An example of a thick wall

Nicolas Ressayre

Among quotients associated to distinct G-linearized line bundles, those corresponding to chambers have a very good property: the fibers are orbits. Theorem 4.2.7 shows that between two relevant chambers the quotient is changed by a transformation similar to a Mori flip. Moreover, if G is a torus, then two quotients corresponding to chambers are linked by a finite sequence of such transformations. In this appendix, we show by an example that this can fail for arbitrary reductive group G. For this, we produce a linear action of G on a projective space, which admits a proper wall of codimension zero.

Let us fix some notation. We consider the connected reductive group $G = \mathbb{C}^* \times \mathrm{SL}(2,\mathbb{C})$. Let χ_0 be the character of G defined by $\chi_0(t,g) = t$. Then χ_0 generates the character group of G. If T_1 is the maximal torus of $\mathrm{SL}(2,\mathbb{C})$ consisting in diagonal matrices, then $T = \mathbb{C}^* \times T_1$ is a maximal torus of G. Its character group is freely generated by χ_0 comma before and χ_1 defined by the following formula:

$$\chi_1\left(t, \left(\begin{array}{cc} u & 0\\ 0 & u^{-1} \end{array}\right)\right) = u, \qquad t, u \in \mathbb{C}^*.$$

Let $W = \mathbb{C}^2$, $V = \mathbb{C}^8$. Let us choose an isomorphism $V \simeq \mathbb{C} \oplus \mathbb{C} \oplus W \oplus W \oplus W$. An element of V is thus represented by a 5-tuple $(x_-, x_0, v_-, v_0, v_+)$ where $x_-, x_0 \in \mathbb{C}$ and $v_-, v_0, v_+ \in W$. We define an action of G on V by the following formula:

$$(t,g) \star (x_-, x_0, v_-, v_0, v_+) = (t^{-2}x_-, x_0, t^{-8}g \cdot v_-, g \cdot v_0, t^2g \cdot v_+)$$
(1)

where \cdot is the canonical action of $\mathrm{SL}(2,\mathbb{C})$ on W. From now on, we use the notation of Section 1.1.5.

We represent the set of weights of the action of T on V by Figure 1. The coordinates in the basis (χ_0, χ_1) of these weights are denoted by (a, b) in the

figure. In addition, the convex hulls of some parts of st(V) are drawn with thick lines.

Figure 1: State of V.

Formula 1 defines an action of G on $X = \mathbb{P}(V)$ and a G-linearization on $\mathcal{O}_X(1)$ as well; we denote by \mathcal{L} this G-linearized line bundle. According to Section 1.1.5, for \mathcal{L} , a point $x \in X$ is:

- semi-stable if and only if for all $g \in G$, the origin belongs to the set $Conv(st_V(g.x))$;
- stable if and only if for all $g \in G$, the origin belongs to the interior of $Conv(st_V(g.x))$;
- unstable if and only if there exists $g \in G$ such that the origin does not belong to $Conv(st_V(g.x))$.

Now we want to vary the ample G-linearized line bundle on X. We also denote by χ_0 the trivial line bundle over X where G acts on the fibers by χ_0 . Since the group $\mathrm{NS}(X)$ is isomorphic to \mathbb{Z} , by $[\mathbf{KKV}]$ each G-linearized line bundle on X is isomorphic to $\mathcal{L}^{\otimes n} \otimes m\chi_0$ for some $(m,n) \in \mathbb{Z}^2$. It follows that the group $\mathrm{NS}^G(X)$ is isomorphic to \mathbb{Z}^2 . From now on, we identify $\mathrm{NS}^G(X)$ with \mathbb{Z}^2 , and so $\mathrm{NS}^G(X)_{\mathbb{R}}$ with \mathbb{R}^2 . Note that the line bundle corresponding to $(m,n) \in \mathbb{Z}^2$ is ample if and only if n is positive. Since two ample G-linearized line bundles on the same half-line from the origin are GIT-equivalent, we can restrict our study to the points of $\mathrm{NS}^G(X)_{\mathbb{R}}$ of the form (r,1) with $r \in \mathbb{R}$. We call the set of these points the horizontal line and r the abscissa of the point (r,1). We use these conventions in Figure 2.

Let $r \in \mathbb{Q}$. There exists a power, say $\mathcal{L}^{\bar{\otimes}n} \otimes m\chi_0$ (with $m = nr \in \mathbb{Z}$) of $\mathcal{L} \otimes r\chi_0$ which is the restriction (as a G-line bundle) of $\mathcal{O}(1)$ for an embedding of X into a G-module. The sets $\operatorname{st}(x)$ corresponding to this embedding

are obtained from $\operatorname{st}_V(x)$ by applying a dilation of factor n followed by a translation of vector (m,0). So to study the stability for $\mathcal{L}\otimes r\chi_0$, we can move the origin along the horizontal line in Figure 1 by -r and keep the weights of the action of V. Finally the stability for $\mathcal{L}\otimes r\chi_0$ of a point $x\in X$ depends on the relative position of the point (-r,0) and the convex hulls in $\mathcal{X}(T)\otimes\mathbb{R}$ of the sets $\operatorname{st}_V(q,x)$ with $q\in G$.

From now on, we denote by (e_1, e_2) the canonical basis of W. Let $x \in X$ and let $\tilde{x} = (x_-, x_0, v_-, v_0, v_+)$ be a representative of x in V. There exists $g \in SL(2, \mathbb{C})$ such that $g.v_-$ is proportional to e_1 . But now, if r > 4 the point (-r, 0) does not belong to the convex hull of st(g.x) and x is not semi-stable for $\mathcal{L} \otimes r\chi_0$. So if r > 4, $X^{ss}(\mathcal{L} \otimes r\chi_0)$ is empty. Analogously, we prove that if r < -1 then $\mathcal{L} \otimes r\chi_0$ is not effective.

Moreover, the "origins" of the form (-r,0) in Figure 1 which correspond to the intersection of the horizontal line and a wall belong to the boundary of a set conv(st(x)) for some $x \in X$. So the abscissa of the intersection of a wall and the horizontal line is r = 4, r = 3, r = 2, r = 0, r = -1 or the segment $0 \le r \le 2$.

Let $x = [0:0:e_1:e_2:0]$. There are seven distinct sets of the form st(g.x): two segments, four triangles and one rectangle. The point (-4,0) is either on the boundary or in the interior of these convex sets. So, r = 4 is the abscissa of the wall H(x). In the same way, we show that r = 3 is the wall $H([0:0:e_1:0:e_2])$ and r = -1 is the wall $H([0:0:0:e_1:e_2])$.

Obviously, the walls H([1:0:0:0:0]) and H([0:1:0:0:0]) have r=2 and r=0 as their abscissa. Moreover, the intersection of the horizontal line and the wall H([1:1:0:0:0]) is the interval $0 \le r \le 2$.

So we obtain six walls, three chambers and six cells in the G-ample cone (see Figure 2). The cone $\mathcal{C}^G(X)$ is partitioned into nine GIT-classes.

Theorem 4.2.7 compares quotients corresponding to two chambers C^+ and C^- relevant to a cell F. The starting point is that the set $X^{ss}(F)$ contains both $X^{s}(C^+)$ and $X^{s}(C^-)$, and so defines two morphisms:

$$X^{\mathrm{ss}}(C^+)//G \xrightarrow{f_+} X^{\mathrm{ss}}(F)//G \xleftarrow{f_-} X^{\mathrm{ss}}(C^-)//G.$$

In the G-ample cone, the property $X^{\mathrm{ss}}(F)\supset X^{\mathrm{ss}}(C)$ means that F intersects the closure of C. Moreover, if we want to have $X^{\mathrm{s}}(F)=X^{\mathrm{s}}(C^+)\cap X^{\mathrm{s}}(C^-)$ it is natural to assume that C^+ and C^- are relevant to F. These explains why Theorem 4.2.7 concerns two relevant chambers to a face.

Figure 2: The G-ample cone.

On the other hand, if there is no codimension zero wall, then any two chambers can be joined by a chain of relevant chambers. So quotients corresponding to two arbitrary chambers are related by a sequence of birational transformations corresponding to relevant chambers.

Back to the example, if we want to relate the quotients associated to C^1 and C^2 , we must look at the sequence of transformations:

And so, we obtain $X^{\mathrm{ss}}(\mathcal{L} \otimes \chi_0)//G$ as a natural intervening quotient between $X^{\mathrm{ss}}(C^1)//G$ and $X^{\mathrm{ss}}(C^2)//G$.

N.R. Université de Grenoble I Institut Fourier UMR 5582 CNRS-UJF UFR de Mathématiques

B.P 74

38402 SAINT MARTIN D'HÈRES Cedex (France) e-mail : ressayre@ujf.ujf-grenoble.fr