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Abstract. We describe the pairs (p, n) such that n-dimensional affine space is fibered by
pairwise skew p-dimensional affine subspaces. The problem is closely related with the theorem
of Adams on vector fields on spheres and the Hurwitz-Radon theory of composition of quadratic
forms.

1. Introduction

The Hopf fibrations [10]

S0 → Sn → RPn, S1 → S2n+1 → CPn, S3 → S4n+3 → HPn, S7 → S15 → S8

provide fibrations of spheres whose fibers are great spheres. Algebraic topology imposes severe
restrictions on possible dimensions of the spheres and the fibers, the above list actually contains
all the existing cases. The study of such fibrations is motivated, in particular, by the classical
Blaschke conjecture of differential geometry, see [4]-[7], [18], [12] and [15] for classification of
fibrations of spheres by great spheres up to diffeomorphism.

Given a fibration of Sn by great spheres Sp, the radial projection from the center on an affine
hyperplane yields a fibration of Rn by pairwise skew p-planes. Two affine subspaces of an affine
space are called skew if they neither intersect nor contain parallel directions. For example, the
projection of the Hopf fibration S1 → S3 → S2 gives a fibration of R3 by pairwise skew straight
lines (that lie on a nested family of hyperboloids of one sheet), see Figure 1.

Figure 1. The figure is due to David Eppstein, see the Wikipedia article “Skew lines”.

In this paper, we study fibrations

Rp → Rn → Rq



2 VALENTIN OVSIENKO AND SERGE TABACHNIKOV

whose fibers are pairwise skew affine subspaces. We refer to such fibrations as (p, n)-fibrations.
The topological restrictions are less prohibitive in this situation, and the list is considerably
longer that that of Hopf. Our goal here is to describe all pairs (p, n) for which (p, n)-fibrations
exist. The problem of classification is not addressed here (cf. [15] for the case (1, 3)).

Let us consider an a priori less restrictive problem: given p and n, does there exist a fibration
of a small disc, Dn, with pairwise skew flat p-dimensional fibers, i.e., by intersections of Dn

with pairwise skew affine subspaces? We call such fibrations local. A local fibration may fail to
extend to the whole Rn. Yet, both problems have the same answer.

Theorem 1. Rn admits a continuous fibration with p-dimensional pairwise skew affine fibers if
and only if

(1.1) p ≤ ρ(n− p)− 1

where ρ is the classical Hurwitz-Radon function. The local problem has the same answer.

We define the Hurwitz-Radon function in the next section.
We discuss various particular cases and consequences of this theorem in Section 3. Let us

mention now just one.
We have an obvious reduction from a local (p, n)-fibration to a local (p − 1, n − 1)-fibration

(intersection with a hyperplane transverse to the fibers). This leads to the notion of dominant
(p, n)-fibration such that (p + 1, n + 1)-fibrations do not exist. Hopf’s (1, 3), (3, 7) and (7, 15)-
fibrations are dominant. The remarkable fibration

R8 → R24 → R16

is the first dominant non-Hopf fibration.
Let us briefly mention a related subject, totally skew embeddings of manifolds into Euclidean

space. A submanifold is called totally skew if the tangent spaces at any pair of distinct points
are skew, see [3], [17].

2. Hurwitz-Radon function and square identities

The Hurwitz-Radon function ρ(q) is defined as follows. Write q = 2k(2m+ 1), then

ρ(q) =

 2k + 1, k ≡ 0 mod 4
2k, k ≡ 1, 2 mod 4
2k + 2, k ≡ 3 mod 4.

This formula was discovered in about 1920 independently by A. Hurwitz and J. Radon in the
following context.

A square identity of size [r, s, q] is an identity

(a2
1 + · · · + a2

r) (b21 + · · · + b2s) = c21 + · · · + c2q ,

where ci are bilinear expressions in ai and bi with real coefficients. The Hurwitz-Radon theorem
states that r = ρ(q) is the largest integer for which there exists a [r, q, q]-identity [9], [14].
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The cases q = 1, 2, 4 and 8 are special: these are the only cases where ρ(q) = q. For example
Euler’s 4 square identity reads

(a2
1 + a2

2 + a2
3 + a2

4) (b21 + b22 + b23 + b24) = (a1b1 − a2b2 − a3b3 − a4b4)2

+ (a1b2 + a2b1 + a3b4 − a4b3)2

+ (a1b3 + a3b1 − a2b4 + a4b2)2

+ (a1b4 + a4b1 + a2b3 − a3b2)2.

This corresponds to multiplication of quaternions. These four special cases correspond to the
classification of normed division algebras, R,C,H,O, also due to Hurwitz [8].

We refer here to [16] for general information about square identities and related topics. The
subject still remains an active area of research; see, e.g., [13], [11].

2.1. Hurwitz matrices. Hurwitz in his last paper [9] (and independently Radon [14]) considers
square identities of type [r, q, q]. He rewrites these identities in the form of r-dimensional families
of (q × q)-matrices.

Consider an identity (
a2

1 + · · · + a2
r

) (
b21 + · · · + b2q

)
= c21 + · · · + c2q .

Since ci are bilinear in aj , bk, one has

c = (a1A1 + · · ·+ arAr) b

where b and c are q-vectors and Ai are real (q × q)-matrices. The square identity is equivalent
to the equations:

(2.1) At
i Ai = Id, At

i Aj +At
j Ai = 0, i 6= j.

Thus, every r-dimensional space generated by real (q × q)-matrices with this property defines a
square identity of type [r, q, q].

It follows that every non-trivial linear combination of the matricesA1, . . . , Ar is non-degenerate.
Indeed, if A = a1A1 + · · ·+ arAr then AtA =

(
a2

1 + · · ·+ a2
r

)
Id.

2.2. Vector fields on spheres. Square identities have several geometric applications. Perhaps
the best known one is the application to vector fields on spheres. The famous theorem of
J.F. Adams [1] states that, on a sphere Sq−1, the maximal number of vector fields linearly
independent at each point is ρ(q)− 1.

The existence part follows from the Hurwitz construction. Given a square identity of type
[r, q, q], i.e., a set of matrices A1, . . . , Ar satisfying (2.1), following Hurwitz, consider r − 1
matrices

A−1
r A1, . . . , A

−1
r Ar−1,

that are skew-symmetric. Applying these linear maps to the points of a round sphere Sq−1 ⊂ Rq,
one obtains r−1 (linear) tangent vectors fields. The condition (2.1) guarantees that these vector
fields are indeed linearly independent at each point.

The converse statement is the difficult part of the Adams theorem whose proof is based on
algebraic topology.
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2.3. Property P. J.F. Adams, P. Lax and R. Phillips [2] considered r-dimensional spaces of real
(q× q)-matrices with the property that every non-zero element of the space is a non-degenerate
matrix; they called it “property P”. This property is a-priori weaker than property (2.1). It
follows from the Adams theorem that the restriction to the dimension r is actually the same:
r ≤ ρ(q).

We extend the notion of property P to rectangular matrices in a straightforward way. A
vector space of (p× q)-matrices has property P if every non-zero matrix of this space has rank
min(p, q).

3. Examples and corollaries

3.1. Tables for small n. The values of dimensions p (as a function in n) of the fibers of
(p, n)-fibrations are presented in the following table.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

p 1 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
1 1 1 2 3 1 1 2 3

1 1

The dominant values are in boldface. The dominant values for n = 3, 7, 15 correspond to
the Hopf fibrations. The (8, 24)-fibration is non-Hopf, the closest Hopf fibration (3, 19) is not
dominant. The next values are as follows

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 2 3 4
1 1 2 3 1 1 2 3 1 1

1 1

and also

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
1 2 3 1 1 2 3 1 1 2 3

1 1 1

together with

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

1 2 3 4 5 6 7 8 9 10 11 4 5 6 7 1 2 3 4
1 1 2 3 1 2 3 1 2 3 1

1 1 1

We note the most interesting cases in sight (8, 24), (9, 41) and (11, 75); see below the definition
of doubly dominant fibrations.
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3.2. Vertical heredity. We see from the table that some columns contain more that one entry.
For example, R75 admits skew fibrations with fibers of dimensions 11, 3 and 1. These triples
appear earlier in the table: R11 admits skew fibrations with fibers of dimensions 3 and 1. This
is not a coincidence.

In one direction, this is due to the following obvious fact: given a (p1, n)-fibration and a
(p2, p1)-fibration, one obtains a (p2, n)-fibration (for the smoothness see the first paragraph of
the proof of Theorem 1). The converse statement is less obvious.

Proposition 3.1. Given a (p1, n)-fibration and a (p2, n)-fibration with p1 > p2, there exists a
(p2, p1)-fibration.

In other words, if p1 and p2 appear in n-th column of the table, then p2 appears in p1-th column.
In this sense, the first row of the table contains the full information.

3.3. Dominant cases. The dominant cases determine all the entries in the table. Each dom-
inant (p, n)-fibration generates a sequences (p, n), (p− 1, n− 1), (p− 2, n− 2), . . . reaching the
previous dominant case where p jumps up again.

Let us start with a simple observation: a fibration (p, n) is dominant if and only if the equality
holds in (1.1). Indeed, in this case (p+1, n+1) does not satisfy (1.1) so that the (p, n)-fibration is
dominant. Conversely, if p < ρ(q)−1, then we can increase p and n by 1, and the (p, n)-fibration
is not dominant.

The most interesting dominant fibrations are those with maximal p, i.e., the fibrations that
appear in the first row of the above table. A dominant (p, n)-fibration is said to be doubly
dominant if for p′ > p there is no (p′, n)-fibration. The following statements are suggested by
the above table.

Proposition 3.2. (i) For every k, the fibration (p, n) with

p = ρ(2k)− 1, n = p+ 2k

is doubly dominant.
(ii) If a (p, n)-fibration is doubly dominant and n ≥ 8, then q = n− p ≡ 0 ( mod 8).

3.4. Extreme cases. Let us consider some special cases. The first one is the case where no
fibrations with pairwise skew affine fibers exist.

Proposition 3.3. (i) For every k, space R2k
does not admit fibrations with pairwise skew affine

fibers.
(ii) For every odd m, there exists k0 such that if k ≥ k0 then space R2km does not admit

fibrations with pairwise skew affine fibers. If m = 3 or 5 then k0 = 4.
(iii) If Rn does not admit fibrations with pairwise skew affine fibers, then n ∈ {2, 4, 8} or

n ≡ 0 ( mod 16).

It follows from the definition of a skew fibration that p ≤ q − 1. The second extreme case is
described in the next statement.

Proposition 3.4. p = q − 1 if and only if n ∈ {1, 3, 7, 15}.

These statements will be deduced from Theorem 1 in Section 4. Let us emphasize that the
statements rely on the full force of Adams’s theorem and cannot be obtained using less advanced
topological methods (such as Stiefel-Whitney classes).
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4. Proofs

4.1. Proof of Theorem 1. Suppose a local (p, n)-fibration is given. Choose one fiber and
identify it with Rp ⊂ Rn. Consider the subspace Rq orthogonal to Rp. Every fiber close to the
“horizontal” Rp is the graph of an affine map:

η = B(y) ξ + y,

where y is the coordinate in the transversal Rq and where B(y) : Rp → Rq is a linear map
continuously depending on y (defined for y sufficiently close to the origin).

Define the linear map A(y) : Rp+1 → Rq whose matrix is obtained from the matrix of B(y)
by joining the column y. The next lemma gives a necessary and sufficient condition for the
fibration to be skew.

Lemma 4.1. The fibers of the fibration are pairwise skew if and only if ker(A(y1)−A(y2)) = 0
for all pairs of distinct y1, y2 in the domain.

Proof. The fibers through y1 and y2 intersect if and only if the equation

B(y1) ξ + y1 = B(y2) ξ + y2

has a solution. This is equivalent to

(A(y1)−A(y2))
(
ξ
1

)
= 0.

Likewise, the fibers through y1 and y2 contain parallel directions if and only if the equation

B(y1) ξ = B(y2) ξ

has a non-zero solution. This is equivalent to

(A(y1)−A(y2))
(
ξ
0

)
= 0.

Hence the result. �

Given a local (p, n)-fibration, let us construct p linearly independent tangent vector fields
on Sq−1. Consider a small sphere |y| = ε. At a point y of the sphere, consider the vectors
given by the columns of B(y), and project them on the tangent plane TyS

q−1. If these projected
vectors are linearly dependent, then so are the columns of A(y). This contradicts Lemma 4.1
for points y and 0.

According to the Adams theorem [1], one has the inequality p ≤ ρ(q) − 1. This proves
necessity.

Suppose now that p ≤ ρ(q)−1. The Hurwitz-Radon theorem implies the existence of matrices
A1, . . . , Ap+1 that span a space of (q × q)-matrices with property P. In other words, we have a
bilinear map

A : Rp+1 × Rq → Rq

such that A(x, y) 6= 0, if x 6= 0 and y 6= 0. Equivalently, we have a q-dimensional space of
(q × (p+ 1))-matrices A(., y) with property P.

Consider the linear map of this q-dimensional space of (q × (p+ 1))-matrices to Rq sending a
matrix to its last column. This linear map is a linear injection, otherwise property P is violated.
Hence it is a linear isomorphism and the last column can be chosen as the coordinate y. We
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thus obtain a linear family A(y) : Rp+1 → Rq. The condition of Lemma 4.1 is satisfied because
A(y1)−A(y2) = A(y1 − y2) by linearity.

It remains to show that the defined fibration is global. This means that for every (ξ, η) ∈ Rn

there exists y ∈ Rq such that η = B(y) ξ + y, i.e.,

(4.1) η = A(y)
(
ξ
1

)
.

Recall that the bilinear map A(x, y) has the property that the linear map A(x, .) : Rq → Rq

is a linear isomorphism for x 6= 0, in particular, for x =
(
ξ
1

)
. Therefore, equation (4.1) has a

solution.

4.2. Proof of Proposition 3.1. Let n = p1 + q1 = p2 + q2 and p1 > p2. Arguing by contradic-
tion, assume that there is no (p2, p1)-fibration. Theorem 1 implies:

p1 < ρ(q1), p2 < ρ(q2), p2 ≥ ρ(p1 − p2).

Write p1 − p2 = 2km where m is odd, then p2 ≥ ρ(2k). On the other hand, q2 − q1 = 2km. It
follows that q1 and q2 cannot be both divisible by 2k+1, and thus

ρ(q1) ≤ ρ(2k) or ρ(q2) ≤ ρ(2k).

Consider the first case. Then p2 ≥ ρ(2k) ≥ ρ(q1) > p1, a contradiction. In the second case, one
has p2 ≥ ρ(2k) ≥ ρ(q2) > p2, again a contradiction.

4.3. Proof of Proposition 3.2. Part (i). Given a fibration (p, n) with p = ρ(2k) − 1 and
n = p + 2k, we notice that the equality holds in (1.1), so we are in a dominant case. We want
to show that no p′ > p exists such that p′ ≤ ρ(n − p′) − 1. Let q′ = n − p′ so that q′ = 2k′

m
where k′ < k and m is odd, then ρ(q′) < ρ(q) (since the function ρ(2k) is increasing in k). This
contradicts the inequality p′ > p.

Part (ii). Assume that q is odd so that p = 0. Let q′ = q − 1 then p′ = 1 and ρ(q′) ≥ 2 hence
p′ < ρ(q′). Thus (p, n)-fibration is not doubly dominant.

Assume that q = 2m, where m is odd so that p ≤ 1. Let q′ = q − 2, then p′ = p + 2 ≤ 3.
Since q′ ≡ 0 ( mod 4), one has ρ(q′) ≥ 4, and thus p′ ≤ ρ(q′)− 1.

Assume that q = 4m, where m is odd so that p ≤ 3. Let q′ = q − 4, then p′ = p + 4 ≤ 7.
Since q′ ≡ 0 ( mod 8), one has ρ(q′) ≥ 8, and thus p′ ≤ ρ(q′)− 1.

4.4. Proof of Proposition 3.3. Part (i). Assume that n = 2k > 1 and let p = 2` t where t is
odd. Then

q = 2k − 2` t = 2`(2k−` − t).
Therefore, the condition p ≤ ρ(q)− 1 reads 2` t ≤ ρ(2`)− 1. Since t ≥ 1, we have, in particular,
the inequality 2` < ρ(2`) that never holds.

Part (ii). Assume that n = 2k m where m is odd, and let p = 2` t where t is odd. Then one
has three cases: a) ` < k, b) ` > k, c) ` = k. In cases a) and b) the argument is similar to the
one above. In case c) one has q = 2k(m− t). The condition (1.1) then reads

2k ≤ 2kt (= p) < ρ
(

2k(m− t)
)
.
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Since m − t = 2` s where s is odd and ` is bounded above by a constant depending on m, one
has 2k < ρ(2k+`) ≤ 2(k + `) + 2. This inequality fails for sufficiently large k.

Part (iii). If n is odd then set p = 1. Since ρ(n− 1) ≥ 2, Theorem 1 implies the existence of
a skew fibration R→ Rn → Rn−1.

Assume that n = 2m, where m ≥ 3 is odd. Set p = 2, then q = 2(m − 1) ≡ 0 ( mod 4), and
therefore ρ(q) ≥ 4. This implies the existence of a (2, n)-filtration.

Assume that n = 4m, where m ≥ 3 is odd. Set p = 4, then q = 4(m − 1) ≡ 0 ( mod 8), and
therefore ρ(q) ≥ 8. This implies the existence of a (4, n)-filtration.

Assume finally that n = 8m, where m ≥ 3 is odd. Set p = 8, then q = 8(m−1) ≡ 0 ( mod 16),
and therefore ρ(q) > 8. This implies the existence of a (8, n)-filtration. This completes the
proof.

4.5. Proof of Proposition 3.4. Assume that p = q − 1, then the condition (1.1) implies that
q ≤ ρ(q). This holds only for q = 1, 2, 4, 8.
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[8] A. Hurwitz, Über die Komposition der quadratischen Formen von beliebig vielen Variablen, Nahr. Ges. Wiss.
Göttingen (1898), 309–316.
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