ
F = 1

2
Xε

J (F ).

This space of homogeneous harmonic bi-Hamiltonian vector fields is a Lie superalgebra isomorphic
to K(1)C .
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Proposition 2.18. The Lie superalgebra K(1)C is the maximal algebra of vector fields on R
4|2 preserving the

bivector (2.17).

Proof. Proposition 2.9 implies that K(1)C , indeed, preserves the bivector ΛC . The proof of maximality
is similar to that of Theorem 2.9, Part 2. We omit here the corresponding straightforward computa-
tions. �
3. Elements of the general theory

In this section we investigate the relations between Lie antialgebras and Lie superalgebras. We
introduce the notion of representation and module over a Lie antialgebra and show how to extend
them to the corresponding Lie superalgebra.

We also define the analog of the Lie–Poisson structure for an arbitrary Lie antialgebra a. This is an
odd linear bivector field on the dual space with inverse parity Πa∗ . This notion relates Lie antialgebras
to geometry.

We finally define and study the notion of central extensions that will later be useful for classifica-
tion results.

3.1. Relation to Lie superalgebras

In this section we associate a Lie superalgebra ga with an arbitrary Lie antialgebra a. The con-
struction will be important since representations of a Lie antialgebra can always be extended to the
corresponding Lie superalgebra.

Definition 3.1. Consider the space ga = (ga)0 ⊕ (ga)1 defined as follows. The even part, (ga)0, is the
symmetric tensor square of a1 over a0:

(ga)0 := a1 �a0 a1,

more precisely,

(ga)0 = {
(a ⊗ b + b ⊗ a)/∼

∣∣ a,b ∈ a1
}
,

where the equivalence relation ∼ is defined by

α · a ⊗ b ∼ a ⊗ α · b

for all a,b ∈ a1 and α ∈ a0. The odd part of (ga), is nothing but the odd part of a:

g1 := a1.

The Lie bracket on ga is defined by

[a � b, c � d] = a · (b · c) � d + b · (a · c) � d − c · (d · a) � b − d · (c · a) � b,

[a � b, c] = a · (b · c) + b · (a · c),

[a,b] = a � b. (3.1)

Theorem 2. The space ga endowed with the bracket (3.1) is a Lie superalgebra.

The Jacobi identity and the compatibility with the equivalence ∼ for the bracket (3.1) can be
checked by a complicated but straightforward calculation that we omit.
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The action of ga on a

Let us define a Lie superalgebra homomorphism T : ga → Der(a). The restriction T |(ga)1 is nat-
urally defined since the odd part (ga)1 is identified with a1 and the odd part a1 acts on a by
derivations, cf. formula (1.8). One then extends this map to the even part (ga)0 in a unique way
as follows: Ta�b := [Ta, Tb]. One then has explicitly

Ta�bx = (x · a) · b + (x · b) · a (3.2)

for odd a,b ∈ a1 and arbitrary x ∈ a.

Lemma 3.2.

(i) The map (3.2) is well defined, that is, it is compatible with the equivalence relation ∼.
(ii) For all a,b ∈ a1 , the linear map Ta�b ∈ End(a) is an even derivation.

Proof. Part (i). The computation is straightforward but we provide here some details in order to show
how work the axioms of Lie antialgebra.

One has to check that

(
x · (α · a)

) · b + (x · b) · (α · a) = (
x · (α · b)

) · a + (x · a) · (α · b)

for every α ∈ a0 and arbitrary x. Consider, for instance, the case where x is odd, that is x ∈ a1. Us-
ing (1.3), one obtains

(x · b) · (α · a) = α · ((x · b) · a
)

while using (1.4) and then (1.5) and again (1.3), one obtains

(
x · (α · a)

) · b = (
α · (x · a)

) · b − (
(α · x) · a

) · b

= 2α · ((x · a) · b
) + (a · b) · (α · x) + (

b · (α · x)
) · a

for the terms in the left-hand side. Similarly, for the right-hand side one has

(x · a) · (α · b) = α · ((x · a) · b
)

(
x · (α · b)

) · a = 2α · ((x · b) · a
) − (

(α · x) · b
) · a.

Finally, collecting the terms in the (lhs)–(rhs) one gets

α · ((x · a) · b
) − α · ((x · b) · a

) + (a · b) · (α · x) = −α · ((a · b) · x
) + (a · b) · (α · x) = 0,

using (1.5).
The computation for an even element x ∈ a0 is similar.
Part (ii) is obvious since Ta⊗b is a commutator of two derivations. �

Remark 3.3. The above proof makes an extensive use of the axioms (1.3)–(1.5) of Lie antialgebra. The
associativity axiom (1.2) is never used, but, as already mentioned, this axiom is also a corollary of
(1.3)–(1.5). The complete proof of Theorem 2 is quite similar but much longer and more complicated,
see [7].
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Example 3.4. In the case of the simple algebras a = K3 and AK(1), the corresponding Lie superalge-
bras ga coincide with the respective algebra of derivations:

gK3 = osp(1|2), gA K(1) = K(1).

However, in general this is not the case. The more Lie antialgebra a is far of being simple, the more
the corresponding Lie superalgebra gl(a) is far of Der(a).

3.2. Representations and modules

In this section we introduce important notions of representation and of module over Lie antialge-
bras. Amazingly, these two notions are different for Lie antialgebras. We will investigate these notions
in some details for the algebras K3(C) and AK(1).

Representations: the definition
Let V = V 0 ⊕ V 1 be a Z2-graded vector space. Consider the Jordan algebra structure on the space

End(V ) defined by the anticommutator

[A, B]+ = AB + (−1)p(A)p(B)B A. (3.3)

Note that this operation the sign rule inverse to that of the usual Z2-graded commutator (the sign is
“−” if and only if both A and B are odd).

Remark 3.5. Note that the Jordan algebra (End(V ), [.,.]+) is of course not a Lie antialgebra. However,
we use this algebra to define the notion of representation.

Given a Lie antialgebra a, an (even) linear map χ : a → End(V ) is called a representation of a, if
two conditions are satisfied:

χx·y = [χx,χy]+, (3.4)

for all x, y ∈ a and the images of even elements are commuting operators:

χαχβ = χβχα (3.5)

for all α,β ∈ a0.

Remark 3.6. A linear map χ : a → End(V ) satisfying (3.4), but not necessarily (3.5) is called a special-
ization of a Jordan algebra. This means, a representation is a very particular case of specialization. The
condition (3.5) is crucial for us.

Example 3.7. We have already considered a particular case of the anticommutator (3.3), namely the
operation (2.13) on the space of vector fields on S1|1 tangent to the contact structure. The map (2.14)
defines a representation of the full derivation algebra AK(1) in the space of differential operators on
R

1|1.

Theorem 3. Every representation of a Lie antialgebra a is naturally a representation of the corresponding Lie
superalgebra ga .
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Proof. Given a representation χ of a Lie antialgebra a, the construction of the corresponding repre-
sentation of ga is as follows. The odd part (ga)1 coincides with a1, so that the map χ |(ga)1 is already
defined. For the even elements of ga we take the usual commutator:

χa�b := [χa,χb] = χa ◦ χb + χb ◦ χa.

To prove Theorem 3, one has to show that this is indeed a representation of ga .
The complete proof is again a very complicated but straightforward computation, that we omit.

The details are given in [7]. �
The above result shows that representations of a is some particular class of representations of ga .

Representations of K3
Representations of the simple algebra K3 were studied in [9].
The corresponding Lie superalgebra is osp(1|2), so that representations of K3 is a particular class

of representations of osp(1|2). It turns out that this class is characterized in terms of the classical
Casimir element C ∈ U (osp(1|2)). The following statement is the main result of [9].

There is a one-to-one correspondence between representations of a Lie antialgebra K3 and the representa-
tions of the Lie superalgebra osp(1|2) such that χ(C) = 0.

A representation of K3 is obviously given by one even operator E ∈ End(V ) and two odd operators
A, B ∈ End(V ) satisfying the relations

AB − B A = E ,

AE + E A = A,

B E + E B = B,

E 2 = E . (3.6)

Among other classification results of [9], let us mention the following simple but beautiful statement.

Up to isomorphism, the operator E in (3.6) is of the form:

E |V 0 = 0, E |V 1 = Id. (3.7)

The relations (3.6) together with (3.7) are very similar to the Heisenberg canonical commutation
relations. The difference is that the operator E is not the identity but the projector to the odd part
of V .

Example: tensor-density representations of K(1) and AK(1)

Consider the representations of K(1) called tensor density representations Fλ , where λ ∈ C is the
parameter. The basis in Fλ is { fn, n ∈ Z; φi, i ∈ Z + 1

2 } and the action of K(1) is given by

χxn( fm) = (m + λn) fn+m,

χxn (φi) =
(

i +
(

λ + 1

2

)
n

)
φn+i,

χξi ( fn) =
(

n

2
+ λi

)
φi+n,

χξi (φ j) = f i+ j.
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For instance, the adjoint representation of K(1) is isomorphic to F−1. The K(1)-action (2.7) on
AK(1) is isomorphic to F− 1

2
with inverse parity.

It is now very easy to check that the K(1)-module Fλ is a representation of AK(1) if and only if

λ = 0 or λ = 1

2
.

Note that the modules F0 and F 1
2

are dual to each other, these two modules are known to be special.

Modules over Lie antialgebras: the definition
A Z2-graded vector space V is called an a-module if there is an even linear map ρ : a → End(V ),

such that the direct sum a ⊕ V equipped with the product

(a, v) · (b, w) = (
a · b,ρa w + (−1)p(b)p(v)ρb v

)
, (3.8)

where a,b ∈ a and v, w ∈ V are homogeneous elements, is again a Lie antialgebra. We call the Lie
antialgebra structure (3.8) a semi-direct product and denote it by a � V .

Example 3.8. (1) The “adjoint action” ad : a → End(a) defined by

adx y = x · y,

for all x, y ∈ a, defines a structure of a-module on a itself. This follows, for instance, from the fact
that the tensor product C ⊗ a of a Lie antialgebra a with a commutative algebra C is again a Lie
antialgebra. Indeed, consider C = K[t]/(t2), then one has C ⊗ a = a � a.

(2) The “coadjoint action” ad : a → End(a∗) defined by

adxϕ = (−1)p(x)p(ϕ)ad∗
xϕ,

for x ∈ a and ϕ ∈ a∗ , defines a structure of a-module on a∗ .

Note that the maps ad and ad∗ are not a representation of a since these maps do not satisfy (3.4).

3.3. The odd Lie–Poisson type bivector

In this section we introduce the notion of canonical odd bivector field Λa on the dual space Πa∗ .

The rank and the pencil of presymplectic forms
Given a Lie antialgebra a, we call the dimension of the odd part a0 of a Lie antialgebra a the rank

of a:

rk a := dima0.

Let a be a Lie antialgebra of rank r. Fix an arbitrary basis {ε1, . . . , εr} of a0. One obtains a set of
r bilinear skew-symmetric (or presymplectic) forms: {ω1, . . . ,ωr} on a1 by projection on the basic
elements:

a · b =:
r∑

i=1

ωi(a,b)εi, (3.9)

for all a,b ∈ a1.
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Changing the basis, one obtains linear changes of the corresponding set of skew-symmetric forms.
Therefore, the pencil of presymplectic forms 〈ω1, . . . ,ωr〉 is well defined. To each 2-form ωi , one asso-
ciates a bivector πi ∈ ∧2a∗

1, that we can understand as a constant bivector field on a∗
1.

The adjoint vector fields
To each element α ∈ a0, one associates an even linear operator Aα : a → a defined by

Aα|a0 = adα, Aα |a1 = 2 adα. (3.10)

These linear operators can be, of course, viewed as linear vector fields on a∗ .
We will denote A1, . . . , Ar the (even) vector fields on a∗ corresponding to the elements of the

basis {ε1, . . . , εr}.

Example 3.9. In the important case where a0 contains the unit element ε and the center of a is trivial
(see Theorem 4 below), one has Aε = E , where E is the Euler vector field on the vector space a∗ , i.e.,
the generator of the K

∗-action by homotheties.

The definition
We will use the parity inversion functor Π . Consider the space Πa∗

0 and denote by (τ1, . . . , τr)

the Grassmann coordinates dual to the chosen basis. Choose furthermore arbitrary linear coordinates
(x1, . . . , xn) on Πa∗

1.
Define the following odd bivector on Πa∗:

Λa =
r∑

i=1

(
∂

∂τi
∧ Ai + τiπi

)
. (3.11)

The corresponding antibracket on the space of (polynomial, smooth, etc.) functions on Πa∗ is defined
as in (2.5). This antibracket is obviously linear, i.e., the space of linear functions on Πa∗ is stable.

Proposition 3.10. Linear functions on the space (Πa∗,Λa) form a Lie antialgebra isomorphic to a.

Proof. The antibracket of two even linear functions obviously corresponds to (3.9). The odd linear
functions on Πa∗ are linear combinations of τ1, . . . , τr . The antibracket of an odd and an even linear
functions is given by ]τi, �[ = 1

2 Ai(�), where � ∈ a0. This corresponds precisely to the adjoint action
of εi on �.

Finally, the antibracket of two odd linear functions is given by

]τi, τ j[ = 1

2

(
Ai(τ j) + A j(τi)

) ↔ 1

2
(adεi ε j + adε j εi) = εi · ε j.

Hence the result. �
Corollary 3.11. The bivector (3.11) is independent of the choice of the basis.

Example 3.12. The bivectors (2.3) and (2.17) are precisely the canonical bivectors on Π K3(R)∗ and
Π K3(C)∗ , respectively.

Example 3.13. The bivector (2.3) makes sense in the case of a (purely even) commutative algebra,
i.e., where a1 = {0}. Let C be a commutative associative algebra with basis {ε1, . . . , εr} and structural
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constants ck
i j such that εi ·ε j = ∑

k ck
i jεk . Let τ1, . . . , τr be a set of Grassmann coordinates. The bivector

(3.11) is then of the form

ΛC =
∑
i, j,k

ci
i jτk

∂

∂τi
∧ ∂

∂τ j
.

We understand this linear bivector field as commutative analog of the Lie–Poisson bivector.

The conformal Lie superalgebra
The Lie superalgebra Der(a) can be viewed as the algebra of linear vector fields on Πa∗ preserv-

ing the bivector Λa . It is natural to define (an infinite-dimensional) Lie superalgebra of “conformal
derivations” of a as the algebra of vector fields on Πa∗ preserving the bivector Λa . We simply drop
the linearity condition.

Example 3.14. The algebra K(1) is the algebra of conformal derivations of K3.

The notion of algebra of conformal derivations of a deserves a special study. It would be also
interesting to understand if there is a general notion of conformal Lie antialgebra. It makes sense to
look for such a notion in terms of the algebra of functions on Πa∗ homogeneous with respect to the
vector fields A1, . . . , Ar .

3.4. Central extensions

In this section we define the notion of extension of a Lie antialgebra a with coefficients in any
a-module. It will be useful for the classification result of Section 4.2. The notion of extension is a part
of a general cohomology theory that will be developed in [6].

Let a be a Lie antialgebra and V an a-module. We will consider V as a trivial (or abelian) Lie
antialgebra.

Definition 3.15. (a) An exact sequence of Lie antialgebras

0 −−−−→ V −−−−→ ã −−−−→ a −−−−→ 0 (3.12)

is called an abelian extension of the Lie antialgebra a with coefficients in V . As a vector space, ã =
a ⊕ V , and the subspace V is obviously an a-module.

(b) An extension (3.12) is called non-trivial if the Lie antialgebra ã is not isomorphic to the semi-
direct sum a � V .

(c) If the subspace V belongs to the center of ã, then the extension (3.12) is called a central
extension.

In this section we develop the notion of central extension. Since any central extension can be
obtained by iteration of one-dimensional central extensions, it suffice to consider only the case of
one-dimensional central extensions. One then has two possibilities:

dim V = 0|1 or dim V = 1|0.

We then say that the one-dimensional central extension is of type I or of type II, respectively.
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Central extensions of type I
The general form of central extensions of type I is as follows.

Proposition 3.16. (i) A central extension of type I is defined by (an even) symmetric bilinear map C : a ⊗ a →
K

0|1 satisfying the following conditions:

C(α,β · a) = C(β,α · a) = 1

2
C(α · β,a),

C(a · b, c) + C(b · c,a) + C(c · a,b) = 0, (3.13)

for all α,β ∈ a0 and a,b, c ∈ a1 .
(ii) A central extension is trivial if and only if there exists an even linear function f : a0 → K such that

C(α,a) = f (α · a) (3.14)

for all α ∈ a1 and a ∈ a0 .

Proof. Part (i). Given a map C as in (3.13), let us define an antibracket on a ⊕ K. We fix an element
z ∈ K and set:

x · y = (x · y)a + C(x, y)z, x · z = 0, (3.15)

for all x, y ∈ a. Note that, since the map C is symmetric and even, one has

C(x, y) = C(x1, y0) + C(y1, x0), (3.16)

where x1, y1 ∈ a1 and x0, y0 ∈ a0. One then easily checks that formula (3.15) defines a structure of a
Lie antialgebra if and only if the relations (3.13) are satisfied.

Conversely, a Lie antialgebra structure on a ⊕ K
0|1 such that the subspace K

0|1 belongs to the
center is obviously of the form (3.15).

Part (ii). In the case where C is as in (3.14), the linear map a ⊕ K
0|1 → a ⊕ K

0|1 given by (x, z) �→
(x, z + f (x)) intertwines the structure (3.15) with the trivial direct sum structure. This means that the
central extension is trivial.

Conversely, if the extension is trivial, then there exists an intertwining map a ⊕ K
0|1 → a ⊕ K

0|1
sending the structure (3.15) to the trivial one. This map can, again, be chosen in the form (x, z) �→
(x, z + f (x)), since a different choice of the embedding of K

0|1 does not change the structure. �
We will call a map C satisfying (3.13) a 2-cocycle of type I. A 2-cocycle of the form (3.14) will be

called a coboundary.

Central extensions of type II

Proposition 3.17. (i) A central extension of type II is defined by an even symmetric bilinear map C : a⊗a → K

satisfying the following identities:

C(α,a · b) = C(α · a,b) + C(a,α · b),

C(α · β,γ ) = C(α,β · γ ), (3.17)

for all α,β,γ ∈ a0 and a,b ∈ a1 .
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(ii) The extension is trivial if and only if there exists an even linear functional f : a1 → K such that

C(x, y) = f (x · y), (3.18)

for all x, y ∈ a.

Proof. The proof is similar to that of Proposition 3.16. �
We will call an odd map (3.17) satisfying (3.17) a 2-cocycle of type II. In the case where it is given

by (3.18), the map C is called a coboundary.

Example 3.18. Consider the kernel of the presymplectic pencil of a:

I =
r⋂

i=1

kerωi,

where r = rka, the forms ωi are defined by (3.9). In other words,

I = {a ∈ a1 | a · b = 0, for all b ∈ a1}.

Proposition 3.19. The subspace I is an abelian ideal of a.

Proof. By definition, I is an abelian subalgebra and the bracket of a ∈ I with any element b ∈ a1
vanishes. One has to show that α · a ∈ I , for arbitrary α ∈ a0 and a ∈ I . Indeed, using the identity
(1.4), one obtains

(α · a) · b = α · (a · b) − a · (α · b) = 0

since for a ∈ I and every b ∈ a1, one has a · b = 0. �
It follows that the Lie antialgebra a itself is an abelian extension of type I of the quotient-algebra

a/I :

0 −−−−→ I −−−−→ a −−−−→ a/I −−−−→ 0.

Let us also outline the case where this extension has to be central.

Proposition 3.20. If a is ample, then the ideal I belongs to the center of a.

Proof. The ideal I belongs to the center of a if and only if the action of a0 on I is trivial. Recall
that a is ample if map a1 ⊗ a1 → a0 is surjective. Surjectivity means that for every α ∈ a0 there are
a,b ∈ a1 such that α = a · b. Using the Jacobi identity (1.5), one obtains for every c ∈ I :

α · c = (a · b) · c = −(b · c) · a − (c · a) · b = 0,

since both summands in the right-hand side vanish. �
The Lie antialgebra a is therefore a central extension of a/I (of type I).
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The case of the unit element
Let us consider the case where the associative commutative algebra a0 contains the unit element ε,

and show the Lie antialgebra a has essentially no non-trivial central extensions in this case.

Theorem 4. If the Lie antialgebra a contains the unit element ε ∈ a0 , then a is a direct sum:

a = a ⊕ Z(a), (3.19)

of its center and the Lie antialgebra a = a/Z(a) that has no non-trivial central extensions.

Proof. Let us consider the action of ε on a1. The identity (1.3) implies the “half-projector” relation:

ad1
ε ◦ ad1

ε = 1

2
ad1

ε.

Therefore, a1 is split a1 = a1, 1
2

⊕ a1,0 to a sum of 1
2 - and 0-eigenspaces, respectively. That is,

ade|a
1, 1

2
= 1

2 Id and ade|a1,0 = 0.

Lemma 3.21. The space a1,0 coincides with the center of a.

Proof. Let a ∈ a1,0, that is, ε · a = 0. One has to show that x · a = 0 for all x ∈ a.
Let first x = α be an element of a0. The identity (1.3) implies

ε · (α · a) = ε · (α · a) + α · (ε · a) = (e · α) · a = α · a.

But then ad1
ε ◦ ad1

ε = 1
2 ad1

ε implies α · a = 0.
In the case where x = b is an element of a0 the proof is similar. �
Let us show now that a has no non-trivial central extensions.
Let C be a 2-cocycle of type I on a. Apply the first identity (3.13) to β = ε, where ε is the unit.

One has

C(α,a) − C(α, ε · a) = C(ε,α · a).

If a ∈ Z(a), this formula implies C(α,a) = 0. If a is an element of the 1
2 -eigenspace a1, 1

2
of the unit

element ε, then one obtains C(α,a) = 2C(ε,α · a). Therefore, the cocycle C is a coboundary.
Let now C be a 2-cocycle of type II. It can be decomposed into a pair (C0, C1) of maps

C0 : a0 ⊗ a0 → K, C1 : a1 ⊗ a1 → K,

where C0 is symmetric and C1 is skew-symmetric. The first condition (3.17) gives

C0
(
ε,a · b

) = C1(ε · a,b) + C1(a, ε · b),

so that C1(a,b) = C0(ε, ]a,b[). The second condition (3.17) implies C0(α,β) = C0(ε,α · β). Therefore,
the cocycle C is, again, a coboundary.

Proof of Theorem 4 is complete. �
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4. Classification results

In this section, we prove that K3(C) is the only finite-dimensional complex simple Lie antialgebra.
In the real case one has K3(R) and K3(C). This means that the situation is similar to the case of
commutative algebras. We also prove that K3 is characterized by the fact that its algebra of derivations
is isomorphic to osp(1|2).

We also obtain a complete classification of finite-dimensional Lie antialgebras of rank 1, i.e., with
dim a0 = 1. This, in particular, provides with a number of examples of Lie antialgebras, other that we
already considered.

4.1. Classification of finite-dimensional simple Lie antialgebras

We call a Lie antialgebra a simple if it contains no ideal except for the trivial one and a itself. The
classification of finite-dimensional simple Lie antialgebras is similar to that of commutative algebras.

Theorem 5.

(i) There exists a unique finite-dimensional complex simple Lie antialgebra.
(ii) There are two finite-dimensional simple Lie antialgebras over R.

Recall that the only simple finite-dimensional commutative algebras over R are R and C = R+ iR.
In the complex case there is only C itself.

Let us start with the complex case. Let a be a simple finite-dimensional Lie antialgebra. We will
first assume that the commutative algebra a0 has no nilpotent elements. As it is very well known, a0
is of the form

a0 = C ⊕ · · · ⊕ C︸ ︷︷ ︸
r times

.

We will prove that if a is simple, then r = 1.
Choose a basis {ε1, . . . , εr} in a0 such that εi · ε j = δi j . As in Section 3.3, one associates with each

element εi a presymplectic form ωi on a1 (see formula 3.9).
The following statement shows that, if r > 1, then the algebra a contains a non-trivial ideal. Con-

sider the subspace kerω1 ⊂ a1 consisting of the elements a ∈ a1 such that, for all b one has: a · b is a
combination of εi with i � 2. Consider also the following subspace of a:

I = kerω1 ⊕ 〈ε2, . . . , εr〉.

Lemma 4.1. The subspace I is an ideal of a.

Proof. One has to prove that

(a) α · I ⊂ I , for an arbitrary α ∈ a0;
(b) a · I ⊂ I , for an arbitrary a ∈ a1.

Part (a). Let a ∈ kerω1, by identity (1.4), one has for an arbitrary b ∈ a1:

(α · a) · b = α · (a · b) − a · (α · b).

The both terms in the right-hand side are combinations of εi with i � 2. Therefore, one obtains
α · a ∈ kerω1.



JID:YJABR AID:13139 /FLA [m1G; v 1.47; Prn:11/10/2010; 17:08] P.28 (1-32)

28 V. Ovsienko / Journal of Algebra ••• (••••) •••–•••
Part (b). Let α ∈ 〈ε2, . . . , εr〉, then ε1 · α = 0. Let a ∈ a1 be arbitrary, one has to prove that, again,
α · a ∈ kerω1. Choose an arbitrary b ∈ a1 and consider again the expression (α · a) · b. Since this is an
even element of a, it can be written in the form:

(α · a) · b =
r∑

i=1

ciεi .

One has to prove that c1 = 0. One has ε1 · ((α · a) · b) = (ε1 · (α · a)) · b + (α · a) · (ε1 · b). But the first
summand in the right-hand side vanishes. Indeed, by (1.3), one has

ε1 · (α · a) = 1

2
(ε1 · α) · a = 0,

since ε1 · α = 0. In the same way, one obtains

ε1 · (ε1 · ((α · a) · b
)) = (α · a) · (ε1 · (ε1 · b)

)
.

However, for the left-hand side, one obtains using (1.2):

ε1 · (ε1 · ((α · a) · b
)) = (ε1 · ε1) · ((α · a) · b

) = ε1 · ((α · a) · b
) = c1

since ε1 · ε1 = ε1; while, for the right-hand side, one gets using (1.3):

(α · a) · (ε1 · (ε1 · b)
) = 1

2
(α · a) · ((ε1 · ε1) · b

) = 1

2
(α · a) · (ε1 · b) = ε1 · ((α · a) · b

) = 1

2
c1.

Therefore, c1 = 0 and so α · a ∈ kerω1. The result follows. �
Lemma 4.1 implies that dim(a0) = 1. Choose a non-zero element ε ∈ a0 and denote ω the corre-

sponding 2-form.

Lemma 4.2. The form ω is of rank 2.

Proof. Choose a canonical (Darboux) basis {a1 . . . ,an,b1, . . . ,bn, c1, . . . , cm}, so that

ω(ak,b�) = δk�, ω(ak,a�) = ω(bk,b�) = ω(ck, .) = 0,

where k, � = 1, . . . ,n. Let us show that n = 1. First, n � 1, since otherwise ω = 0 and a1 is an ideal. It
follows that there are some elements ak and bk such that ε = ak · bk .

Assume that n > 1. The identity (1.5) implies

ε · a� = (ak · bk) · a� = −(bk · a�) · ak − (a� · ak) · bk = 0

for any k �= �. It follows that ε · a = 0, for any a ∈ a1. Furthermore,

ε · ε = ε · (ak · bk) = (ε · ak) · bk + ak · (ε · bk) = 0,

for any i = 1, . . . ,n. Therefore, ε belongs to the center of a; in particular, a cannot be simple. This is
a contradiction. �

Lemma 4.1 and Lemma 4.2 imply Theorem 5 in the complex case, where the commutative algebra
a0 has no nilpotent elements. If now a0 = C

n
� N , where N is a nilpotent ideal, then the same

arguments prove that n � 1 and kerω1 ⊕ N is an ideal. Theorem 5 is proved in the complex case.
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The real case immediately follows from the complex one. Indeed, let a be a real simple Lie antial-
gebra, the standard arguments show that the complexification a ⊗R C is either simple or the direct
sum of two isomorphic simple ideals.

Theorem 5 is proved.

Proof of Theorem 1. Let a be a finite-dimensional commutative Z2-graded algebra such that Der(a) ∼=
osp(1|2). As an osp(1|2)-module, a is a direct sum of irreducible modules. Recall that finite-
dimensional irreducible osp(1|2)-modules are the modules D(h/2) with positive integer h. These
modules are of dimension 2h + 1 and of highest weight h. It follows that for two elements of a

such that x1 ∈ D(h1/2) and x2 ∈ D(h2/2), one has:

x1 · x2 ∈ D
(
(h1 + h2)/2

)
. (4.1)

Since a is finite-dimensional, there exists a non-zero submodule D(h′/2) ⊂ a with maximal h′ .
If h′ �= 0, then (4.1) implies that D(h′/2) belongs to the center of Z(a). However, the Lie superal-

gebra End(Z(a)) is a subalgebra of Der(a) so that Der(a) cannot be isomorphic to osp(1|2) if a has a
non-trivial center.

Theorem 1 is proved. �
4.2. Lie antialgebras of rank 1

Let us assume that the commutative algebra a0 is one-dimensional. There are two different possi-
bilities:

1. a1 = K, as a commutative algebra, so that it contains the unit element denoted by ε, such that
ε · ε = ε;

2. a1 is nilpotent and the only odd generator α satisfies α · α = 0.

The structure of the algebra a is characterized by one bilinear skew-symmetric form on a1 defined
by

a · b = ω(a,b)α,

where α is a (unique up to a constant) non-zero element of a1.
Let us first construct several examples of Lie antialgebras of rank 1.

A. The form ω is non-degenerate
(A1) The (2n)|1-dimensional nilpotent Lie antialgebra with basis {a1,b1, . . . ,an,bn;α} that ap-

peared in the case (a) of the above proof is characterized by the relations

ai · b j = δi jα, (4.2)

where i, j = 1, . . . ,n and all other products of the basic elements vanish. We call it the Heisenberg
antialgebra and denote it by ahn . This algebra is ample.

Remark 4.3. Notice, that the relations (4.2) are exactly as those of the standard Heisenberg Lie algebra,
but the central element α is odd. As in the usual Lie case, the Heisenberg antialgebra ahn is a central
extension of type II of the abelian Lie antialgebra K

2n .

(A2) Another interesting example is a family of Lie antialgebras of dimension 1|2. The basis of
these Lie antialgebras will be denoted by {α;a,b}; the commutation relations are
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a · b = α, α · a = κb (4.3)

where κ is a constant and the other products vanish. If κ = 0, then this is just the Heisenberg antial-
gebra ah1, if κ �= 0, then this is a non-trivial deformation of ah1.

In the case K = C, all of the Lie antialgebras (4.3) with κ �= 0 are isomorphic to each other. We
call this algebra twisted Heisenberg antialgebra and denote it by ãh1.

If K = R, however, the sign of κ is an invariant. We will assume:

κ = 1, if K = C, κ = ±1, if K = R.

One thus gets two different Lie antialgebras: ãh
+
1 and ãh

−
1 .

We are ready to formulate a partial result.

Proposition 4.4. The complete list of the real Lie antialgebras of rank 1 with a non-degenerate 2-form ω is as
follows:

K3, ahn, ãh
+
1 , ãh

−
1 ; (4.4)

in the complex case, the Lie antialgebras ãh
+
1 and ãh

−
1 are isomorphic.

Proof. Consider first the case where a1 is not nilpotent, i.e., α ·α �= 0. We already proved that, in this
case, a is of dimension 1|2, see Lemma 4.2. Therefore, a = K3.

Assume that α · α = 0. If ω is of rank n > 1, one proves, in the same way as in Lemma 4.2, that
α · a = 0 for all a, so that a = ahn .

If, finally, ω is of rank 1, then the identity (1.3) implies that (ad1
α)2 = 0. One then easily shows

that any such operator is equivalent to ad1
α in (4.3) up to the area preserving changes of the basis. It

follows that a = ãh
+
1 or ãh

−
1 . �

B. The 2-form ω is identically zero
The Lie antialgebra a is then non-ample and determined by the operator adα .
(B1) If a1 contains the unit element ε, then a is split into a direct sum (3.19). The centerless Lie

antialgebra a has the basis {ε;a1, . . . ,an} with the following set of relations:

ε · ε = ε, ε · ai = 1

2
ai, ai · a j = 0.

We call this Lie antialgebra the affine antialgebra and denote by aaf(n). One then has a = aaf(n) ⊕ Z ,

where Z is the center of a.
(B2) If α ·α = 0 for all α ∈ a0, then ad1

α ◦ ad1
α = 0. These are very degenerated Lie antialgebras and

their classification is equivalent to the classification of nilpotent (of order 2) linear operators. We do
not discuss here this problem of linear algebra.

Let us summarize the above considerations.

Proposition 4.5. A Lie antialgebras of rank 1 with ω = 0 is one of the following two classes:

a = aaf(n) ⊕ Z , a is of type (B2). (4.5)
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C. The “mixed case” 2 < rkω < dima0
(C1) Define a 1|3-dimensional Lie antialgebra with basis {α;a,b, z} and the relations

a · b = α, α · a = z (4.6)

and all other products vanish. We denote this Lie antialgebra âh1. The element z spans the center, so
that this is a central extension (of type I) of ah1.

(C2) Define a 1|4-dimensional Lie antialgebra with the basis {α;a,b, z1, z2} and the relations

a · b = α, α · a = z1, α · b = z2 (4.7)

and all other products vanish. We denote this Lie antialgebra ̂̂ah1. This is a central extension (of type I)
of the above algebra âh1.

We are now ready to formulate the main statement of this section.

Theorem 6. A Lie antialgebra of rank 1 is of the form a = a ⊕ Z , where a belongs either to the list (4.4), or to

the list (4.5), or one of the antialgebras âh1,
̂̂ah1 .

Proof. We already proved the theorem in the following two cases: the form ω is non-degenerate, or
ω ≡ 0. It remains to consider the intermediate case where the 2-form ω is not identically zero but
with a non-trivial kernel: I = kerω �= {0}. The space I is then an abelian ideal (see Proposition 3.19)
and, furthermore, belongs to the center (see Proposition 3.20). We summarize this in a form of a

Lemma 4.6. The Lie antialgebra a is a central extension of a/I .

To complete the classification, one now has to classify the central extensions of type I of the
antialgebras with non-degenerate form ω, that is, of (4.2) and (4.3).

Lemma 4.7. The Lie antialgebras ahn with n � 2 and ãh1 (resp. ãh
+
1 , ãh

−
1 ) have no non-trivial central exten-

sions of type I.

Proof. Let C be a 2-cocycle of type I on ahn with n � 2. One has

C(α,ai) = C(a j · b j,ai) = −C(b j · ai,a j) − C(ai · a j,b j) = 0

(from the second identity (3.13)) for all i �= j. Similarly, C(α,bi) = 0 for all i. Therefore, C is identically
zero.

For the Lie antialgebra ãh1 and an arbitrary 2-cocycle C of type I, one has

C(α,b) = 1

κ
C(α,α · a) = 1

2κ
C(α · α,a) = 0.

The cocycle C is then defined by its values on α and a. Let us show that the corresponding extension
is trivial. Let C(α,a) = cz, where z is an arbitrary generator of the center and c arbitrary constant. Set
b′ = b + c

κ z. In the basis {α;a,b′, z}, the cocycle C ′ vanishes. �
Lemma 4.8. The algebra ah1 has a unique non-trivial central extension of type I.

Proof. Indeed, let C be a 2-cocycle of type I on ah1. It is given by the formula

C(α,a) = c1z, C(α,b) = c2z,
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where z is an element of the center and c1 and c2 are arbitrary constants. If c1 �= 0, then choose
another element of the basis: b′ = b + c2

c1
a. One obtains C(α,b) = 0. Now taking z′ = c1z, one gets

precisely the Lie antialgebra âh1. This Lie antialgebra is not isomorphic to ah1 so that the extension
is, indeed, non-trivial. �
Lemma 4.9. The algebra ̂̂ah1 is the unique non-trivial central extension of type I of âh1 .

Proof. It is similar to the proof of Lemma 4.8. �
In the same way, one proves that the Lie antialgebra ̂̂ah1 has no non-trivial central extensions of

type I. We thus classified all the non-trivial central extensions of the Lie antialgebras of rank 1 with
non-degenerate form ω.

Theorem 6 is proved. �
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