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Abstract: We consider the Poisson algebra S(M) of smooth functions on T ∗M which
are fiberwise polynomial. In the case where M is locally projectively (resp. conformally)
flat, we seek the star-products on S(M) which are SL(n+1, R) (resp. SO(p+1, q+1))-
invariant. We prove the existence of such star-products using the projectively (resp. con-
formally) equivariant quantization, then prove their uniqueness, and study their main
properties. We finally give an explicit formula for the canonical projectively invariant
star-product.

1. Introduction

The deformation quantization program initiated in the seventies [3] was aimed at defining
an autonomous quantization method based on Gerstenhaber’s general theory of defor-
mation of algebraic structures [28]. The original idea was to view quantum mechanics
as a one-parameter deformation of classical mechanics, more precisely, a one-parameter
deformation of the algebraic structures underlying classical mechanics.

If P is a Poisson manifold, then C∞(P ) is naturally equipped with two algebraic
structures, namely, the associative and commutative pointwise multiplication and the
Lie algebra defined by the Poisson bracket. The deformed algebraic structure, describ-
ing the quantum mechanical counterpart of (C∞(P ), ·, {·, ·}) is (C∞(P )[[�]], �), where
the operation �, called star-product, is an associative (but non-commutative) product on
C∞(P )[[�]] deforming the commutative multiplication in the direction of the Poisson
bracket. More precisely:

Definition 1.1. Let P be a Poisson manifold and C∞(P ) the space of smooth com-
plex-valued functions on P . A star-product on P is an associative algebra structure
on C∞(P )[[�]], denoted �, and given by a linear map from C∞(P ) ⊗ C∞(P ) to
C∞(P )[[�]], extended by linearity to C∞(P )[[�]] ⊗ C∞(P )[[�]], such that
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F � G = F · G + i�

2
{F, G} +

∞∑

r=2

(i�)rBr(F, G). (1.1)

In the mathematical literature � is a formal parameter, whereas in physical applica-
tions � is Planck’s constant.

There are usually three extra requirements for star-products :

C1. The constant function 1 is the unit of (C∞(P )[[�]], �), namely 1 �F = F �1 = F ;
C2. The star-product is symmetric, viz F � G = G � F ;
C3. The bilinear maps Br are given by bidifferential operators.

Note that Condition C2 is sometimes called the parity condition.
The first reported star-product appeared in the work of Grœnewold [31]. It was derived

from the Weyl-Wigner quantization on P = R
2n. It is nowadays more commonly known

as the Moyal star-product ; Moyal actually obtained the Lie algebra bracket associated
with Grœnewold’s star-product [39]. This first star-product was later on rediscovered by
Vey [44].

The general problem of existence of star-products was raised in [3]. Using cohomo-
logical techniques, De Wilde and Lecomte [16] proved the existence of star-products on
any symplectic manifold. A geometric proof of the same result together with an algo-
rithmic construction was obtained by Fedosov [24, 25] (see [45] for a survey of this
construction and [41] for an alternative approach).

More recently, Kontsevich proved an existence theorem for an arbitrary Poisson man-
ifold, giving explicit formulæ for P = R

n [34].An operadic and a quantum field theoretic
interpretations of Kontsevich’s result were later on given respectively by Tamarkin [43],
and Cattaneo and Felder [11].

The problem of the uniqueness of star-products is usually studied modulo equivalence
(see Sect. 2.2 for definitions and [32, 14] for recent developments). However, extra con-
ditions can sometimes be imposed to single out a canonical star-product. For instance,
Gutt [33] proved that the Moyal star-product is the unique (Sp(2n, R) � R

2n)-invariant
and covariant star-product on R

2n. The notion of a G-invariant star-product, where G is
a Lie group of Poisson automorphisms of P , was introduced in [3] (see Sect. 2.1 for def-
initions). Existence of a G-invariant star-product on a symplectic manifold was proved
by Lichnerowicz [38] for any compact Lie group G of symplectomorphisms. More
recently, Fedosov [26] constructed a G-invariant star-product on a symplectic manifold
endowed with a G-invariant symplectic connection.

In this article, we deal with cotangent bundles P = T ∗M equipped with their canon-
ical symplectic structure, and restrict considerations to the Poisson algebra S(M) of
smooth functions on T ∗M polynomial on fibers. We furthermore assume M to be a
smooth n-dimensional manifold endowed with either a projectively or a conformal-
ly flat structure, i.e., M admits a (locally defined) action of either SL(n + 1, R) or
SO0(p + 1, q + 1), the connected component of the pseudo-orthogonal group with
n = p +q. The basic example of a projectively (resp. conformally) flat manifold is RPn

(resp. (Sp × Sq)/Z2).
Denote by G either the projective or the conformal group. We study, in the present

article, G-invariant star-products on T ∗M , where the G-action is the canonical lift of
the natural action on the base. Our first result, Theorem 5.1, establishes the uniqueness
of a G-invariant homogeneous star-product on S(M). Our second result, Theorem 5.7,
proves the uniqueness of a G-invariant star-product modulo G-equivalence and repara-
metrization.
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Let us emphasize that we do not assume conditions C1, C2 and C3 a priori. It turns out
that C1 and C2 are automatically satisfied while C3 doesn’t hold; in fact, the maps Br in
(1.1) are pseudo-differential bilinear operators. Our G-invariant star-products cannot be
obtained by Fedosov’s or Kontsevich’s constructions, as the latter lead to bidifferential
star-products.

The existence of G-invariant star-products on S(M) is based on the existence of a
G-equivariant quantization map [37, 23] (see also [22]). The latter is the unique (up to
normalization) isomorphism of G-modules, Qλ : S(M) → Dλ(M), where Dλ(M) is
the space of differential operators acting on tensor densities of degree λ. Such a quan-
tization map defines a G-invariant associative product on S(M) which turns out to be a
star-product for λ = 1

2 as proved in [9, 23]. The existence and uniqueness results of the
present article represent the deformation quantization counterparts of those obtained for
G-equivariant quantization. In both situations invariance properties ensure uniqueness.

The pseudo-differential nature of the G-invariant star-products has been revealed by
Brylinski [9] and Astashkevich and Brylinski [2]. In the latter reference, invariant star-
products on minimal nilpotent coadjoint orbits of semi-simple Lie groups have been
investigated. These results are closely related to ours since these orbits are punctured
cotangent bundles T ∗M \M; nevertheless the Poisson algebras considered in [2] are
smaller than S(M). Moreover, our approach provides explicit formulæ in the projective
case, answering a question raised in [2].

The paper is organized as follows. In Sect. 2 we recall the notions of invariant and
equivalent star-products, and we give a short account on equivariant quantization for
cotangent bundles. In Sect. 3, we define projective and conformal geometries and deter-
mine the ring of projectively/conformally invariant linear operators on S(M). The exis-
tence of G-invariant star-product on T ∗M , along with a few of their properties, are proved
in Sect. 4. Sect. 5 contains our uniqueness theorems. In Sect. 6, we give an autonomous
derivation of the canonical projectively invariant star-product on S(RPn), based only on
projective invariant theory. Explicit formulæ are then provided. We end this paper, with
Sect. 7, where we gather our conclusion, a discussion and a few perspectives.

2. Invariant Star-Products and Equivariant Quantization

In this section we introduce the general notions of invariance and covariance of star-
products with respect to a Hamiltonian action of a connected Lie group G.

2.1. Invariant, covariant and strongly invariant star-products. First of all, let us give
the precise definition of an invariant star-product already mentioned in the Introduction.

Definition 2.1. Given a Poisson action of a Lie group G on a Poisson manifold P , a
star-product � on C∞(P ) is called G-invariant if

g∗(F � G) = g∗F � g∗G (2.1)

for all F, G ∈ C∞(P )[[�]] and g ∈ G.

In the case where the G-action is Hamiltonian one has the following supplementary
notions:
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Definition 2.2. Consider a Hamiltonian G-action on a Poisson manifold P with asso-
ciated equivariant moment map J : P → g∗, where g∗ is the dual of the Lie algebra g
of G. A star-product on P is called

a) G-covariant if

JX � JY − JY � JX = i� {JX, JY }, (2.2)

b) strongly G-invariant if

JX � F − F � JX = i� {JX, F } (2.3)

for all F ∈ C∞(P )[[�]] and X, Y ∈ g, where JX is the Hamiltonian function on P

corresponding to X.

Remark 2.3. Note that a different terminology is sometimes attached to this last notion
in the literature. What we call here strong G-invariance corresponds to the notion of
preferred observables in [3, 18] and to Property IP2 in [1]. Beware that, in the latter
reference, strong invariance means covariance and invariance.

Let us now recall the following useful result.

Proposition 2.4 ([1]). If a star-product is strongly G-invariant, then it is both G-invari-
ant and G-covariant.

Proof. Using the definition (2.3) of strong invariance, we write

i�{JX, F � G} = JX � F � G − F � G � JX

= JX � F � G − F � JX � G + F � JX � G − F � G � JX

= i� ({JX, F } � G + F � {JX, G})
which is nothing but the infinitesimal version of formula (2.1) expressing the invariance
property. The G-invariance of the star-product then follows from the connectedness of
G.

As for covariance, it is an immediate consequence of strong invariance. ��
Remark 2.5. The converse of Proposition 2.4 is proved in [1] under the additional
assumption of a transitive G-action.

2.2. Equivalence, G-equivalence and reparametrization. In the traditional classifica-
tion of star-products one introduces a notion of equivalence. Two star-products, � and
�′, are called equivalent if there exists a formal series

� = Id + i��1 + (i�)2�2 + · · · , (2.4)

where �i : C∞(P ) → C∞(P ) are some linear operators, such that

�(F) � �(G) = �(F �′ G). (2.5)

Usually, one also allows for formal changes of the parameter of deformation:

µ : i� 	→ i� +
∞∑

k=2

ak(i�)k, (2.6)

where ak ∈ R, in order to comply with Property C2 from the Introduction.
For G-invariant star-products it is natural to consider the notion of G-equivalence.
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Definition 2.6 ([38]). Two equivalent G-invariant star-products are called G-equivalent
if each map �i in (2.4) is G-equivariant.

The condition for two star-products to be G-equivalent is much stronger than the
usual condition of equivalence (see [4] for recent developments).

2.3. Equivariant quantization and the associated invariant star-product. Equivariant
quantization as developed in [37, 23, 21, 22] applies to cotangent bundles. From here
on we restrict ourselves to P = T ∗M endowed with its canonical symplectic form.

Let S(M) ⊂ C∞(T ∗M) be the space of (complex-valued) functions on T ∗M polyno-
mial on fibers, and D(M) be the space of linear differential operators acting on C∞(M).
The space S(M) is the space of symbols of operators in D(M); it has a natural grading

S(M) =
∞⊕

k=0

Sk(M) (2.7)

by the degree of homogeneity.
Let Fλ(M) be the space of tensor densities of degree λ ∈ C on M , i.e., the space of

sections of the complex line bundle |�nT ∗M|λ ⊗ C. In local coordinates such densities
are of the form

f (x1, . . . , xn) |dx1 ∧ · · · ∧ dxn|λ (2.8)

with f ∈ C∞(M). Denote Dλ(M) the space of linear differential operators on Fλ(M);
it has a natural filtration

D0
λ(M) ⊂ D1

λ(M) ⊂ · · · ⊂ Dk
λ(M) ⊂ · · ·

such that S(M) = gr(Dλ(M)).

Definition 2.7. A quantization map is an invertible linear map

Qλ : S(M) → Dλ(M)[�]

which preserves the principal symbol in the following sense: for a homogeneous poly-
nomial F ∈ Sk(M), the principal symbol of the differential operator Qλ(F ) is equal to
(i�)kF .

There is a natural action of the group of diffeomorphisms, Diff(M), on Fλ(M),
denoted by gλ : Fλ(M) → Fλ(M) for all g ∈ Diff(M). We will rather use the corre-
sponding action of the Lie algebra of vector fields, Vect(M), which is given by

Lλ
Xf = Xi ∂f

∂xi
+ λ

∂Xi

∂xi
f (2.9)

for all X = Xi ∂/∂xi ∈ Vect(M), with the local identification Fλ(M) ∼= C∞(M) made
in (2.8). (We will use Einstein’s summation convention throughout this article.) Note that
the expression (2.9) is, indeed, independent of the choice of a coordinate system. The
canonical lift of the Diff(M)-action to T ∗M is automatically Hamiltonian with moment
map J given by

JX = ξiX
i ∈ S1(M). (2.10)
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Definition 2.8. Consider a Lie group G ⊂ Diff(M). A quantization map Qλ is called
G-equivariant if

Qλ(g
∗F) = g−1

λ ◦ Qλ(F ) ◦ gλ (2.11)

for all g ∈ G and F ∈ S(M).

The above formula plays a central rôle in the forthcoming developments. We will
need its infinitesimal guise

Lλ
X ◦ Qλ(F ) − Qλ(F ) ◦ Lλ

X = Qλ(LXF) (2.12)

for all X ∈ g, where LX stands for the canonical lift to T ∗M of the fundamental vector
field associated with X.

From such a quantization map, we immediately obtain an associative product given
by

F �λ G = Q−1
λ (Qλ(F ) ◦ Qλ(G)). (2.13)

Note that this product is not necessarily of the form (1.1). However, Condition C1 is
automatically satisfied.

The following proposition is a direct consequence of the above definitions.

Proposition 2.9. If Qλ is a G-equivariant quantization map on S(M), then the associa-
tive product on S(M) given by (2.13) is G-invariant.

One wonders if there exists some extra condition sufficient to insure strong G-invari-
ance of the G-invariant associative product (2.13). The next proposition introduces a
natural geometric property of the quantization map that leads to the desired result.

Proposition 2.10. If Qλ is a G-equivariant quantization map on S(M), which further-
more satisfies the following condition:

Qλ(JX) = i� Lλ
X (2.14)

for all X ∈ g, then the associative product on S(M) given by (2.13) is strongly G-invari-
ant.

Proof. Let X ∈ g and F ∈ S(M), then, using successively (2.13), (2.14), and (2.12),
we get

JX �λ F − F �λ JX = (Qλ)
−1 [Qλ(JX), Qλ(F )]

= (Qλ)
−1 [

i� Lλ
X, Qλ(F )

]

= i� LXF

= i� {JX, F },

where the last equality stems from the definition of the moment map. The proof that
(2.3) holds is complete. ��
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3. Projectively/Conformally Invariant Operators

We gather here definitions and results that will be used throughout the paper. Those
mainly concern projective/conformal differential geometry. We will consider the Lie
groups G = SL(n+1, R) and G = SO0(p+1, q +1) together with their homogeneous
spaces M = RPn and M = (Sp × Sq)/Z2, respectively. From here on, G will stand
for either of the two groups above and M for either of the corresponding homogeneous
spaces. In the framework of Weyl’s invariant theory [46], we will introduce, for each
geometry, G-invariant linear operators on T ∗M which will serve as our main tools.

3.1. The projective and conformal symmetries. The real projective space of dimension n

is an SL(n+1, R)-homogeneous space. More precisely, RPn = SL(n+1, R)/Aff(n, R),
where Aff(n, R) = GL(n, R) � R

n is an affine subgroup of SL(n + 1, R).
Let x1, x2, . . . , xn be an affine coordinate system on RPn, the fundamental vector

fields associated with the SL(n + 1, R)-action on RPn are then given by :

∂

∂xi
, xi ∂

∂xj
, xixj ∂

∂xj
, (3.1)

with i, j = 1, . . . , n. The vector fields (3.1) correspond to translations, linear transfor-
mations and inversions, respectively; they generate a flag of Lie algebras

R
n ⊂ aff(n, R) ⊂ sl(n + 1, R).

The sphere Sn with its canonical metric is a conformally flat manifold. The same is
true for (Sp × Sq)/Z2 in the case of signature p − q. Those are homogeneous spaces
SO(p+1, q+1)/CE(p, q), where CE(p, q) = CO(p, q)�R

n is the conformal Euclid-
ean group, CO(p, q) = SO(p, q) � R

∗+, and n = p + q.
The fundamental vector fields associated with the SO0(p + 1, q + 1)-action on

(Sp × Sq)/Z2 in an “anallagmatic” coordinate system are given (see, e.g., [19]) by

∂

∂xi
, xi

∂

∂xj
− xj

∂

∂xi
, xi ∂

∂xi
, xj x

j ∂

∂xi
− 2xix

j ∂

∂xj
, (3.2)

where i, j = 1, . . . , n, and where indices are raised and lowered using the standard
metric g of (Sp × Sq)/Z2. The vector fields (3.2) correspond to translations, rotations,
homotheties and inversions, respectively; they generate a flag of Lie algebras

R
n ⊂ e(p, q) ⊂ ce(p, q) ⊂ o(p + 1, q + 1).

These two groups of transformations, G, define respectively the projective and the
conformal geometries; their Lie algebras, g, spanned by the vector fields (3.1) and (3.2)
are finite-dimensional maximal Lie subalgebras of Vect(M), see [37, 5].

We also introduce, for convenience, the notation H ⊂ G for the affine Lie subgroups
H = Aff(n, R) in the projective case, and H = CE0(p, q) in the conformal case. The
corresponding Lie subalgebras will be denoted by h ⊂ g.
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3.2. Affine and Euclidean invariant operators. Since the group Diff(M) of diffeomor-
phisms of M admits a canonical lift to T ∗M , let us lift, accordingly, the action of G.
The search for G-invariant linear operators on S(M) will be dealt with in two stages.
We first consider the affine (resp. Euclidean) subgroup and determine the algebra of
Aff(n, R)-invariant (resp. (SO0(p, q)�R

n)-invariant) operators; in the next section we
will then enforce full G-invariance.

A classical result from invariant theory shows that the commutant of Aff(n, R) in
End(S(M)) is generated by the following two operators:

E = ξi

∂

∂ξi

, D = ∂

∂xi

∂

∂ξi

(3.3)

which span the Lie algebra aff(1, R). Indeed, an Aff(n, R)-invariant linear operator
mapping Sk(M) into S�(M) is proportional to Dk−� (see, e.g., [46, 29]). The commutant
of Aff(n, R) in End(S(M)) is, hence, given by series in E and D, convergent on S(M).

It has been shown in [23] that the commutant of SO0(p, q) � R
n in End(S(M)) is

generated by the operators

R = ξ iξi , E = ξi

∂

∂ξi

, T = ∂

∂ξ i

∂

∂ξi

(3.4)

whose commutation relations are those of sl(2, R), together with

G = ξ i ∂

∂xi
, D = ∂

∂xi

∂

∂ξi

, � = ∂

∂xi

∂

∂xi

, (3.5)

which span the Heisenberg Lie algebra h1. The operators (3.4) and (3.5) span the Lie
algebra sl(2, R) � h1.

3.3. Projectively and conformally invariant operators. It is noteworthy that E com-
mutes with the lift of any diffeomorphism of M . One may ask if, upon restriction to
G ⊂ Diff(M), there exist other linear operators on T ∗M that commute with G. The
answer is negative in the projective case and positive in the conformal case.

Proposition 3.1. The commutant of SL(n + 1, R) in End(S(M)) is generated by E .

Proof. An affinely invariant linear operator is a series in E and D of the form

A =
∞∑

s=0

Ps(E) Ds , (3.6)

where Ps is a series in one variable. Let Xi = xixj ∂/∂xj be the ith generator of inver-
sions in (3.1). Straightforward computation (see [37]) yields the commutation relation

[
LXi

, D
] = (2E + n + 1) ◦ ∂

∂ξi

.

One then checks that

[
LXi

, A
] =

∞∑

s=0

sPs(E)(2E + n + s) Ds−1 ◦ ∂

∂ξi

. (3.7)

This expression vanishes if and only if Ps = 0 for all s ≥ 1. Hence A = P0(E) is a
necessary condition for A to commute with the SL(n + 1, R)-action. ��
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The conformal counterpart of the above statement is as follows.

Proposition 3.2. The commutant of SO0(p+1, q+1) in End(S(M)) is the commutative
associative algebra generated by E and the operator R0 = R ◦ T.

Proof. A sketch of this proof was given in [23]; for the sake of completeness we give
the details here.

Let us consider an operator Z on the space of polynomials of degree k, namely

Sk(M) =
k⊕

�=0

S�(M),

and commuting with the canonical lift of SO0(p + 1, q + 1). It is, according to classical
invariant theory [46, 29], a differential operator, polynomial in the generators (3.4) and
(3.5).

We therefore seek a differential operator Z on T ∗M which commutes with the
SO0(p + 1, q + 1)-action. Its principal symbol σ(Z) is a function on T ∗(T ∗M), poly-
nomial on fibers. More precisely, if (ζi, y

i) denote the conjugate variables to (xi, ξi)

respectively, then σ(Z) is polynomial in the variables ξi, ζi, y
i . The function σ(Z) has to

be annihilated by the canonical lifts to T ∗(T ∗M) of all generators (3.2) of the conformal
Lie algebra o(p + 1, q + 1).

Let us assume that σ(Z) is ce(p, q)-invariant and consider then invariance with
respect to inversions whose ith generator is Xi = xjx

j ∂/∂xi − 2xix
j ∂/∂xj . Its canon-

ical lift to T ∗(T ∗M) is given by

L̃Xi
= xjx

j ∂

∂xi
− 2xix

j ∂

∂xj

+2xi

(
ξj

∂

∂ξj

− yj ∂

∂yj
+ ζj

∂

∂ζj

)

−2xj

(
ξi

∂

∂ξj
− ξj

∂

∂ξ i
+ yi

∂

∂yj
− yj

∂

∂yi

+ ζi

∂

∂ζ j
− ζj

∂

∂ζ i

)

+2

(
ξi yj

∂

∂ζj

− yi ξj

∂

∂ζj

− ξj yj ∂

∂ζ i

)
, (3.8)

and the invariance with respect to inversions reads L̃Xi
σ (Z) = 0. Now, invariance with

respect to ce(p, q) clearly implies that σ(Z) is annihilated by the first three terms in
(3.8), so that

(
ξi yj

∂

∂ζj

− yi ξj

∂

∂ζj

− ξj yj ∂

∂ζ i

)
σ(Z) = 0 (3.9)

for all i = 1, . . . , n.

Lemma 3.3. Equation (3.9) implies

∂σ(Z)

∂ζi

= 0 (3.10)

for all i = 1, . . . , n.
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Proof. The determinant of the matrix

Ai
j = yiξj − ξ iyj + ξky

k δi
j

intervening in (3.9) is det(A) = ξiξ
i yj y

j (ξky
k)n−2 which is non-zero on the comple-

ment of a lower-dimensional smooth submanifold of T ∗(T ∗M). ��
By e(p, q)-invariance, the operator Z is a polynomial in the differential operators

(3.4) and (3.5), see Sect. 3.2. Furthermore, invariance with respect to the generator of
homotheties X0 = xi ∂/∂xi shows that Z is in fact a polynomial in

R0 = R ◦ T, E, G0 = G ◦ T, D, �0 = � ◦ T. (3.11)

The principal symbols of the last three operators are

σ(G0) = ξiζ
i yj y

j , σ (D) = ζi yi, σ (�0) = ζiζ
i yj y

j .

These three polynomials are algebraically independent for n > 1. Condition (3.10)
implies then that Z depends only on E and R0. Note that if n = 1, we find R0 = E(E −1)

in agreement with Proposition 3.1.
We have thus shown that, for all k, any Z ∈ End(Sk(M)) commuting with the

SO0(p + 1, q + 1)-action is polynomial in E and R0. This completes the proof of Prop-
osition 3.2. ��

4. Existence of Projectively and Conformally Invariant Star-Products

Taking advantage of the results obtained in equivariant quantization (see [37, 23, 9]) and
of Proposition 2.9, one defines a G-invariant star-product on T ∗M . In this section we
give a brief account on the projectively and conformally equivariant quantizations and
discuss the main properties of the associated invariant star-products.

4.1. Construction of G-invariant star-products. It has been proved in [37, 23] that,
for any λ ∈ C, there exists a unique G-equivariant quantization map Qλ : S(M) →
Dλ(M)[�] on T ∗M .

In a local coordinate system, one can locally identify S(M) and Dλ(M) through the
normal ordering prescription:

P i1...ik ξi1 · · · ξik 	→ (i�)kP i1...ik
∂

∂xi1
· · · ∂

∂xik
, (4.1)

where P i1...ik is a smooth function of (x1, . . . , xn).
The explicit formula of Qλ is only known in the projective case; it is given, in an

adapted coordinate system, and using the identification (4.1), by the series [22]

Qλ =
∞∑

r=0

Cr(E) (i�D)r , (4.2)

where E and D are as in (3.3) and

Cr(E) = 1

r!

(E + (n + 1)λ)r

(2E + n + r)r
, (4.3)
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where (a)r := a(a +1) · · · (a + r −1) is the Pochhammer symbol. The expression (4.2)
is well defined globally on T ∗M since M is projectively flat.

An important feature of the quantization map (4.2) is that it is homogeneous in the
following sense. Let us assign a degree to the deformation parameter �, more precisely,
we put

deg � = 1.

Then Qλ preserves the total degree on S(M)[�]. In other words, one has

Proposition 4.1. The quantization map Qλ commutes with the Euler operator:

Ê = E + �
∂

∂�
. (4.4)

Proof. This follows from the commutation relation [E, D] = −D and the expres-
sion (4.2). ��

In the conformal case we have no explicit formula for the SO0(p + 1, q + 1)-equi-
variant quantization map. However, one can guarantee [23] that Qλ is also homogeneous
in this case.

A G-invariant star-product on T ∗M can be obtained from such a G-equivariant quan-
tization map.

Proposition 4.2 ([23, 9]). The associative product associated with Qλ through (2.13) is
a star-product if and only if λ = 1

2 .

The proof consists in checking that λ = 1
2 is the only value of λ for which the

first-order term in � of the associative product (2.13) coincides with the Poisson bracket.
Note, however, that the uniqueness of Q 1

2
does not a priori insure the uniqueness of

a G-invariant star-product.

4.2. Main properties. For the constructed G-invariant star-products, Condition C1 from
Sect. 1 is satisfied. We will show below that Condition C2 also holds.

Definition 4.3. A star-product on the space S(M) will be called homogeneous, if all the
bilinear operators Br in (1.1) are homogeneous of degree r , that is, if they preserve the
grading (2.7) according to

Br : Sk(M) ⊗ S�(M) → Sk+�−r (M), (4.5)

or, equivalently, if Ê is a derivation of the star-product algebra.

Proposition 4.4. The G-invariant star-product (2.13) obtained from the G-equivariant
quantization map Q 1

2
is symmetric, homogeneous and strongly G-invariant.

Proof. The quantization map Q 1
2

is symmetric, namely, it satisfies

Q 1
2
(F )∗ = Q 1

2
(F )

for all F ∈ S(M) [37, 23, 21], where Q 1
2
(F )∗ denotes the formal adjoint operator with

respect to the natural pairing on compactly supported 1
2 -densities. Using the definition

(2.13) of the star-product, one now gets the symmetry condition C2.
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Homogeneity of the quantization map Q 1
2

readily implies the homogeneity of the
corresponding star-product.

The projectively and the conformally equivariant quantization maps Q 1
2

coincide up
to second-order terms, namely, in both cases one has

Q 1
2

= Id + i�

2
D + O(�2)

in any coordinate system (cf. [37, 23]). One easily verifies that Q 1
2

satisfies con-

dition (2.14). By Proposition 2.10, the associated G-invariant star-products are thus
strongly G-invariant. ��

Condition C3 fails to be satisfied (as proved in [9] and [2] for a subalgebra of S(M)).
Each termBr is a pseudo-differential bilinear operator, while its restrictionBr |Sk(M)⊗S�(M)

is a bidifferential operator, just like Q 1
2
|Sk(M) is a differential operator, see [37]. Hence

the constructed star-product is local, namely, for all F, G ∈ S(M), Supp(F � G) ⊂
Supp(F ) ∩ Supp(G), see Lemma 5.3 below.

5. Uniqueness of G-Invariant Star-Product

Our goal is to show that the star-products constructed in Sect. 4.1 with the help of the G-
equivariant quantization map are the unique G-invariant star-products where, as above,
G = SL(n + 1, R) and G = SO0(p + 1, q + 1), respectively. We prove uniqueness in
two different settings:

1. in the class of homogeneous G-invariant star-products,
2. in the class of all G-invariant star-products modulo formal reparametrizations and

G-equivalence.

5.1. Homogeneous star-products. Homogeneity of a star-product (see Definition 4.3)
is a very natural property from a physical standpoint. Indeed, if one considers � as a
physical constant whose dimension is that of an action (i.e., the dimension of Planck’s
constant which is also the inverse dimension of the Poisson bracket on T ∗M), then the
physical dimension of the star-product F � G of two observables is the same as that of
their product FG, when � is homogeneous. This is a direct consequence of the fact that
Br has the same physical dimension as �

−r , which follows from associativity. In other
words a homogeneous star-product is dimensionless.

On the other hand, homogeneous star-products were thoroughly studied in the mathe-
matical literature. For instance, De Wilde and Lecomte proved [15] that any two homoge-
neous star-products on a cotangent bundle are equivalent (in the sense of the definitions of
Sect. 2.2). The G-invariant star-products constructed in Sect. 4.1 are also homogeneous
(see Proposition 4.4).

The first main result of this paper is

Theorem 5.1. There exists a unique homogeneous G-invariant star-product on the space
of symbols S(M).
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Proof. In Sect. 4 we proved the existence of a homogeneous G-invariant star-product
on S(M). We will now prove its uniqueness.

Let � and �′ be two homogeneous G-invariant star-products. Let us assume that the
first r −1 terms of these star-products coincide, and use induction over r . The difference
Br −B ′

r is a G-invariant homogeneous Hochschild 2-cocycle. Indeed, associativity of the
star-product � implies that δBr depends only upon Bi with i < r , where the Hochschild
coboundary of a 2-cochain B is given by

δB(F, G, H) = FB(G, H) − B(FG, H) + B(F, GH) − B(F, G)H, (5.1)

implying that δ(Br − B ′
r ) = 0.

Let C be a Hochschild 2-cocycle on S(M). Assume now that C is homogeneous as
in (4.5) and G-invariant. As a bilinear map, C decomposes as a sum C1 + C0, where
C1 and C0 are, respectively, the skew-symmetric and the symmetric parts of C. We will
need the following well-known result.

Proposition 5.2. For any local Hochschild 2-cocycle C on S(M), the skew-symmetric
part C1 is a bivector, and the symmetric part C0 is the coboundary of a local 1-cochain.

This statement is an important result in deformation theory. It was first established in
the differentiable case [44] and was later on generalized to local cocycles in [10] (let us
mention that this result also holds for continuous cocycles [13, 40]).

In order to apply Proposition 5.2, we will prove that each term Br of a G-invariant
star-product is local, a result that generalizes Theorem 5.1 in [37].

Lemma 5.3. Any linear G-invariant operator B : Sk(M) ⊗ S�(M) → Sm(M) with
m ≤ k + � is local.

Proof. We must prove that Supp(B(F, G)) ⊂ Supp(F ) ∩ Supp(G) for all F ∈ Sk(M)

and G ∈ S�(M). Suppose that one of the arguments, F or G, vanishes in a neighbour-
hood of some x ∈ M; we will prove that B(F, G)(x) = 0. Let us now locally identify
M with R

n and consider the subalgebra R � R
n of g generated by the Euler vector field,

E , and the translations. Using translation-invariance, we may, hence, assume x = 0.
We will embed Sk(R

n) ⊗ S�(R
n) into Sk+�(R

2n) and notice that F ⊗ G vanishes in
a neighbourhood of x = 0 in R

2n. It remains to show that if B : Sk+�(R
2n) → Sm(Rn)

is a linear map which commutes with the action of homotheties LE , then for all H ∈
Sk+�(R

2n) that vanishes in a neighbourhood of x = 0, we have B(H)(0) = 0, provided
m ≤ k + �. But the proof of the latter statement coincides with that of Theorem 5.1
in [37]. ��

The building blocks of the operators Br are the H-invariant operators listed in (3.11).
These operators never increase the degree of homogeneity in ξ = (ξi), hence Lemma
5.3 applies. We are now able to use Proposition 5.2 and consider C1 and C0 separately.
The assertion of Theorem 5.1 will follow from Lemmas 5.4 and 5.6 below.

Lemma 5.4. There is no non-zero G-invariant bivector on T ∗M with coefficients in
S(M) homogeneous of degree r ≥ 2.

Proof. There is clearly no non-zero such bivector W : Sk(M)⊗S�(M) → Sk+�−r (M),
for r > 2. For r = 2, if it exists, it is necessarily of the form W = Wij ∂/∂ξi ∧ ∂/∂ξj

with coefficients Wij of degree 0 in ξ . Since W is invariant with respect to the genera-
tors of translations, ∂Wij /∂xs = 0 for all s = 1, . . . , n. But, in this case, W cannot be
invariant with respect to homotheties.
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We thus have proved that there is no non-zero bivector invariant with respect to the
(n + 1)-dimensional Lie algebra of translations and homotheties. This Lie algebra is a
Lie subalgebra of both sl(n + 1, R) and o(p + 1, q + 1). Lemma 5.4 is proved. ��
Remark 5.5. Note that, in the proofs of Lemmas 5.3 and 5.4, we only needed invariance
with respect to a subalgebra of g.

Lemma 5.6. There is no non-zero G-invariant Hochschild 2-coboundary C0 on the
associative commutative algebra S(M) homogeneous of degree r ≥ 2.

Proof. Suppose that such a C0 exists. Being a coboundary, it is of the form C0 = δA,
where

δA(F, G) = FA(G) − A(FG) + A(F)G (5.2)

for some linear map A : Sk(M) → Sk−r (M), with r ≥ 2. Let us prove that A is
G-invariant.

Since C0 is G-invariant, then, for any X ∈ g, the linear map LX(A) = [LX, A]
is a Hochschild 1-cocycle on S(M). Indeed one has δ ◦ LX = LX ◦ δ. Thus, LX(A)

is a derivation on S(M). Therefore, this is a vector field on T ∗M polynomial in ξ

and, hence, LX(A) cannot decrease the degree by more than 1. Note, however, that
LX(A) : Sk(M) → Sk−r (M) with r ≥ 2 since, again, LX(A) = LX ◦ A − A ◦ LX

and LX preserves Sk(M) for any vector field X on M . It follows that LX(A) = 0 for all
X ∈ g and thus A is G-invariant.

The classification of G-invariant linear maps on S(M) is given by Proposition 3.1
and Proposition 3.2. Being homogeneous of degree zero in ξ , a non-zero G-invariant
element A of End(S(M)) cannot decrease the degree. Lemma 5.6 is proved. ��

Lemmas 5.4 and 5.6 imply that Br − B ′
r = 0 for r ≥ 2. This completes the proof of

Theorem 5.1. ��
The unique homogeneous G-invariant star-product will be called G-canonical.

According to Proposition 4.4, this G-canonical star-product is the one associated with
the G-equivariant quantization map Q 1

2
from Sect. 4. The same proposition also states

that it is both symmetric and strongly G-invariant.

5.2. Uniqueness up to G-equivalence and reparametrization. The following theorem is
the second main result of this paper.

Theorem 5.7. The G-canonical star-product on the space of symbols S(M) is the unique
G-invariant star-product modulo formal reparametrizations and G-equivalence.

Proof. Let � and �′ be two G-invariant star-products. Let us assume that there exists a
G-invariant formal series (2.4) and a reparametrization (2.6) intertwining the first r − 1
terms of these star-products, and use induction over r . Using this equivalence we can
assume that � and �′ coincide up to the (r − 1)th order term. The difference Br − B ′

r is
then a G-invariant Hochschild 2-cocycle.

As in Sect. 5.1 we consider the decomposition C = C1 + C0, where C1 and C0 are,
respectively, the skew-symmetric and the symmetric parts of C. By Proposition 5.2, C1
is a bivector and C0 is a coboundary.
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We will need the following two lemmas.

Lemma 5.8. (i) In the projective case, the canonical Poisson bivector

� = ∂

∂ξi

∧ ∂

∂xi
(5.3)

on T ∗M is the unique (up to an overall multiplicative constant) G-invariant bivec-
tor.

(ii) In the conformal case with n �= 2, the canonical Poisson bivector on T ∗M is the
unique (up to an overall multiplicative constant) G-invariant bivector.

(iii) In the conformal case with n = 2, there are two G-invariant bivectors on T ∗M ,
namely the canonical Poisson bivector and the Poisson bivector

� = 1

2
gij ξiξj σk�

∂

∂ξk

∧ ∂

∂ξ�

, (5.4)

where g = gij dxidxj represents a conformal class of (pseudo-)Riemannian met-
rics and σ = 1

2σk� dxk ∧ dx� stands for the surface element of (M, g).

Proof. Consider an arbitrary bivector field W on T ∗M . In any local coordinate system
it is of the form

W = Wij (ξ, x)
∂

∂xi
∧ ∂

∂xj
+ W

j
i (ξ, x)

∂

∂ξi

∧ ∂

∂xj
+ Wij (ξ, x)

∂

∂ξi

∧ ∂

∂ξj

, (5.5)

where the coefficients Wij (ξ, x), W
j
i (ξ, x) and Wij (ξ, x) are functions of xi, ξi which

are polynomial in ξ .
Choose an adapted coordinate system related to the projective or conformal struc-

ture on M respectively (see Sect. 3.1). Since W is G-invariant, it commutes with the
action of the generators of translations, that is, with the vector fields Xi = ∂/∂xi , where
i = 1, . . . , n. It follows that the coefficients of W are independent of xi . Furthermore,
W is invariant with respect to the action of the homothety vector field X0 = xi ∂/∂xi .
The canonical lift of X0 to T ∗M is LX0 = xi ∂/∂xi −ξi ∂/∂ξi . One immediately obtains
the following homogeneity conditions:

1. the coefficient Wij (ξ) has to be homogeneous in ξ of degree −2,
2. the coefficient W

j
i (ξ) has to be homogeneous in ξ of degree 0,

3. the coefficient Wij (ξ) has to be homogeneous in ξ of degree 2,

so that Wij (ξ) = 0, while W
j
i (ξ) are constant, and Wij (ξ) = Wk�

ij ξkξ� are quadratic
polynomials. A G-invariant bivector (5.5) is, therefore, a sum of two independent
G-invariant bivectors W0 = W

j
i ∂/∂ξi ∧ ∂/∂xj and W2 = Wk�

ij ξkξ� ∂/∂ξi ∧ ∂/∂ξj .
Considering now invariance with respect to the linear subgroup of G entails that W0

represents an invariant in (Rn)∗ ⊗ R
n and W2 an invariant in �2(Rn)∗ ⊗ S2

R
n with

respect to the standard linear action of SL(n, R) in the projective case, and SO0(p, q) in
the conformal case. A classical result of invariant theory (see [46, 29]) yields W0 = c0 �

with c0 ∈ C and W2 = 0, except for n = 2, in the conformal case, where W2 = c2 �

with c2 ∈ C. Hence, we have proved that the bivectors (5.3), and (5.4) for n = 2 in the
conformal case, are the only bivectors invariant with respect to the affine subgroup of
G.

To complete the proof, one checks that the bivectors (5.3) and (5.4) are invariant with
respect to inversions, i.e., the quadratic vector fields in (3.1) and (3.2). ��
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Lemma 5.9. Every G-invariant Hochschild 2-coboundary C0 on the associative com-
mutative algebra S(M) is of the form C0 = δA, where A is a G-invariant linear map
on S(M).

Proof. The 2-coboundary C0 is local thanks to Lemma 5.3. This clearly implies that any
1-cochain A such that C0 = δA is local, cf. Proposition 5.2.

Given a G-invariant Hochschild 2-coboundary C0 = δA, we will prove that there
exists a linear map Ã such that δÃ = δA and LX(Ã) = 0 for all X ∈ g. Clearly, G-
invariance of C0 = δA implies LX(δA) = 0 for any X ∈ g. Thus, δ(LX(A)) = 0 which
means that LX(A) is a vector field.

A local operator A is a locally given, according to the Peetre theorem [42], by a
differential operator; in an arbitrary coordinate system,

A = A(0) + A(1) + A(2) + · · · + A(m), (5.6)

where

A(i) =
∑

i1+i2=i

A
s1...si1
t1···ti2 (x, ξ)

∂

∂xs1
· · · ∂

∂xsi1

∂

∂ξt1

· · · ∂

∂ξti2

. (5.7)

Choose a coordinate system adapted to either the projective or the conformal structure.
Consider first the action of the affine Lie subalgebra, h ⊂ g, that is, h = aff(n, R) in the
projective case and h = ce(p, q) in the conformal case, introduced in Sect. 3.1.

For each component A(i), except for A(1), one has LX(A(i)) = 0, where X ∈ h, since
this operator is of the form (5.7) and thus cannot be a vector field. Put Ã = A − A(1);
this operator satisfies LX(Ã) = 0 for all X ∈ h and, obviously, δÃ = δA. In partic-
ular, invariance with respect to translations guarantees that the coefficients in (5.7) are
independent of x.

In the projective case, an affinely invariant operator Ã is of the form (3.6); for the
generators Xi of inversions, LXi

(Ã) is given by (3.7). This is a vector field if and only
if Ps = 0 for all s ≥ 1. Hence Ã = P0(E) and thus LXi

(Ã) = 0, see Proposition 3.1.
In the conformal case, let us rewrite the expression of Ã in a different form, namely

Ã = Ã(0) + Ã(1) + Ã(2) + · · · + Ã(t),

where t ≤ m and

Ã(j) = Ãs1...sj
∂

∂xs1
· · · ∂

∂xsj
;

each Ãs1...sj is a differential operator in ξ with polynomial coefficients in ξ . Each
term Ã(j) is invariant with respect to translations and homogeneous in x of degree −j .
Invariance with respect to homotheties implies that Ã(j) is homogeneous in ξ of de-
gree −j , that is,

[E, Ã(j)] = −j Ã(j) .

Let Xi be the ith generator of inversions. The operator LXi
(Ã(j)) is homogeneous

in ξ of degree −j , since LXi
(E) = 0, cf. Proposition 3.2. Hence, LXi

(Ã) is a vector
field only if LXi

(Ã(j)) = 0 for j ≥ 2 since it is polynomial in ξ .
Because of its h-invariance, Ã belongs to the ring generated by the operators

E, R0 = R ◦ T, D, G0 = G ◦ T, �0 = � ◦ T,
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where these operators have been defined in (3.4), (3.5) and (3.11). The term Ã(1) is then
necessarily of the form

Ã(1) = α D + β G0

where α and β are polynomials in E and R0. A direct computation yields

LXi
(Ã(1)) = 2α

(
ξiT − 2E ∂

∂ξi

− n
∂

∂ξi

)
− 2β

(
R0

∂

∂ξi

+ 2ξiT

)
.

Every term in this expression, except for −2nα ∂/∂ξi , is a differential operator of
order > 1 for any α and β. Thus, the right-hand side can be a non-zero vector field
only if α is a non-zero constant. On the other hand, −2β R0 ∂/∂ξi is, at least, a third-
order term unless β is zero. But, the remaining terms 2α ξiT and −4αE ∂/∂ξi are of
order 2 and linearly independent. One concludes that α = 0 and thus LXi

(Ã(1)) = 0.
Finally, the term Ã(0) is obviously a polynomial inE and R0 and, hence,LXi

(Ã(0))=0.
We have thus proved that LXi

(Ã) = 0 for all i = 1, . . . , n. Lemma 5.9 is proved.
��

Let us resort to Lemmas 5.8 and 5.9 to complete the proof. The G-invariant Hochs-
child 2-cocycle C = Br − B ′

r is a sum C = C1 + C0.
The symmetric part C0 is a Hochschild coboundary and, by Lemma 5.9 is of the

form C0 = δA, where A is a G-invariant 1-cochain. This term can be removed by a
G-equivalence map � = Id + (i�)rA.

Under the hypotheses of parts (i) and (ii) of Lemma 5.8, the skew-symmetric part C1
is proportional to the canonical Poisson bivector, that is, to the first-order term B1. It can
be removed by a reparametrization i� 	→ i� + c (i�)r for some c ∈ R.

Theorem 5.7 is proved for the first two options, (i) and (ii), of Lemma 5.8.
In the conformal case and for n = 2 (part (iii) of Lemma 5.8), the skew-symmetric

part C1 is a linear combination of the canonical Poisson bivector � and of the bivector
� in (5.4). By a reparametrization map we can remove the canonical Poisson bivector
but not the bivector �.

Let us, indeed, show that, if Br − B ′
r = C1 = k�, then necessarily k = 0. We

associate to the star-products � and �′ the corresponding star-commutators

[F, G]� = 1

i�
(F � G − G � F) . (5.8)

Since the two star-products are associative, the corresponding star-commutators satisfy
the Jacobi identity. Put J�(F, G, H) = [F, [G, H ]�]� + (cyclic) and consider the differ-
ence J�(F, G, H) − J�′(F, G, H). By assumption, this expression has to be identically
zero. Since the two star-products coincide up to order r − 1 in i�, this difference is
trivially zero up to order r − 2. Straightforward computation shows that the (r − 1)th

order term in the above difference is equal to 2k[�, �](F, G, H), where [�, �] is the
Schouten bracket of � and �. Jacobi identities for � and �′-commutators then lead to
k [�, �] = 0.

Lemma 5.10. The two Poisson bivectors � and � are not compatible.
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Proof. The Schouten bracket is

[�, �] = 2
∂

∂ξ1
∧ ∂

∂ξ2
∧

(
ξ1

∂

∂x1 + ξ2
∂

∂x2

)

= 2� ∧ G

R
,

where G and R are as in (3.5) and (3.4). This expression does not vanish. ��
Thus, the constant k in the above formula has to vanish. This completes the proof of

Part (iii).
Theorem 5.7 is proved. ��
Lemmas 5.8–5.10 can be summarized as the following:

Proposition 5.11. The second G-invariant Hochschild cohomology space is

HH2
G(S(M); S(M)) =

{
R

2, in the conformal case for n = 2
R, otherwise

and the cup product in the first instance is non-zero.

This result could have been derived from Kontsevich’s [34] or Fedosov’s [27] clas-
sification of equivalence classes of deformations.

Remark 5.12. Theorem 5.7 does not guarantee uniqueness of a star-product but of a
class of G-invariant star-products. Together with Propositions 3.1 and 3.2 this leads to
an explicit description of all G-invariant star-products. Indeed, they are all obtained from
the G-canonical homogeneous star-product by the equivalence (2.5) and reparametriza-
tion (2.6); the equivalence map � is given in terms of the G-invariant operators E in the
projective case and E and R0 in the conformal case.

5.3. Uniqueness up to G-equivalence and reparametrization, G-covariance and homo-
geneity. In this section we compare our uniqueness theorems with those obtained for
the Moyal star-product in [33]. The Moyal star-product is the unique, up to reparamet-
rization, (Sp(2n, R) � R

2n)-invariant star-product on R
2n. It was also proved that it is

uniquely selected within its reparametrization class by furthermore requiring its covari-
ance. The (Sp(2n, R) � R

2n)-equivalence class of the Moyal star-product has a single
element since the (Sp(2n, R) � R

2n)-commutant in End(C∞(R2n)) is trivial so that
there are no non-zero invariant Hochschild 2-coboundaries.

One may wonder if in our present setting G-covariance plays a similar role, namely,
that of an extra condition that selects the canonical G-invariant star-product of Sect. 5.1
within its reparametrization and G-equivalence classes described in Sect. 5.2. The answer
is negative; however we have

Proposition 5.13. If two G-invariant and G-covariant star-products on S(M) are equiv-
alent up to reparametrization, then they coincide.

Proof. Let � and �′ be two G-invariant and G-covariant star-products on S(M) belonging
to the same reparametrization class. Their G-covariance translates into (see (2.2)) :

JX � JY − JY � JX = i� {JX, JY } = JX �′ JY − JY �′ JX (5.9)
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for all X, Y ∈ g. On the other hand reparametrization equivalence means that there exist
a formal power series (2.6) such that

F �′ G =
∑

r≥0

(i�)rB ′
r (F, G) =

∑

r≥0

(µ(i�))r Br(F, G).

Using this equation, one rewrites the right-hand side of (5.9) in terms of �, with µ(i�)

as deformation parameter. Now, using the left hand side of (5.9) one gets µ(i�) = i�,
from which the conclusion follows. ��

An analog of the above statement, where the reparametrization equivalence is replaced
by G-equivalence, does not hold. Indeed, one shows using an argument similar to the
one in the above proof, that two G-invariant and G-covariant star-products on S(M)

in the same G-equivalence class, do not necessarily coincide. So, covariance does not
play the same role for G as it does for Sp(2n, R) � R

2n. However, a simple verifica-
tion shows that, for the Moyal star-product, homogeneity has exactly the same effect as
(Sp(2n, R)�R

2n)-covariance. Hence, the G-canonical and the Moyal star-products are
uniquely determined by two simple conditions, namely, invariance and homogeneity.

6. Explicit Formula for the Projectively-Invariant Star-Product

In this section we compute the explicit formula of the canonical homogeneous projec-
tively-invariant star-product. This solves a problem raised in [2].

Projective invariance will be dealt with in two stages. We first consider invariance
with respect to an affine subgroup Aff(n, R) of SL(n + 1, R) and determine the affine-
invariant bilinear operators on S(RPn). Those will be used to write down an Ansatz for
the star-product we are looking for. We will then enforce full projective invariance by
further demanding that inversions preserve the star-product. This will give rise to Eq.
(6.11) and (6.12) below. Another system of equations will arise from the associativity
requirement (see (6.14)). The unique solution of the complete system of equations will
be given explicitly at the end of this section.

6.1. Autonomous derivation from the invariance principle. We need to classify the bilin-
ear Aff(n, R)-invariant differential operators on S(Rn). For that purpose, let us resort
to the natural embedding

S(Rn) ⊗ S(Rn) → S(R2n) (6.1)

and denote by (x, ξ, y, η) the natural coordinate system on T ∗
R

n×T ∗
R

n. The operators
of divergence with respect to the first and the second arguments

Dxξ (F, G) = D(F) G, Dyη(F, G) = F D(G), (6.2)

where D is as in (3.3), and the operators of contraction

Dxη(F, G) = ∂

∂xi

∂

∂ηi

F (ξ, x)G(η, y)

∣∣∣
η=ξ,y=x

, (6.3)

Dyξ (F, G) = ∂

∂yi

∂

∂ξi

F (ξ, x)G(η, y)

∣∣∣
η=ξ,y=x

(6.4)

are obviously Aff(n, R)-invariant differential operators. Restricting ourselves to homo-
geneous components, we get the following:
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Proposition 6.1. Every bilinear differential operator

Sk(R
n) ⊗ S�(R

n) → Sm(Rn) (6.5)

invariant with respect to the action of Aff(n, R), is a homogeneous polynomial in
Dξx, Dξy, Dηx and Dηy of degree k + � − m.

This enables us to write the most general Aff(n, R)-invariant bilinear operation
S(Rn) ⊗ S(Rn) → S(Rn)[�]. According to Theorem 5.7, we will express it as a
termwise homogeneous formal series which, when restricted to Sk(R

n)⊗S�(R
n), takes

the form

F � G =
∞∑

r=0

(i�)rBk,�
r (F, G), (6.6)

where B
k,�
r is a bidifferential operator, homogeneous of degree r in Dξx, Dξy, Dηx, Dηy ,

viz

Bk,�
r (F, G)(ξ, x) =

∑

α+β+γ+δ=r

B
k,�
α,β,γ,δ Dα

ξy Dβ
ηx Dγ

ξx Dδ
ηy F (ξ, x)G(η, y)

∣∣∣
η=ξ,y=x

(6.7)

with constant coefficients B
k,�
α,β,γ,δ .

Since we seek a star-product, we have to impose

B
k,�
0,0,0,0 = 1 (6.8)

and

B
k,�
1,0,0,0 = −B

k,�
0,1,0,0 = 1

2
(6.9)

in order to get the multiplication and Poisson bracket as the first two terms as in Eq.
(1.1).

Expressions (6.6) and (6.7) constitute our Ansatz for an SL(n + 1, R)-invariant star-
product on T ∗

RPn. It now remains to impose to the operation (6.6) the following con-
ditions: (i) invariance with respect to inversions, and (ii) associativity.

6.2. Projective invariance. Let Xi = xixj ∂xj be the ith generator of inversions. Denote
by

LXi
= xixj ∂

∂xj
− xj ξj

∂

∂ξi

− xiξj

∂

∂ξj

+ yiyj ∂

∂yj
− yjηj

∂

∂ηi

− yiηj

∂

∂ηj

its canonical lift to T ∗(R2n).
Invariance with respect to inversions translates into the following equations:

∑

α+β+γ+δ=r

B
k,�
α,β,γ,δ

[
LXi

, Dα
ξy Dβ

ηx Dγ
ξx Dδ

ηy

] ∣∣∣
η=ξ,y=x

= 0 (6.10)
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at each order r ∈ N. The latter yield the following system of equations:

(α + 1)(α + δ − �)B
k,�
α+1,β,γ,δ + (β + 1)(β + δ − �)B

k,�
α,β+1,γ,δ

= (γ + 1)(n + 2k − γ − 1)B
k,�
α,β,γ+1,δ + (α + 1)(β + 1)B

k,�
α+1,β+1,γ,δ−1 (6.11)

and

(β + 1)(β + γ − k)B
k,�
α,β+1,γ,δ + (α + 1)(α + γ − k)B

k,�
α+1,β,γ,δ

= (δ + 1)(n + 2� − δ − 1)B
k,�
α,β,γ,δ+1 + (α + 1)(β + 1)B

k,�
α+1,β+1,γ−1,δ. (6.12)

6.3. Associativity. If F ∈ Sk(R
n), G ∈ S�(R

n), and H ∈ Sm(Rn) the associativity
condition takes the form

r∑

j=0

B
k,�+m−j
r−j (F, B

�,m
j (G, H)) =

r∑

j=0

B
k+�−j,m
r−j (B

k,�
j (F, G), H) (6.13)

for all r ∈ N. Equation (6.13) then reads

r∑

j=0

∑

α+β+γ+δ=r−j

B
k,�+m−j
α,β,γ,δ (Dξy + Dξz)

α(Dηx + Dζx)
β

×Dγ
ξx(Dηy + Dηz + Dζy + Dζz)

δ

×
∑

α′+β ′+γ ′+δ′=j

B
�,m
α′,β ′,γ ′,δ′Dα′

ηzDβ ′
ζyDγ ′

ηyDδ′
ζz

=
r∑

j=0

∑

α+β+γ+δ=r−j

B
k+�−j,m
α,β,γ,δ (Dξz + Dηz)

α(Dζx + Dζy)
β

×(Dξx + Dξy + Dηx + Dηy)
γ Dδ

ζz

×
∑

α′+β ′+γ ′+δ′=j

B
k,�
α′,β ′,γ ′,δ′Dα′

ξyDβ ′
ηxDγ ′

ξxDδ′
ηy. (6.14)

6.4. Explicit solution of the system. We solve the system of equations (6.11), (6.12) and
(6.14), by first determining the components B

k,�
α,β,0,0, then B

k,�
α,β,γ,0 and, finally, the full

expression B
k,�
α,β,γ,δ .

6.4.1. First stage. Identifying in the associativity equation (6.14) the coefficients of the
monomials Dr−j

ξz Dj
ζx , one readily finds B

k,�+m
r−j,j,0,0 = B

k+�,m
r−j,j,0,0. Thus, B

k,�
α,β,0,0 depends

only on k + �; we write

B
k,�
α,β,0,0 = Cα,β(k + �). (6.15)
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Using again (6.14), we identify the coefficients of the monomials Dr−j−1
ξz Dj

ζxDηx

and Dr−j−1
ξz Dj

ζxDξy , respectively, to get the following system:

(j + 1)B
k,�+m
r−j−1,j+1,0,0 = B

k+�,m
r−j−1,j,1,0 + B

k+�,m
r−j−1,j,0,0B

k,�
0,1,0,0,

(r − j)B
k,�+m
r−j,j,0,0 = B

k+�,m
r−j−1,j,1,0 + B

k+�−1,m
r−j−1,j,0,0B

k,�
1,0,0,0.

Resorting to the invariance equation (6.11) for α = r − j − 1, β = j , and γ = δ = 0,
we obtain the supplementary equation

(r − j)(r − j − � − 1)B
k,�
r−j,j,0,0 + (j + 1)(j − �)B

k,�
r−j−1,j+1,0,0

−(n + 2k − 1)B
k,�
r−j−1,j,1,0 = 0.

The previous three equations together with (6.9) and (6.15) imply

(r − j)(r − n − 2k)Cr−j,j (k) + 1

2
(n + 2k − 2j − 1)Cr−j−1,j (k − 1) = 0.

The latter equation, supplemented with (6.8), yields then

B
k,�
α,β,0,0 = (−1)β

(α + β)!

( 1
2 (n−1)+k+�−β

α

)( 1
2 (n−1)+k+�−α

β

)

(
n+2k+2�−α−β

α+β

) . (6.16)

6.4.2. Second stage. Here we only use the first invariance equation (6.11) with δ = 0.
Long but straightforward calculations lead to

B
k,�
α,β,γ,0 = 1

γ !(n + 2k − γ )γ

∑

r+s=γ

(
γ

r

)
(α + 1)r (β + 1)s

× (α − �)r (β − �)s B
k,�
α+r,β+s,0,0, (6.17)

where the last term is as in (6.16).

6.4.3. Last stage. A reverse iterative computation on δ using the second invariance
equation (6.12) finally leads to the sought for result

B
k,�
α,β,γ,δ = 1

δ!(n + 2� − δ)δ

∑

r+s+t=δ

(−1)s
(

δ

r, s, t

)

×(α + 1)r (α + 1)s(β + 1)s(β + 1)t (α + γ − k)r (β + γ − k)t

×B
k,�
α+r+s,β+s+t,γ−s,0, (6.18)

where the first line contains the trinomial coefficient and the last one is given by (6.17).
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6.5. Symmetry condition.

Proposition 6.2. The symmetry condition C2 translates for the Ansatz (6.6)–(6.7) into

B
k,�
α,β,γ,δ = (−1)α+β+γ+δ B

�,k
β,α,δ,γ . (6.19)

Proof. If F ∈ Sk(R
n), and G ∈ S�(R

n), we immediately get from Condition C2 that

Bk,�
r (F, G) = (−1)r B�,k

r (G, F ).

Then, a change of dummy variables in (6.7) completes the proof. ��
It turns out that our star-product given by (6.6), (6.7) and (6.18) automatically satis-

fies the symmetry condition (6.19). Although this is not transparent from the expression
(6.18), it is however a direct consequence of Proposition 4.4 and Theorem 5.1.

7. Conclusion, Discussion and Outlook

In this work we have proved the existence and uniqueness of a canonical G-invariant
star-product on T ∗M for G = SL(n+1, R) (resp. G = SO0(p+1, q+1) and M = RPn

(resp. (Sp × Sq)/Z2). We have, moreover, given an explicit formula for the canonical
projectively invariant star-product. For both geometries, the canonical star-product so
obtained is symmetric, homogeneous, strongly G-invariant (hence G-covariant), but
not differential. These properties, except for the last one, are shared with the Moyal
star-product on R

2n.
Theorem 5.1 shows that the homogeneity condition supplementing G-invariance

uniquely determines the canonical G-invariant star-product on S(M). Likewise, the
Moyal star-product is also uniquely specified by (Sp(2n, R) � R

2n)-invariance and
homogeneity. This allows us to draw a parallel between our canonical G-invariant star-
product and Moyal’s, namely, they are uniquely determined by the same two simple
conditions : invariance and homogeneity. Of course, this parallel is far from complete,
since, for instance, G and Sp(2n, R) � R

2n do not have the same geometric status; the
action of the former on T ∗M is lifted from that on M , which is not the case for the latter.

Furthermore, it is clear that, for the projective and the conformal cases, there is no
G-invariant (symplectic) connection on T ∗M , since G does not act on the bundle of
linear frames of T ∗M . Hence, no Fedosov [26] canonical G-invariant star-product can
be constructed. Besides, Fedosov’s construction would have led to a star-product given
by bidifferential operators.

The generalization of the existence and uniqueness theorems for projectively/con-
formally invariant star-products on T ∗M in the case of a non-flat projective/conformal
connection on M remains an open problem. In a recent work [6], Bordemann has taken a
significant step in this new direction, by investigating the projectively equivariant quan-
tization on a cotangent bundle of a manifold with a non flat projective structure (see
also [21 and 7]). Note also that since the canonical star-products studied in this work
may be considered as the projective/conformal analogs of the Moyal star-product, they
may play a similar role as the latter in a construction à la Fedosov of a star-product on
a symplectic manifold with a Cartan projective/conformal symplectic connection.

In the case n ≥ 2, let us mention that the explicit form of the conformally invariant
star-product is, so far, out of reach. This was already the situation for the conformally
equivariant quantization map [23] (see also [21]).
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In the conformal case with n = 2, Theorem 5.7 holds for star-products of the form
(1.1) with the standard Poisson bracket on T ∗M as first-order term. However, one could
easily construct, in this case, another G-invariant star-product with the Poisson bracket
(5.4) as first-order term. It would be interesting to give a physical status to this second,
somewhat “exotic”, star-product.

In the case of dimension n = 1, our results are related to earlier work by Cohen,
Manin and Zagier [12]. The projective and the conformal algebras are, in this case,
isomorphic to sl(2, R). Moreover, the canonical projectively and conformally invariant
star-products coincide by uniqueness and thus the explicit formulæ given in Sect. 6.4
correspond to the one obtained in [12] for λ = 1

2 .
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