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Orthogonal Designs and a Cubic Binary Function
Sophie Morier-Genoud Valentin Ovsienko

Abstract—Orthogonal designs are fundamental mathematical
notions used in the construction of space time block codes for
wireless transmissions. Designs have two important parameters,
the rate and the decoding delay; the main problem of the theory
is to construct designs maximizing the rate and minimizing the
decoding delay.

All known constructions of CODs are inductive or algorithmic.
In this paper, we present an explicit construction of optimal
CODs. We do not apply recurrent procedures and do calculate
the matrix elements directly. Our formula is based on a cubic
function in two binary n-vectors. In our previous work (Comm.
Math. Phys., 2010, and J. Pure and Appl. Algebra, 2011), we
used this function to define a series of non-associative algebras
generalizing the classical algebra of octonions and to obtain sum
of squares identities of Hurwitz-Radon type.

Index Terms—Orthogonal designs, decoding delay, maximal
rate, peak-to-average power ratio, space-time codes, generalized
octonions.

I. I NTRODUCTION

Orthogonal designs first appeared in the classical work
of Hurwitz [13], [14] and Radon [17], in order to solve
the problem of sum of squares identities (also known as
composition of quadratic forms). This problem can be for-
mulated in different ways and related to many mathematical
questions (normed division algebras, vector fields on spheres,
Clifford modules, immersion of projective spaces in euclidean
spaces...) arising in different fields. The general problemis
widely open and keep inspiring work of many mathematicians,
see [18] and [20] for surveys. In the 1970’s, orthogonal designs
and their generalizations have been extensively studied from
combinatorial and number theoretic viewpoints, see Geramita
et al. [6]–[9] and references therein.

Orthogonal designs keep attracting much attention, since
they are used to construct space-time block codes for wireless
communication with multiple transmit antennas. This idea was
introduced by Tarokh, Jafarkhani and Calderbank [12], as a
generalization of the Alamouti scheme [3] for wireless com-
munication with two antennas. Space-time block codes built
out of the orthogonal designs achieve full transmit diversity
and have a simple maximum likelihood decoding algorithm.

In this paper, we describe a method of construction of
orthogonal designs. Unlike all known constructions which are
inductive, i.e., use block matrices of small sizes to construct
bigger matrices, our construction calculates elements of the
matrices directly. In particular, we construct designs satisfying
optimal criteria of [10] and [1], [2]. We also construct designs
of type [12] and [5] defined by matrices that have no zero
elements.
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A. Definitions and known results

Definition 1: A real orthogonal design(ROD) of type
[p, n, k] is a matrix G of size p × n with real entries
0,±x1, · · · ,±xk, satisfying

GT G =
(
x2
1 + · · ·+ x2

k

)
In,

whereGT is the transpose matrix ofG.
Definition 2: A complex orthogonal design(COD) of pa-

rameters[p, n, k] is a matrixH of size p × n with complex
entries0,±z1, · · · ,±zk, and their conjugates±z∗1 , · · · ,±z∗k,
satisfying

H∗H =
(
|z1|

2 + · · ·+ |zk|
2
)
In,

whereH∗ is the complex conjugate transpose ofH .
Definition 3: Given a [p, n, k]-(R or C)OD, the ratiok

p
is

called therate of the design and the parameterp is called the
decoding delayof the design.

The main problem in the construction of real or complex
orthogonal designs is to maximize the ratek

p
and minimize

the delayp for a givenn. The following answers have been
provided

1) [p, n, k]-ROD of rate1 exist for all n, and in this case
the minimum delay isp = 2δ(n), where

δ(n) =





n
2 if n = 2, 4, 6 mod 8 ,

n−1
2 if n = 1, 7 mod 8 ,

n+1
2 if n = 3, 5 mod 8 ,

n
2 − 1 if n = 0 mod 8.

This is a way to formulate the classical theorem or
Hurwitz and Radon.

2) Using a doubling process of ROD of rate 1, Tarokh et al.
[12] obtain COD of rate12 and decoding delay2δ(n)+1;
We will denote byTJCn this class of CODs, the
parameters are

[
2δ(n)+1, n, 2δ(n)

]
.

3) Liang [10] proves that the maximal rate of a[p, n, k]-
COD with n 6= p is 1

2 + 1
n

, if n is even, and12 + 1
n+1 ,

if n is odd.
4) Adams et al. [1] and [2] find a tight lower bound for

the decoding delayp in a non-square COD achieving
the maximal rate given by a binomial coefficient. Let
n = 2m− 1 or n = 2m, then

p ≥

(
2m

m− 1

)
,

for n = 0, 1, 3 mod 4 and

p ≥ 2

(
2m

m− 1

)
,
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for n = 2 mod 4. We will denote byLAn the class of
CODs achieving the maximal rate and minimal decoding
delay.

5) Liang [10] and Lu et al. [11] give algorithms to produce
designs of typeLAn. Another construction is given
in [4].

6) Das and Rajan [5] construct CODs of rate12 and
decoding delay2δ(n). We will denote byDRn this class
of CODs, the parameters are

[
2δ(n), n, 2δ(n)−1

]
.

It is interesting that the decoding delay of these CODs
is twice lower than that ofTJCn.

Let us stress that CODs of rate12 are of interest, since for
large values ofn the maximal rate is almost12 . For instance,
for n = 12 the CODLAn has rate 7

12 and decoding delay
792, whereasDRn has rate12 and decoding delay64, see [5]
for a comparative table.

B. Main results and organization of the paper

The goal of this article is to present a unified construction
of RODs and CODs.

We start with an explicit formulas for the matricesG of
size2r × 2r satisfying the conditions of ROD. The rows and
columns of the matrices are labelled by elements in the setZr

2,
i.e., of r-vectors with coefficients 0 and 1. The entries in the
matrices are given by an explicit functionf : Zr

2 ×Zr
2 → Z2.

We then explain an easy way to reduce a RODs to a CODs.
With our method we construct RODs with parameters:

•
[
2δ(2r), 2r, 2δ(2r)

]
,

that will produce CODs with same parameters asTJCn

(using a doubling process) and with same parameters
as DRn (using a reduction process), providedn 6= 1
mod 8;

•
[
2
(

r+1
(m−1

)
, 2r, 2

(
r
m

)]
, if r = 0, 1, 3 mod 4,

[
4
(

r+1
(m−1

)
, 2r, 2

(
r
m

)]
, if r = 0 mod 4,

wherem is defined byr = 2m− 1 or 2m. These RODs
will reduce to COD with same parameters asLAn.

The paper is organized as follows. The next section contains
the main ingredients of our approach. We construct RODs with
parameters that are twice the parameters of the optimal CODs.

Section III describes the reduction from the[p, n, k]-RODs
to
[
p
2 ,

n
2 ,

k
2

]
-CODs, leading to optimal CODs of typeLAn.

Section IV presents a procedure that allows us to construct
a
[
p
2 , n, k

]
-COD out of a[p, n, k]-ROD, provided the ROD is

stable under the duality. We thus obtain the CODs of types
TJCn and DRn. Let us mention that the corresponding
matrices have no zero entries.

Proofs of technical statements, as well as properties of the
binary functions we use, are collected in Appendix.

II. GENERAL CONSTRUCTION OFRODS

A. Combinatorics overZ2

We denote byZr
2 the set ofr-vectorsu = (u1, . . . , ur),

whereui = 0 or 11. The Hamming weight|u| of an element
is the number of non-zero component, i.e.

|u| = # {ui = 1}1≤i≤r .

The sum of two elementsu andv is just the sum componen-
twise modulo 2. Every element is a sum of the basis vectors

εj = (0, . . . , 0, 1, 0, . . . , 0),

with 1 at j-th position. We will also consider the element of
maximal weightr:

ε = (1, 1, . . . , 1).

We will use the involution onZr
2, that we call the “hat duality”:

û = u+ ε1, (1)

i.e., the change of 1st coordinate.
The following function in two argumentsf : Zr

2×Zr
2 → Z2

plays the key rôle in our approach:

f(u, v) =
∑

i<j<k

(uiujvk + uivjuk + viujuk) +
∑

i≤j

uivj ,

We will also use the function in one variableα(u) := f(u, u),
given explicitly by

α(u) =
∑

i<j<k

uiujuk +
∑

i≤j

uiuj.

The value ofα(u) depends only on the weight ofu:

α(u) =

{
0 if |u| = 0 mod 4,
1, otherwise.

The functionf is used in all the constructions to determine
signs, whileα is used as a “statistic” to select good elements
of Zr

2. Properties off andα are presented in Appendix.

B. General construction of RODs

In this section, we construct(p × n)-matrices whose rows
and columns are indexed by subsetsW ⊂ Zr

2 andV ⊂ Zr
2 of

cardinalityp andn, respectively.
We define the matrixGu, u ∈ Zr

2 by

Gu =

v


...

...

· · · Gw,v
u · · ·
...


 w

where the entry in position(w, v) is

Gw,v
u =

{
(−1)f(u,v), if u = v + w,

0, otherwise.

1We use the notationZ2 = {0, 1} for the abelian group of rank 2, other
notations:F2 andZ/2Z are also often used.
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The following properties are obvious:

1) the matrixGu has at most one nonzero element on each
row and on each column;

2) if V = W = Zr
2, thenGu is a (2r × 2r)-matrix with

exactly one non-zero element on each row and column.

Definition 4: We call U, V,W an admissible tripleif the
following two conditions are satisfied:

1)
W = U + V,

i.e., u + v ∈ W for all u ∈ U and v ∈ V and every
elementw ∈ W can be written in the formw = u+ v.

2) If a non-zero elementw ∈ W decomposes in two ways:
w = u+ v = u′ + v′ then

α(u+ u′) = α(v + v′) = 1. (2)

Theorem 1: IfU, V,W is an admissible triple, then one has:
(i) GT

u Gu = In, for all u ∈ U .
(ii) GT

u Gu′ +GT
u′ Gu = 0, for all u 6= u′ ∈ U .

This theorem is proved in [16] and [15]. For the sake of
completeness, we include the proof into Appendix.

Corollary 1: If U, V,W is an admissible triple, then
(i) the matrix

G =
∑

u∈U

xuGu

is a ROD with parameters[#W,#V,#U ] in real variablesxu,
u ∈ U , where# is the cardinality of a set;

(ii) in the case of rate 1, i.e., wherek = p, the matrixG
hasno zero entries.

Our next task is to construct admissible triplesU, V,W .
We will use the fact that the functionα vanishes only on the
elements whose weight is a multiple of 4. Note that the easiest
way to guarantee condition (2) is to choose the setV so that
α(v + v′) = 1 for all v, v′ ∈ V .

C. RODs of rate 1

In this section, we provide triples of setsU, V,W that
produce real orthogonal designs

G =
∑

u∈U

xuGu

of rate 1, with minimum delay, i.e. the parameters ofG are[
2δ(n), n, 2δ(n)

]
, (providedn 6= 1 mod 8).

Caser = 0, 1, 2 mod 4. One chooses the following subsets

V =
{
εj , ε̂j, 1 ≤ j ≤ r

}
,

U = W = Zr
2,

wherê is the duality (1). ThenG is a [2r, 2r, 2r]-ROD. 2

2 This ROD is optimal, except for the caser = 0 mod 4, where, according
to the Hurwitz-Radon theorem, there is a[2r , 2r + 1, 2r ]-ROD. We do not
dwell here on a more involved construction to produce such a ROD.

Caser = 3 mod 4. One chooses the following subsets

V =
{
ε, ε̂, εj , ε̂j , 1 ≤ j ≤ r

}
,

U = W = Zr
2,

theG is a [2r, 2r + 2, 2r]-ROD.

D. Non-square RODs of rate12 + 1
2m

All the RODs below have maximal rate12 + 1
2m , when

r = 2m or 2m− 1.

Caser = 1, 2 mod 4. Considerr = 2m− 1 or r = 2m and
choose the setU of the elements of weightm and their dual,
the setV is chosen as in the first case:

U = {u, û : |u| = m} ,

V =
{
εj, ε̂j , 1 ≤ j ≤ r

}
,

It follows that the spaceW = U + V is:

W = {u : |u| = m− 1, m, m+ 1}
⋃

{u : u1 = 1 , |u| = m+ 2}
⋃

{u : u1 = 0 , |u| = m− 2} .

The matrixG is a ROD with parameters
[
2
(
r+1
m−1

)
, 2r, 2

(
r
m

)]
,
[
4
(

r
m−1

)
, 2r, 2

(
r
m

)]
,

for odd r and evenr, respectively.

Caser = 0 mod 4. Considerr = 2m (wherem is even) and
choose the following subsets

U = {u : u1 = 1 , |u| = m}
⋃

{u : u1 = 0 , |u| = m− 1} ,

V =
{
ε, ε̂, εj, ε̂j , 2 ≤ j ≤ n

}
,

W = {u : u1 = 1 , |u| = m− 1,m+ 1}
⋃

{u : u1 = 0 , |u| = m− 2,m} ,

thenG is a
[
2
(

r
m−1

)
, 2r, 2

(
r−1
m−1

)]
-ROD.

Case r = 3 mod 4. Consider r′ := r + 1 and apply
the previous case withr′ = 0 mod 4 to obtain a[
2
(
r+1
m−1

)
, 2r + 2, 2

(
r
m

)]
-ROD, wherer = 2m−1. Removing

two columns, we obtain a
[
2
(
r+1
m−1

)
, 2r, 2

(
r
m

)]
-ROD.

In each of the above cases, condition (2) is satisfied for all
v, v′ ∈ V .

To finish this section, let us mention that the binary nu-
meration have already been efficiently used in [4], [5] to
construct RODs and CODs of maximal rate. In particular,
subsets ofZr

2 similar to our setsU, V andW were described.
The main difference of our approach is the functionf and
explicit construction of the matrices.
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III. R EDUCTION FROM ROD TO COD

In this section, we present a procedure to reduce a
[2p, 2n, 2k]-ROD to a[p, n, k]-COD. Such a procedure is not
always possible, it requires nice properties of setsU, V,W .
We first describe the general procedure of reduction and then
apply it to RODs of rate 1 constructed in Section II-C.

A. The general procedure

The main idea is to use a duality

̂ : Zr
2 → Z

r
2

defined byû = u + e, where the elemente ∈ Zr
2 satisfies

f(e, e) = 1, and to choose setsU, V andW stable under the
duality:

Û = U, V̂ = V, Ŵ = W,

In practice, we use the hat duality (1), i.e.,e = ε1.
Given a ROD of type[2p, 2n, 2k] defined by setsU, V

and W in Zr
2, our goal is to reduce it to a COD with

parameters[p, n, k]. The method consists in two steps.
First, we introduce splitting of the setsU, V,W , in order to
decompose the matricesG =

∑
u∈U xuGu into admissible

(2 × 2)-blocks. Second, we replace the admissible blocks by
complex variables,zu = xu + ixû or z∗u = xu − ixû.

STEP 1: We fix the following splitting ofU

U0 := {u ∈ U : f(u, e) = 0} ,

U1 := {u ∈ U : f(u, e) = 1} .
(3)

Note thatÛ0 = U1, cf. Property (b) off in Appendix.
We now need to find subsetsV0, V1, W0 andW1 satisfying

the following conditions

V = V0

⊔
V1, V1 = V̂0;

W = W0

⊔
W1, W1 = Ŵ0;

W0 = U0 + V0 = U1 + V1;
W1 = U0 + V1 = U1 + V0,

(4)

where
⊔

denotes the disjoint union.
These splitting induce a natural decomposition of the ma-

tricesGu into (2 × 2)-blocks whose columns are labelled by
(v, v̂) ∈ V0 × V1 and the rows by(w, ŵ) ∈ W0 ×W1 :

Gu =

v v̂


...
...

...
...

· · · · · ·
G̃w,v

u· · · · · ·
...

...




w

ŵ

whereu = v + w and soû = v + ŵ = v̂ + w.
For u ∈ U0 (and thereforêu ∈ U1), the non-zero blocks are

of the form

G̃w,v
u =

(
(−1)f(u,v) 0

0 (−1)f(u,v̂)

)

and

G̃
w,v
û =

(
0 (−1)f(û,v)

(−1)f(û,v̂) 0

)
;

non-zero blocks are located at the same place inGu andGû.
Moreover, sincef is linear in the 2nd variable,

f(u, v̂) = f(u, v) + f(u, e) = f(u, v),

f(û, v̂) = f(û, v) + f(û, e) = f(û, v) + 1,

so that the entries in the blocks ofGu are of the same sign
and those ofGû are of the opposite sign.

STEP 2: The matrixG =
∑

u∈U xuGu decomposes into
(2× 2)-blocks, and the non-zero blocks are of two types

(T 1) ±

(
xu xû

−xû xu

)
, or (T 2) ±

(
xu −xû

xû xu

)
.

We construct a complex matrixH from G by substituting to
the block (T1) the complex variable±zu and to the block(T 2)
the complex conjugate variable±z∗u. More precisely, the entry
of H in position (w, v) ∈ W0 × V0 is

Hw,v =

{
(−1)f(v+w,v)zv+w, if f(v̂ + w, v) = f(v + w, v),

(−1)f(v+w,v)z∗v+w, otherwise,

if v + w ∈ U0, andHw,v = 0, otherwise.

Theorem 2:The constructed matrixH defines a COD with
parameters[p, n, k].

B. CODs of parametersLAn

As application of the above procedure, let us reduce the
RODs constructed in Section II-D, in order to obtain the
optimal CODs of typeLAn. We need to describe here the
subsetsU0, U1, V0, V1,W0,W1 satisfying (3) and (4).

From the expression off we see thatf(u, ε1) depends only
on the class|u| mod 4. More precisely

|u| mod 4 0 1 2 3

f(u, ε1) if u1 = 0 0 0 1 1

f(u, ε1) if u1 = 1 0 1 1 0

for an arbitraryu ∈ Zr
2.

Caser = 1, 2 mod 4. Let nowu ∈ U , so that|u| = m and
r = 2m− 1 or 2m. In this case,m is necessarily odd.

• if m = 1 mod 4, then foru ∈ U we have

f(u, ε1) = 0 ⇐⇒ u1 = 0,

in other words,

U0 = {u ∈ U |u1 = 0} , U1 = {u ∈ U |u1 = 1} .

We easily check that

V0 = {v ∈ V | v1 = 0} , V1 = {v ∈ V | v1 = 1} ,

W0 = {w ∈ W |w1 = 0} , W1 = {w ∈ W |w1 = 1} .

satisfies property (4).



5

• if m = 3 mod 4, then foru ∈ U we have

f(u, ε1) = 0 ⇐⇒ u1 = 1,

in other words,

U0 = {u ∈ U |u1 = 1} , U1 = {u ∈ U |u1 = 0} .

We easily check that

V0 = {v ∈ V | v1 = 0} , V1 = {v ∈ V | v1 = 1} ,

W0 = {w ∈ W |w1 = 1} W1 = {w ∈ W |w1 = 0} .

again satisfies property (4).

Caser = 0 mod 4. In this case,m is defined byr = 2m, so
thatm is even.

• If m = 0 mod 4, then foru ∈ U we have

f(u, ε1) = 0 ⇐⇒ u1 = 1,

in other words,

U0 = {u ∈ U |u1 = 1} , U1 = {u ∈ U |u1 = 0} .

We easily check that

V0 = {v ∈ V | v1 = 0} , V1 = {v ∈ V | v1 = 1} ,

W0 = {w ∈ W |w1 = 1} , W1 = {w ∈ W |w1 = 0} .

have the desired property.
• If m = 2 mod 4, then foru ∈ U we have

f(u, ε1) = 0 ⇐⇒ u1 = 0,

in other words,

U0 = {u ∈ U |u1 = 0} , U1 = {u ∈ U |u1 = 1} .

We easily check that

V0 = {v ∈ V | v1 = 0} , V1 = {v ∈ V | v1 = 1} ,

W0 = {w ∈ W |w1 = 0} W1 = {w ∈ W |w1 = 1} .

have the desired property.

IV. I NDUCTION

The second procedure that we callinductionallows one to
transform a[p, n, k]-ROD to a

[
p, n, k2

]
-COD. This induction

consists in complexification composed with reduction; it can
be applied whenever the setU , V andW are stable under an
involution ũ = u+ e for an elemente satisfyingf(e, e) = 1.

A. The general construction

STEP 1: We consider the splitting ofU as in (3) and define
the following subsets ofZr+1

2 = Zr
2 × 0 ⊔ Zr

2 × 1

U ′ = U0 × 0 ⊔ U1 × 1,

V ′ = V × 0 ⊔ V × 1,

W ′ = W × 0 ⊔W × 1.

For eachu ∈ U , we embed the previous matrixGu into a
twice bigger matrix,G(u,τ), where(u, τ) ∈ U ′, with columns

indexed byW ′ and rows indexed byV ′. The matrixG(u,τ) is
composed by(2× 2)-blocks:

G(u,τ) =

(v,0)(v̂,1)


...
...

...
...

· · · · · ·
G̃w,v

u· · · · · ·
...

...




(w,0)

(ŵ,1)

,

where the non zero blocks correspond to(u, τ) = (v + w, τ)
and coincide with those ofGu. These data provide a
[2p, 2n, k]-ROD.

STEP 2: For eachu ∈ U0, we define

G′
u = xuG(u,0) + xûG(û,1).

These matrices decompose into blocks that are all of type
(T1) or (T2). We then apply the reduction procedure to obtain
a
[
p, n, k

2

]
-ROD.

B. CODs with parametersTJCn andDRn

Consider the RODs of rate 1 constructed in Section II-C.

Following [12], one can apply the following obvious dou-
bling process:

G(2) :=

(
G

G′

)

where the variablesxu in G are now considered as complex
variables, andG′ is copy of G associated to the conjugate
variables, i.e. is defined by

G′ =
∑

u∈U

x∗
uGu.

The matrixG(2) is a COD of rate1
2 , with parameters

[
2δ(2r)+1, 2r, 2δ(2r)

]
,

that are precisely the parameters ofTJCn, for even n.
Removing a column, we are led to CODs with parameters
TJCn, for oddn, except forn = 1 mod 8.

Applying the induction procedure to the RODs of rate 1,
leads to CODs with parameters

[
2δ(2r), 2r, 2δ(2r)−1

]
,

that are precisely the parameters ofDRn, for evenn. Again,
removing a column, we obtain CODs of typeDRn, for
oddn, except forn = 1 mod 8.

In both cases, the obtained CODs have no zero entries.

The missing casen = 1 mod 8 escapes from the technique
used in this paper. This is due to the fact that we do not obtain
a [2r, 2r + 1, 2r]-ROD with n = 0 mod 4.
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V. A PPENDICES

A. Properties of the functionsf andα.

The function f has quite remarkable properties that we
briefly discuss here.

It is impossible to reconstruct the functionf from the
function in one variableα (which is nothing but the restriction
of f to the diagonal inZr

2 × Zr
2). However,α contains the

essential characteristics off , such as its symmetrization.

1) First polarization formula:

f(u, v) + f(v, u) = α(u + v) + α(u) + α(v).

2) Second polarization formula:

f(u, v) + f(u, v + w) + f(u+ v, w) + f(v, w) =

α(u + v + w)

+α(u+ v) + α(u + w) + α(v + w)

+α(u) + α(v) + α(w).

These properties can be checked directly. Note that the expres-
sion in the right-hand-side of 1) is called thecoboundaryof α,
it has a deep cohomological meaning. The expression in the
left-hand-side of 2) is the coboundary off , its measures the
non-associativity of a certain algebra defined byf , see [16].
Finally, the expression in the right-hand-side of 2) is called the
polarizationof the cubic formα. Let us mention that, unlike
the theory of quadratic forms, the theory of cubic forms is not
well developed in characteristic 2, not much is known.

Let us also give here more elementary properties off

already used in the above constructions:

(a) Linearity off in 2nd variable:

f(u, v + v′) = f(u, v) + f(u, v′).

(b) Pseudo-linearity in 1st variable:

f(u+ v, v) = f(u, v) + f(v, v).

We invite the reader to consult [16] for more information
aboutf andα.

B. Proof of Theorem 1.

We apply the formula for matrices multiplication. The
coefficient in position(v, v′) in the productGT

uGu′ is

(GT
uGu′ )v,v

′

=

{
(−1)f(u,v)+f(u′,v′) if v + v′ = u+ u′,

0 otherwise.

This implies thatGT
uGu′ = In, andGT

uGu′ +GT
u′Gu = 0 if

and only if

(−1)f(u,v)+f(u′,v′) + (−1)f(u
′,v)+f(u,v′) = 0

wheneverv + v′ = u+ u′. The above condition is equivalent
to

f(u, v) + f(u′, v′) + f(u′, v) + f(u, v′) = 1.

Lemma 1: If u+ u′ = v + v′ then

f(u, v) + f(u′, v′) + f(u′, v) + f(u, v′) = α(u + u′).

Proof: Rewrite the left-hand-side usingv′ = u+u′+v and
the linearity in the 2nd variable, after cancellation of double
terms one obtains

f(u′, u) + f(u′, u′) + f(u, u) + f(u, u′).

This reduces toα(u+u′) using the first polarization formula.

Theorem 1 follows.

C. Proof of Theorem 2.

First notice that in each column of the matrixH the symbol
zu appears exactly once (“symbolzu” means one of the
following four elements:±zu,±z∗u). This implies that the
diagonal entries inH∗H are all equal to

∑

u∈U0

|zu|
2.

It remains to show that the non-diagonal entries inH∗H are
all zero. We show that, in the hermitian product of two distinct
columns ofH , the terms pairwise cancel.

Consider the four entries ofH , in position(w, v), (w′, v),
(w′, v) and (w′, v′).

H =

v v′


...
...

· · · z1 · · · z2 · · ·
...

...
· · · z3 · · · z4 · · ·

...
...




w

w′

Case I: there existu, u′ in U0 such that

u = v + w = v′ + w′, u′ = v + w′ = v′ + w.

In this case, the four entries are non zero and one has

z1, z4 ∈ {±zu, ±z∗u} , z2, z3 ∈ {±zu′ , ±z∗u′} .

The corresponding blocks in the matrixG

G =




...
...

· · · A1 · · · A2 · · ·
...

...
· · · A3 · · · A4 · · ·

...
...




come fromxuGu + xûGû + xu′Gu′ + x
û′Gû′ and therefore

satisfy
AT

1 A2 +AT
3 A4 = 0.

This translates to
z∗1z2 + z∗3z4 = 0.

Case II: there do not existu, u′ in U0 such that

u = v + w = v′ + w′, u′ = v + w′ = v′ + w.

In this case at least one of the following situations holds

z1 = z4 = 0 or z2 = z3 = 0,
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and, again,z∗1z2 + z∗3z4 = 0.

We have proved that the columns ofH are pairwise orthog-
onal (with respect to the hermitian product). And we conclude
finally that

H∗H =
(
Σu∈U0

|zu|
2
)
In

wheren = #V0.

D. Orthogonal designs and Hurwitz problem of sums of
squares

It is well-known that the existence of[p, n, k]-ROD is
related to the Hurwitz problem on composition of quadratic
forms, [14],[17] (see also [20] for a survey).

Definition 5: A Hurwitz sum of squares identity (SSI) of
size [p, n, k] is an identity

(
a21 + · · · + a2k

) (
b21 + · · · + b2n

)
= c21 + · · · + c2p, (5)

where ci are bilinear expressions inai and bi with integral
coefficients (the elementsai, bi, ci’s are considered here as
real variables). Such an identity will be referred as a[p, n, k]-
identity.

It is known that if such an identity holds then the integral
coefficients in the expressions ofci’s can be chosen among
{0, 1,−1}. Hurwitz proved the following fundamental theo-
rem. There exists a[p, n, k]-ROD if and only if there exists a
[p, n, k]-SSI.

Let us recall here how the equivalence can be established.
Sincec’s are linear ina’s andb’s, one has

c =


 ∑

1≤i≤k

aiAi


 b, (6)

where b is a column-vector with componentsbi and c is a
column-vector with componentsci, and whereAi are p × n

matrices (with entries0, 1,−1) One then easily checks that
the identity (6) holds if and only if

AT
i Ai = In, AT

i Aj +AT
j Ai = 0, ∀ i 6= j. (7)

Then, the matrixA =
(∑

1≤i≤k aiAi

)
is a [p, n, k]-ROD in

the variablesai’s.
A classical result of Hurwitz [13] states that[n, n, n]-SSI

exist if and only if n = 1, 2, 4, 8. This statement relies on
classification of normed division algebras, see [19] for a survey
on relations between division algebras and wireless communi-
cations. The case of[n, n, k]-SSI was solved independently by
Hurwitz [14] and Radon [17], this is the origin of the famous
Hurwitz-Radon function.

Let us mention that our previous results [16] and [15]
were formulated in terms of partial solutions to the Hurwitz
problem.
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