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E X O T I C D E F O R M A T I O N Q U A N T I Z A T I O N 

VALENTIN OVSIENKO 

1. Introduct ion 

Let A be one of the following commutative associative algebras: the 
algebra of all smooth functions on the plane: A = C°° (R ), or the 
algebra of polynomials A = C[p, q] over R or C. There exists a non-
trivial formal associative deformation of A called the Moyal ^-product 
(or the standard •-product) . It is defined as an associative operation 
A®2 —T- A[[/ï]] where h is a formal variable. The explicit formula is: 

F*hG = FG + J2krfF,Gg k, 
k>\ 

k 

^ 3FÔG dFdG P 
where f F , G g \ = -r—^ ^—^— is the standard oisson bracket, and 

op oq oq op 
the higher order terms are: 

fF,Gg k = k ^ ( - i i k 
Qk F Qk G 
k i i i k i i_ dp k i d q i dp idq k 

The Moyal product is the unique (modulo equivalence) non-trivial 
formal deformation of the associative algebra A (see [13]). 

Definit ion 1. A formal associative deformation of A given by for­
mula (1) is called a ^-product if the following hold: 

1) the first order term coincides with the Poisson bracket: fF, Gg\ = 

fF,Gg; 
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2) the higher order terms fF, Gg k are given by differential operators 

vanishing on constants: fl,Gg k = fF, lg k = 0; 

3 ) f F , G g k = ( - l ) k f G , F g k. 

Definit ion 2. Two •-products •£ and k'h on A are called equivalent 

if there exists a linear mapping A% : A —» A[[7i]] such that 

oo 

AÄ(F) = F + J ]A k(F)fk 
k = i 

intertwining the operations k% and *^: A ̂ (F') k'h Afi(G) = Afi(F kfi G). 

Consider now A as a Lie algebra; the commutator is given by the 
Poisson bracket. The Lie algebra A has a unique (modulo equivalence) 
non-trivial formal deformation called the Moyal bracket or the Moyal 
•-commutator: fF,Gg t = ij?(F •£ G - G •£ F), where t = -h2/2. 

The well-known De Wilde-Lecomte theorem [4] states the existence 
of a non-trivial •-product for an arbitrary symplectic manifold. The 
theory of •-products is a subject of deformation quantization. The geo­
metrical proof of the existence theorem was given by B. Fedosov [9] (see 
[8] and [20] for clear explanation and survey of recent progress). 

The main idea of this paper is to consider the algebra F{M) of 
functions (with singularities) on the cotangent bundle T*M which are 
Laurent polynomials on the fibers. In contrast to the above algebra A 
it turns out that for such algebras the standard •-product is no more 
unique at least if M is one-dimensional: dim M = 1. 

We consider M = S 1 , R in the real case, and M = H (the upper 
half-plane) in the holomorphic case. The main result of this paper is 
an explicit construction of a new •-product on the algebra F{M) non-
equivalent to the standard Moyal product. This •-product is equivariant 
with respect to the Möbius transformations. The construction is based 
on the bilinear S ̂ - e q u i v a r i a n t operations on tensor-densities on M, 
known as Gordan transvectants and Rankin-Cohen brackets. 

We study the relations between the new •-product and extensions 
of the Lie algebra Vect(S1) . 

The results of this paper are closely related to those of the recent 
work of P. Cohen, Yu. Manin and D. Zagier [3] where a one-parameter 
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family of associative products on the space of classical modular forms 
is constructed using the same S ̂ - e q u i v a r i a n t bilinear operations. 

2. Definit ion of the exot ic • -product 

2.1 Algebras of Laurent polynomials . Let F be one of the 
following associative algebras of functions: 

F=C\p, l / p ] ® C ° ° ( R ) or F = C [ p , l / p ] < g ) H o l ( H ) 

This means, it consists of functions of the type: 

N 

(3) F(p,q)= J2 pf-(q), 
i=-N 

where f i(q) G C°°(R) in the real case, or f i(q) are holomorphic functions 
on the upper half-plane H or f i G C[q] (respectively). 

We will also consider the algebra of polynomials: C[p, 1/p, q] (Lau­
rent polynomials in p) . 

2.2 Transvectants . Consider the following bilinear operators on 
functions of one variable: 

(4) J ( f • g ) = E M > i ( ) ( 2 m : i n : f g j». i (2m - k)\(2n - k)V 

where f = f(z),g = g(z), f i ( z ) = d f z 1 . 

These operators satisfy a remarkable property: they are equivariant 
under Möbius (linear-fractional) transformations. Namely, suppose that 
the transformation z <—> az+d (with ad — bc = 1) acts on the arguments 
as follows: 

f<z> " f — d <cz + d» g<z> * g - c z T d {cz + d) • 

J mnif-giz) * jmn(f.g)(azT:b)(cz+d02(m+n-k)-

then J k ' (f, g) transforms as: 

,az + b 

"cz+d' 

In other words, the operations (4) are bilinear S ̂ - e q u i v a r i a n t map­
pings on tensor-densities: 

J k ' F m yy F n ' F m+n — ki 
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where F i is the space of tensor-densities of degree —l: <f> = <f>(z)(dz) . 

The operations (4) were discovered more than one hundred years 
ago by Gordan [11] who called them the transvectants. They have been 
rediscovered many times: in the theory of modular functions by Rankin 
[18] and by Cohen [2] (so-called Rankin-Cohen brackets), in differential 
projective geometry by Janson and Peetre [12]. The "multi-dimensional 
transvectants" were defined in [14] in the context of the the Virasoro 
algebra and symplectic and contact geometry. 

2.3 Main definition. Define the following bilinear mapping F®2 —> 

F[[ti\], for F = p m f(q), G = p n g(q), where m, n G Z, by putting: 

(5) F*KG = J2-k p{m+n~k)J m'n(f^), 
k=0 

Note, that the first order term coincides with the Poisson bracket. 

This operation will be the main subject of this paper. We call it the 

exotic ^-product. 

2.4 Remark. Another one-parameter family of operations on mod­
ular forms: f *K g = P - 0 t ' n { k , l ) J kl{f,g), where f and g are modular 
forms of weight k and l respectively, and t ̂ (k,l) are very interesting 
and complicated coefficients, is defined in [3]. 

3. Main t h e o r e m s 

We formulate here the main results of this paper. All the proofs will 

be given in Sections 4-7. 

3.1 Non-equiva lence . The Moyal •-product (1) defines a non-
trivial formal deformation of F . We will show that the formula (5) 
defines a •-product non-equivalent to the standard Moyal product. 

T h e o r e m 1. The operation (5) is associative; it defines a formal 

deformation of the algebra F which is not equivalent to the Moyal prod­

uct. 

The associativity of the product (5) is a trivial corollary of Propo­

sition 1 below. To prove the non-equivalence, we will use the relations 

with extensions of the Lie algebra of vector fields on S1: Vect(S1) C F 

(cf. Sec.5). 
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It is interesting to note that the constructed •-product is equiva­
lent to the standard Moyal product if we consider it on the algebra 
C°°(T*M n M) of all smooth functions (not only Laurent polynomials 
on fibers); cf. Corollary 1 below. 

3.2 sl2-equivariance. The Lie algebra sl2(R) has two natural em-
beddings into the Poisson Lie algebra on R 2 : the symplectic Lie algebra 
sp2(R) = sl2(R) generated by quadratic polynomials (p2,pq,q2) and 
another one with generators: (p,pq,pq2) which is called the Mobius al­
gebra. 

It is well-known that the Moyal product (1) is the unique non-trivial 
formal deformation of the associative algebra of functions on R 2 equiv-
ariant under the action of the symplectic algebra. This means, (1) 
satisfies the Leibnitz property: 

(6) fF,G*hHg = fF,Gg*hH + G*hfF,Hg, 

where F is a quadratic polynomial (note that fF, Gg t = fF, Gg if F is 
a quadratic polynomial). 

T h e o r e m 2. The product (5) is the unique formal deformation of 
the associative algebra F equivariant under the action of the Mobius 
algebra. 

The product (5) is the unique non-trivial formal deformation of F 
satisfying (6) for F from the Möbius sl2 algebra. 

3.3 S y m p l e c t o m o r p h i s m <I>. The relation between the Moyal 
product and the product (5) is as follows. Consider the symplectic 
mapping 

(7) *<p•q>=(p p)• 

defined on R 2 n R in the real case and on H in the complex case. 

Propos i t ion 1. The product (5) is the ^-conjugation of the Moyal 
product: 

(8) F î E G = F ^ G : = ( F o $ * s G o $ ) o r 1 . 

Remark. The mapping (7) (in the complex case) can be interpreted 
as follows. It transforms the space of holomorphic tensor-densities of 
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degree -k on C P 1 to the space C [p, q] of polynomials of degree k. 
Indeed, there exists a natural isomorphism z n(dz)~m \—> p m q n (where 
m > 2n) and (p m q n) o <£> = p2m~n q n. 

3.4 Operator formalism. The Moyal product is related to the 
following Weil quantization procedure. Define the following differential 
operators: 

(9) dq 
q = q 

satisfying the canonical relation: \p, qb = ihI. Associate to each polyno­
mial F = F(p, q) the differential operator F = SymF(p, q) symmetric 
in p and q. The Moyal product on the algebra of polynomials coincides 
with the product of differential operators: F *frG = FG. 

We will show that the •-product (5) leads to the operators: 

pb = (f )2A, 
( 1 0 ) ^ ^ ( A - ' o A + A o A - 1 ) 

(where A = ^ and A = 2q— + 1 is the dilation operator) also satisfying 
the canonical relation. 

Remark that pb and q ̂  given by (10) on the Hilbert space L2ÇR) 
are not equivalent to the operators (9) since qb is symmetric but not 
self-adjoint (see [6] on this subject). 

3.5 "Symplec tomorphic" deformations . Let us consider the 
general situation. 

Propos i t ion 2. Given a symplectic manifold V endowed with a 
-k-product -kfi and a symplectomorphism $ of V, if there exists a hamil-
tonian isotopy of $ to the identity, then the ^-conjugate product • * 
defined according to the formula (8) is equivalent to -k^. 

Corollary 1. The -k-product (5) considered on the algebra of all 
smooth functions C°°(T*R n R) is equivalent to the Moyal product. 

4. Möbius- invariance 

In this section we prove Theorem 2. We show that the operations 
of transvectant (4) are <I>-conjugate of the terms of the Moyal product. 
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4.1 Lie algebra Vect(R) and modules of tensor-dens i t ies . Let 
Vect(R) be the Lie algebra of smooth (or polynomial) vector fields on 
R: 

X = X(x)d-
dx 

with the commutator 

[X{x)^Y{x)d] = {X{x)Y>{x) - X>{x)Y{x))d-

The natural embedding of the Lie algebra sl2 C Vect(R) is generated 
by the vector fields d/dx, xd/dx, x2d/dx. 

Define a 1-parameter family of Vect(R)-actions on C°°(R) given by 

(11) L(£)f = X(x)f(x)-\X'(x)f(x), 

where A G R. Geometrically, Lx' is the operator of Lie derivative on 
tensor-densities of degree —A: 

f = f(x)(dx)-\ 

Denote F \ the Vect(R)-module structure on C°°(R) given by (11). 

4.2 Transvectant as a bilinear sl2-equivariant operator . The 
operations (4) can be defined as bilinear mappings on C°°(R) which are 
sli-equivariant: 

S t a t e m e n t 4 .1 . For each k = 0 ,1 , 2 , . . . there exists a unique (up 
to a constant) bilinear sl2-equivariant mapping 

F 11 <8> F v —> Fß+v-k-

It is given by f <g) g ^ J k v (f, g). 

Proof. Straightforward (cf. [11], [12]). 

4.3 Algebra F as a modu le over Vect(R). The Lie algebra 
Vect(R) can be considered as a Lie subalgebra of F . The embedding 
Vect(R) C F is given by: 

X{x)dx ^pX{q)-

The algebra F is therefore, a Vect(R)-module. 
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L e m m a 4 .2 . The algebra F is decomposed to a direct sum of 
Vect (R) -modules: 

Proof. Consider the subspace of F consisting of functions homoge­

neous of degree m in p: F = p m f(q). This subspace is a Vect (R)-module 

isomorphic to F m. Indeed, fpX(q),p m f (q)g = p m(Xf' — mX'f) = 

p m L(m f. 

4.4 Pro jec t ive property of the di f feomorphism <£>. The transvec-
tants (4) coincide with the <I>-conjugate operators (2) from the Moyal 
product: 

Propos i t ion 4 .3 . Let F = p m f(q),G = p n g(q). Then 

(i2) $*- I f$*F,$*Gg = k^ m+n-J mn(f>go-

Proof. The symplectomorphism <£> of R 2 intertwines the sym-
plectic algebra sp2 = sl2 and the Möbius algebra: &*(p,pq,pq2) = 
( ì p 2 , \pq, \q2). Therefore, the operation <£>*_1f<I>*F, <£>*Gg k is Möbius-
equivariant. 

On the other hand, one has: $ * F = ^p2m f{^) and $*G = ±p2m g{±). 
Since <£>*F and &*G are homogeneous of degree 2m and 2n (respec­
tively), the function f<&*F, &*Gg k is also homogeneous of degree 2 ( m + 
n - k). Thus, the operation fF, Gg k = $ * _ 1 f $ * F , <î>*Gg k defines a bi­
linear mapping on the space of tensor-densities F m <8> F n —> F m+n-k 
which is sl2-equivariant. 

Statement 4.1 implies that it is proportional to J m'n. One easily 
verifies the coefficient of proportionality for F = p m,G = p n q k1 to 
obtain the formula (12). 

Proposition 4.3 is proven. 
Remark. Proposition 4.3 was proven in [15]. We do not know 

whether this elementary fact has been mentioned by classics. 

4.5 P r o o f of T h e o r e m 2. Proposition 4.3 implies that the formula 

(5) is a ^-conjugation of the Moyal product and is given by the formula 

(8). 
Proposition 1 is proven. 
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It follows that (5) is a •-product on F equivariant under the action 
of the Möbius sl2 algebra. Moreover, it is the unique •-product with this 
property since the Moyal product is the unique •-product equivariant 
under the action of the symplectic algebra. 

Theorem 2 is proven. 

5. Relat ion wi th ex tens ions of the Lie algebra Vect(S1) 

We prove here that the •-product (5) is not equivalent to the Moyal 
product. 

Let Vect(S1) be the Lie algebra of vector fields on the circle. Con­
sider the embedding Vect(S1) C F given by functions on R 2 of the type: 
X = pX(q) where X(q) is periodical: X(q-\-l) = X(q). 

5.1 A n idea of the proof of T h e o r e m 1. Consider the formal 
deformations of the Lie algebra F associated to the •-products (1) and 
(5). The restriction of the Moyal bracket to Vect(S1) is identically zero. 
We show that the restriction of the •-commutator 

{F\G}t = ^ (F*hG - G*hF), t = - y 

associated to the •-product (5) defines a series of non-trivial extensions 
of the Lie algebra Vect(S1) by the modules F ( S 1 ) of tensor-densities 
on S 1 of degree —k. 

5.2 Extens ions and the cohomology group H2(Vect(S1); F \ ) . 
Recall tha t an extension of a Lie algebra by its module is defined by 
a 2-cocycle on it with values in this module. To define an extension 
of Vect(S1) by the module F \ one needs therefore a bilinear mapping 
c : Vect(S1)®2 —> F \ which satisfies the identity Sc = 0: 

c{X, [Y, Z]) + L(^c{Y, Z) + (cyclexx,z) = 0. 

(See [10]). 
The cohomology group H2ÇVect(S1); F \ ) were calculated in [19] (see 

[10]). This group is trivial for each value of A except A = 0, —1, —2, —5, 
— 7. The explicit formulae for the corresponding non-trivial cocycles 
are given in [17]. If A = — 5 , - 7 , then dim H 2 (Vect (S 1 ) ; F \ ) = 1, the 
cohomology group is generated by the unique (up to equivalence) non-
trivial cocycle. We will obtain these cocycles from the •-commutator . 
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5.3 Non-tr iv ia l cocycles on Vect(S1) . 

Consider the restriction of the •-commutator f , g t (corresponding 
to the •-product (5)) to Vect(S1) C F : let 

X=pX(q), Y=pY(q); 

then from (5) we have 

°° t k 1 

fX,Yg t = fX,Yg + J2 
k = i p 

It follows from the Jacobi identity that the first non-zero term of the 

series fX, Yg t is a 2-cocycle on Vect(S1) with values in one of the 
Vect(S1)-modules F ( S 1 ) . 

Denote for simplicity J2k+i by J2k+i-
From the general formula (4) one obtains: 

L e m m a 5 .1 . First two terms offX, Yg t are identically zero: J3(X, Y) = 
0,J5(X,Y) = 0, the next two terms are proportional to: 

J7(X, Y) = X///Y(IV) - X IV Y'", 
(13) J9(X,Y)= 2(X'"Y(VI) - X(VI)Y'") 

_9(X(IV)Y(V) - X V Y IV ) . 

The transvectant J7 defines therefore a 2-cocycle. It is a remarkable 
fact that the same fact is true for Jg: 

L e m m a 5.2. (See [17]). The mappings 

J7 : Vec t (S 1 ) 0 2 - • F-5 and J 9 : Vec t (S 1 ) 0 2 - • F - 7 

are 2-cocycles on Vect(S1) representing the unique non-trivial classes of 
the cohomology groups H2(Vect(S1);F-5) and H2(Vect(S1);F-r) re­
spectively. 

Proof. Let us prove that Jg is a 2-cocycle on Vect(S1) . The Jacobi 
identity for the bracket f , g t implies: 

fX, J9(Y, Z)g + J 9 ( X , fY, Zg) + J3{X, J7(Y, Z)) + (cycle XY,Z) = 0 

for any X = pX(q),Y = pY(q),Z = pZ(q). One checks that the ex­
pression J3(X,J7(Y,Z)) is proportional to X"'{Y"'Z ^IV) - Y IV Z'"), 
so that 

J3(X, J7(Y, Z)) + (cycle X,Y,Z) = 0. 
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We obtain the following relation: 

fX, J9{Y, Z)g + J 9 ( X , fY, Zg) + (cycle XY,Z) = 0, 

which means that Jg is a 2-cocycle. Indeed, recall tha t for any tensor 

density a, fpX,p m ag = p m^jXdld (a) ' Thus, the last relation coincides 

with the relation SJg = 0. 

Let us now show that the cocycle J7 on Vect(S1) is not trivial. 

Consider a linear differential operator A : Vect(S1) —> F5, given by: 

A(X(q)d/dq) = (P i K o a i X{i)(q))(dq)5- Then SA(X,Y) = L(X A(Y) -

L Y A(X) — A([X, Y]). The higher order part of this expression has a 

non-zero term (5 — K )a K X'Y(Kî and therefore J7 / SA. 
In the same way one proves that the cocycle Jg on Vect(S1) is non-

trivial. 
Lemma 5.2 is proven. 
It follows that the •-product (5) on the algebra F is not equivalent 

to the Moyal product. 
Theorem 1 is proven. 

6. Operator representat ion 

We are looking for an linear mapping (depending on K) F <—> F® of 
the associative algebra of Laurent polynomials F = C[p, 1/p, q] into the 
algebra of formal pseudodifferential operators on R such that 

FeG = Fq'Gq'. 

Recall tha t the algebra of Laurent polynomials C[p, 1/p, q] with the 
Moyal product is isomorphic to the associative algebra of pseudodif­
ferential operators on R with polynomial coefficients (see [1]). This 
isomorphism is defined on the generators p \—> p, q \—> q by the operators 
(9) and p _ 1 1—> pbl: 

pb1 = ^(9/dq)-1. 

6.1 Definit ion. Put : 

(14) F $ = d F. 

Then F $ G $ = $*F$*G = $ * F *Ä $*G = $ * ( F e G ) = FeG . 
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One obtains the formulae (10). Indeed, 

p = pz / 2 
2 dq2 

Since q=\ ((pfihpq + pq*h{p)) , one gets: 

6.2 sl2-equivariance. For the Möbius sl2 algebra one has: 

b ) p 
(ih)2 d2 

2 dq2 

pbq $ ih ih d 

2 $ q_ 
pq 

L e m m a 6 .1 . The mapping F <—> F satisfies the Mobius-equivariance 
condition: 

for X e sl2. 

Proof. It follows immediately from Theorem 2. Indeed, the •-
product (5) is sl2-equivariant (that is, satisfying the relation: fX, Fg t = 
fX,Fg for X e sl2). 

Remark. Beautiful explicit formulae for sl2-equivariant mappings 
from the space of tensor-densities to the space of pseudodifferential op­
erators are given in [3]. 

7. Hami l ton ian i sotopy 

The simple calculations below are quite standard for the cohomo-
logical technique. We need them to prove Corollary 1 of Sec. 3. 

Given a syplectomorphism $ of a symplectic manifold V and a for­
mal deformation f , g t of the Poisson bracket on V, we prove that if \P 
is isotopic to the identity, then the formal deformation f , g defined 
by: 

fF, Gg = tf*_1ftf*F, **G}t 
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is equivalent to f , g t. The similar proof is valid in the case of •-
products. 

Recall tha t two symplectomorphisms \P and \P' of a symplectic man­
ifold V are isotopic if there exists a family of functions Hts\ on V such 
that the symplectomorphism \Pi o $ ~ is the flow of the Hamiltionian 
vector field with the Hamiltonian function Hrs\, 0 < s < 1. 

Let ty(s) be the the flow of a family of functions H = Htsy We will 

prove that the equivalence class of the formal deformation f , }t s' does 
not depend on s. 

7.1 Equivalence of homotop ic cocycles . Let us first show that 

3 the cohomology class of the cocycle C 

C ̂ s)(F,G) = ^{s)
1C3^ls)F^ls)G) 

does not depend on s. To do this, it is sufficient to prove that the 

derivative C3 = d C3 j s=o is a coboundary. One has 

C3(F, G) = C3(fH, Fg,G) + C3(F, fH, Gg) - fH, C3(F, G)g. 

The relation 8C3 = 0 implies: 

C ( F , G) = fF, C3(G, H)g - fG, C3(F, H)g - C3(fF, Gg, H). 

This means, d C* (s ) j s= 0 = SB H, where B H(F) = C3(F, H). 

7.2 General case. Let us apply the same arguments to prove that 

the deformations f , }t s' are equivalent to each other for all values of 

s. For this purpose we must show that there exists a family of mappings 

A{s)(F) = F + P k= 1A {s )k(F)t k such that A s ( f A ( s ) ( F ) , A{s)(G)g t) = 

fF,Gg t. 
It is sufficient to verify the existence of a mapping a(F) = P kLi a k(F)t 

(the derivative: a(F) = d/ds(Ats\(F))j s=s) such that 

d fF, G g ( s ) j s=s = fa(F),Gg t + fF, a(G)g - a(fF, Gg t 

Since 

•fF, Gg(s> j s=s = ffF, Hg, Gg t + fF, fG, Hgg t - ffF, Gg t, Hg, 
d *(s) 

ds 
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from the Jacobi identity: 

ffF, Hg t Gg t + fF, fG, Hg t g t - ffF, Gg t Hg t = 0 

one obtains that the mapping a(F) can be written in the form: 

CO _. 

(F) = E7kTTÏÏC2k+l(F'H) )k-

7.3 P r o o f of Corollary 2. Consider the •-product (8) given by 

F • ! G, where F -kji G is the Moyal product (1), and <£> : (p, q) i—> 

(p 2 /2 , q/p). It is defined on R 2 n R. 

The •-product (8) on the algebra C°°(R 2 n R) is equivalent to the 

Moyal product. Indeed, the symplectomorphism <I> is isotopic to the 

identity in the group of all smooth symplectomorphisms of R 2 n R. The 

isotopy is: $s : (p, q) i-» {p s , -p s), where s G [0,1]. 

Recall tha t the •-product F-k® G on the algebra F is not equivalent 
to the Moyal product since it coincides with the product (5). 

The family <I>s does not preserve the algebra F . Theorem 1 implies 
that F is not isotopic to the identity in the group of symplectomorphisms 
of R 2 n R preserving the algebra F . 

8. Discuss ion 

8.1 Difficulties in mult i -d imensional case. 
There exist multi-dimensional analogues of transvectants [14] and 

[16]. 
Consider the projective space R P 2 n + 1 endowed with the standard 

contact structure (or an open domain of the complex projective space 
C P 2 n + 1 ) . There exists an unique bilinear differential operator of order 
k on tensor-densities equivariant with respect to the action of the group 
Sp2n (see [14], [16]): 

(15) • k • " : F A ® F - F A + M * . 

where F \ = F \ ( P 2 n + 1 ) is the space of tensor-densities on P 2 n+ 1 of 

degree —A: 

f = f(x1}. ..,x2n+i)(dx1 A . ..dx2n+i) -A 
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The space of tensor-densities F \ÇRP 2 n + 1 ) is isomorphic as a module 
over the group of contact diffeomorphisms to the space of homogeneous 
functions on R 2 n + 2 , and the isomorphism is given by: 

V \ -A(n+1) / y1 y2n+1 x 
f ^ F(y1,...,y2n+2) = y2n±2 'f{ , . . . , ) . 

y2n+2 y2n+2 

Then the operations (15) are defined as the restrictions of the terms of 
the standard •-product on R 2 n + 2 . 

The same formula (5) defines a •-product on the space of tensor-
densities on C P 2 n + 1 ) (cf. [16]). However, there is no analogues of the 
symplectomorphism (7). I do not know if there exists a •-product on 
the Poisson algebra C[y2n+2, y2n+2] <S> C ° ° ( R P 2 n + 1 ) non-equivalent to 
the standard. 

8.2 Classification problem. The classification (modulo equiv­
alence) of •-products on the Poisson algebra F is an interesting open 
problem. It is related to the calculation of cohomology groups H2{F\ F ) 
and H3 (F; F ) . The following result was announced in [7] : dim H2 (F; F ) 
2. 

Let us formulate a conjecture in the compact case. Consider the 
Poisson algebra F ( S 1 ) of functions on T*S1 n S1 which are Laurent 
polynomials on the fiber: F(p, q) = P ~ N < i < N i f^q) where f i(q+ 1) = 

Conjecture . Every -k-product on F ( S 1 ) is equivalent to (1) or (5). 

I am grateful to Yu.I. Manin who explained to me the notion of 
Rankin-Cohen brackets in the theory of modular forms, for some im­
portant remarks, references and clarifying discussions. It is a pleasure 
for me to thank O. Ogievetsky and C. Roger for multiple stimulation 
collaboration, and also M. Audin, C. Duval, P. Lecomte, E. Mourre, 
S. Tabachnikov, P. Seibt, Ya. Soibel'man and F . Ziegler for fruitful 
discussions and their interest in this work. 
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