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Abstract. We extend projectively equivariant quantization and symbol calculus to symbols of
pseudo-differential operators. An explicit expression in terms of hypergeometric functions with
noncommutative arguments is given. Some examples are worked out, one of them yielding a
quantum length element on S°.
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1. Introduction

Let M be a smooth manifold and S(M) the space of smooth functions on 7*M,
polynomial on the fibers; the latter is usually called the space of symbols of
differential operators. Let us furthermore assume that M is endowed with an action
of a Lie group G. The aim of equivariant quantization [7, 8, 12] (see also [2-4])
is to associate to each symbol a differential operator on M in such a way that this
quantization map intertwines the G-action.

The existence and uniqueness of equivariant quantization in the case where M has
a flat projective (resp. conformal) structure, i.e., when G = SL(n+ 1, R) with
n=dim(M) (resp. G =SO(p + 1,9+ 1) with p+ ¢ = dim(M)) has recently been
proved in the above references.

More precisely, let F (M) stand for the space of (complex-valued) tensor densities
of degree A on M and D, ,(M) for the space of linear differential operators from
Fi(M) to Fu(M). These spaces are naturally modules over the group of all
diffeomorphisms of M. The space of symbols corresponding to D; ,(M) is therefore
Ss(M) =S(M) ® Fs(M) where 6 = u — A. There is a filtration

Dg.,uC'D! C...CDI/F»,/,LC.”
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and the associated module Ss(M) = gr(DL u) is graded by the degree of polynomials:
S5=806DS15® - BSks D~

The problem of equivariant quantization is the quest for a quantization map:
Qi Ss(M) — D (M) (L.

that commutes with the G-action. In other words, it amounts to an identification of
these two spaces which is canonical with respect to the geometric structure on M.
The inverse of the quantization map

O)u = (Q/l,;l)_l (12)

is called the symbol map.

In this Letter, we will restrict considerations to the projectively equivariant case.
Without loss of generality, we will assume M = S" endowed with its standard
SL(n + 1, R)-action. The explicit formule for the maps (1.1) and (1.2) can be found
in [4] for n =1 and in [12] for A = x in any dimension. Our purpose is to rewrite
the expressions for Q; , and o, , in a more general way which, in particular, extends
the quantization to a bigger class of symbols of pseudo-differential operators.

2. Projectively Equivariant Quantization Map

In terms of affine coordinates on S”, the vector fields spanning the canonical action
of the Lie algebra sl(n + 1, R) are as follows

I

i e
with i,j =1, ..., n (the Einstein summation convention is understood).
We will denote by aff(n, R) the affine subalgebra spanned by the first-order vector

fields. We will find it convenient to identify locally, in each affine chart, the spaces Ss
and D; , via the ‘normal ordering’ isomorphism
0 Bl

_ i N it
T2 PO &y &g (i) PO

2.1)

which is already equivariant with respect to aff(n, R). An equivalent means of identi-
fication is provided by the Fourier transform

_ (i/h)(&,x—y)
TP = /R eMEN Py, E)p(y) dyde, (2.2)
where
Py, &)=Y PO g &
k=0

and where ¢ is a compactly supported function (representing a A-density in the
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coordinate patch). This mapping extends to the space of pseudo-differential symbols
(defined in the chosen affine coordinate system).

The purpose of projectively equivariant quantization is to modify the map Z
in (2.1) in order to obtain an identification of Ss and D; , that does not depend
upon a chosen affine coordinate system, and is, therefore, globally defined on S”.

Recall [13] that the (locally defined) operators on Ss, namely

d a 0
g_é"a_f,f D_ﬁa_«:," (2.3)
(where the &; are the coordinates dual to the x') commute with the aff(n, R)-action on
T*S™. The Euler operator, &, is the degree operator on S5 = @~ Sk,s while the
divergence operator D lowers this degree by one.
Let us now recall (in a slightly more general context) the results obtained in [4, 12].
The SL(n + 1, R)-equivariant quantization map (1.1) is given on every homogeneous
component by

k
Qiuls,, =D Cn GHDY"|s, . (2.4)

m=0

where the constant coefficients CX are determined by the following relation

ko _ k—m—1+m+1)1 "
it = G Dk —m =2+ (it D1 — o) (2.5)

and the normalization condition: C(’)c =1.
As to the projectively equivariant symbol map (1.2), it retains the form

k ~ D\"”
— = 2.
Pials,, = 2, Co (,.h) 5 (2.6)
where the coefficients E‘,’; are such that
~ 1) ~
Jbl _ k+@m+1) fod 2.7)

T i D)2k —m A+ (n+ D)1 —0) "

and, again, E”g =1 for all k.

Remark 2.1. Expressions (2.4) and (2.6) make sense if 0 # 1+ ¢/(n+ 1) with
£=0,1,2,... For these values of §, the quantization and symbol maps do not exist
for generic A and y; see [10] for a detailed classification.

In contradistinction with the operators £ and D defined in (2.3), the quantization
map Q, , and the symbol map o, , are globally defined on T*S", i.e., they are inde-
pendent of the choice of an affine coordinate system.
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3. Noncommutative Hypergeometric Function

Our main purpose is to obtain an expression for Q, , and g; , valid for a larger class
of symbols, namely for symbols of pseudo-differential operators. We will rewrite the
formule (2.4), (2.5) and (2.6), (2.7) in terms of the aff(n, R)-invariant operators &£
and D in a form independent of the degree, k, of polynomials.

It turns out that our quantization map (1.1) involves a certain hypergeometric
function; let us now recall this classical notion. A hypergeometric function with
p + g parameters is defined (see, e.g., [9]) as the power series in z given by

ay,...,d
F 7z
( (bl)m' "(bq)m m!

bi,....b,

) _ N @ (@) 2" 3.1

m=0

with (@),, = a(a+ 1) ...(a +m — 1). This hypergeometric function is called confluent
ifp=g=1.

THEOREM 3.1. The projectively equivariant quantization map is of the form

o A, Az
Q= F( By, B,

z), (3.2)

where the parameters

Ay =E+@m+1), Ay =24+ m+ 1)1 -9)—1,

1 1 1 (3-3)
By =&+5(n+ 1)1 -9) -3, By =& +5(n+ 1)1 -9,
are operator-valued, as well as the variable
ihD
Z=—,. 4
4 (3.4)

Proof. Recall that for a hypergeometric function (3.1), one has

ap, ..., dp
F(bl,...,bq

with

Cmp1 1 [(al-l-m)”'(ap-i-m)]
Cm _m+1 (bl+m)(bq+m) .

Let us replace k — m by the degree operator £ in the coefficients Cf,j; the expression
(2.4) can be therefore rewritten as Q, , = Z;:o C(&) ihD)™. From the recursion
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relation (2.5), one readily obtains

Cm+l(5)
Cﬂ‘l(g)
B 1 E+m+DI+mRE+m+ 1)1 —-06)—1+m)
CAm+ D[ (E+im+ DA -6 —L4m)(E+im+ DA -6)+m)|
completing the proof. OJ

COROLLARY 3.2. The quantization map is given by the series

k
Q=Y _ Cu(&)(ihD)", (3.5)
m=0
where
CE) = 1 (E+m+1)2), (3.6)

mQE+m+ D1 —-0+m—1),,

Remark 3.3. Let us stress that the operator-valued parameters (3.3) and the vari-
able (3.4) entering the expression (3.2) do not commute. We have therefore chosen
an ordering that assigns the divergence operator D to the right.

In the particular and most interesting case of half-densities (cf. [7, 8]), the
expression (3.2) takes a simpler form.

COROLLARY34. If2=u= % the quantization map (3.2) reduces to the confluent
hypergeometric function

_ F<2E ihD) 3.7)

with the notation: E =& +% n.
It is a remarkable fact that the expression for inverse symbol map (1.2) is much
simpler. It is given by a confluent hypergeometric function for any 4 and p.

THEOREM 3.5. The projectively equivariant symbol map (1.2) is given by

_(E+m+ D D
‘”’“—F<25+(n+1)(1—5) _E) (3-8)

The proof is analogous to that of Theorem 3.1.
It would be interesting to obtain expressions of the projectively equivariant
quantization and symbol maps as integral operators similar to (2.2).
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4. Some Examples

We wish to present here a few applications of the projectively equivariant
quantization to some special Hamiltonians on 7*S”.

The first example deals with the geodesic flow. Denote by g the standard round
metric on the unit n-sphere and by H =gV ¢;i¢;j the corresponding quadratic
Hamiltonian. In an affine coordinate system, it takes the following form

H = (1+ Ix1?) (87 + x'¥) &¢&;, 4.1)

where ||x| = 5ij-xix’ withi,j =1,...,n. Moreover, we will consider a family of such
Hamiltonians belonging to Ss, namely Hs = H\/gif‘ where g = det(gij).

In order to provide explicit formule, we need to recall the expression of the
covariant derivative of A-densities, namely V; = 9; — )ij

PROPOSITION 4.1. The projectively equivariant quantization map (1.1) associates
to H; the following differential operator

Qi u(Hs) = =1 (A+ Gy R), (4.2)
where A = g/V;V; is the Laplace operator; the constant coefficient is

(n+1)*Au—1)

o = D =+ D+ D) “3)

and R = n(n — 1) is the scalar curvature of S".

Proof. The quantum operator (4.2) is obtained, using (3.2)-(3.4), by a direct
computation. However, the formula (4.2) turns out to be a particular case of (5.4)
in [1] since the Levi-Civita connection is projectively flat. O

Another example is provided by the ath power H* of the Hamiltonian H,
where o € R. We will only consider the case 4 = u in the sequel.

PROPOSITION 4.2. For

(4.4)

one has Q, ,(H*) = H*.
Proof. Straightforward computation leads to

D(H*) = 2040 +n — DH*'(1 + ||x]|*)(&, x)

and (2.4) therefore yields the result. O
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We have just shown that the Fourier transform (2.2) of H!=/4 is well-defined on
S" and actually corresponds to the projectively equivariant quantization of this
pseudo-differential symbol.

If we want to deal with operators acting on a Hilbert space, we have to restrict now
considerations to the case 1 = u = %

For the 3-sphere only, the above quantum Hamiltonian on 7*S” \ §” is as follows

1.1 4.5)

and can be understood as a quantized ‘length element’ in the sense of [5].
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