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The 1|1-supertransvectants are the osp(1|2)-invariant bilinear operations on weighted

densities on the supercircle S1|1, the projective version of R2|1. These operations are

analogues of the famous Gordan transvectants (or Rankin–Cohen brackets). We prove

that supertransvectants coincide with the iterated Poisson and ghost Poisson brackets

on R2|1 and apply this result to construct star-products.

1 Introduction

1.1 The transvectants and linear Poisson bracket: Recapitulation

Consider the space, denoted by Fλ, of smooth (complex valued) functions on S1 equipped

with the following SL(2, R)-action:

f (x) �→ f
(

ax + b

cx + d

)
(cx + d)−2λ, (1.1)

where x is the affine coordinate and λ ∈ C is a parameter. Note that the space Fλ is

naturally identified with the space of weighted densities of degree λ (λ-densities for

short) via ϕ = f (x) (dx)λ; the action (1.1) is then the standard action of fraction-linear

coordinate transformations.
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2 H. Gargoubi and V. Ovsienko

Classification of SL(2, R)-invariant bilinear differential operators on S1 acting in

the spaces Fλ is a famous classical result of the invariant theory. For every k = 1, 2, 3, . . .,

there exists the SL(2, R)-invariant bilinear differential operator

Jλ,µ
k : Fλ ⊗ Fµ → Fλ+µ+k

given by the following explicit formula:

Jλ,µ
k ( f , g) =

∑
i+ j=k

(−1)i
(

2λ + k − 1

j

)(
2µ + k − 1

i

)
f (i) g( j), (1.2)

where f (i)(x) = di f (x)
dxi and

(a
i

) = a(a−1)···(a−i+1)
i! . The operators (1.2), called transvectants, were

found in 1885 by Gordan [7]; for almost all (λ, µ), these operators are unique SL(2, R)-

invariant bilinear differential operators on S1 acting in the spaces Fλ. Note that one can

also assume λ (half)integer and consider holomorphic functions on the upper half-plane

H.

Transvectants have been rediscovered by Rankin [21] and Cohen [1] in the theory

of modular forms and by Janson and Peetre [10] in differential projective geometry.

Zagier [23] (see also [17]) noticed the coincidence between the Rankin–Cohen brackets

and Gordan’s transvectants. It was shown in [4] that the transvectants are in one-to-

one correspondence with singular (i.e., vacuum or highest weight) vectors in the tensor

product of two Verma modules over sl(2, C).

The best way to understand the operators (1.2) is, perhaps, to rewrite them in

terms of the projective symplectic geometry, as in [19] and [20]. Consider the plane R2

with coordinates (p, q) and the standard symplectic form ω = dp∧ dq and the Poisson

bracket

{F , G} = ∂F

∂p

∂G

∂q
− ∂F

∂q

∂G

∂p
.

The symmetry group of linear transformations in this case is the group Sp(2, R) � SL(2, R).

It is easy to describe all the Sp(2, R)-invariant bilinear differential operators on C ∞(R2).

For every positive integer k, there exists a bilinear differential operator of order 2k given

by the differential binomial of the form

Bk(F , G) :=
∑

i+ j=k

(−1)i
(

k

i

)
∂k F

∂pi∂q j

∂kG

∂pj∂qi
. (1.3)
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Supertransvectants and Symplectic Geometry 3

The operators Bk are, in fact, iterations of the Poisson bracket in the following sense.

Consider the operator B on C ∞(R2) ⊗ C ∞(R2) given by

B(F ⊗ G) = ∂F

∂p
⊗ ∂G

∂q
− ∂F

∂q
⊗ ∂G

∂p

and the natural projection Tr(F ⊗ G) = F G. Then obviously

Bk = Tr ◦ Bk.

The expression (1.3) is, of course, much simpler than (1.2); in particular, it is

independent of λ and µ. Nevertheless, these operators coincide up to a multiple. Identify

the space Fλ(S1) and the space of functions on R2 \ {0} homogeneous of degree −2λ by

f (x) �−→ F f (p, q) = p−2λ f
(

q
p

)
, (1.4)

so that the affine coordinate is chosen as x = q/p.

Example 1.1. (a) In the case λ = −1, the above formula identifies the three-dimensional

space spanned by {1, x, x2} and the space of quadratic polynomials spanned by {p2, pq, q2};
this gives two realizations of sl(2): in terms of vector fields on S1 and Hamiltonian vector

fields on R2, respectively.

(b) In the case λ = − 1
2 , one identifies affine functions 1, x with linear functions

p, q. �

The following observation was made in [19].

Proposition 1.2. One has: Bk(F f , Fg) = k! FJλ,µ
k ( f ,g). �

A simple corollary of Proposition 1.2 is the fact that the operators (1.2) can be

used to construct an SL(2, R)-invariant star-product on T∗S1 (see [2, 18, 19] and [20]).

Another application of the same idea leads to a multidimensional generalization of the

transvectants as Sp(2n, R)-invariant bilinear differential operators on the sphere S2n−1,

see [20]. Simple expression (1.3) allows one to avoid any nontrivial combinatorics.

Remark 1.3. Formula (1.4) is somewhat mysterious, but it has a geometric sense. Every

vector field on S1 admits a unique “symplectic lift” to a homogeneous Hamiltonian vector
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4 H. Gargoubi and V. Ovsienko

field on R2 \ {0} and (1.4) is the unique lifting of weighted densities commuting with the

vector fields lift (cf. [20]). �

1.2 The 1|1-supertransvectants

We define the supercircle S1|1 in terms of its superalgebra of functions: C ∞
C

(S1|1) =
C ∞

C
(S1) [ξ ], where ξ is an odd (Grassmann) coordinate, i.e., ξ2 = 0 and xξ = ξx. In other

words, this is the algebra of polynomials (of degree ≤ 1) in ξ with coefficients in C ∞
C

(S1):

f (x, ξ ) = f0 + ξ f1,

where f0, f1 are smooth functions on S1. The parity function σ is defined for homogeneous

in ξ functions by setting σ ( f0(x)) = 0 and σ (ξ f1(x)) = 1.

The fractional-linear transformations

The action of the supergroup OSp(1|2) on S1|1 is given by the fraction-linear transforma-

tions

(x, ξ ) �→
(

ax + b + γ ξ

cx + d + δξ
,

αx + β + eξ

cx + d + δξ

)
,

where ad − bc − αβ = 1, e2 + 2γ δ = 1, αe = aδ − cγ and βe = bδ − dγ (cf. [2, 16]).

We denote by Fλ the superspace of functions C ∞
C

(S1|1) equipped with the following

OSp(1|2)-action:

f (x, ξ ) �→ f
(

ax + b + γ ξ

cx + d + δξ
,

αx + β + eξ

cx + d + δξ

)
(cx + d + δξ )−2λ , (1.5)

where λ ∈ C is a parameter.

As usual, it is much easier to deal with the infinitesimal version of this action.

The action of the orthosymplectic Lie superalgebra osp(1|2) on S1|1 corresponding to the

OSp(1|2)-action is spanned by three even and two odd vector fields:

osp(1|2)0 = Span
(

∂

∂x
, x

∂

∂x
+ 1

2
ξ

∂

∂ξ
, x2 ∂

∂x
+ xξ

∂

∂ξ

)
,

osp(1|2)1 = Span (D, x D) ,
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Supertransvectants and Symplectic Geometry 5

where

D = ∂

∂ξ
+ ξ

∂

∂x

is an odd vector field satisfying 1
2 [D, D] = ∂

∂x .

The action of osp(1|2) on Fλ corresponding to the group action (1.5) is easy to

calculate:

Lλ
∂
∂x

= ∂

∂x
, Lλ

x ∂
∂x

= x
∂

∂x
+ λ, Lλ

x2 ∂
∂x +xξ ∂

∂ξ

= x2 ∂

∂x
+ xξ

∂

∂ξ
, +2λ x,

Lλ
D = D, Lλ

x D = x D + 2λξ ,

(1.6)

which is nothing but the Lie derivative of λ-densities (see, e.g. [3]).

Remark 1.4. Note that the odd elements D and xD generate the whole osp(1|2) so that an

operator commuting with the action of these two elements commutes with the OSp(1|2)-

action. �

We will also use the following odd vector field on S1|1

D = ∂

∂ξ
− ξ

∂

∂x
,

which defines the contact structure on S1|1 since it spanns the kernel of the contact

1-form α = dx + ξ dξ , see [3, 13, 16] (Manin [15] calls this vector field the canonical

SUSY-structure). (For an invariant description of the operators D and D, in physical

papers denoted by Q and D, respectively, see [22].) It is characterized by the relations for

the Lie superbrackets

[D, D] = 0,
1

2
[D, D] = − ∂

∂x
.

An important property of D is that this vector field is invariant (up to multiplication by

functions) under the OSp(1|2)-action. In particular, one has [xD, D] = −ξ D.

Every differential operator on S1|1 can be expressed in terms of D. For instance,

one has for the partial derivatives:

∂

∂x
= −D

2
,

∂

∂ξ
= D − ξ D

2
.
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6 H. Gargoubi and V. Ovsienko

1.3 Supertransvectants: An explicit formula

The supertransvectants are the bilinear OSp(1|2)-invariant maps Jλ,µ
k : Fλ ⊗ Fµ → Fλ+µ+k

where k = 0, 1
2 , 1, 3

2 , 2, . . .. The supertransvectants were introduced by Gieres and Theisen

in [6] and [5], see also [9]. Their (slightly modified) explicit formula is

Jλ,µ
k ( f , g) =

∑
i+ j=2k

C k
i, j D

i
( f ) D

j
(g), (1.7)

where the numeric coefficients are

C k
i, j = (−1)

([
j+1
2

]
+ j(i+σ ( f ))

)

⎛
⎝ [k][

2 j+1+(−1)2k

4

]
⎞
⎠

⎛
⎝2λ + [

k − 1
2

]
[

2 j+1−(−1)2k

4

]
⎞
⎠

⎛
⎝2µ +

[
j−1
2

]
[

j+1
2

]
⎞
⎠

, (1.8)

where [a] denotes the integer part of a ∈ R. It can be checked directly that these operators

are, indeed, OSp(1|2)-invariant.

1.4 Comments

It is an interesting feature of the supersymmetric case, that the operators labeled by

integer k are even, and by semi-integer k are odd.

The two first examples of the supertransvectants, namely for k = 1
2 and k = 1,

play a particular role. These operations are not only OSp(1|2)-invariant, but also invari-

ant with respect to the full infinite-dimensional conformal Lie superalgebra K(1) (also

known as the centerless Neveu–Schwarz algebra); for a complete description of bilinear

invariant K(N)-operators for n = 1, 2, and 3 over contact vector fields with polynomial

coefficients, see [14] and [13]. The first-order supertransvectant J1 is nothing but the

well-known contact bracket on S1|1. The odd supertransvectant J1
2

also belongs to the

list of invariant operators from [14] and [13], but this operator is much less known.

We will show that this operator defines a very interesting operation of “antibracket” on

the K(1)-modules of densities.
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Supertransvectants and Symplectic Geometry 7

1.5 The main results

The main purpose of this paper is to give an interpretation of the supertransvectants in

terms of the linear symplectic superspace R2|1 with coordinates (p, q, τ ) and the standard

symplectic form ω = dp∧ dq + dτ ∧ dτ . This interpretation considerably simplifies the

explicit expression of the supertransvectants and their definition. It also allows one to

apply some algebraic constructions of Poisson geometry, as star-products and suggests

multidimensional generalizations of the supertransvectants.

The standard Poisson bracket on R2|1 is given by

{F , G} = ∂F

∂p

∂G

∂q
− ∂F

∂q

∂G

∂p
+ ∂F

∂τ

∂G

∂τ
. (1.9)

Consider the space of functions on R2|1 with singularities at (p, q) = (0, 0) satisfying the

condition E (F ) = 2 F , where

E = p
∂

∂ p
+ q

∂

∂q
+ τ

∂

∂τ

is the Euler field; such functions are called homogeneous of degree 2. This space is stable

with respect to the bracket (1.9), therefore, it is a Lie (but not Poisson) superalgebra. This

is nothing but the conformal superalgebra K(1).

We introduce one more, odd, operation on C ∞(R2|1):

{F , G}gPb = ∂F

∂τ
E (G) − (−1)σ (F ) E (F )

∂G

∂τ
+ τ

(
∂F

∂p

∂G

∂q
− ∂F

∂q

∂G

∂p

)
, (1.10)

where σ is the parity function. We call it the ghost Poisson bracket.

We will study the geometric and algebraic meaning of operation (1.10). Its crucial

property is K(1)-invariance.

Theorem 1.1. The ghost bracket (1.10) is invariant with respect to the action of the

conformal algebra K(1). �

It turns out that the Poisson bracket restricted to the homogeneous functions

coincides with the supertransvectant J1, while the ghost Poisson bracket coincides with
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8 H. Gargoubi and V. Ovsienko

J1
2
. In the framework of deformation quantization, we will consider “iterated” Poisson

brackets (1.9) and (1.10).

Theorem 1.2. The supertransvectants Jk with integer k coincide with the iterated

Poisson bracket (1.9), while those with semi-integer k are obtained by the iteration of

(1.9) with (1.10). �

To the best of our knowledge, operations of type (1.10) have not been studied (see

[12] for a survey of algebraic structures in Poisson geometry and [14] for that in super-

geometry). Note that (1.10) is not invariant with respect to the full Poisson superalgebra(
C ∞(R2|1), { , }).

1.6 Open problems

Grozman, Leites, and Shchepochkina listed all simple Lie superalgebras of vector fields

on the supercircles [8] (it is instructive to compare their list with that in [11]), and thus

indicated the scope of work for possible superizations of Gordan’s transvectants. The

case we consider is the first on the agenda. Although there are four infinite series and

several exceptional cases of simple stringy (or superconformal) superalgebras, there

are only seven (or, perhaps, 12: this has to be investigated) among them that contain

the subalgebra of fraction linear transformations similar to the projective actions of

sl(2) = sp(2) or osp(1|2) considered here.

2 The Poisson Bracket and the Ghost Bracket

Let us consider the first examples of supertransvectants: Jλ,µ
1
2

and Jλ,µ
1 . To simplify the

notations, throughout this section, we denote these operators by ( , ) and [ , ], respectively.

2.1 The two operations

The supertransvectant of order 1
2 is

( f , g) = µ D( f ) g − (−1)σ ( f ) λ f D(g). (2.1)
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Supertransvectants and Symplectic Geometry 9

This odd operator is extremely interesting. We will show that it is invariant with respect

to the full infinite-dimensional superconformal algebra (and therefore has a geometric

meaning).

The first-order supertransvectant is

[ f , g] = µ f ′ g − λ f g′ − (−1)σ ( f ) 1

2
D( f ) D(g). (2.2)

This even operation is nothing but the well-known Poisson bracket on S1|1 (see, e.g.

[13, 14] and also [3]).

2.2 The Poisson superalgebra F and the conformal superalgebra K(1)

Consider the continuous sum (direct integral) of all spaces Fλ:

F = ∪λ∈CFλ,

the collection of operations Jλ,µ
1 defines a bilinear map [ , ] : F ⊗ F → F .

Lemma 2.1. The operation J1 defines the structure of a Poisson Lie superalgebra

on F . �

Proof. Straightforward. �

The space F−1 ⊂ F is a Lie subalgebra since it is stable with respect to the

bracket (2.2). This is precisely the conformal superalgebra on S1|1, also known as the Lie

superalgebra of contact vector fields (see [8, 13] and also [3]), or the (centerless) Neveu–

Schwarz algebra. Let us denote this Lie subalgebra K(1). Each space Fλ is a K(1)-module.

2.3 Invariance of the supertransvectant J 1
2

The operation (2.1) is an additional, odd, bracket on the superspace F . The crucial prop-

erty of this ghost bracket is that it is invariant with respect to the action of the conformal

subalgebra K(1) ⊂ F .

Proposition 2.2. The operation (2.1) on F is K(1)-invariant. �
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10 H. Gargoubi and V. Ovsienko

Proof. One has to check that for f ∈ F−1 and arbitrary g ∈ Fµ and h ∈ Fν one has

[ f , (g, h)] = (−1)σ ( f ) ([ f , g], h) + (−1)σ ( f )(σ (g)+1) (g, [ f , h]). (2.3)

It can be done by straightforward calculation. Note, however, that the identity (2.3) is a

particular case of Theorem 1.1 whose proof will be given in Section 3.2. �

2.4 The algebraic structure on F− 1
2

The K(1)-module F− 1
2

is a “square root” of K(1) ∼= F−1. This space is stable with respect

to the operation ( , ). Adopting the basis

Vn = xn+ 1
2 , n = ξ xn,

one obtains explicitly

(Vn, Vm) = (m − n) n+m,

(n, Vm) = Vn+m = −(Vm, n),

(n, m) = 2n+m.

(2.4)

Proposition 2.3. The algebra (F− 1
2
, ( , )) satisfies the following four properties:

1. the odd part
(
F− 1

2

)
1

is a commutative associative subalgebra;

2. the odd part
(
F− 1

2

)
1

acts on the even part
(
F− 1

2

)
0

by ρψv := (ψ , v) and one has

ρϕ ◦ ρψ + ρψ ◦ ρϕ = ρ(ϕ,ψ )

for all ϕ, ψ ∈
(
F− 1

2

)
1
;

3. the map ( , ) :
(
F− 1

2

)
0
⊗

(
F− 1

2

)
0

→
(
F− 1

2

)
1

is antisymmetric and
(
F− 1

2

)
1
-

invariant, namely

ρψ (v, w) = (ρψv, w) + (v, ρψw)

for all ψ ∈
(
F− 1

2

)
1

and v, w ∈
(
F− 1

2

)
0
;
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Supertransvectants and Symplectic Geometry 11

4. the Jacobi identity is satisfied:

(u, (v, w)) + (v, (w, u)) + (w, (u, v)) = 0,

for all u, v, w ∈
(
F− 1

2

)
0
. �

Proof. The properties 1–4 of can be checked directly. �

3 The Symplectic Lifting

In this section we show that the supertransvectants (2.2) and (2.1) coincide with the

Poisson bracket (1.9) and the ghost bracket (1.10). We prove Theorem 1.1.

3.1 Homogeneous functions

Let us define a symplectic lifting of the space F . To any function f ∈ Fλ we associate a

function on R2|1 homogeneous of degree −2λ. The explicit formula is f (x, ξ ) �→ F f (p, q, τ ),

where

F f (p, q, τ ) = p−2λ f
(

q
p, τ

p

)
≡ p−2λ f0

(
q
p

)
+ τ p−2λ−1 f1

(
q
p

)
(3.1)

and where (p, q, τ ) are coordinates on R2|1. Abusing the notations, from now on, we will

also denote Fλ the space of homogeneous functions on R2|1 of degree −2λ.

This lifting is invariant in the following sense.

Proposition 3.1. (i) The 1-transvectant Jλ,µ
1 , see the explicit formula (2.2), corresponds

to the Poisson bracket (1.9):

F[ f ,g] = 1

2
{F f , Fg},

(ii) The 1
2 -transvectant (2.1) corresponds to the odd bracket (1.10):

F( f ,g) = −1

2
{F f , Fg}gPb.

�
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12 H. Gargoubi and V. Ovsienko

Proof. Just substitute the expression (3.1) to (1.9) and (1.10) and compare the result

with (2.2) and (2.1). �

A nice feature of the lifting (3.1) is that it intertwines the standard embedding of

osp(1|2) into the Poisson algebra given by the quadratic polynomials

osp(1|2) = Span
(
p2, pq, q2; τ p, τq

)

with the osp(1|2)-action (1.6). Again, the odd elements τ p, and τq generate the whole

algebra.

Remark 3.2. The lifting (3.1) has a similar geometric meaning as that of (1.4). The Lie

superalgebra K(1) ∼= F−1 corresponds to the space of functions on R2|1 homogeneous

of degree 2 and formula (3.1) is the unique way to identify weighted densities with

homogeneous functions that intertwines (2.2) and (1.9). �

3.2 Invariance of the ghost Poisson bracket

Let us prove Theorem 1.1.

To show that the ghost bracket (1.10) is invariant with respect to the action of

K(1), one has to show that

{F , {G, H}gPb} = (−1)σ (F ) {{F , G}, H}gPb + (−1)σ (F )(σ (G)+1) {G, {F , H}}gPb

for every function F ∈ F−1. To do this, we adopt the technique routine in Poisson geom-

etry. The bracket (1.10) is given by the following “ghost Poisson” bivector

� = ∂

∂τ
∧ E + τ P , (3.2)

where P = ∂
∂ p ∧ ∂

∂q is the even part of the Poisson bivector. The equivariance condition is

equivalent to the fact that the Hamiltonian vector field, XF , with respect to the Poisson

bracket (1.9) preserves the bivector � that can be readily checked. �

Remark 3.3. There is a uniqueness statement. It follows from the classification of the

supertransvectants that, for generic (λ, µ), the ghost bracket (1.10) is a unique odd bilinear

homogeneous map Fλ ⊗ Fµ → Fν commuting with the K(1)-action. �
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Supertransvectants and Symplectic Geometry 13

4 Supertransvectants from the Symplectic Viewpoint

In this section we prove Theorem 1.2. We realize the supertransvectants in terms of the

iterated brackets (1.9) and (1.10). As a corollary of this result, we construct a star-product

involving the supertransvectants Jk as kth order terms.

4.1 Even supertransvectants as the iterated Poisson bracket

Consider the linear operator B acting on the space C ∞(R2|1) ⊗ C ∞(R2|1) given by

B(F ⊗ G) = ∂F

∂p
⊗ ∂G

∂q
− ∂F

∂q
⊗ ∂G

∂p
+ ∂F

∂τ
⊗ ∂G

∂τ
. (4.1)

The Poisson bracket (1.9) is given by the composition: { , } = Tr ◦ B where Tr is the operator

of projection Tr(F ⊗ G) = F G.

Define the “iterated Poisson brackets” Bk = Tr ◦ Bk, with k = 1, 2, . . .. One readily

gets the explicit formula:

Bk(F , G) = Bk(F , G) + k Bk−1

(
∂F

∂τ
,
∂G

∂τ

)
, (4.2)

where Bk is the iterated bracket (1.3) on R2.

Proposition 4.1. The iterated Poisson bracket (4.2) is osp(1|2)-invariant for every

integer k. �

Proof. The osp(1|2)-action on R2|1 is generated by two odd elements: τ p and τq. Let us

check that

{t p,Bk(F , G)} = Bk({t p, F }, G) + (−1)σ (F ) Bk(F , {t p, G}).

If F , G are even then the above relation is evident. For F even and G = τG1 odd one has

the condition

p Bk(F , G1) = k Bk−1

(
∂F

∂q
, G1

)
+ Bk(F , pG1),
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14 H. Gargoubi and V. Ovsienko

which follows from formula (1.3). Finally, for F = τ F1, G = τG1, one gets the relation:

kτ (Bk−1(F1, G1))q = τ (Bk(pF1, G1) − Bk(F1, pG1)),

which is obviously true. �

The bilinear map Bk restricted to the homogeneous functions defines the map

Bk : Fλ ⊗ Fµ → Fλ+µ+k,

which is osp(1|2)-invariant. It follows then from the uniqueness of the supertransvec-

tants that the maps Jλ,µ
k and Bk|Fλ⊗Fµ

are proportional. Taking particular functions p−2λ

and q−2µ, one now checks that the proportionality coefficient is 2k k! and finally

FJλ,µ
k ( f ,g) = 1

2k k!
Bk(F f , Fg) (4.3)

for generic, and therefore, for all (λ, µ).

4.2 Iterated ghost Poisson bracket and the odd supertransvectants

Define an analogous linear operator corresponding to the ghost bracket (1.10) by the

following formula:

�(F ⊗ G) = ∂F
∂τ

⊗ E (G) − (−1)σ (F ) E (F ) ⊗ ∂G
∂τ

+χ ( f , g)
(

τ
∂F

∂p
⊗ ∂G

∂q
− τ

∂F

∂q
⊗ ∂G

∂p
+ ∂F

∂p
⊗ τ

∂G

∂q
− ∂F

∂q
⊗ τ

∂G

∂p

)
,

(4.4)

where χ ( f , g) is a function depending on the parity of f and g:

χ ( f , g) = 1

2
+

(
1 + (−1)(σ ( f )+1)(σ (g)+1)

)
4

.

Clearly,

{ , }gPb = Tr ◦ �.
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Let us define the odd iterated brackets:

Bk+ 1
2

= Tr ◦ � ◦ Bk (4.5)

for k = 1, 2, . . ..

Proposition 4.2. The odd brackets Bk+ 1
2

are osp(1|2)-invariant. �

Proof. Similar to the proof of Proposition 4.1. �

Again, the proportionality coefficient can be calculated:

FJλ,µ

k+ 1
2

( f ,g) = − 1

2k k!
Bk+ 1

2
(F f , Fg). (4.6)

Remark 4.3. (i) The definition (4.5) does not depend on the order of composition of the

operators � and B since one has

Tr ◦ � ◦ Bk = Tr ◦ B� ◦ � ◦ Bm,

for � + m = k.

(ii) the map (4.4) is the “square root” of the map (4.1) in the following sense:

Tr ◦ �
2 = 1

2

((
1 + (−1)σ (F )(σ (G)+1)) (µ + 1) − (

1 + (−1)σ (G)(σ (F )+1)) (λ + 1)
)

Tr ◦ B,

when restricted to the homogeneous functions Fλ ⊗ Fµ. �

4.3 An osp(1|2)-invariant star-product

The coincidence (4.3) defines a pullback of the standard Moyal–Weyl star-product on

R2|1 to an invariant star-product on the Poisson algebra F . The explicit formula is very

simple:

f ∗ g = f g +
∞∑

k=1

tk Jλ,µ
k ( f , g), (4.7)
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16 H. Gargoubi and V. Ovsienko

for all f ∈ Fλ and g ∈ Fµ. The operation (4.7) is an associative product on the space of

formal series F [[t ]], which is a deformation of the standard commutative product of

functions. The star-product (4.7) is obviously osp(1|2)-invariant.

Note that the operation (4.7) involves only even supertransvectants. It would be

interesting to understand if there is another deformation that contains the odd terms as

well.

Appendix

For the sake of completeness, let us give here a proof of the fact that, for the generic

(λ, µ), the supertransvectants (1.7) with coefficients (1.8) are the unique osp(1|2)-invariant

bidifferential operators.

An arbitrary bidifferential operator can be written in the form (1.7) with coef-

ficients Ci, j ∈ C ∞(S1|1). The action of a vector field X on the operator (1.7) is then given

by

L(B)( f , g) :=
∑

i+ j=k

Ci, j

(
L X(D

i
)( f ) D

j
(g) + (−1)i+σ ( f ) D

i
( f ) L X(D

j
)(g)

)
.

We will use the generators D and xD of osp(1|2). The invariance condition with respect

to the first generator D proves that each Ci, j is an even constant. Consider the vector field

xD. First, we calculate the action of xD on the operators D
i

: Fλ → Fµ. One has

LxD (D
2p+1

) := (xD + 2µξ ) D
2p+1 + D

2p+1
(xD + 2λξ )

= (2λ + p) D
2p + (2µ − 2λ − 2p− 1) ξ D

2p+1

for i = 2p+ 1 and

LxD (D
2p

) := (xD + 2µξ ) D
2p − D

2p
(xD + 2λξ )

= p D
2p−1 + (2µ − 2λ − 2p) ξ D

2p

for i = 2p. In particular, if µ = λ + i
2 , one obtains

L
λ,λ+ i

2
xD (D

i
) =

⎧⎪⎨
⎪⎩

(
2λ + (i−1)

2

)
D

i−1
if i is odd,

i
2 D

i−1
if i is even.
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The equivariance equation, LxD(J)( f , g) = 0, for a bidifferential operator J gives

now the following system:

(2λ + l) C2l+1,2m = −(−1)σ ( f )(2µ + m) C2l,2m+1

l C2l,2m−1 = (−1)σ ( f )m C2l−1,2m

(2λ + l) C2l+1,2m−1 = −(−1)σ ( f )m C2l,2m

l C2l,2m = (−1)σ ( f )(2µ + m) C2l−1,2m+1.

(A.1)

Explicit solution of the system (A.1) leads to the following critical (or “resonant”)

set

Ik = {
0, − 1

2 , −1, − 3
2 . . . , − 1

2

[
k−1

2

]}

and one has to separate the following four cases.

(1) If λ, µ �∈ Ik, then the system (A.1) has a unique (up to a multiplicative constant)

solution given by (1.8).

(2) If one of the weights λ or µ belongs to Ik but the second one does not, then the

system (A.1) has a unique (up to a multiplicative constant) solution. If, say,

λ = 1−m
4 for some odd m, then the corresponding bilinear osp(1|2)-invariant

operator is given by

f ⊗ g �−→ J
1+m

4 ,µ
k−m

(
D

m
( f ), g

)
.

(3) If λ = 1−m
4 for some odd m and µ = 1−�

4 for some odd �, and if � + m > k, then

the solution is still unique and is of the form

f ⊗ g �−→ J
1+m

4 ,µ
k−m

(
D

m
( f ), g

)
= J

λ, 1+�
4

k−�

(
f , D

�
(g)

)
.

(4) If λ = 1−m
4 for some odd m and µ = 1−�

4 for some odd �, and if � + m > k, then

there are two independent solutions:

f ⊗ g �−→ J
1+m

4 ,µ
k−m

(
D

m
( f ), g

)
= J

λ, 1+�
4

k−�

(
f , D

�
(g)

)
.
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18 H. Gargoubi and V. Ovsienko

and

f ⊗ g �−→ J
1+m

4 , 1+�
4

k−m−�

(
D

m
( f ), D

�
(g)

)
.
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[3] Gargoubi, H., N. Mellouli, and V. Ovsienko. “Differential operators on supercircle: confor-

mally equivariant quantization and symbol calculus.” Letters in Mathematical Physics 79

(2007): 51–65.

[4] El Gradechi, A. M. “The Lie theory of the Rankin-Cohen brackets and allied bi-differential

operators.” Advances in Mathematics 207 (2006): 484–531.

[5] Gieres, F. “Conformally covariant operators on Riemann surfaces (with application to con-

formal and integrable models).” International Journal of Modern Physics A 8 (1993): 1–58.

[6] Gieres, F., and S. Theisen. “Superconformally covariant operators and super W-algebras.”

Journal of Mathematical Physics 34 (1993): 5964–85.

[7] Gordan, P. Invariantentheorie. Leipzig, Germany: Teubner, 1887.

[8] Grozman, P., D. Leites, and I. Shchepochkina. “Lie superalgebras of string theories.” Acta

Mathematica Vietnamica 26, no. 1 (2001): 27–63.

[9] Huang, W.-J. “Superconformal covariantization of superdifferential operator on (1|1) su-

perspace and classical N = 2W superalgebras.” Journal of Mathematical Physics 35, no. 5

(1994): 2570–82.

[10] Janson, S., and J. Peetre. “A new generalization of Hankel operators (the case of higher

weights).” Mathematische Nachrichten 132 (1987): 313–28.

[11] Kac, V. G. Classification of Supersymmetries, 319–44. Proceedings of the International

Congress of Mathematics 1. Beijing, China: Higher Education Press, 2002.

[12] Kosmann-Schwarzbach, Y. “Derived brackets.” Letters in Mathematical Physics 69 (2004):

61–87.

 at B
IU

S
 Jussieu on O

ctober 14, 2010
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Supertransvectants and Symplectic Geometry 19

[13] Leites, D. Lie Superalgebras, 3–49. Current Problems in Mathematics 25. Moscow, Russia:

Akad. Sci. USSR, 1984.

[14] Leites, D., Yu. Kochetkov, and A. Weintrob. New Invariant Differential Operators on Super-

manifolds and Pseudo-(co)homology, 217–38. Lecture Notes in Pure and Applied Mathemat-

ics 134. New York: Dekker, 1991.

[15] Manin, Yu. Topics in Non-commutative Geometry. 1st ed. Princeton, NJ: Princeton University

Press, 1979.

[16] Michel, J.-P., and C. Duval. “On the projective geometry of the supercircle: a unified construc-

tion of the super cross-ratio and Schwarzian derivative.” (2007): preprint math-ph/0710.1544.

[17] Olver, P. J., and J. A. Sanders. “Transvectants, modular forms and the Heisenberg algebra.”

Advances in Applied Mathematics 25 (2000): 252–83.

[18] Omori, H., Y. Maeda, N. Miyazaki, and A. Yoshioka. “Deformation quantization of the Poisson

algebra of Laurent polynomials.” Letters in Mathematical Physics 46 (1998): 171–80.

[19] Ovsienko, V. “Exotic deformation quantization.” Journal of Differential Geometry 45 (1997):

390–406.

[20] Ovsienko, V., and S. Tabachnikov. Projective Differential Geometry Old and New: From the

Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in

Mathematics 165. Cambridge, UK: Cambridge University Press, 2005.

[21] Rankin, R. A. “The construction of automorphic forms from the derivatives of a given form.”

Journal of the Indian Mathematical Society 20 (1956): 103–16.

[22] Shchepochkina, I. “How to realize Lie algebras by vector fields.” Theoretical and Mathemat-

ical Physics 147, no. 3 (2006): 821–38.

[23] Zagier, D. “Modular forms and differential operators.” Proceedings of the Indian Academy

of Science (Mathematical Sciences) 104 (1994): 57–75.

 at B
IU

S
 Jussieu on O

ctober 14, 2010
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/

	Introduction
	The Poisson Bracket and the Ghost Bracket
	The Symplectic Lifting
	Supertransvectants from the Symplectic Viewpoint

