ABOUT KNOP'S ACTION OF THE WEYL GROUP ON THE SET OF ORBITS OF A SPHERICAL SUBGROUP IN THE FLAG MANIFOLD

N. RESSAYRE

Université Montpellier II Département de Mathématiques Case courrier 051 Place Eugène Bataillon 34095 Montpellier Cedex 5 France ressayre@math.univ-montp2.fr

Abstract. Let G be a connected reductive algebraic group defined on an algebraically closed field k of characteristic different from 2. Let \mathcal{B} denote the flag variety of G. Let H be a spherical subgroup of G. F. Knop defined an action of the Weyl group W of G on the finite set of the H-orbits in \mathcal{B} . Here, we define an invariant, namely the type, separating the orbits of W.

Introduction

Let G be a connected reductive algebraic group defined on an algebraically closed field k of characteristic different from 2. Let \mathcal{B} denote the flag variety of G. Let Hbe an algebraic subgroup of G which has a finite number of orbits in \mathcal{B} ; H is said to be *spherical*. We denote by $\mathbf{H}(\mathcal{B})$ the set of the H-orbits in \mathcal{B} . The closures of these orbits are of importance in representation theory (see [Wol93]). Moreover, the elements of $\mathbf{H}(\mathcal{B})$, viewed as orbits of a Borel subgroup of G in G/H play an important role in the geometry and topology of the G-equivariant embeddings X of G/H.

In [Kno95], F. Knop introduced an action of a monoid (constructed from the Weyl group of G) on $\mathbf{H}(\mathcal{B})$. This action is called "weak order" and studied by M. Brion in [Bri01]. But, the most spectacular combinatoric structure of the set $\mathbf{H}(\mathcal{B})$ was discovered by F. Knop in [Kno95]: he defined an action of the Weyl group W of G on $\mathbf{H}(\mathcal{B})$. Actually, the results of F. Knop are stated in a more general context. The proof of the existence of this action is very indirect and sophisticated. The aim of this note is to construct natural invariants separating the W-orbits. Note that our methods are elementary.

Let us fix a maximal torus T(H) of H. Denote by W_H the Weyl group of T(H). Let T be a maximal torus of G containing T(H) and let W denote the Weyl group of T.

Let $V \in \mathbf{H}(\mathcal{B})$. Let x be a point of V whose the orbit by T(H) is of minimal dimension. Denote by S the identity component of the stabilizer of x in T(H). The group W_H acts naturally on the set of subtori of T(H). The W_H -orbit of S is called *the*

Received . Accepted .

N. RESSAYRE

type of V. It is shown in Section 2 that the type of V only depends on V and not on x. The main result of this note is the following

Theorem Two elements of $\mathbf{H}(\mathcal{B})$ are in the same W-orbit for Knop's action if and only if they have the same type.

In Section 1, we recall some useful definitions about a graph with vertices the elements of $\mathbf{H}(\mathcal{B})$, Knop's action of W on $\mathbf{H}(\mathcal{B})$ and some classical invariants associated to the elements of $\mathbf{H}(\mathcal{B})$. In Section 2, we show that the definition of the type of an orbit of H is consistent. After, we study the fixed points of subtori of H in the elements of $\mathbf{H}(\mathcal{B})$. In Section 4, we state and prove our main results. In the following one, we give some consequences of our results and our proofs.

1. Definitions and notation

1.1 — Let us fix some general notation. If Γ denotes a linear algebraic group, we denote by Γ° its identity component. If Γ acts on an algebraic variety X and x belongs to X, we denote by Γ_x the stabilizer of x and by Γ_x the orbit of x. The set of points of X fixed by Γ is denoted by X^{Γ} . If S is a subgroup of Γ , we denote by $N_{\Gamma}(S)$ the normalizer of S in Γ and by Γ^{S} the centralizer of S in Γ .

1.2— Let us recall that G is a connected reductive group, \mathcal{B} its flag variety and H a closed subgroup of G. We assume that H is *spherical*; that is, H has a dense orbit in \mathcal{B} . In this article, we are interested in the set $\mathbf{H}(\mathcal{B})$ of the orbits of H in \mathcal{B} . It is shown in [Bri86], [Vin86] or [Kno95] that $\mathbf{H}(\mathcal{B})$ is finite.

We recall the definition of [Res04] of a graph $\Gamma(G/H)$ whose vertices are the elements of $\mathbf{H}(\mathcal{B})$. The original construction of $\Gamma(G/H)$ due to M. Brion is very slightly different (see [Bri01]).

Consider the set Δ of conjugacy classes of minimal non solvable parabolic subgroups of G. If α belongs to Δ , we denote by \mathcal{P}_{α} the G-homogeneous space with isotropy α . Then, there exists a unique G-equivariant map $\phi_{\alpha} : \mathcal{B} \longrightarrow \mathcal{P}_{\alpha}$ which is a \mathbb{P}^1 -bundle.

Let $V \in \mathbf{H}(\mathcal{B})$ and $\alpha \in \Delta$. We assume that the restriction of ϕ_{α} to V is finite and we denote its degree by $d(V, \alpha)$. Then, there exists a unique open H-orbit V' in $\phi_{\alpha}^{-1}(\phi_{\alpha}(V))$; in this case, we say that α raises V to V'. One of the following three cases occurs.

- Type U: H has two orbits in φ_α⁻¹(φ_α(V)) (V and V') and d(V, α) = 1.
 Type T: H has three orbits in φ_α⁻¹(φ_α(V)) and d(V, α) = 1.
 Type N: H has two orbits in φ_α⁻¹(φ_α(V)) (V and V') and d(V, α) = 2.

Definition 1. Let $\Gamma(G/H)$ be the oriented graph with vertices the elements of $\mathbf{H}(\mathcal{B})$ and edges labeled by Δ , where V is joined to V' by an edge labeled by α if α raises V to V'. This edge is simple (resp. double) if $d(V, \alpha) = 1$ (resp. 2). Following the above cases, we say that an edge has type U, T or N.

One can find examples of graphs $\Gamma(G/H)$ in [Bri01, Pin01, Res04].

1.3— Let us fix a Borel subgroup B of G, and a maximal torus T of B. Let W

ABOUT KNOP'S ACTION

denote the Weyl group of T. We now describe Knop's action of W on the set $\mathbf{H}(\mathcal{B})$ (see also [Kno95]). Indeed, the action of simple reflexions easily reads off the graph $\Gamma(G/H)$.

Every α in Δ has a unique representative P_{α} which contains B. Moreover, there exists a unique s_{α} in W such that $Bs_{\alpha}B$ is dense in P_{α} ; and this s_{α} is a simple reflexion of W. The map, $\Delta \longrightarrow W$, $\alpha \longmapsto s_{\alpha}$ is a bijection from Δ onto the set of simple reflexions of W.

Consider the group \widetilde{W} generated by $\{s_{\alpha} : \alpha \in \Delta\}$ with the relations $s_{\alpha}^2 = 1$. There is a surjective homomorphism $\widetilde{W} \longrightarrow W$. Let \mathcal{T} denote its kernel.

One defines an action of W on the set $\mathbf{H}(\mathcal{B})$ by describing the action of the s_{α} , for any $\alpha \in \Delta$:

- Type U: s_{α} exchanges the two vertices of an edge of type U labeled by α .
- Type T: If α raises V_1 and V_2 to V, then $s_{\alpha}V_1 = V_2$ and $s_{\alpha}V = V$.
- Type N: s_{α} fixes the two vertices of a double edge labeled by α .
- s_{α} fixes all others vertices of $\Gamma(G/H)$.

In [Kno95], F. Knop showed that this action of \widetilde{W} factors through W; that is, that \mathcal{T} acts trivially on $\mathbf{H}(\mathcal{B})$. The aim of this paper is to describe the orbits of this action by a natural invariant and to give some consequences.

1.4— Denote by \mathcal{H} the *G*-homogeneous space G/H. If *V* belongs to $\mathbf{H}(\mathcal{B})$, we set:

$$V_{\mathcal{H}} = \{ gH/H : g^{-1}B/B \in V \}.$$

Then, $V_{\mathcal{H}}$ is a *B*-orbit in \mathcal{H} . Moreover, the map $V \mapsto V_{\mathcal{H}}$ is a bijection from $\mathbf{H}(\mathcal{B})$ onto the set $\mathbf{B}(\mathcal{H})$ of *B*-orbits in \mathcal{H} .

The character group $\mathcal{X}(V_{\mathcal{H}})$ of V (or $V_{\mathcal{H}}$) is the set of all characters of B that arise as weights of eigenvectors of B in the function field $k(V_{\mathcal{H}})$. Then $\mathcal{X}(V_{\mathcal{H}})$ is a free abelian group of finite rank $rk(V_{\mathcal{H}})$ (or rk(V)), the rank of V.

2. The type of an orbit of H

2.1— In this section, we define the type of a *H*-orbit in general (not only in \mathcal{B}). We start with two technical lemmas.

Let us fix a maximal torus T(H) of H. If V is a H-homogeneous space, we set:

$$\rho_V = \min_{x \in V} \dim(T(H).x).$$

Lemma 2.1. Let $V \in \mathbf{H}(\mathcal{B})$. Then, for all $x \in V$, the following are equivalent:

- (1) $\dim(T(H).x) = \rho_V,$
- (2) $(T(H)_x)^\circ$ is a maximal torus of H_x .

Proof. Assume that $\dim(T(H).x) = \rho_V$. Let $S' \supseteq (T(H)_x)^\circ$ be a maximal torus of H_x . Then, there exists h in H such that $h^{-1}S'h$ is contained is T(H). But, $h^{-1}S'h$ fixes $h^{-1}x$. Therefore, $\dim T(H) - \dim T(H)_x = \rho_V \leq \dim(T(H).h^{-1}x) \leq \dim T(H) - \dim S'$; hence $\dim S' \leq \dim T(H)_x$. It follows that $S' = (T(H)_x)^\circ$.

The converse is obvious since $(T(H)_x)^\circ$ is always a torus of H_x .

Lemma 2.2. Let x and y belong to V such that $\dim(T(H).x) = \dim(T(H).y) = \rho_V$. Set $S_x = (T(H)_x)^\circ$ and $S_y = (T(H)_y)^\circ$.

Then, we have:

(1) There exists h in H such that y = h.x and $S_y = hS_x h^{-1}$.

(2) There exist $\hat{w} \in N_H(T(H))$ such that $\hat{w}^{-1}S_y\hat{w} = S_x$ and $\hat{w}^{-1}.y \in H^{S_x}.x$.

Proof. Let $h_1 \in H$ such that $y = h_1 \cdot x$. By Lemma 2.1, $h_1^{-1}S_yh_1$ and S_x are maximal tori of $H_x = h_1^{-1}H_yh_1$. Therefore, (see [Hum75, 21.3]) there exists h_2 in H_x such that $h_2^{-1}h_1^{-1}S_yh_1h_2 = S_x$. Then, $h = h_1h_2$ satisfies Assertion 1.

Notice that $H^{S_x} = h^{-1}H^{S_y}h$. Then, T(H) and $h^{-1}T(H)h$ are maximal tori of H^{S_x} ; so there exists g_1 in H^{S_x} such that $g_1^{-1}h^{-1}T(H)hg_1 = T(H)$. But, we have: $g_1^{-1}h^{-1}S_yhg_1 = S_x$. Then, $\hat{w} = hg_1$ satisfies Assertion 2.

Let $W_H = N_H(T(H))/H^{T(H)}$ denote the Weyl group of H. The group W_H acts by conjugacy on the set of subtori of T(H). Let V be a H-homogeneous space. Let us fix x in V such that $\rho_V = \dim(T(H).x)$. Then, by Lemma 2.2, the orbit $W_H.(T(H)_x)^\circ$ does not depend on x but only on V; we call it the type of V.

2.2—We have:

Proposition 2.1. Let S belong to the type of V. Then, we have:

(1) V^S is a unique orbit of $N_H(S)$.

(2) The irreducible components of V^S are orbits of $(H^S)^{\circ}$.

Proof. Since V is stable by H, V^S is stable by $N_H(S)$. Let x and y belong to V^S . Let $h \in H$ such that y = h.x. Then, $h^{-1}Sh$ is contained in H_x . So by Lemma 2.1, S and $h^{-1}Sh$ are maximal tori of H_x and hence there exists h_1 in H_x such that $h_1^{-1}h^{-1}Shh_1 = S$. Then, $y = hh_1.x$ belongs to $N_H(S).x$. Assertion 1 is proved.

By [Hum75, Corollary 16.3], the identity component of $N_H(S)$ is $(H^S)^{\circ}$. Then, Assertion 2 follows from Assertion 1.

3. The type of an orbit of H in \mathcal{B}

3.1 — In the previous section, we associated to each *H*-homogeneous space *V* a type and an integer ρ_V . Now, we apply these constructions to the orbits *V* of *H* in \mathcal{B} . First, Proposition 3.1 below shows that the type of *V* corresponds to the character group of *V*. We will deduce that $\rho_V - \operatorname{rk}(V)$ is independent of *V*.

Let us fix a maximal torus T of G containing T(H). Let B be a Borel subgroup of G containing T.

Proposition 3.1. Let V be in $\mathbf{H}(\mathcal{B})$ and S be a subtorus of T which belongs to the type of V. Let $w \in W$ such that V intersects the irreducible component $G^S.wB/B$ of \mathcal{B}^S . Then, $\mathcal{X}(V) \otimes \mathbb{Q}$ is equal to $\mathcal{X}(T)^{w^{-1}Sw} \otimes \mathbb{Q}$.

Proof. Let $g \in G$ such that x = gB/B belongs to $V \cap G^S.wB/B$. Consider $y = g^{-1}H/H$. By replacing g by an element of gB, we may assume that $\dim(T.y) = \min_{y' \in B.y} \dim(T.y')$. But, by Lemma 2.1 T_y° is a maximal torus of B_y . Since the unipotent radical of B_y° is contained in the unipotent radical U of B, it is equal to U_y . Then we have: $B_y^{\circ} = T_y^{\circ}U_y$.

4

ABOUT KNOP'S ACTION

We have: $\mathcal{X}(V) \otimes \mathbb{Q} = \mathcal{X}(B)^{B_y^{\circ}} \otimes \mathbb{Q}$. Moreover, the restriction map from $\mathcal{X}(B_u^{\circ})$ to

 $\mathcal{X}(T_y^{\circ})$ is injective. Therefore, $\mathcal{X}(V) \otimes \mathbb{Q} = \mathcal{X}(T)^{T_y^{\circ}} \otimes \mathbb{Q}$. Since $B_y = g^{-1}H_x g$, $g^{-1}Sg$ is a maximal torus of B_y . Therefore, there exists $b \in B_y^{\circ}$ such that $S = gbT_y^{\circ}b^{-1}g^{-1}$. By replacing g by gb (and keeping x and y unchanged), we may assume that \vec{b} is trivial; that is, that $S = gT_y^{\circ}g^{-1}$.

It follows that T and gTg^{-1} are maximal tori of G^S . Then, there exists $s \in G^S$ such that sq normalizes T. Let w_1 be the class of sq in the Weyl group of T. Then, $T_y^{\circ} = w_1^{-1} S w_1.$

On the other hand, since $sg \in G^S wB$, there exists w' in the Weyl group of G^S such that $w_1 = w'.w$. Then, $T_y^{\circ} = w^{-1}Sw$ and the proposition follows.

Corollary 3.1. Let V be an orbit of H in \mathcal{B} . We have:

- (1) $\operatorname{rk}(V) \rho_V = \operatorname{rk}(G) \operatorname{rk}(H).$
- (2) The rank of V is minimal in $\mathbf{H}(\mathcal{B})$ if and only if V contains points fixed by T(H).

Proof. The proposition shows that the rank of V is the dimension of T minus the dimension of S. On the other hand, ρ_V is the difference between the rank of H and the dimension of S. Assertion 1 follows.

Since T(H) has fixed points in \mathcal{B} , the rank of V is minimal if and only if $\rho_V = 0$; that is, if and only if V contains points fixed by T(H).

3.2—Let V be in $\mathbf{H}(\mathcal{B})$ and S belong to the type of V. We are now interested in the set V^S . We can make Proposition 2.1 more precise:

(1) The intersection of V^S and an irreducible component of \mathcal{B}^S Proposition 3.2. is a unique orbit of H^S .

(2) If H is connected, the intersection of V and one irreducible component of \mathcal{B}^S is irreducible.

Proof. Let x and y be two points of V^S in the same irreducible component of \mathcal{B}^S . Since the irreducible components of \mathcal{B}^S are orbits of G^S , there exists $g \in G^S$ such that y = g.x. By Proposition 2.1, there exists $h \in N_H(S)$ such that y = h.x. Then, $g^{-1}h$ belongs to G_x which is a Borel subgroup of G which contains S. Moreover, $g^{-1}h$ normalizes S. But, by [Hum75, Proposition 19.4], we have: $N_{G_x}(S) = G_x^S$. So, $g^{-1}h$ and h centralize S. Assertion 1 follows.

If H is connected, Theorem 22.3 of [Hum75] shows that H^S is connected. Now, Assertion 2 follows from Assertion 1.

3.3 — We are now interested in the set of irreducible components of \mathcal{B}^S which intersect V. By Proposition 3.2, this set is in bijection with the set of the H^S -orbits in V^S .

Since the irreducible components of \mathcal{B}^S are the $G^S w B / B$ for w in W, we set:

$$\mathcal{C}(V,S) = \{ w \in W : V \cap G^S w B / B \neq \emptyset \}.$$

To describe $\mathcal{C}(V, S)$, we need two technical lemmas.

Lemma 3.1. Set $N_H(S)G^S = \{hg : h \in N_H(S) \text{ and } g \in G^S\}.$

Then, $N_H(S)G^S$ is a closed subgroup of $N_G(S)$ whose identity component is G^S . Moreover, the group $(N_H(S)G^S)/G^S$ is isomorphic to $N_H(S)/H^S$ (the Weyl group of S in H, denoted by W(H,S)).

Proof. Notice that, $N_H(S)$ normalizes G^S . Now, one easily checks that $N_H(S)G^S$ is a subgroup of G. Moreover, $N_H(S)G^S$ is clearly contained in $N_G(S)$ and contains G^S . But by [Hum75, Corollary 16.3], G^S is the identity component of $N_G(S)$. It follows that the index of G^S in $N_H(S)G^S$ is finite. Then, $N_H(S)G^S$ is closed in $N_G(S)$ and its identity component is G^S . The last assertion is obvious.

Notice that T is contained in $N_H(S)G^S$. Set $W_{N_H(S)G^S} = N_{N_H(S)G^S}(T)/T$. Then, the inclusion of $N_{N_H(S)G^S}(T)$ in $N_G(T)$ induces an embedding of $W_{N_H(S)G^S}$ in W. Let W_{G^S} denote the Weyl group of (G^S, T) .

Lemma 3.2. We have an exact sequence:

 $1 \longrightarrow W_{G^S} \longrightarrow W_{N_H(S)G^S} \longrightarrow W(H,S) \longrightarrow 1.$

Proof. Let us start with the exact sequence given by Lemma 3.1:

$$1 \longrightarrow G^S \longrightarrow N_H(S)G^S \longrightarrow W(H,S) \longrightarrow 1.$$

By intersecting with $N_{N_H(S)G^S}(T)$, we obtain an exact sequence:

$$1 \longrightarrow N_{G^S}(T) \longrightarrow N_{N_H(S)G^S}(T) \longrightarrow W(H,S),$$

and it is sufficient to prove that the last map is surjective. Let h in $N_H(S)$ and g in G^S . Since, $ghT(gh)^{-1}$ and T are maximal tori of G^S , there exists $g' \in G^S$ such that $g'ghT(gh)^{-1}g'^{-1} = T$. The lemma follows.

If E is a finite set, let |E| denote its cardinality. Now, we can describe $\mathcal{C}(V, S)$:

Proposition 3.3. (1) The set C(V, S) is an orbit of $W_{N_H(S)G^S}$ for its action on W by left multiplication.

(2) The set V^S contains $|W(H,S)| H^S$ -orbits.

Proof. Let σ be an element of $\mathcal{C}(V, S)$ and let x belong to $V \cap G^S \sigma B/B$. By Proposition 2.1, $V^S = N_H(S).x$. Therefore $G^S.V^S = G^S N_H(S).x = (N_H(S)G^S)\sigma B/B$. But $G^S V^S$ is the union of the $G^S.wB/B$ for $w \in \mathcal{C}(V, S)$. The first assertion follows.

Let $x \in V^S$. Let us consider the stabilizer $N_H(S)_x$ of x in $N_H(S)$. Obviously, it is cintained in $N_{G_x}(S)$. But, G_x is a Borel subgroup of G and [Hum75, Proposition 19.4] implies that $N_{G_x}(S) = G_x^S$. In particular, $N_H(S)_x \subset H^S$. But Proposition 2.1 shows that $V^S = N_H(S).x$. The second assertion follows. \Box

3.4 — Each irreducible component of \mathcal{B}^S is isomorphic to the flag variety \mathcal{B}_{G^S} of G^S . Moreover, by Proposition 3.2, V intersects any such irreducible component in one orbit of H^S . We will now describe the orbits of H^S in \mathcal{B}_G which appear in that way.

Let τ be a W_H -orbit of subtori of T(H). Let $\mathbf{H}(\mathcal{B})_{\tau}$ denote the set of H-orbits in \mathcal{B} of type τ .

$\mathbf{6}$

ABOUT KNOP'S ACTION

Proposition 3.4. Assume that $\mathbf{H}(\mathcal{B})_{\tau}$ is not empty. Let us fix an element S in τ . Then,

- (1) The subgroup H^S of G^S is spherical.
- (2) The rank of G^S/H^S is equal to the rank of the free abelian group $\mathcal{X}(T)^S$.
- (3) Let $V \in \mathbf{H}(\mathcal{B})_{\tau}$ and $x \in V^S$. Then, $\rho_{H^S,x} = \mathrm{rk}(H) \mathrm{rk}(S)$. In particular, $\operatorname{rk}(H^S.x) = \operatorname{rk}(G^S/H^S).$
- (4) Conversely, let y in \mathcal{B}^S such that $\rho_{H^S,y} = \operatorname{rk}(H) \operatorname{rk}(S)$. Then, the type of H.y is τ .

Proof. Let $y \in \mathcal{B}^S$. Since $T(H) \subset H^S$, $\rho_{H^S,y} \ge \rho_{H,y}$. On the other hand, if $V \in \mathbf{H}(\mathcal{B})_{\tau}$

and $x \in V^S$, then $\rho_{H^S,x} \leq \dim(T(H) \in H^*, \rho_{H^S,y} \geq \rho_{H,y}$. On the other hand, if $V \in \Pi(B)_{\tau}$ and $x \in V^S$, then $\rho_{H^S,x} \leq \dim(T(H).x) = \rho_{H,x}$. So, $\rho_{H^S,x} = \operatorname{rk}(H) - \operatorname{rk}(S)$. We will now prove Assertion 4. Let us assume that $y \in \mathcal{B}^S$ satisfies $\rho_{H^S,y} = \operatorname{rk}(H) - \operatorname{rk}(S)$. Let S' be a maximal torus of H_y containing S. Then, $S' \subset H^S$; but, S is a maximal torus of H_y^S and so S = S'. By Lemma 2.1, the type of H.y is τ .

Set $\Omega = \{z \in G^S x : \rho_{H^S,z} = \operatorname{rk}(H) - \operatorname{rk}(S)\}$. The set Ω is open in $G^S x$ and contains x. By Proposition 3.2, each orbit of type τ intersects $G^S.x$ in a unique H^S orbit. Hence, Assertion 4 shows that the set of H^S -orbits in Ω is finite. It follows that $G^S.x$ contains a dense H^S -orbit $H^S.z$ such that $\rho_{H^S.z} = \operatorname{rk}(H) - \operatorname{rk}(S)$. The two first assertions follow. \square

4. Knop's action of W on $H(\mathcal{B})$ and orbit type

4.1 — Keep the notation as above. In particular, τ is a W_H -conjugacy class of subtori of T(H) such that $\mathbf{H}(\mathcal{B})_{\tau}$ is not empty and S belongs to τ . Set $_{W_{N_{H}(S)G^{S}}} \setminus W =$ $\{W_{N_H(S)G^S}w : w \in W\}$. By Proposition 3.3, we can define a map

$$\begin{array}{cccc} \Theta : \mathbf{H}(\mathcal{B})_{\tau} & \longrightarrow & _{W_{N_{H}(S)GS}} \backslash W \\ V & \longmapsto & \mathcal{C}(V,S). \end{array}$$

We consider on $_{W_{N_H(S)G^S}} \setminus W$ the action of the Weyl group W by right multiplication. In this section we show the following

Theorem 1. The subset $\mathbf{H}(\mathcal{B})_{\tau}$ of $\mathbf{H}(\mathcal{B})$ is stable by Knop's action of W. Moreover, the map Θ is W-equivariant.

4.2 — Start with

Lemma 4.1. Let $V \in \mathbf{H}(\mathcal{B})_{\tau}$, $x \in V^{S}$ and $\alpha \in \Delta$. Consider $\phi_{\alpha} : \mathcal{B} \longrightarrow \mathcal{P}_{\alpha}$. Let $w \in W$ be such that $G^{S}.x = G^{S}.wB/B$. Then one of the two following cases occurs: $\phi_{\alpha}^{-1}(\phi_{\alpha}(x))$ is pointwise fixed by S. <u>Case</u> 1:

Then, we have $G^S w s_{\alpha} B / B = G^S w B / B$. There exists $y \neq x$ such that $\phi_{\alpha}^{-1}(\phi_{\alpha}(x))^{S} = \{x, y\}$. Then, $G^{S}.x \neq G^{S}.y$ and $G^{S}.y = G^{S}ws_{\alpha}B/B$. Case 2:

Proof. Set $F = \phi_{\alpha}^{-1}(\phi_{\alpha}(x))$. The variety F is isomorphic to the projective line \mathbb{P}^{1} . Moreover, F is stable by the action of the torus S. Then, the image of S in $\operatorname{Aut}(F) \simeq$

N. RESSAYRE

PSL(2) is either trivial or a maximal torus of Aut(F). In particular, one of the following cases occurs.

Case 1: $F^S = F$.

Case 2: There exists $y \neq x$ such that $F^S = \{x, y\}$.

In either case, consider the G^S -orbit $G^S.\phi_{\alpha}(x)$ and the flag variety \mathcal{B}_{G^S} of the group G^S . Since $G^S.\phi_{\alpha}(x)$ is the image by ϕ_{α} of $G^S.x \simeq \mathcal{B}_{G^S}$, it is a complete G^S -homogeneous space. Moreover, since ϕ_{α} is a \mathbb{P}^1 -fibration, we have: $\dim(\mathcal{B}_{G^S}) \geq \dim(G^S.\phi_{\alpha}(x)) \geq \dim(\mathcal{B}_{G^S}) - 1$. Then, two cases occur.

Case a: $G^{S}_{\phi_{\alpha}(x)}$ is a non solvable minimal parabolic subgroup of G^{S} and $G^{S}.x$ contains F.

Case b: $G^{S}_{\phi_{\alpha}(x)}$ is a Borel subgroup of G^{S} and $F \cap G^{S}.x = \{x\}$.

In Case 1, F is contained in the irreducible component of \mathcal{B}^S which contains x; that is in $G^S.x$. So, Case 1 implies Case a. In Case 2, we cannot have that F contains $G^S.x$. So, Case 2 implies Case b. In particular, $G^S.x \neq G^S.y$.

It remains to determine $G^S . ws_{\alpha}B/B$ in each case. The fiber $\phi_{\alpha}^{-1}(\phi_{\alpha}(B/B))$ of ϕ_{α} is the closure $\overline{Bs_{\alpha}B}/B$ of $Bs_{\alpha}B/B$ in \mathcal{B} . Let $g \in G^S$ be such that x = gwB/B. Then, $F = gw\overline{Bs_{\alpha}B}/B$.

In Case 1, F is contained in $G^S wB/B$. In particular, gws_{α} belongs to $G^S wB/B$. Therefore, $G^S ws_{\alpha}B/B = G^S wB/B$.

In Case 2, we can notice that $gws_{\alpha}B/B$ is fixed by S and belongs to F; Therefore, $y = gws_{\alpha}B/B$. Then, $G^S.y = G^Sws_{\alpha}B/B$.

4.3 -

Proof of Theorem 1. Let $V \in \mathbf{H}(\mathcal{B})_{\tau}$ and $\alpha \in \Delta$. We will prove that $\mathcal{C}(V, S)s_{\alpha} = \mathcal{C}(s_{\alpha}V, S)$. Let $w \in \mathcal{C}(V, S)$. By Proposition 3.3, it is sufficient to show that ws_{α} belongs to $\mathcal{C}(s_{\alpha}V, S)$.

We fix x in $V^S \cap G^S w B / B$ and we set $F = \phi_{\alpha}^{-1}(\phi_{\alpha}(x))$.

First, we show that $s_{\alpha}V$ is of type τ . It is obvious if $(s_{\alpha}V)^S \neq \emptyset$, since $\operatorname{rk}(s_{\alpha}V) = \operatorname{rk}V$. But $(s_{\alpha}V)^S$ cannot be empty: otherwise, $F \cap s_a V = F - \{x, y\}$ (for $y \neq x \in F^S$), so that $s_{\alpha}V$ is the open orbit in $\phi_{\alpha}^{-1}(\phi_{\alpha}(V))$ in type T or N, which is impossible. If $F^S = F$, then we have $F \subseteq G^S wB/B = G^S ws \alpha B/B$ by Lemma 4.1. Since S

If $F^S = F$, then we have $F \subseteq G^S wB/B = G^S ws\alpha B/B$ by Lemma 4.1. Since S belongs to the types of V and $s_{\alpha}V$, we conclude that $w, ws_{\alpha} \in \mathcal{C}(V,S) = \mathcal{C}(s_{\alpha}V,S)$ by Proposition 3.3.

The other possibility is $F^S = \{x, y\}$. Then $y \in (s_{\alpha}V)^S$ (for this set is nonempty). By Lemma 4.1, $ws_{\alpha} \in \mathcal{C}(s_{\alpha}V, S)$.

4.4 — Let σ be in W and $\overline{\sigma}$ be its class in $_{W_{N_H(S)G^S}} \setminus W$. We are now interested in the fiber $\Theta^{-1}(\overline{\sigma})$ of Θ . By definition of $\mathcal{C}(V, S)$, $\Theta^{-1}(\overline{\sigma})$ is the set of the orbits V in $\mathbf{H}(\mathcal{B})_{\tau}$ which intersects $G^S \sigma B/B$. Let $\mathbf{H}^S(\mathcal{B}_{G^S})$ denote the set of the H^S -orbits in the flag manifold \mathcal{B}_{G^S} of G^S , and let $\mathbf{H}^S(\mathcal{B}_{G^S})_{\max}$ denote the set of the H^S -orbits of maximal rank. By Proposition 3.4, the map

$$\begin{array}{rccc} \eta_{\sigma} &: \Theta^{-1}(\overline{\sigma}) & \longrightarrow & \mathbf{H}^{S}(\mathcal{B}_{G^{S}})_{\max} \\ V & \longmapsto & V \cap G^{S} \sigma B/B \end{array}$$

is a bijection.

8

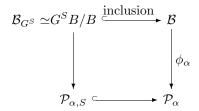
The subgroup $\sigma^{-1}W_{N_H(S)G^S}\sigma$ stabilizes $\Theta^{-1}(\overline{\sigma})$. Moreover, $W_{N_H(S)G^S}$ contains W_{G^S} . Therefore, the group W_{G^S} acts on $\Theta^{-1}(\overline{\sigma})$ through the morphism $W_{G^S} \longrightarrow W$, $w \longmapsto \sigma^{-1}w\sigma$. On the other hand, W_{G^S} acts on $\mathbf{H}^S(\mathcal{B}_{G^S})_{\max}$ by Knop's action. Is the bijection $\eta_{\sigma} W_{G^S}$ -equivariant? The answer is NO in general, but YES for at least one σ .

Proposition 4.1. There exists σ such that η_{σ} is W_{G^S} -equivariant.

Proof. Actually, the map Θ depends on the choice of the Borel subgroup B made in Paragraph 1. To prove the proposition, it is sufficient to prove that for a good choice of B, η_1 is W_{G^S} -equivariant. Let us make such a choice.

Let P be a parabolic subgroup of G with Levi subgroup G^S . Let B be a Borel subgroup of G such that $T \subset B \subset P$.

Notice that $B^S = B \cap G^S$ is a Borel subgroup of G^S . Denote by Δ^S the set of conjugacy classes of minimal non solvable parabolic subgroups of G^S . Let $\alpha \in \Delta^S$ and $\mathcal{P}_{\alpha,S}$ denote the G^S -homogeneous space with isotropy α . If $P_{\alpha,S}$ is a minimal parabolic subgroup of G^S containing B^S corresponding to α , then $P_{\alpha,S}.B$ is a minimal parabolic subgroup of G. Moreover, $P_{\alpha,S} = (P_{\alpha,S}.B) \cap G^S$. Therefore, we obtain an immersion (from now on implicit) of Δ^S in Δ . In particular $P_{\alpha} = P_{\alpha,S}B$. Consider the following commutative diagram \mathcal{D} :



The restriction of ϕ_{α} to $G^{S}B/B$ is obviously the unique G^{S} -equivariant map $\phi_{\alpha,S}$ from $\mathcal{B}_{G^{S}}$ onto $\mathcal{P}_{\alpha,S}$.

Let $x \in G^S B/B$ such that $H^S x$ belongs to $\mathbf{H}^S(\mathcal{B}_{G^S})_{\max}$. It remains to prove the following

Claim:
$$G^{S}B/B \cap (s_{\alpha}.Hx) = s_{\alpha}(H^{S}x).$$

Since Diagram \mathcal{D} is commutative, we have

$$\phi_{\alpha}^{-1}(\phi_{\alpha}(x)) = \phi_{\alpha,S}^{-1}(\phi_{\alpha,S}(x)); \tag{1}$$

we denote by F this subvariety of \mathcal{B} . Moreover, since the rank of $H^S x$ is maximal in $\mathbf{H}^S(\mathcal{B}_{G^S})$, Proposition 3.2 and 3.4 show

$$G^{S}B/B \cap Hx = H^{S}x. \tag{2}$$

Note that the s_{α} -action on the set of the orbits having non-empty intersection with F is completely determined by the form of these intersections (the whole F, F with one or two points removed, one or two points). But, these intersections are the same for the H-orbits of type τ and for the H^S -orbits of maximal rank by Equality 2. This completes the proof of the proposition.

Here, comes our main result.

Theorem 2. Two elements of $H(\mathcal{B})$ are in the same W-orbit for Knop's action if and only if they have the same type.

Proof. By Theorem 1, it is sufficient to prove that one (or any) fiber of Θ is an orbit of $W_{N_H(S)G^S}$. Then, by Proposition 4.1, it is sufficient to prove the theorem for the orbits of maximal rank. Let V_0 be such an orbit. There exist a sequence $\alpha_1, \dots, \alpha_k$ in Δ and a sequence V_0, V_1, \dots, V_k of *H*-orbits such that α_i raises V_{i-1} to V_i for all $i = 1, \dots, k$, and V_k is the open *H*-orbit in \mathcal{B} . Since the rank of V_0 is maximal, all the orbits V_i have the same rank and the edges joining these orbits are of type *U*. Therefore, we have $(s_{\alpha_k} \cdots s_{\alpha_1}).V_0 = V_k$. The theorem is proved.

5. Some consequences

5.1 — We can also apply Theorem 2 to the description of the isotropy subgroups of the action of H in \mathcal{B} .

Corollary 5.1. We assume that the ground field k is the field \mathbb{C} of the complex numbers. Let x and y be in \mathcal{B} such that Hx and Hy have the same type. Then, (H_x/H_x°) and (H_y/H_y°) are isomorphic.

Proof. Set V = Hx and V' = Hy. Let $\alpha \in \Delta$. Since W is generated by the simple reflections, by Theorem 2 it is sufficient to prove the corollary for $V' = s_{\alpha} V \neq V$. Two cases occur:

- Type T: V and V' are raised to a third orbit V''.
- Type U: α raises V to V' (up to re-indexing).

In the first case, the restrictions of ϕ_{α} to V and V' are isomorphisms onto $\phi_{\alpha}(V'')$. The corollary follows.

Assume that α raises V to $V' = s_{\alpha}.V$. By replacing y by another point of Hy, we may assume that $\phi_{\alpha}(x) = \phi_{\alpha}(y)$. Since the restriction of ϕ_{α} to V is an isomorphism onto $\phi_{\alpha}(V)$ and $\phi_{\alpha}(V') = \phi_{\alpha}(V)$, H_y is contained in H_x . This inclusion induces a morphism $\psi : H_y/H_y^\circ \longrightarrow H_x/H_x^\circ$. But, H_x/H_y is isomorphic to \mathbb{A}^1 and hence irreducible. We deduce that ψ is surjective.

It remains to show that $H_y \cap H_x^\circ = H_y^\circ$ to prove that ψ is injective. Obviously, $H_y^\circ \subset (H_y \cap H_x^\circ)$; and we can define a covering $H_x^\circ/H_y^\circ \longrightarrow H_x^\circ/(H_y \cap H_x^\circ)$. Since $H_x^\circ/(H_y \cap H_x^\circ)$ is isomorphic to \mathbb{A}^1 , it is simply connected and $H_y \cap H_x^\circ = H_y^\circ$. \Box

5.2— We are going to apply Theorem 2 to the *H*-orbits in \mathcal{B} of minimal rank. We keep notation as above. In particular, $\mathbf{H}(\mathcal{B})_{\{T(H)\}}$ is the set of the orbits of *H* in \mathcal{B} of minimal rank.

Proposition 5.1. We have:

- (1) The identity component of $H^{T(H)}/T(H)$ is a maximal unipotent subgroup of $G^{T(H)}/T(H)$.
- (2) The stabilizers in W (for Knop's action) of the elements of $\mathbf{H}(\mathcal{B})_{\{T(H)\}}$ are isomorphic to the Weyl group W_H of H.
- (3) Let V be in $\mathbf{H}(\mathcal{B})_{\{T(H)\}}$. We assume that H is connected and $k = \mathbb{C}$. Then, the stabilizers in H of the points of V are connected.

Proof. Since T(H) is maximal in H, the identity component of $H^{T(H)}/T(H)$ is unipotent. But it is a spherical subgroup of $G^{T(H)}/T(H)$. Assertion 1 follows.

We claim that the cardinality of the set $\mathbf{H}(\mathcal{B})_{\{T(H)\}}$ is $\frac{|W|}{|W_H|}$. By Proposition 3.3, we have to prove that the union of the $V^{T(H)}$ for $V \in \mathbf{H}(\mathcal{B})_{\{T(H)\}}$ contains $|W| H^{T(H)}$ -orbits. But, by Proposition 3.4, this set is in natural bijection with the set of orbits of $H^{T(H)}$ in $\mathcal{B}^{T(H)}$. Moreover, by Assertion 1, $H^{T(H)}$ has $|W_{G^{T(H)}}|$ orbits in each one of the $\frac{|W|}{|W_{G^{T(H)}}|}$ irreducible components of $\mathcal{B}^{T(H)}$. The claim follows.

By Proposition 4.1, we may assume that η_1 is $W_{G^{T(H)}}$ -equivariant to prove Assertion 2. Let V be in $\mathbf{H}(\mathcal{B})_{\{T(H)\}}$ such that $\Theta(V) = \overline{1}$. We have to prove that the stabilizer W_V of V in W is isomorphic to W_H . Since Θ is W-equivariant, W_V is contained in $W_{N_H(T(H))G^{T(H)}}$ and by Lemma 3.2 maps to W_H . Moreover, the claim shows that $|W_V| = |W_H|$. So, by Lemma 3.2 it is sufficient to prove that $W_V \cap W_{G^S}$ is trivial. By Proposition 4.1 and Assertion 1, it is now sufficient to prove that when the identity component H° of H is unipotent W acts freely on $\mathbf{H}(\mathcal{B})$. In this case, the normalizer B' of H in G is a Borel subgroup of G and have the same orbits as H in \mathcal{B} . Moreover, each orbit of B' contains a unique fixed point of T', where T' is a fixed maximal torus of B'. In particular, the orbits of B' are parametrized by the fixed points of T' in \mathcal{B} which is canonically in bijection with W. Theorem 1 shows that with this identification the Knop's action is just the multiplication in W; in particular, the action is free.

By Corollary 5.1, it is sufficient to prove the last assertion for a closed orbit V of H in \mathcal{B} . Let x be in V. Since V is closed in \mathcal{B} , it is projective. So, H_x is a parabolic subgroup of H. In particular, it is connected.

Acknowledgments. We wish to thank S Pin and M Brion for useful discussions and the referee for his remarks.

References

- [Bri86] M. Brion, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math. 55 (1986), no. 2, 191–198.
- [Bri01] M. Brion, On orbit closures of spherical subgroups in flag varieties, Comment. Math. Helv. 76 (2001), no. 2, 263–299.
- [Hum75] J. Humphreys, Linear algebraic groups, Springer Verlag, New York, 1975.
- [Kno95] F. Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helv. 70 (1995), no. 2, 285–309.
- [Pin01] S. Pin, Sur les singularités des orbites d'un sous-groupe de Borel dans les espaces symétriques, Thèse, Université Grenoble I (2001), 1-109, http://www-fourier.ujf-grenoble.fr/THESE/these_daterev.html.
- [Res04] N. Ressayre, Sur les orbites d'un sous-groupe sphérique dans la variété des drapeaux, Bull. de la SMF 132 (2004), 543–567.
- [Vin86] È. B. Vinberg, Complexity of actions of reductive groups, Funktsional. Anal. i Prilozhen 20 (1986), no. 1, 1–13, 96.
- [Wol93] J. A. Wolf, Admissible representations and geometry of flag manifolds, in The Penrose transform and analytic cohomology in representation theory (South Hadley, MA, 1992), Amer. Math. Soc., Providence, RI, 1993, 21–45.