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Abstract

Let G be a complex semisimple algebraic group. In 2006, Belkale-
Kumar defined a new product �0 on the cohomology group H∗(G/P,C)
of any projective G-homogeneous space G/P . Their definition uses the
notion of Levi-movability for triples of Schubert varieties in G/P .

In this article, we introduce a family of G-equivariant subbundles of
the tangent bundle of G/P and the associated filtration of the De Rham
complex of G/P viewed as a manifold. As a consequence one gets a filtra-
tion of the ring H∗(G/P,C) and prove that �0 is the associated graded
product. One of the aim of this more intrinsic construction of �0 is that
there is a natural notion of fundamental class [Y ]�0 ∈ (H∗(G/P,C),�0)
for any irreducible subvariety Y of G/P .

Given two Schubert classes σu and σv in H∗(G/P,C), we define a
subvariety Σv

u of G/P . This variety should play the role of the Richardson
variety; more precisely, we conjecture that [Σv

u]�0 = σu�0σv. We give
some evidence for this conjecture, and prove special cases.

Finally, we use the subbundles of TG/P to give a geometric character-
ization of the G-homogeneous locus of any Schubert subvariety of G/P .

1 Introduction
Let G be a complex semisimple group and let P be a parabolic subgroup of
G. In this paper, we are interested in the Belkale-Kumar product �0 on the
cohomology group of the flag variety G/P .

The Belkale-Kumar product. Fix a maximal torus T and a Borel subgroup
B such that T ⊂ B ⊂ P . Let W and WP denote respectively the Weyl groups
of G and P . LetWP be the set of minimal length representative in the cosets of
W/WP . For any w ∈ WP , let Xw be the corresponding Schubert variety (that
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is, the closure of BwP/P ) and let [Xw] ∈ H∗(G/P,C) be its cohomology class.
The structure coefficients cwuv of the cup product are written as

[Xu].[Xv] =
∑

w∈WP

cwuv[Xw]. (1)

Let L be the Levi subgroup of P containing T . This group acts on the tan-
gent space TP/PG/P of G/P at the base point P/P . Moreover, this action is
multiplicity free and we have a unique decomposition

TP/PG/P = V1 ⊕ · · · ⊕ Vs, (2)

as sum of irreducible L-modules. It turns out that, for any w ∈ WP , the
tangent space Tw := TP/Pw

−1Xw of the variety w−1Xw at the smooth point
P/P decomposes as

Tw = (V1 ∩ Tw)⊕ · · · ⊕ (Vs ∩ Tw). (3)

Set T iw := Tw∩Vi. Since [Xw] has degree 2(dim(G/P )−dim(Tw)) in the graded
algebra H∗(G/P ), if cwuv 6= 0 then

dim(Tu) + dim(Tv) = dim(G/P ) + dim(Tw), (4)

or equivalently

s∑
i=1

(
dim(T iu) + dim(T iv)

)
=

s∑
i=1

(
dim(Vi) + dim(T iw)

)
. (5)

The Belkale-Kumar product requires the equality (5) to hold term by term.
More precisely, the structure constants c̃wuv of the Belkale-Kumar product [BK06],

[Xu]�0[Xv] =
∑

w∈WP

c̃wuv[Xw] (6)

can be defined as follows (see [RR11, Proposition 2.4]):

c̃wuv =

{
cwuv if ∀1 ≤ i ≤ s dim(T iu) + dim(T iv) = dim(Vi) + dim(T iw),
0 otherwise. (7)

The product �0 defined in such a way is associative and satisfies Poincaré du-
ality. The Belkale-Kumar product was proved to be the more relevant product
for describing the Littlewood-Richardson cone (see [BK06, Res10, Res11a]).

Motivations. If G/P is cominuscule then TP/PG/P is an irreducible L-module
(that is, s = 1). In this case, the Belkale-Kumar product is simply the cup
product. This paper is motivated by the guess that several known results for
cominuscule G/P could be generalized to any G/P using the Belkale-Kumar
product. In particular, it might be a first step toward a positive geometric
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uniform combinatorial rule for computing the coefficients c̃wuv. Indeed, we define
a subvariety Σvu which is encoded by combinatorial datum (precisely a subset
of roots of G). We also define a Belkale-Kumar fundamental class [Σvu]�0

and
conjecture that [Σvu]�0

= [Xu]�0[Xv].

A geometric construction of the Belkale-Kumar ring. The first aim of
this paper is to give a geometric construction of the Belkale-Kumar ring which
does not deal with the Schubert basis. Consider the connected center Z of L
and its character group X(Z). The Azad-Barry-Seitz theorem (see [ABS90])
asserts that each Vi in the decomposition (2) is an isotipical component for the
action of Z associated to some weight denoted by αi ∈ X(Z). The group P
acts on TP/PG/P but does not stabilize the decomposition (2). But, the group
X(Z) is endowed with a partial order < (see Section 3.1 for details), such that
for any α ∈ X(Z) the sum

V <α := ⊕αi<αVi (8)

is P -stable. Since V <α is P -stable, it induces a G-homogeneous subbundle
T<αG/P of the tangent bundle TG/P . We obtain a family of distributions
indexed by X(Z). This family forms a decreasing multi-filtration: if α<β then
T<αG/P is a subbundle of T<βG/P . Moreover, these distributions are globally
integrable in the sense that

[T<αG/P, T<βG/P ] ⊂ T<α+βG/P. (9)

This allows us to define a filtration (“à la Hodge”) of the De Rham complex and
so of the algebra H∗(G/P,C) indexed by the group X(Z)×Z. We consider the
associated graded algebra.

Theorem 1 The (X(Z) × Z)-graded algebra Gr H∗(G/P,C) associated to the
(X(Z)×Z)-filtration is isomorphic to the Belkale-Kumar algebra (H∗(G/P,C),�0).

The first step to get Theorem 1 is to give it a precise sense defining the
orders on X(Z) and X(Z) × Z and the filtrations. The key point to prove the
isomorphism is that the Schubert basis ([Xw])w∈WP of H∗(G/P,C) is adapted to
the filtration. Indeed each subspace of the filtration is spanned by the Schubert
classes it contains. To obtain this result, we use Kostant’s harmonic forms
[Kos61].

Theorem 1 is closed to [BK06, Theorem 43] obtained by Belkale-Kumar.
In [BK06], the filtration on H∗(G/P,C) is defined using the Schubert basis.
On the other hand, the filtration on H∗DR(G/P,C) is defined using Kostant’s
K-invariant forms (where K is a compact form of G). Here, the filtration is
defined independently of any basis or any choice of a compact form of G.

This “intrinsic” definition of the Belkale-Kumar also gives a pleasant inter-
pretation of the functoriality result of [RR11, Theorem 1.1]. Indeed, let τ be a
one-parameter subgroup of Z such that

∀α ∈ X(Z) α<0 ⇒ 〈τ, α〉 ≥ 0,
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and
∀1 ≤ i 6= j ≤ s 〈τ, αi〉 6= 〈τ, αj〉. (10)

Setting for any n ∈ Z
V ≥n := ⊕〈τ,α〉≥nVi,

one gets a globally integrable family of distributions on G/P indexed by Z.
Then, one gets a Z-filtration of the ring H∗(G/P,C). By (6) and (10), the
associated Z-graded ring is isomorphic to Gr H∗(G/P,C). Then, [RR11, Theo-
rem 1.1] is a direct consequence of the immediate lemma 12 below.

A conjecture. The main motivation to show Theorem 1 is to define the funda-
mental class for the Belkale-Kumar product of any irreducible subvariety Y of
G/P . This class [Y ]�0 which belongs to Gr H∗(G/P,C) is defined in Section 4.4.

Let w0 and wP0 be the longest elements ofW andWP respectively. If v ∈WP

then v∨ := w0vw
P
0 belongs to WP and [Xv∨ ] is the Poincaré dual class of [Xv].

Consider the weak Bruhat order l on WP . We are interested in the product
[Xu]�0[Xv] ∈ H∗(G/P,C), for given u and v in WP . Lemma 24 below shows
that if [Xu]�0[Xv] 6= 0 then v∨lu. Assume that v∨lu and consider the group

Hv
u := u−1Bu ∩ wP0 v−1BvwP0 . (11)

It is a closed connected subgroup of G containing T ; in particular, it can be
encoded by its set Φvu of roots. Let Σvu denote the closure of the Hv

u-orbit of
P/P :

Σvu = Hv
u .P/P . (12)

Another characterization of this subvariety is given by the following state-
ment.

Proposition 1 The variety Σvu is the unique irreducible component of the in-
tersection u−1Xu ∩ wP0 v−1Xv containing P/P . Moreover, this intersection is
transverse along Σvu.

Our main conjecture can be stated as follow.

Conjecture 1 If v∨ l u then

[Σvu]�0 = [Xu]�0[Xv] ∈ Gr H∗(G/P,C).

Write
[Σvu]�0 =

∑
w∈WP

dwuv[Xw].

By Proposition 11 dwuv are integers. Moreover, Conjecture 1 is equivalent to
c̃wuv = dwuv for any w ∈WP . The first evidence is the following weaker result.

Proposition 2 Then
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(i) dwuv 6= 0 ⇐⇒ c̃wuv 6= 0;

(ii) dwuv ≤ c̃wuv.

Known cases. Conjecture 1 generalizes another one forG/B. Indeed, ifG/P =
G/B is a complete flag variety then Conjecture 1 is equivalent to the following
one.

Conjecture 2 For G/B and any u, v, and w in W , the structure constant c̃wuv
is equal to 1 if for any 1 ≤ i ≤ s, dim(T iu) + dim(T iv) = dim(Vi) + dim(T iw) and
0 otherwise.

In particular, Conjecture 2 implies that we have a uniform combinatorial and
geometric model for the Belkale-Kumar product. Conjecture 2 was explicitly
stated in [DR09]. E. Richmond proved in [Ric09] and [Ric12] this conjecture
for G = SLn(C) or G = Sp2n(C). In Section 7, we prove it for G = SO2n+1(C)
(this proof is certainly known from some specialists but I have shortly included
it for convenience). Very rencently, Dimitrov-Roth got also a proof for classical
groups and G2 [DR17]. Using [BK06, Corollary 44], we wrote a program [Res13]
to check this conjecture: it is checked in type F4 and E6.

Conjecture 1 will be proved in type A in a forthcoming paper.

Combinatorial evidences. Consider the following degenerate version of Con-
jecture 1.

Conjecture 3 The product [Xu]�0[Xv] only depends on the set Φvu.

The expression of the Belkale-Kumar structure coefficients as products given
in [Ric09] shows that Conjecture 3 holds in type A. Consider now the case
G = SO2n+1(C) or Sp2n(C) and P maximal. In this case, in [Res12], it is
proved that the set of triples (u, v, w) ∈ WP such that c̃wuv = 1 only depends
on Φvu, according to Conjecture 3. If G/P is cominuscule c̃wuv = cwuv for any
(u, v, w) ∈ WP . Then the Thomas-Young combinatorial rule [TY09] for cwuv
implies that Conjecture 3 holds.

Distributions and Schubert varieties. In Section 3, we study the restriction
of the distributions to the Schubert varieties Xu. More precisely, for any x in Xu

and α ∈ X(Z) we are interested in TxXu∩T<α
x G/P . For α fixed, the dimension

of TxXu ∩ T<α
x G/P has a fixed value for x ∈ Xu general and can jump for x

in a strict subvariety of Xu. Consider the maximal open subset X0
u of Xu such

that for any α ∈ X(Z) the dimension of TxXu ∩ T<α
x G/P does not depend on

x ∈ X0
u. Consider the global stabilizer Qu of Xu, that is, the set of g ∈ G such

that g.Xu = Xu. Since Xu is B-stable, Qu is a standard parabolic subgroup of
G.
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Proposition 3 With above notation, we have

X0
u = Qu.uP/P.

If G/P is cominuscule, the filtration is trivial and Proposition 3 asserts that
Qu acts transitively on the smooth locus of Xu. This was previously proved
by Brion and Polo in [BP00]. Proposition 3 is in the philosophy to generalize
known results from cominuscule homogeneous spaces to any homogeneous space
G/P , using the Belkale-Kumar product.

Note that Proposition 3 is equivalent to [BKR12, Theorem 7.4]. Neverthe-
less, we think that the distributions give a pleasant interpretation of this result.
In Section 3 we present a proof using the properties of the Peterson map.

Retruning to the setting of Conjecture 1, we assume moreover that the in-
tersection u−1Xu ∩ wP0 v−1Xv is proper. Then Conjecture 1 is implied by the
fact that Σvu is the only irreducible component of this intersection that has the
same X(Z)-dimension (see Section 2.3). Proposition 3 is clearly related to this
version of Conjecture 1.
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2 Infinitesimal filtrations

2.1 The case of a vector space
Ordered group. Let Γ be a finitely generated free abelian group whose the law
is denoted by +. Consider the vector space Γ⊗ZQ. Assume that a closed strictly
convex cone C in Γ ⊗Z Q of nonempty interior is given. Moreover, we assume
that C is rational polyhedral, that is defined by finitely many linear rational
inequalities, or equivalently generated, as a cone, by finitely many vectors in
Γ ⊗Z Q. We consider the partial order 4 on Γ defined by α4β if and only if
β−α belongs to C. The group Γ endowed with the order 4 is an ordered group:

∀α, β, γ ∈ Γ α4β ⇒ (α+ γ)4(β + γ). (13)

The order 4 satisfies the following version of the Ramsey theorem (see also
Bolzano-Weirstrass’ theorem).

Lemma 1 Let (αn)n∈N be a sequence of pairwise distinct elements of Γ such
that αn40 for any n.

Then there exists a subsequence (αφ(n))n∈N such that for any n

αφ(n+1)≺αφ(n).
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Proof. Let ϕ1, . . . , ϕs be elements of Hom(Γ,Z) such that x ∈ C if and only if
ϕi(x) ≥ 0 for any i = 1, . . . , s.

Consider first the sequence ϕ1(αn) and set

I1 = {n | ∀m ≥ n ϕ1(αm) > ϕ1(αn)}.

Assume, for a contradiction that I1 is infinite. Denoting by φ(k) the kth element
of I1, we get an increasing subsequence of (ϕ1(αn))n∈N. But ϕ1(αn) ∈ Z and
ϕ1(αn) ≤ 0: a contradiction. Hence I1 is finite.

Up to taking a subsequence, we may assume that I1 is empty; that is

∀n ≥ 0 ∃m > n ϕ1(αm) ≤ ϕ1(αn).

This property allows to construct a nonincreasing subsequence of ϕ1(αn). Hence,
by considering such a subsequence, we may assume that

∀n ≥ 0 ϕ1(αn+1) ≤ ϕ1(αn).

By successively proceeding similarly, for i = 2, . . . , s, one gets a subsequence
αψ(n) such that

∀i = 1, . . . , n ∀n ϕi(αψ(n+1)) ≤ ϕ1(αψ(n)).

Since the αn are pairwise distinct, we deduce that αψ(n+1)4αψ(n). �
Remark. Consider the cone C = {(x, y) ∈ R2 : y ≥ 0 and

√
2x − y ≥ 0} and

the group Γ = Z2. Lemma 1 does not hold for the induced order < showing the
rationality assumption on C is necessary. Indeed, denote by π : R2 −→ R the
linear projection on the line y = 0 with kernel the line y =

√
2x. Then π(Z2)

is dense as the group generated by 1 and
√

2
2 . In particular, one can construct

a sequence (xn, yn)n∈N such that yn+1 < yn < 0 and 0 >
√

2xn+1 − yn+1 >√
2xn − yn. Then the elements of the sequence are pairwise incomparable for

the partial order <.

Γ-filtration. The group Γ is used here to index filtrations.

Definition. Let V be a finite dimensional real or complex vector space. A
Γ-filtration of V is a collection F<βV of linear subspaces of V indexed by β ∈ Γ
satisfying

(i) α4β ⇒ F<βV ⊂ F<αV ,

(ii) ∃β0 ∈ Γ s.t. V = F<β0V ,

(iii) if F<αV 6= {0} then α40.

Lemma 2 Let (F<βV )β∈Γ be a Γ-filtration. Then the set {F<βV |β ∈ Γ} of
linear subspaces of V is finite.
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Proof. By contradiction, assume that there exists a sequence F<αnV of pair-
wise distinct linear subspaces of V . By axiom (iii), αn40 for any but eventu-
ally one n. Now, Lemma 1 implies that there exists a decreasing subsequence
αφ(k). Since the linear subspaces F<αnV are pairwise distinct, the subsequence
F<αφ(k)V is increasing. This contradicts the assumption that V is finite dimen-
sional. �

Γ-filtrations coming from decompositions. For each β ∈ Γ,
∑
α�β F

<αV

is a linear subspace of F<βV . Let us choose a supplementary subspace Sβ :

F<βV = Sβ ⊕
∑
α�β

F<αV. (14)

One of the motivation for axiom (iii) in the definition of Γ-filtration is the
following lemma.

Lemma 3 With above notation,

F<βV =
∑
α<β

Sα. (15)

Proof. It is clear that the sum is contained in F<βV . Conversely, since V is
finite dimensional, we have

F<βV = Sβ ⊕ (F<α1V + · · ·+ F<αsV ),

for some αi ∈ Γ such that αi�β. By axiom (iii), we may assume that for any
i = 1, . . . , s we have αi40. If each F<αiV satisfies the lemma, the lemma is
proved for F<βV . Otherwise, we restart the proof with each αi in place of β.
Since Γ is discrete, the set of α ∈ Γ such that 0<α<β is finite. In particular,
the procedure ends by axiom (iii) of the definition of a Γ-filtration. �

Conversely, assume that a linear subspace Sα of V is given for any α ∈ Γ.
If these linear subspaces satisfy (Sα 6= {0} ⇒ α40), and there exist α1, . . . , αs
such that V = Sα1 + · · · + Sαs then the formula (15) defines a Γ-filtration of
V . The Γ-filtration of V is said to come from a decomposition if there exists a
decomposition

V =
⊕
α∈Γ

Sα, with Sα 6= {0} ⇒ α40, (16)

such that (15) holds.

The f -dimension vector (f stand for filtered) of the Γ-filtration, is the vector
(fdβ(V ))β∈Γ of NΓ defined by

Γ −→ N, β 7−→ fdβ(V ) = dim(F<βV ),
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for any β ∈ Γ. Define the grading associated to the Γ-filtration by setting

Grβ V =
F<βV∑
α�β F

<αV
, and GrV =

⊕
β∈Γ

Grβ V. (17)

The g-dimension vector (g stands for graded) (gdβ(V ))β∈Γ of the Γ-filtration is
defined by

Γ −→ N, β 7−→ gdβ(V ) := dim(Grβ V ).

Lemma 4 The Γ-filtration comes from a decomposition if and only if

dim(GrV ) = dim(V ). (18)

In this case, the g-dimension vector of V only depends on the f -dimension vector
of V .

Proof. Assume first that the Γ-filtration comes from a decomposition. Fix
linear subspaces Sα satisfying the conditions (16) and (15). For any β ∈ Γ, the
identity (14) holds and dim(Grβ V ) = dim(Sβ). Hence the lemma follows from
the condition (16).

Conversely, assume that the condition (18) is fulfilled and choose linear sub-
spaces Sβ satisfying (14). Let β0 ∈ Γ such that F<β0V = V . Lemma 3 implies
that V =

∑
β<β0

Sβ . The condition (18) implies that the sum is direct. More-
over, it implies that Sγ = {0} if γ 6 <β0. Using Lemma 3 once again, we deduce
that the filtration comes from the decomposition V =

⊕
β S

β .

If fdβ = 0 then F<βV = {0}, Grβ = {0} and gdβ = 0. Let Γmax be the set
of maximal elements among the elements β in Γ satisfying F<βV 6= {0}. For
β ∈ Γmax, we have gdβ(V ) = fdβ(V ). Et caetera. �

Example. Consider the group Z2 endowed with the order (a, b)4(a′, b′) if
and only if a ≤ a′ and b ≤ b′. Fix a two dimensional vector space V and three
pairwise distinct lines l1, l2, and l3 in V . Consider the following family (Sβ)β∈Z2

of linear subspaces of V : S(−2,0) = l1, S
(0,−2) = l2, S

(−1,−1) = l3, and Sβ = {0}
if β 6∈ {(−2, 0), (0,−2), (−1,−1)}. The filtration defined by the formula (15)
does not come from a decomposition. More precisely, GrV ' l1 ⊕ l2 ⊕ l3 has
dimension three whereas V has dimension two.

Another useful notion is the weight ρ(V ) of the Γ-filtration of V defined by

ρ(V ) =
∑
β∈Γ

gdβ(V )β. (19)

Filtrations induced on a linear subspace. Let W be a linear subspace of
V . The Γ-filtration on V induces one on W by setting

∀β ∈ Γ F<βW := W ∩ F<βV. (20)
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Lemma 5 If the Γ-filtration on V comes from a decomposition then the induced
Γ-filtration on W comes from a decomposition.

Proof. Fix linear subspaces SβV and SβW of V such that

V = SβV ⊕ F
<βV, W = SβW ⊕ F

<βW, SβW ⊂ S
β
V .

Lemma 3 implies that

W =
∑
β∈Γ

SβW . (21)

Lemma 4 shows
V =

⊕
β∈Γ

SβV .

Since SβW ⊂ S
β
V it follows that the sum (21) is direct. �

Filtrations induced on p-forms. Let p a nonnegative integer. A Γ-filtration
of V induces a filtration on the space

∧p
V ∗ of skewsymmetric p-forms on V as

follows.

Definition. Let β ∈ Γ. Denote by F4β ∧p V ∗ the linear subspace of forms
ω ∈

∧p
V ∗ such that for any any α1, . . . , αp ∈ Γ, for any vi ∈ F<αiV , we have

α1 + · · ·+ αp 64β ⇒ ω(v1, . . . , vp) = 0. (22)

The first properties of these linear subspaces are.

Proposition 4 (i) If β4γ then F4β ∧p V ∗ ⊂ F4γ ∧p V ∗.
(ii) Let β0 ∈ Γ be such that F<β0V = V . If F4γ ∧p V ∗ 6= {0} then γ<pβ0.

(iii) We have F40
∧p

V ∗ =
∧p

V ∗.

(iv) For β and γ in Γ, we have F4β ∧p V ∗ ∧ F4γ ∧q V ∗ ⊂ F4β+γ
∧p+q

V ∗.

Proof. If β4γ then α1 + · · · + αp 64γ implies α1 + · · · + αp 64β. Hence the
conditions defining F4γ ∧p V ∗ are conditions defining F4β ∧p V ∗. The first
assertion follows.

Let γ 6<pβ0. The definition of F4γ ∧p V ∗ with α1 = · · · = αp = β0 implies
that F4γ ∧p V ∗ is reduced to zero.

Let ω be any p-form. We want to prove that ω ∈ F40
∧p

V ∗. Let α1, . . . , αp
such that α1+· · ·+αp 640. Then some i0 satisfies αi0 640. In particular, F<αi0V =
{0}. This implies that ω is zero on F<α1V × · · · × F<αsV .

11



Let ω1 and ω2 belong to F4β ∧p V ∗ and F4α∧q V ∗ respectively. Let
α1, . . . , αp+q be such that α1 + · · ·+ αp+q 64β + γ. Let vi ∈ F<αiV . Then

(ω1 ∧ ω2)(v1, . . . , vp+q) =

1
(p+q)!

∑
σ∈Sp+q ε(σ)ω1(vσ(1), . . . , vσ(p)).ω2(vσ(p+1), . . . , vσ(p+q)).

(23)

It is sufficient to prove that any term in the sum (23) is zero. Since (ασ(1) +
· · ·+ασ(p)) + (ασ(p+1) + · · ·+ασ(p+q))64β+ γ, either (ασ(1) + · · ·+ασ(p)) 64β or
(ασ(p+1) + · · ·+ ασ(p+q))64γ. In the two cases, the product

ω1(vσ(1), . . . , vσ(p)).ω2(vσ(p+1), . . . , vσ(p+q))

is equal to zero. �

Remark. The three first assertions of Proposition 4 mean that (F4β ∧p V ∗)β∈Γ

is a Γ-filtration of
∧p

V ∗ up to the changing of index β 7→ pβ0 − β. Indeed,
even for p = 1, taking orthogonal reverses inclusions and exchanges {0} with
the whole space.

Filtrations coming from a decomposition.

Lemma 6 Let p be a positive integer. If the Γ-filtration on V comes from
a decomposition then the induced Γ-filtration F<pβ0−β

∧p
V ∗ on

∧p
V ∗ comes

from a decomposition.

Proof. Write
V =

⊕
α∈Γ

Sα and F<βV =
⊕
α<β

Sα,

with (SαV 6= {0} ⇒ α40). For any β ∈ Γ, denote by T β the orthogonal of⊕
α6=β S

α in V ∗. It can be identified with the dual of Sβ and

V ∗ =
⊕
β∈Γ

T β . (24)

For any collection of subspaces F1, . . . , Fp of V ∗, π(F1 ⊗ · · · ⊗ Fp) denotes the
subspace of ∧pV ∗ obtained by adding wedge products of elements of the sub-
spaces Fi. For any θ ∈ Γ, set

(∧pV ∗)θ :=
∑

β1+···+βp=θ

π(T β1 ⊗ · · · ⊗ T βp).

It is clear that (24) implies that

∧pV ∗ =
⊕
θ∈Γ

(∧pV ∗)θ.

Moreover, for any θ ∈ Γ, (∧pV ∗)θ is the set of p-forms ω such that for any
αi ∈ Γ and vi ∈ Sαi such that α1 + · · ·+ αp 6= θ we have ω(v1, . . . , vp) = 0.
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We claim that

F4β ∧p V ∗ =
⊕
θ4β

(∧pV ∗)θ. (25)

Indeed F4β ∧p V ∗ is the subspace of forms ω ∈
∧p

V ∗ such that for any
α1, . . . , αp ∈ Γ, any vi ∈ Sαi , we have

α1 + · · ·+ αp 64β ⇒ ω(v1, . . . , vp) = 0.

Let θ such that (∧pV ∗)θ 6= {0}. Then there exist β1, . . . , βp in Γ such that
β1 + · · ·+βp = θ and T βi 6= {0} for any i. Hence Sβi 6= {0} for any i and βi40.
We deduce that θ40. �

2.2 The case of manifolds
Let M be a smooth connected manifold and let TM denote its tangent bundle.
Here comes the central definition of this work.

Definition. An infinitesimal Γ-filtration of M is a collection F<βTM of vector
subbundles of TM indexed by β ∈ Γ satisfying

(i) α4β ⇒ F<βTM ⊂ F<αTM ,

(ii) ∃β0 ∈ Γ s.t. TM = F<β0TM ,

(iii) if F<αTM 6= {0} then α40.

The f-rank vector of the infinitesimal filtration is the map

β 7−→ rk(F<βTM), (26)

and belongs to NΓ.

Definition. An infinitesimal Γ-filtration is said to come from a decomposition
if for any x ∈M , the Γ-filtration of TxM comes from a decomposition.

Remark. We do not require a Γ-decomposition of the tangent bundle TM but
only for a punctual decomposition.

Lemma 7 Consider an infinitesimal Γ-filtration on M coming from a decom-
position. Then for any β, the sum

∑
α�β F

<αTM is a subbundle of TM .

Proof. Fix x in M and a Γ-decomposition of TxM = ⊕αSα such that the
identities (16) and (15) hold. Then

∑
α�β F

<αTxM =
∑
α�β S

α. In particular,
its dimension only depends on the g-dimension vector of the filtration of TyM .
This g-dimension vector only depends on the f -dimension by Lemma 4. It
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follows that the dimension of
∑
α�β F

<αTxM does not depend on x. Now, the
lemma follows from classical properties of vector subdundles. �

Define the grading associated to the infinitesimal Γ-filtration coming from a
decomposition by setting

Grβ TM =
F<βTM∑
α�β F

<αTM
and GrTM =

⊕
β∈Γ

Grβ TM. (27)

They are vector bundles on M . The g-rank vector (gdβ(M))β∈Γ of the Γ-
filtration is defined by

Γ −→ N, β 7−→ gdβ(M) := rk(Grβ TM).

2.3 The case of varieties
Let X be a smooth complex irreducible variety. Consider the complex tangent
bundle TX.

Definition. An infinitesimal Γ-filtration of X is said to be algebraic if each
F<βTX is a complex algebraic vector subbundle of TX.

Let Y be an irreducible subvariety of X. For y ∈ Y , the Zariski-tangent
space TyY of Y at the point y is a complex subspace of TyX. Set

F<βTyY = F<βTyX ∩ TyY. (28)

Even if Y is smooth, F<βTyY does not define a subbundle of TY since its
dimension depends on y.

Lemma 8 For any β ∈ Γ and y ∈ Y , there exists an open neighborhood U of
y′ in Y such that for any y′ ∈ U we have

dim(F<βTyY ) ≥ dim(F<βTy′Y ). (29)

Proof. Locally in y ∈ Y the subspace F<βTyY of TyX can be expressed as the
kernel of a matrix whose coefficients depends algebraically on y. The lemma
follows. �

The point y ∈ Y is said to be Γ-regular if

∀β ∈ Γ dim(F<βTyY ) = min
y′∈Y

dim(F<βTy′Y ). (30)

Since Γ is countable, Lemma 8 shows that a very general point in Y is Γ-regular.
More precisely, Lemma 2 implies that the set of Γ-regular points in Y is open.
The open set of Γ-regular points of Y is denoted by Y Γ−reg. If x ∈ Y Γ−reg, the
g-dimesnion of TxY is called the Γ-dimension of Y .
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3 Infinitesimal filtration of G/P and Schubert va-
rieties

3.1 Infinitesimal filtration of G/P

As in the introduction, G is a complex semisimple group, P is a parabolic
subgroup of G, T ⊂ B ⊂ P are a fixed maximal torus and a Borel subgroup.
Moreover, L denotes the Levi subgroup of P containing T and Z denotes the
neutral component of its center. The group of multiplicative characters of Z
is denoted by X(Z). Set Γ = X(Z). Our main example is an infinitesimal
X(Z)-filtration of G/P .

Let S be any torus. If V is any S-module then Φ(V, S) denotes the set of
nonzero weights of S on V . For β ∈ X(S), Vβ denotes the eigenspace of weight
β.

Denote by p and g the Lie algebras of P and G and consider the convex cone
C generated by Φ(p, Z) in X(Z) ⊗ Q. It is a closed strictly convex polyhedral
cone of nonempty interior inX(Z)⊗Q. The associated order onX(Z) is denoted
by <. The decomposition of g/p under the action of Z:

g/p =
⊕

α∈X(Z)

(g/p)α (31)

is supported on −C ∩ X(Z). The group P acts on g/p by the adjoint action
but does not stabilize the decomposition (31). For any β ∈ X(Z), the linear
subspace

F<βg/p =
⊕

α ∈ X(Z)
α<β

(g/p)α (32)

is P -stable. More precisely, the set of F<βg/p forms a P -stable X(Z)-filtration
of g/p coming from the decomposition (31). The tangent bundle T (G/P ) iden-
tifies with the fiber bundle G×P g/p over G/P . These remarks allow to define a
G-equivariant infinitesimal X(Z)-filtration on G/P by setting for any β ∈ X(Z)

F<βT (G/P ) = G×P F<βg/p. (33)

Consider the set Φ(g/p, T ) of weights of T acting on g/p. Then Φ(g/p, T )
is a subset of Φ. Let w belong to WP and consider the centered Schubert
variety w−1Xw. Then P/P belongs to the open w−1Bw-orbit in w−1Xw. In
particular, it is X(Z)-regular. Denote by Φ(w) the set of weights of T acting on
TP/Pw

−1Xw. Then Φ(w) = Φ− ∩ w−1Φ+ is the inversion set of w. Moreover,
Φ(w) is contained in Φ(g/p, T ). Since P/P is X(Z)-regular in w−1Xw, the g-
dimension of Xw is equal to the g-dimension of TP/Pw−1Xw. The following
result follows directly:
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Lemma 9 The g-dimension of gd(Xw) of Xw is equal to

X(Z) −→ Z≥0

α 7−→ #{θ ∈ Φ(w) : θ|Z = α},

where θ belongs to X(T ) and θ|Z denotes its restriction to Z.

3.2 Peterson’s application
Let V ′ be any T -module without multiplicity and let β ∈ X(T ). Under the
action of Kerβ ⊂ T , V ′ decomposes

V ′ =
⊕

α∈X(T )/Zβ

(
⊕k∈ZV ′α+kβ

)
. (34)

A subset Λ of Φ(V ′, T ) is said to be β-convex if

α ∈ Λ, α+ β ∈ Φ(V ′, T )⇒ α+ β ∈ Λ. (35)

For any submodule V of V ′, V β denotes the unique sub-T -module of V ′ iso-
morphic to V as a Ker(β)-module and such that Φ(V β , T ) is β-convex. In other
words, on each line α + Zβ ∩ Φ(V ′, T ), one pushes the elements of Φ(V, T ) in
the direction β to get Φ(V β , T ).

Let w ∈ W . The point wP/P is denoted by ẇ. Let V be a T -submodule
of TẇG/P . Let β be a root of (G,T ). We are interested in the action of the
unipotent one-parameter subgroup Uβ associated to β on ẇ and V . Consider
the point v̇ = limτ→∞ Uβ(τ)ẇ. For any τ ∈ C, Uβ(τ)V is a linear subspace of
TUβ(τ)ẇG/P of the same dimension as V . Hence it is a point of a bundle in
Grassmannian over G/P . Consider the limit in this bundle

τ(V, β) := lim
τ→∞

Uβ(τ)V. (36)

This limit τ(V, β) is a T -stable submodule of the T -module without multiplicity
Tv̇G/P .

We can now state a Peterson’s result (see [CK03, Section 8]).

Lemma 10 The T -submodule sβτ(V, β) of TẇG/P is equal to V −β.

Proof. The set {Uβ(τ)ẇ : τ ∈ C}∪ v̇ is a T -stable curve isomorphic to P1. The
computation of τ(V, β) lies in a bundle in Grassmannians over this line. This
computation can be made quite explicitly by trivializing this bundle on the two
T -stable open affine subsets of P1. �

3.3 A lemma on T -varieties
The following result is used in this paper to characterize Schubert varieties in
terms of their tangent spaces among the irreducible T -stable subvarieties of
G/P .
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Lemma 11 Let V be a T -module. Let C be a strictly convex cone in X(T )⊗Q.
Let Σ be a closed T -stable subvariety of V such that

(i) Σ is smooth at 0;

(ii) T0Σ = ⊕χ∈CVχ .

Then Σ = ⊕χ∈CVχ.

Proof. Since C is strictly convex and Φ(V, T ) is finite, there exist finitely many
one-parameter subgroups λ1, . . . , λk of T such that

∀χ ∈ X(T ) χ ∈ C ⇐⇒ ∀i 〈λi, χ〉 > 0.

For any i, there exists a T -stable neighborhood of 0 in Σ such that any point
x in this neighborhood satisfies limt→0 λi(t)x = 0. Consider the set W of v ∈ V
such that limt→0 λi(t)v = 0, for any i. By the second condition, W is precisely
T0Σ. We just proved that T0Σ contains an open subset of Σ. But these two
varieties are irreducible and of same dimension (since Σ is assumed to be smooth
at 0). Hence Σ = T0Σ. �

3.4 Schubert varieties
Let Y be a subvariety of G/P . Let G(X) denote the stabilizer of Y in G; it is
the set of g in G such that gY = Y . If G(Y ) has an open orbit in Y then this
orbit is called the homogeneous locus of Y ; otherwise, the homogeneous locus
of Y is defined to be empty. In other words, the homogeneous locus of Y is the
biggest open subset of Y homogeneous under a subgroup of G; it is denoted by
Y hom.

Recall that Xw = BwP/P . If Y = Xw (for some w ∈ WP ) then the group
G(Xw) contains B: it is a standard parabolic subgroup of G. In particular, it
is characterized by a subset ∆w of simple roots. Precisely we set

∆w = {α ∈ ∆ : PαXw = Xw}.

Proposition 5 We have

XX(Z)−reg
w = Xhom

w .

Proof. Since the infinitesimal filtration is G-invariant, it is clear thatXX(Z)−reg
w

is G(Xw)-stable and contains Xhom
w . Moreover Lemma 8 implies that XX(Z)−reg

w

is open in Xw.
Assume that XX(Z)−reg

w − Xhom
w is nonempty. Choose an open B-orbit in

X
X(Z)−reg
w −Xhom

w and a T -fixed point v̇ on it.
Obviously v is smaller than w for the Bruhat order. Since the Bruhat order

is generated by T -stable curves, there exists a positive root β such that sβv ∈
WP and v < sβv < w. Since B.v̇ is dense in an irreducible component of
X
X(Z)−reg
w −Xhom

w , sβ v̇ belongs to Xhom
w .
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Since sβ v̇ is a T -fixed point in G(Xw).ẇ, it is equal to uẇ for some u ∈
W (G(Xw)).

We claim that

sβ ∈ G(Xw)/T. (37)

Let us first explain how the claim leads to a contradiction. Since u belongs to
G(Xw)/T , the claim implies that sβu−1Xhom

w = Xhom
w . But v̇ = sβu

−1ẇ and ẇ
belongs to Xhom

w . Hence v̇ ∈ Xhom
w which is a contradiction.

Consider γ = ±w−1uβ where the sign is chosen to make γ negative. Since
u ∈ G(Xw)/T , Claim (37) is equivalent to sβu−1Xw = u−1Xw or to suβXw =
Xw or to

sγ .(w
−1Xw) = w−1Xw. (38)

Look these two varieties in a neighborhood of P/P . More precisely, consider
the unique affine open T -stable neighborhood Ω of P/P in G/P . Then Ω is
isomorphic as a T -variety to a T -module without multiplicity. Since the two
varieties of (38) are irreducible, it is sufficient to prove that

Ω ∩ sγ .(w−1Xw) = Ω ∩ w−1Xw. (39)

Since sγP/P ∈ w−1Xw, γ ∈ Φ(w). In particular, w−1Xw is Uγ-stable. But,
sγP/P and P/P are smooth points in w−1Xw. Hence

lim
τ→∞

Uγ(τ)TP/Pw
−1Xw = TsγP/Pw

−1Xw.

Then Lemma 10 shows that

Φ(TP/P sγw
−1Xw, T ) = sγΦ(TsγP/Pw

−1Xw, T )
= sγΦ

(
limτ→∞ Uγ(τ)TP/Pw

−1Xw, T
)

= Φ
(
(TP/Pw

−1Xw)−γ , T
)
.

Since P/P is Γ-regular in sγw−1Xw,

∀α ∈ X(Z) dim(F<α(TP/Pw
−1Xw)−γ) = dim(F<α(TP/Pw

−1Xw)). (40)

But γ 6∈ Φ(P ), hence γ|Z is non trivial. Then, equality (40) implies that
Φ((TP/Pw

−1Xw)−β , T ) = Φ((TP/Pw
−1Xw), T ). Equality (39) follows and the

theorem is proved. �

4 Infinitesimal filtration and cohomology

4.1 Filtration of differential forms on a manifold
In this subsection, M is a smooth connected manifold of dimension d endowed
with an infinitesimal Γ-filtration. The notion that allows to control the differ-
ential relatively to the filtration is the following one.
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Definition. An infinitesimal Γ-filtration of M is said to be integrable if for any
α and β in Γ we have

[F<αTM,F<βTM ] ⊂ F<α+βTM. (41)

Example. Let L be an integrable distribution on M . We get an integrable
infinitesimal Z-filtration be setting

F<aTM = TM ∀a ∈ Z<0,
F<0TM = L,
F<aTM = 0 ∀a ∈ Z>0.

Example. Let L be any distribution on M . We get an integrable infinitesimal
Z-filtration be setting

F<aTM = TM ∀a ≤ −2,
F<−1TM = L,
F<aTM = 0 ∀a ∈ Z≥0.

Consider the sheaf Ωp of differential p-forms on M and the De Rham differ-
ential dp : Ωp −→ Ωp+1. The De Rham cohomology group is

Hp
DR(M,R) :=

Ker dp(M)

Im dp−1(M)
.

The exterior product

∧ : Ωp × Ωp
′ −→ Ωp+p

′

(ω, ω′) 7−→ ω ∧ ω′

induces a product ∧ in cohomology since

d(ω ∧ ω′) = (dω) ∧ ω′ + (−1)pω ∧ dω′.

In particular, H∗DR(M,R) := ⊕dk=0Hk
DR(M,R) is a graded algebra.

We now consider the Γ-filtration on the sheaf Ωp induces by the infinitesimal
Γ-filtration.

Definition. Let β ∈ Γ and let U be an open subset of M . The subspace
F4βΩp(U) of Ωp(U) is defined to be the set of forms ω ∈ Ωp(U) such that for
any α1, . . . , αp ∈ Γ, for any x ∈ U and for any ξi ∈ F<αiTxM , we have

α1 + · · ·+ αp 64β ⇒ ωx(ξ1, . . . , ξp) = 0. (42)

A direct consequence of Proposition 4 is
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Proposition 6 (i) If β4γ then F4βΩp ⊂ F4γΩp.

(ii) Let β0 ∈ Γ be such that F<β0TM = TM . If F4γΩp 6= {0} then γ<pβ0.

(iii) We have F40Ωp = Ωp.

(iv) For β and γ in Γ, we have F4βΩp ∧ F4γΩq ⊂ F4β+γΩp+q.

The integrability is essential in the following result.

Proposition 7 Assume that the infinitesimal filtration is Γ-integrable. Then
for any β ∈ Γ

dp(F
4βΩp) ⊂ F4βΩp+1.

Proof. Let U be an open subset of M and let ω ∈ F4βΩp(U). Let x ∈ U and
let ξi ∈ F<αiTM be defined in a neighborhood of x such that α1+· · ·+αp+1 64β.
It remains to prove that

dp(ω)x(ξ1, . . . , ξp+1) = 0.

Cartan’s formula implies

dp(ω)x(ξ1, . . . , ξp+1) =
∑
i±ξi · ω(ξ1, . . . , ξ̂i, . . . , ξp+1)

+
∑
i<j ±ωx([ξi, ξj ], ξ1, . . . , ξ̂i, . . . , ξ̂j , . . . , ξp+1).

Since [ξi, ξj ] ∈ F<αi+αjM and

(αi + αj) + α1 + · · ·+ α̂i + · · ·+ α̂j + · · ·+ αp+1 64β,

the term ωx([ξi, ξj ], ξ1, . . . , ξ̂i, . . . , ξ̂j , . . . , ξp+1) is zero.
Consider now a term

ξi · ω(ξ1, . . . , ξ̂i, . . . , ξp+1). (43)

If αi 640 then ξi = 0 and the term (43) is zero. Assume now that αi40. The
weight of ξ1, . . . , ξ̂i, . . . , ξp+1 is θ :=

∑p+1
j=1 αj−αi. Since θ+αi 64β and αi40, we

have θ 64β. Since ω belongs to F4βΩp(U), it follows that ω(ξ1, . . . , ξ̂i, . . . , ξp+1) =
0. �

4.2 Filtration of the cohomology
The Γ-filtration on M induces an increasing Γ-filtration on the cohomology.
Indeed, Propositions 6 and 7 show that the De Rham complex is Γ-filtered.
Namely, we set

F4β Hp(M,R) :=
Ker(dp) ∩ F4βΩp(M,R)

dp−1(Ωp−1(M,R)) ∩ F4βΩp(M,R)
. (44)

Propositions 6 and 7 show the following one.
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Proposition 8 The sets F4β Hp(M,R) are canonically identified with subspaces
of Hp(M,R).

(i) If F<β0M = TM then F<pβ0−β Hp(M,R) is a Γ-filtration of Hp(M,R).

(ii) The filtration respects the structure of algebra. Namely, for β and γ in Γ,
we have

F4β Hp(M,R) ∧ F4γ Hq(M,R) ⊂ F4β+γ Hp+q(M,R).

Remark. The Γ-filtration is defined at the level of the de Rham complex and
not only at the level of the cohomology. In particular, it induces a spectral se-
quence which should be study to understand the relations between the ordinary
and the Belkale-Kumar cohomologies. Here we only study the Belkale-Kumar
product.

Consider now the (Γ × Z)-graded algebra associated to this Γ-filtration of
the Z-graded (by degree) algebra H∗(M,R) by setting

Grβ Hp(M,R) :=
F4β Hp(M,R)∑
γ≺β F

4γ Hp(M,R)
(45)

and

Gr•H∗(M,R) :=
⊕

β∈Γ, p∈N
Grβ Hp(M,R). (46)

Then Gr•H∗(M,R) is a ring graded by Γ× Z.
Now, we observe the following easy functoriality result.

Lemma 12 Let M and N be two smooth manifolds endowed with integrable
infinitesimal Γ-filtrations. Let φM −→ N a smooth map such that

∀α ∈ Γ Tφ(F≥αTM) ⊂ F≥αTN.

Then the pullback φ∗ : H∗(N,R) −→ H∗(M,R) respects the Γ-filtration. In
particular, it induces a Γ-graded morphism Grφ∗ : GrH∗(N,R) −→ GrH∗(M,R).

4.3 Cohomology with complex coefficients
Recall thatM is a connected manifold. Consider the cohomology group H∗(M,C)
with complex coefficients and consider the following complex vector bundle on
M

TCM := TM ⊗R C.

A complex infinitesimal Γ-filtration of M is a family of complex subbundles

F4βTCM ⊂ TCM,
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indexed by β ∈ Γ satisfying the three assertions of Definition 2.2. A complex
infinitesimal Γ-filtration is said to be Γ-integrable if for any β and γ in Γ, we
have

[F4βTCM,F4γTCM ] ⊂ F4β+γTCM. (47)

A complex infinitesimal integrable Γ-filtration induces a filtration of the De
Rham complex and of the groups Hp(M,C).

Example. Let M be an holomorphic manifold. Let J denote the complex
structure on the tangent bundle TM . Since J2 = −Id, its eigenvalues acting on
TM ⊗ C are ±

√
−1. Let T 1,0M (resp. T 0,1M) denote the complex subbundle

of TM ⊗C associated to the eigenvalue
√
−1 (resp. −

√
−1). There is a natural

C-linear isomorphism ι1,0 : TM −→ T 1,0M . It is well known that T 1,0M is an
integrable distribution in TCM . Then we get a complex infinitesimal integrable
Z-filtration by setting

F<aTCM = TCM ∀a ∈ Z<0,
F<0TCM = T 1,0M,
F<aTCM = 0, ∀a ∈ Z>0.

The Z-filtration of Hp(M,C) is called the Hodge filtration ofM (see for example
[Voi07]).

4.4 The case of a smooth complex variety
Let M be a smooth complex irreducible variety endowed with an algebraic
Γ-filtration. Assume that this filtration is integrable and comes from a decom-
position (recall the definition from Section 2.2). Set Γ̃ := Γ × Z endowed with
the order (β, n)<(γ,m) if and only if β<γ and n ≥ m.

Define a complex Γ̃-filtration on TCM by setting for any β ∈ Γ,

F<(β,a)TCM = TCM ∀a ∈ Z<0,
F<(β,0)TCM = ι1,0(F<βTM),
F<(β,a)TCM = 0, ∀a ∈ Z>0.

Integration along subvarieties. Let N be an irreducible subvariety of M .
Denote by n the dimension of M and by d that of N . By Lemma 4, the
dimension vector (fdβ(TxN))β∈Γ does not depend on x ∈ N general. This
general value of the dimension vector is by definition the f -dimension vector of
N and is denoted by fdβ(N). For any x in N , the Γ-filtration of TxN comes
from a decomposition by Lemma 5. In particular, Lemma 4 shows that the
g-dimensional vector of TxN does not depend on x in N general. This remark
allows to define the g-dimension vector of N . Then the weight ρ(N) ∈ Γ of N
is defined by the formula
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ρ(N) =
∑
β∈Γ

gdβ(N)β. (48)

Consider the extended notions to Γ̃: g̃d
(β,0)

(N) = gd(β,0)(TxN ⊗ C) = gdβ(N),

g̃d
(0,−1)

(N) = d and g̃d
(β,a)

(N) = 0 otherwise. Note that ρ̃(N) = (ρ(N),−d).
Consider now the linear map

Ω2d(M,C) −→ C
ω 7−→

∫
N
ω|N .

The following lemma relies the filtration and the integration.

Lemma 13 Let β ∈ Γ and let e ∈ Z such that (β, e) 6<ρ̃(N). If ω ∈ F4(β,e)Ω2d(M,C)
then ∫

N

ω|N = 0.

Proof. Let x ∈ N be a general point. By Lemma 5, the Γ-filtration on TxN
comes from a decomposition. Then there exists a basis (ξ1, . . . , ξd) of TxN such
that for any β ∈ Γ, the set of ξi which belong to F<βTxN spans F<βTxN .
Such a basis exists since by Lemma 5, the Γ-filtration on TxN comes from a
decomposition. Let αi be the maximal element of Γ such that ξi belongs to
F<αiTxN .

Consider the basis (ι(1,0)(ξ1), . . . , ι(1,0)(ξd), ι
(0,1)(ξ1), . . . , ι(0,1)(ξd)) of TxN⊗

C. Since x is any general point on N , it is sufficient to prove that

ω(ι(1,0)(ξ1), . . . , ι(1,0)(ξd), ι
(0,1)(ξ1), . . . , ι(0,1)(ξd)) = 0.

But ι(1,0)(ξi) ∈ F<(αi,0)TCN and ι(0,1)(ξi) ∈ F<(0,−1)TCN . Hence the weight
of (ι(1,0)(ξ1), . . . , ι(1,0)(ξd), ι

(0,1)(ξ1), . . . , ι(0,1)(ξd)) is
∑d
i=1(αi, 0) + d(0,−1) =

ρ̃(N). The lemma follows. �

The restriction of the map ω 7−→
∫
N
ω|N to the closed 2d-forms is zero on

the exact forms and induces a linear map∫
N

: H2d(M,C) −→ C.

Consider now the restriction of this map to F4ρ̃(N) H2d(M,C). By Lemma 13,
this restriction induces a linear map∫

N

: Grρ̃(N) H2d(M,C) −→ C.

Poincaré pairing. Assume that M is compact and recall that it is orientable
since it is holomorphic. Let p be an integer such that 0 ≤ p ≤ 2d. The
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integration allows to define a paring

Hp(M,C)×H2d−p(M,C) −→ C
([ω1], [ω2]) 7−→

∫
M
ω1 ∧ ω2.

(49)

By Poincaré duality, this bilinear form is non degenerated. In particular, Hp(M,C)
and H2d−p(M,C) have the same dimension.

Let α̃ ∈ Γ̃. Consider the following restriction of the bilinear form (49):

F4α̃ Hp(M,C)× F4ρ̃(M)−α̃ H2d−p(M,C) −→ C
([ω1], [ω2]) 7−→

∫
M
ω1 ∧ ω2.

(50)

Since
α̃<ρ̃(M)⇒ F4α̃Ω2d(M) = Ω2d(M), and
α̃ 6<ρ̃(M)⇒ F4α̃Ω2d(M) = 0,

Lemma 13 shows that

α̃+ β̃ 6<ρ̃(M)⇒ F4α̃ Hp(M,C) ∧ F4β̃ H2d−p(M,C) = {0}. (51)

In particular, the pairing (50) passes to the quotient and induces a pairing

Grα̃ Hp(M,C)×Grρ̃(M)−α̃ H2d−p(M,C) −→ C
([ω1], [ω2]) 7−→

∫
M
ω1 ∧ ω2.

(52)

Definition. The Γ̃-filtration of H∗(M,C) is said to be compatible with Poincaré
duality if for any integer 0 ≤ p ≤ 2d and for any α̃ ∈ Γ̃, the pairing (52) is non
degenerate.

Lemma 14 The Γ̃-filtration of H∗(M,C) is compatible with Poincaré duality if
and only if for any nonnegative integer p and any α̃ ∈ Γ̃, we have

dim(Grα̃ Hp(M,C)) = dim(Grρ̃(M)−α̃ H2d−p(M,C)) (53)

Proof. If the Γ̃-filtration of H∗(M,C) is compatible with Poincaré duality we
obviously have the equalities of dimensions.

Assume now that (53) hold. In a basis adapted to the filtration, impli-
cation (51) implies that the matrix A of the pairing (49) is upper triangular.
Moreover, the matrices (in the induced basis) of the pairings (52) are the diag-
onal blocs of A. But equalities (53) imply that these blocs are square. Since A
is invertible, it follows that any bloc is invertible. �

Definition. Let N be an irreducible subvariety of a compact smooth irreducible
complex variety M endowed with an integrable infinitesimal Γ-filtration coming
from a decomposition. Assume that the Γ̃-filtration is compatible with Poincaré
duality. Define [N ]�0 ∈ Grρ̃(M)−ρ̃(N) H2(n−d)(M,C)) to satisfy the following
formula ∫

N

[ω] =

∫
M

[N ]�0 ∧ [ω], (54)

for any [ω] ∈ Grρ̃(N) H2d(M,C).
On can refer to Proposition 11 for a more concerte characterization of [N ]�0

and in particular its relation with [N ], in the case when M = G/P .
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5 Isomorphism with the Belkale-Kumar product

5.1 The Belkale-Kumar product
In this section, we recall the Belkale-Kumar notion of Levi-movability (see [BK06]).

The cycle class of the Schubert variety Xw in H∗(G/P,C) is denoted by σw
and it is called a Schubert class. The degree of σw is 2(dimG/P − l(w), where
l(w) = ]Φ(w) is the length of w. The Schubert classes form a basis of the
cohomology of G/P :

H∗(G/P,C) =
⊕

w∈WP

Cσw. (55)

The Poincaré dual of σw is denoted by σ∨w. Note that σe is the class of the
point. Let σu, σv, σw be three Schubert classes (with u, v, w ∈ WP ). If there
exists an integer d such that σu.σv.σw = dσe then we set cuvw = d; we set cuvw =
0 otherwise. These coefficients are the (symmetrized) structure coefficients of
the cup product on H∗(G/P,C) in the Schubert basis in the following sense:

σu.σv =
∑

w∈WP

cuvwσ
∨
w

and cuvw = cvuw = cuwv.

Consider the tangent space Tu of the orbit u−1BuP/P at the point P/P ;
and, similarly consider Tv and Tw. Using the transversality theorem of Kleiman,
Belkale and Kumar showed in [BK06, Proposition 2] the following important
lemma.

Lemma 15 The coefficient cuvw is nonzero if and only if there exist pu, pv, pw ∈
P such that the natural map

TP (G/P ) −→ TP (G/P )

puTu
⊕ TP (G/P )

pvTv
⊕ TP (G/P )

pwTw

is an isomorphism.

Then Belkale-Kumar defined Levi-movability.

Definition. The triple (σu, σv, σw) is said to be Levi-movable if there exist
lu, lv, lw ∈ L such that the natural map

TP (G/P ) −→ TP (G/P )

luTu
⊕ TP (G/P )

lvTv
⊕ TP (G/P )

lwTw

is an isomorphism.
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Belkale-Kumar set

c�0
uvw =

{
cuvw if (σu, σv, σw) is Levi−movable;
0 otherwise.

They defined on the group H∗(G/P,C) a bilinear product �0 by the formula

σu�0σv =
∑

w∈WP

c�0
uvwσ

∨
w.

Theorem 2 (Belkale-Kumar 2006) The product �0 is commutative, asso-
ciative and satisfies Poincaré duality.

[RR11, Proposition 2.4] gives an equivalent characterization of Levi-movability.
It can be formulated as follows.

Proposition 9 Let u, v, w ∈ WP such that cuvw 6= 0. Then (σu, σv, σw) is
Levi-movable if and only if

2gd(G/P ) = gd(Xu) + gd(Xv) + gd(Xw).

5.2 The statements
The first aim of this section is to prove (see Section 5.4.10) the following result
of compatibility between the basis of Schubert classes and the Γ̃-filtration on
H∗(G/P,C).

Proposition 10 For any β̃ ∈ Γ̃ and for any integer p, the linear subspace
F4β̃ Hp(G/P,C) is spanned by the Schubert classes it contains.

More precisely, F4β̃ Hp(G/P,C) is spanned by the Schubert classes σw∨
where w ∈WP satisfies (ρ(Xw),−l(w))4β̃.

For any w ∈WP , denote by σw∨ the class of σw∨ ∈ F4(ρ(Xw),−l(w)) Hl(w)(G/P,C)

in Gr(ρ(Xw),−l(w)) Hl(w)(G/P,C). Proposition 10 implies that (σw∨)w∈WP is a
basis of Gr H∗(G/P,C). Consider now the obvious linear isomorphism

Ψ : H∗(G/P,C) −→ Gr H∗(G/P,C)
σw∨ 7−→ σw∨ for any w ∈WP .

Theorem 3 The linear isomorphism Ψ from the algebra (H∗(G/P,C),�0) onto
the algebra Gr H∗(G/P,C) is an isomorphism of algebras.

The theorem is proved in Section 5.5 after some preparation. The first
consequence concerns Poincaré duality (see Section 5.4.10).

Corollary 1 The (X(Z)×Z)-filtration of H∗(G/P,C) is compatible with Poincaré
duality.
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This corollary allows to define the graded Schubert classes by setting, for
any w ∈WP ,

σ�0
w := [Xw]�0 . (56)

Finally, we get, by applying Proposition 11 to Y = Xw, the following result
of compatibility.

Lemma 16 For any w ∈WP , we have

Ψ(σw) = σ�0
w .

5.3 An upper bound for dim(F4α̃Hp(G/P,C))
For any w ∈W , as a consequence of the relation Φ− = (Φ− ∩w−1Φ+) ∪ (Φ− ∩
w−1Φ−), we have (see [Kum02, 1.3.22.3])∑

α∈Φ−∩w−1Φ+

α = w−1ρ− ρ. (57)

Assume that w ∈ WP . Since P/P is X(T )-regular and T acts on TP/Pw−1Xw

without multiplicities and with weights Φ− ∩ w−1Φ+, we have

ρ(Xw) = ρ(w−1Xw) =

( ∑
α∈Φ−∩w−1Φ+

α

)
|Z

=
(
w−1ρ− ρ

)
|Z . (58)

In particular

ρ(G/P ) = 2 (ρL − ρ)|Z = −2ρ|Z , (59)

since ρL is trivial on Z. Hence

ρ(G/P )− ρ(Xw) =
(
−ρ− w−1ρ

)
|Z . (60)

Lemma 17 For any w ∈WP , we have

ρ(G/P )− ρ(Xw) = ρ(Xw∨).

Proof. Remark that

((w∨)−1ρ)|Z = ((wP0 w
−1w0ρ)|Z = −wP0 (w−1ρ)|Z = −(w−1ρ)|Z ,

since wP0 belongs to L and acts trivially on Z. The lemma follows. �

Lemma 18 Let n denote the dimension of G/P . The dimension of F4β H2(n−d)(G/P,C)
is less or equal to the number of w ∈ WP such that ρ(G/P ) − ρ(Xw)4β and
l(w) = d.
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Proof. For each w ∈WP such that ρ(G/P )−ρ(Xw) 64β and l(w) = d, consider
the linear form ∫

Xw∨

: H2(n−d)(G/P,C) −→ C.

By Lemmas 17 and 13, this linear form is zero on F4β H2(n−d)(G/P,C). But
by Poincaré duality these linear forms are linearly independent. This implies
that the codimension of F4β H2(n−d)(G/P,C) in H2(n−d)(G/P,C) is at least the
number of w ∈ WP such that ρ(G/P ) − ρ(Xw) 64β and l(w) = d. The lemma
follows. �

5.4 Kostant’s harmonic forms
5.4.1 The role of Kostant’s harmonic forms in this paper

Let w in WP . In 1963, B. Kostant constructed an explicit C-valued closed
differential form ωw on G/P such that the associated cohomology class [ωw] is
equal to σw up to a scalar multiplication. Kostant’s form ωw is used here to
localize the Schubert class relatively to the filtration.

Lemma 19 The Schubert class σw∨ belongs to F4(ρ(Xw),−l(w)) Hl(w)(G/P,C).

Before proving Lemma 19 in Section 5.4.10, we recall Kostant’s construction.

5.4.2 Restriction to K-invariant forms

Let K be a maximal compact subgroup of G such that T ∩K is a maximal torus
of K. Then K is a connected compact Lie group.

Consider the subcomplex of K-invariant forms:

dp : Ωp(G/P,C)K −→ Ωp+1(G/P,C)K ,

and its cohomology H∗DR(G/P,C)K . The identity dp−1(Ωp−1(G/P,C)K) =
dp−1(Ωp−1(G/P,C)) ∩ Ωp(G/P,C)K allows to define a morphism

H∗DR(G/P,C)K −→ H∗DR(G/P,C),

which is an isomorphism.
Since K acts transitively on G/P , the restriction map to the tangent space

at P/P provides a linear isomorphism

Ωp(G/P,C)K −→

(
p∧

HomR(g/p,C)

)K∩L
. (61)

Let k denote the Lie algebra of K. This compact form k determines a real
structure �∗ on g. More precisely, �∗ is a C-antilinear endomorphism of g such
that k is the set of ξ ∈ g such that ξ∗ = −ξ.

Consider now the complex dual (g/l)∗ of the complex vector space g/l. Since
l is stable by �∗, g/l is endowed with a real structure still denoted by �∗. Then
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(g/l)∗ is also endowed with a real structure by setting ϕ∗ = ϕ(�∗), for any
ϕ ∈ (g/l)∗. Define a morphism

θ : HomR(g/p,C) −→ (g/l)∗

ϕ+ ψ 7−→ ϕ+ ψ(�∗),

where ϕ is C-linear and ψ is C-antilinear. One checks that θ is a C-linear
isomorphism and that it commutes with the real structure and the actions of
K ∩ L. Note that L also acts on (g/l). Since K ∩ L is Zariski dense in L, we
have (∧p

(g/l)∗
)K∩L

=
(∧p

(g/l)∗
)L

. (62)

Finally we get an isomorphism

Ωp(G/P,C)K −→
(∧p

(g/l)∗
)L

. (63)

5.4.3 The Lie algebra r

Let u and u− be the algebras of the unipotent radicals of P and its opposite
parabolic subgroup P−. Consider the sum

r = u− ⊕ u (64)

endowed with a Lie algebra structure [·, ·]r defined by keeping the brackets on
u− and u unchanged and by setting [u−, u]r = 0. The L-equivariant linear
isomorphism r ' g/l and its transpose (g/l)∗ ' r∗ induce isomorphisms

Ω•(G/P,C)K ' (HomR(g/p,C))
L '

(∧•
r∗
)L
'
(∧•

(u−)∗ ⊗
∧•

u∗
)L

. (65)

The term
∧•

(u−)∗ corresponds to holomorphic forms on G/P and the term∧•
u∗ corresponds to antiholomorphic forms.
Combining �∗ and the Killing form (·, ·) one obtains an Hermitian form {·, ·}

on g. Explicitly,
{ξ, η} = −(ξ, η∗),

for any ξ, η ∈ g. Denote by {·, ·}r its restriction to r. The decomposition
u− ⊕ u = r is orthogonal for {·, ·}r. Consider now the graded exterior algebra
∧•r∗ = ⊕p∧p r∗ and extend the bilinear form {·, ·}r on ∧•r∗. The decomposition
r = u− ⊕ u induces a N2-grading ∧•r∗ = ⊕(p,q)∈N2 ∧p,q r∗ by setting

∧p,qr∗ = ∧p(u−)∗ ⊗ ∧q(u)∗.

Moreover, the sum ⊕(p,q)∈N2 ∧p,q r∗ is orthogonal for {·, ·}r .
Let b ∈ End(∧•r∗) be the Chevalley-Eilenberg coboundary operator of the

Lie algebra r. It has degree +1, more precisely

b(∧p,qr∗) ⊂ ∧p+1,qr∗ ⊕ ∧p,q+1r∗.
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Set b = b1,0 + b0,1 according to this decomposition. Let ∂ ∈ End(∧•r) denote
the Chevalley-Eilenberg boundary operator. Using the Killing form, we identify
r and r∗ and transport ∂ to an operation ∂∗ ∈ End(∧•r∗) of degree −1. Decom-
pose ∂∗ = ∂−1,0 + ∂0,−1 according to the decomposition ∧p−1,qr∗ ⊕ ∧p,q−1r∗.
Set

L = ∂∗ ◦ b+ b ◦ ∂∗. (66)

[Kos63, Proposition 4.2] gives an alternative expression of L:

L =
1

2
(∂0,−1 ◦ b0,1 + b0,1 ◦ ∂0,−1). (67)

5.4.4 The (X(Z)× Z)-filtration of ∧•r∗

Consider the action of Z × C∗ on r given by

(z, τ).(ξ− + ξ) = (τzξ−, ξ), ∀z ∈ Z, τ ∈ C∗, ξ− ∈ u−, ξ ∈ u. (68)

Then the group Z × C∗ acts on ∧•r∗ and induces a Γ̃-decomposition

∧•r∗ =
⊕

β̃∈X(Z)×Z

(∧•r∗)β̃ . (69)

Note that the weights of Z acting on (u−)∗ are the weights of Z acting on u; in
particular, they are positive for the order <. As a consequence, we have

(∧•r∗)β̃ 6= {0} ⇒ β̃<0. (70)

Set

F4β̃(∧•r∗) = ⊕α̃4β̃(∧•r∗)α̃. (71)

Consider now, like in the formula (65), the diagonal action of L on r:

l.(ξ− + ξ) = lξ− + lξ, ∀l ∈ L, ξ− ∈ u−, ξ ∈ u.

Since Z is contained in the center of L; the action (68) of Z×C∗ and the above
action of L commute. In particular the decomposition (69) is L-stable. Set
C = (∧•r∗)L and Cβ̃ = C ∩ (∧•r∗)β̃ . The (Z × C∗)-module C decomposes as
follows

C :=
⊕
β̃∈Γ̃

Cβ̃ . (72)

The associated filtration of C is:

F4β̃ C = F4β̃(∧•r∗) ∩ C.
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5.4.5 Action of L on ∧•(u−)∗

We now recall results of Kostant in [Kos61] on the action of T on ∧•(u−)∗.

Theorem 4 (i) The set of vertices of the convex hull of the weights of T
acting on

∧•
(u−)∗ is the set of ρ− w−1ρ where w ∈WP .

These weights are multiplicity free and the eigenline corresponding to ρ−
w−1ρ is generated by

φw := φα1 ∧ · · · ∧ φαp ,

where {α1, . . . , αp} = Φ+ ∩w−1Φ−; and φαi ∈ (u−)∗ is a vector of weight
αi.

(ii) For any w ∈WP , the vector φw is an highest weight vector for L. Denote
by Mw the simple L-module generated by φw.

5.4.6 A first differential form

We are now ready to define a first K-invariant differential form on G/P . Set

hw = Idw ∈Mw ⊗M∗w ⊂
(
∧p(u−)∗ ⊗ ∧pu∗

)L
, (73)

where p is the length of w, that is s the codimension of Xw∨ . Since Z is central
in L, Z acts with weight (ρ− w−1ρ)|Z on Mw. In particular,

hw ∈ C((ρ−w−1ρ)|Z ,−p). (74)

If G/P is cominuscule then hw corresponds by the isomorphism (65) to the
wanted closed differential form representing σw. In general, more work is useful.

5.4.7 An Hermitian product on r

Recall that the Hermitian product {·, ·}r on r induces Hermitian inner products
on ∧•r and ∧•r∗ still denoted by {·, ·}r.

Lemma 20 For any nonnegative integer p, the (X(Z)×Z)-decomposition (72)
is {·, ·}r-orthogonal.

Proof. It is sufficient to prove that the decomposition

r = u⊕
⊕

α∈X(Z)

u−α (75)

is {·, ·}r-orthogonal. Since u∗ = u− and the Killing form vanishes on u−, u and
u− are {·, ·}r-orthogonal. Let now fix ξ ∈ u−β and η ∈ u−β′ with β 6= β′ ∈ X(Z).
Consider the adjoint action of Z on g, the induced one on End(g) and the
corresponding decomposition

End(g) = ⊕α∈X(Z) End(g)α.

Note that for any A ∈ End(g)α with α 6= 0, we have tr(A) = 0. The endomor-
phism Ad(η∗) belongs to End(g)−β′ . It follows that Ad(η∗) ◦ Ad(ξ) belongs to
End(g)β−β′ and that {ξ, η} = −(ξ, η∗) = − tr(Ad(η∗) ◦Ad(ξ)) = 0. �
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5.4.8 Operators on ∧•(r∗)

Recall, from the formula (66), the definition of the operator L ∈ End(∧•r∗).

Lemma 21 The operator L stabilizes C(α,p) for any integer p and any α ∈
X(Z).

Proof. By [Kos63, Proposition 3.4], b0,1(C(α,p)) is contained in C(α,p+1). By
[Kos63, formula 3.5.3], ∂0,−1(C(α,p+1)) is contained in C(α,p). We deduce that
(∂0,−1 ◦ b0,1)(C(α,p)) is contained in C(α,p). Similarly, (b0,1 ◦ ∂0,−1)(C(α,p)) is
contained in C(α,p). We conclude using the formula (67). �

Note that L is an Hermitian operator. In particular, we have a {·, ·}r-
orthogonal decomposition KerL ⊕ ImL = ∧•r∗. Consider the quasiinverse L0

of L: L0 is the Hermitian endomorphism of ∧•r∗ such that KerL0 = KerL and
L0| ImL = (L| ImL)−1.

Let π : r −→ End(∧•r∗) be induced by the coadjoint action. Let fi be
eigenvectors in u− for the action of Z that form a basis of u−. Let gj be the
basis of u defined by the conditions (fi, gj) = δji (the Kronecker symbol). Set

E := 2
∑
i

π(gi) ◦ π(fi) ∈ End(∧•r∗). (76)

Kostant defined a third operator

R := −L0 ◦ E ∈ End(∧•r∗), (77)

he proved that R is nilpotent and he defined

sw = (Id−R)−1(hw) = hw +R(hw) +R2(hw) + · · · . (78)

Here, we need the following improvement of [Kos63, Lemma 4.6] that proves the
nilpotency of R.

Lemma 22 For any integer p and α ∈ X(Z), we have

R(C(α,p)) ⊂
⊕
β≺α

C(β,p).

Proof. Lemma 21 asserts that L stabilizes the (X(Z)×Z)-decomposition of C.
Since this decomposition is {·, ·}r-orthogonal by Lemma 20, this implies that
L0 also stabilizes the Γ̃-decomposition of C. By the formula (77), it remains to
prove that E(Cα,p)) ⊂

⊕
β≺α C(β,p).

But each π(fi) vanishes on ∧•u∗ and each π(gi) respects the degree. It follows
that E(C(α,p)) ⊂

⊕
β∈X(Z) C(β,p). But π(gi) vanishes on ∧•(u−)∗. Moreover,

fi belongs to u− and has a weight γ40. It follows that π(fi)(∧•(u−)∗β) ⊂
∧•(u−)∗β−γ . The claim follows. �
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5.4.9 Kostant’s theorem

Theorem 5 ([Kos63] ) Let w ∈ WP . The element sw ∈
∧•

r∗ defined by (78)
is L-invariant. In particular, sw corresponds by the isomorphism (65) to a
K-invariant form ωw on G/P .

Then the form ωw is closed and its class [ωw] in H∗DR(G/P,C) is equal to
the Schubert class σ∨w, up to a positive real scalar.

5.4.10 Application

We can now prove Lemma 19.

Proof.[of Lemma 19] By Theorem 5, it is sufficient to prove that ωw belongs
to F4ρ̃(w)Ωl(w)(G/P,C). But ωw and the filtration are K-invariant on the K-
homogeneous space G/P . Hence it is sufficient to prove that sw belongs to
F4ρ̃(w)C. This is a consequence of the property (74) and Lemma 22. �

Proof.[of Proposition 10] Let β̃ ∈ Γ̃ and let p be an integer such that 0 ≤ p ≤
dim(G/P ). Consider F4β̃ H2p(G/P,C). On one hand, Lemma 18 shows that
the dimension of F4β̃ Hp(G/P,C) is not more than the cardinality of the set

W (β̃, p) = {w ∈WP : ρ̃(G/P )− ρ̃(Xw)4β̃ and l(w) = n− p}.

On the other hand, Lemma 19 shows that F4β̃ Hp(G/P,C) contains the classes
σw∨ for w in the set

W ′(β̃, p) = {w ∈WP : ρ̃(Xw)4β̃ and l(w) = p}.

But Lemma 17 implies that the Poincaré duality w 7→ w∨ induces a bijection
between W (β̃, p) and W ′(β̃, p). Since the family (σw∨)w∈W ′(β̃,p) is linearly in-
dependant the proposition follows. �

Proof.[of Corollary 1] The corollary is a direct consequence of Lemma 14 and
the above proof of Proposition 10. �

5.5 Proof of Theorem 3
Let u and v be elements of WP . Consider the following product in the ordinary
cohomology ring H∗(G/P,C)

σu.σv =
∑

w∈WP

cwuvσw.

By Lemma 19 and Lemma 17, σu belongs to F4ρ̃(G/P )−ρ̃(Xu) Hl(w0w
P
o )−l(u)(G/P,C).

Similarly, σv belongs to F4ρ̃(G/P )−ρ̃(Xv) Hl(w0w
P
o )−l(v)(G/P,C). Now Proposi-

tion 8 shows that

σu.σv ∈ F42ρ̃(G/P )−ρ̃(Xu)−ρ̃(Xv) H2l(w0w
P
o )−l(u)−l(v)(G/P,C).
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By Proposition 10, this means that

cwuv 6= 0 ⇒ ρ̃(G/P )− ρ̃(Xw)4 2ρ̃(G/P )− ρ̃(Xu)− ρ̃(Xv), (79)
⇒ ρ̃(Xu) + ρ̃(Xv)4 ρ̃(Xw) + ρ̃(G/P ). (80)

Proposition 10 implies also that

σu . σv =
∑

w∈WP

ρ̃(Xu)+ρ̃(Xv)=ρ̃(Xw)+ρ̃(G/P )

cwuvσw. (81)

On the other hand, Proposition 9 shows that

σu�0σv =
∑

w∈WP

gd(Xu)+gd(Xv)=gd(Xw)+gd(G/P )

cwuvσw. (82)

Comparing the identities (81) and (82), it remains to prove, under the assump-
tion cwuv 6= 0, that the equivalence

ρ̃(Xu)+ ρ̃(Xv) = ρ̃(Xw)+ ρ̃(G/P ) ⇐⇒ gd(Xu)+gd(Xv) = gd(Xw)+gd(G/P )

holds.
The implication “⇐” is an immediate consequence of the definition (19)

of ρ(·). Conversely, assume that ρ̃(Xu) + ρ̃(Xv) = ρ̃(Xw) + ρ̃(G/P ). Since
cwuv 6= 0, the Belkale-Kumar numerical criterion of Levi-movability (see [BK06,
Theorem 15]) implies that σu�0σv�0σw∨ = cwuv[pt]. In particular, Proposition 9
implies that gd(Xu) + gd(Xv) = gd(Xw) + gd(G/P ). The theorem is proved.

5.6 The Belkale-Kumar fundamental class
Recall from Section 4.4 the definition of the Belkale-Kumar fundamental class
of any subvariety of G/P . We can now give a simple characterization of this
class using the notion of X(Z)-dimension.

Proposition 11 Let Y be an irreducible subvariety of G/P of dimension d.
Consider the expansion of its fundamental class in the Schubert basis

[Y ] =
∑

w∈WP

dwσw.

Then the expansion of its �0-fundamental class in the Schubert basis is

[Y ]�0
=

∑
w∈WP

ρ(Xw)=ρ(Y )

dwσ
�0
w .

Proof. It remains to prove that for any [ω] ∈ Grρ̃(Y ) H2d(G/P,C),∫
Y

ω = [ω]�0
�0(

∑
w∈WP

ρ(Xw)=ρ(Y )

dwσw).
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Since the two members of the equality depend linearly on [ω], it is sufficient to
prove it for [ω] = σu∨ , for any u ∈ WP such that ρ(Xu) = ρ(Y ) and l(u) = d.
By ordinary Poincaré duality, this case is equivalent to the following equality

σu∨ .(
∑

w∈WP

l(w)=n−d

dwσw) = σu∨�0(
∑

w∈WP

ρ(Xw)=ρ(Y )

dwσw).

Since the only product σu∨ .σw that is nonzero in the above formula is σu∨ .σu,
the proposition follows. �

6 Intersecting Schubert varieties
Given u, v ∈ WP such that v∨ < u, we construct in this section a familly of
varieties containing both the Richardson variety Xu ∩w0Xv (up to translation)
and the variety Σvu. We prove (see Proposition 13) that Conjecture 4 holds for
Σvu if and only if it holds for all these varieties. To end this section, we show
that Conjecture 4 is equivalent to a formula using the Kostant harmonic forms
that looks like a Fubini formula.

6.1 Products on H∗(G/P,C) and Bruhat orders
The Bruhat order on WP is defined by

u < v ⇐⇒ Xu ⊂ Xv.

This order is generated by u < v if l(v) = l(u)+1 and v = sαu for some positive
root α. The weak Bruhat order on WP is generated by the relation u l v if
l(v) = l(u) + 1 and v = sαu for some simple root α. The relation between these
two orders is

ul v ⇒ u < v. (83)

A useful characterization of the weak Bruhat order is given by the following
result (see [Bou68]).

Lemma 23 Let u and v in WP . Then u l v if and only if Φ(u) is contained
in Φ(v).

The following relation between the cup product and the Bruhat order is well
known

σu.σv 6= 0 ⇐⇒ v∨ < u.

We have the following relation between the Belkale-Kumar product and the
weak Bruhat order.

Lemma 24 Let u and v in WP . If σu�0σv 6= 0 then v∨ l u.
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Proof. By assumption, there exists w ∈WP such that (u, v, w) is Levi-movable
and l(u) + l(v) + l(w) = l(w0w

P
0 ). Hence, for (l1, l2, l3) in a nonempty open

subset of L3:
l1Tu ∩ l2Tv ∩ l3Tw = {0}.

In particular, l1Tu + l2Tv = TP/PG/P . Since ∆L.(B,wP0 BL) is open in L2,
there exist l ∈ L, b1, b2 ∈ BL such that lb1Tu + lwP0 b2Tv = TP/PG/P . But Tu
and Tv are BL-stable and TP/PG/P is L-stable, hence

Tu + wP0 Tv = TP/PG/P.

It follows that Φ(u) ∪ wP0 Φ(v) = Φ(G/P ). But Φ(v∨) = Φ(G/P ) − wP0 Φ(v).
Hence Φ(v∨) ⊂ Φ(u) and v∨ l u. �

Remark. The converse of the implication of Lemma 24 does not hold. Indeed
consider SL3(C) with its usual maximal torus and Borel subgroup B. Denote
the two simple reflections of W by s1 and s2. Then σs1s2�0σs2s1 = 0 while
(s2s1)∨ = s2 l s1s2.

6.2 Like Richardson’s varieties
Let u, v ∈WP . The Richardson variety Xv

u is defined by

Xv
u = Xu ∩ w0Xv.

It is well known that Xv
u is irreducible, normal and satisfies [Xv

u] = σu.σv. In
particular, Xv

u is empty if and only if v∨ < u.
Assume now that v∨ l u. Fix y ∈ WP such that v∨ l y l u. Consider the

intersection

Ivu(y) := y−1Xu ∩ wP0 v−1.Xv. (84)

The first example Ivu(v∨) = (v∨)−1Xv
u is just a translated Richardson variety.

By the relation (83), the point yP/P belongs to Xu. It follows that P/P
belongs to y−1Xu. Since vP/P belongs to Xv, P/P belongs to wP0 v−1.Xv. It
follows that

P/P ∈ Ivu(y). (85)

The following lemma shows that the variety Ivu(y) contains a translated
Richardson variety.

Lemma 25 Let u, v, and y in WP such that v∨ l y l u. Then Iy
∨

u (y) is
contained in Ivu(y).

Proof. It remains to prove that y−1Xu∩wP0 (y∨)−1.Xy∨ is contained in y−1Xu∩
wP0 v

−1.Xv. It is sufficient to prove that (y∨)−1.Xy∨ is contained in v−1.Xv.
But (y∨)−1.Xy∨ = ((y∨)−1By∨).P/P and v−1.Xv = (v−1Bv).P/P . Hence it is
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sufficient to prove that Φ(g/p, T )∩(y∨)−1Φ+ is contained in Φ(g/p, T )∩v−1Φ+.
But v∨ l y and hence y∨ l v. Lemma 23 allows to conclude. �

The fact that Xu and Xv are B-stable implies that the group Hv
u(y) :=

y−1By ∩ wP0 v−1BvwP0 acts on Ivu(y). Set y′ = y(v∨)−1 in such a way that
y = y′v∨. Note that ywP0 v−1 = y′w0 and that

Hv
u(y) = (v∨)−1(y′−1By′ ∩B−)v∨. (86)

The group Hv
u(y) is a connected subgroup of G, containing T and acting on

Ivu(y). Consider now the group U(y′) = y′−1Uy′ ∩ U−.

Let
◦

G/P = B−P/P denote the open T -stable affine cell containing P/P .

Set
◦
Ivu(y) =

◦
G/P ∩ Ivu(y); it is an open T -stable affine neighborhood of P/P in

Ivu(y). The following statement describes the geometry of this neighborhood.

Theorem 6 Let u, v, and y in WP such that v∨ l y l u. Then the following
morphism

Ψ : U(y′)×
◦
I
y∨

u (y) −→
◦
Ivu(y)

(u, x) 7−→ (v∨)−1uv∨.x

is an isomorphism.

Proof. The weights of T acting on the Lie algebra of the group U(y) = U− ∩
y−1Uy are Φ(y) = Φ− ∩ y−1Φ+. The weights of T acting on the tangent space

at the point P/P of the variety wP0 (y∨)−1Xy∨ are Φ(g/p, T )∩y−1Φ−. But
◦

G/P
is isomorphic as a T -variety to the affine space g/p. It follows that the map

U(y)× [wP0 (y∨)−1Xy∨ ∩
◦

G/P ] −→
◦

G/P
(u, x) 7−→ ux

(87)

is an isomorphism. The variety y−1Xu is stable by y−1By and so by U(y). It
follows that the map

U(y)× [wP0 (y∨)−1Xy∨ ∩
◦

G/P ∩ y−1Xu] −→
◦

G/P ∩ y−1Xu

(u, x) 7−→ ux

is an isomorphism.
Since v∨ l y and y = y′v∨, the set Φ(y) is the disjoint union of Φ(v∨) and

(v∨).Φ(y′) (see for example [Bou02]). Then the map

U(y′)× U(v∨) −→ U(y)
(u′, u) 7−→ (v∨)−1u′v∨u

is an isomorphism. Note that in the above expression we have fixed represen-
tative (still denoted by v∨) of v∨ in the normalizer of the torus T . Composing
these isomorphisms gives the following one:

U(y′)× U(v∨)×
◦
Iy
∨

u (y) −→
◦

G/P ∩ y−1Xu

(u′, u, x) 7−→ (v∨)−1u′v∨ux.
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Since Φ(y′) is contained in (v∨)−1Φ−, and wP0 v
−1Xv = ((v∨)−1B−v∨).P/P ,

the variety wP0 v−1Xv is stable under the action of U(y′). Hence

U(y′)×
[
(U(v∨) ·

◦
Iy
∨

u (y)) ∩ wP0 v−1Xv

]
−→

◦
Ivu(y)

(u′, x) 7−→ (v∨)−1u′v∨x

is an isomorphism. It remains to prove that

(U(v∨) ·
◦
Iy
∨

u (y)) ∩ wP0 v−1Xv =
◦
Iy
∨

u (y).

Let u ∈ U(v∨) and x ∈
◦
Iy
∨

u (y) such that ux belongs to wP0 v−1Xv. It is sufficient
to prove that u = e. Replacing y∨ by v in the morphism (87), we get an
isomorphism

Θ : U(v∨)× [wP0 v
−1Xv ∩

◦
G/P ] −→

◦
G/P

(u′, x′) 7−→ u′x′.

One can easily check that x belongs to wP0 v−1Xv ∩
◦

G/P and that Θ(u, x) =
Θ(e, ux). Now, the injectivity of Θ implies that u = e. �

An important consequence of Theorem 6 for our purpose is the following
statement.

Corollary 2 The variety Ivu(y) is normal at the point P/P . In particular, there
exists an unique irreducible component Σvu(y) of Ivu(y) which contains P/P .

Proof. The corollary follows from the theorem and the fact that the Richardson
varieties are irreducible and normal (see [KWY13] for a short proof). �

If y = v∨ then Theorem 6 is trivial. In the opposite situation when y = u it
implies the following result.

Corollary 3 Let u and v in WP such that v∨ l u. The orbit Hv
u(u).P/P is

open in Ivu(u). In other words, Σvu(u) is the closure of Hv
u(u).P/P .

Proof. If y = u then the translated Richardson variety Iy
∨

u (y) = Iu
∨

u (u) is
reduced to the point P/P . The corollary follows immediately. �

6.3 A conjecture
Here comes our main conjecture.

Conjecture 4 Let u, v ∈WP such that v∨ l u. Then

[Σvu(u)]�0 = σ�0
u �0σ

�0
v .
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Some observations on this conjecture are collected in the following proposi-
tions.

Proposition 12 Expand [Σvu(u)]�0 and σu�0σv in the Schubert basis:

[Σvu(u)]�0 =
∑
w∈WP dwuvσ

�0
w , and

σ�0
u �0σ

�0
v =

∑
w∈WP c̃wuvσ

�0
w .

Then, for any w ∈WP ,

(i) c̃wuv ≥ dwuv;

(ii) c̃wuv 6= 0 ⇐⇒ dwuv 6= 0.

Proof. Write [Σvu(u)] =
∑
w∈WP ewuvσw and σu.σv =

∑
w∈WP cwuvσw in ordinary

cohomology. Since Σvu(u) is an irreducible component of the intersection Ivu(u)
and that this intersection is proper along this component, the inequality

cwuv ≥ ewuv (88)

holds for any w ∈WP . Consider now a coefficient dwuv for some fixed w ∈WP . If
dwuv = 0 then the first assertion of the proposition is obvious. Assume dwuv 6= 0.
By Proposition 11, dwuv = ewuv. Comparing the inequality (88) and the first
assertion, one observes that it is sufficient to prove that c̃wuv = cwuv; that is that
c̃wuv 6= 0.

Since dwuv 6= 0, Proposition 11 implies that ρ(Xw) = ρ(Σvu(u)). Since P/P
belongs to the open Hv

u(u)-orbit in Σvu(u) and is X(Z)-regular. In particular

ρ(Σvu(u)) =
∑

γ∈X(Z)

dim[(TP/PΣvu(u))γ ]γ,

where (TP/PΣvu(u))γ is the weight space of weight γ of the Z-module TP/PΣvu(u).
But TP/PΣvu(u) is the transverse intersection of TP/Pu−1Xu and TP/PwP0 v−1Xv.
It follows that ρ(Σvu(u)) = ρ(u−1Xu) + ρ(wP0 v

−1Xv) = ρ(Xu) + ρ(Xv). Finally
ρ(Xw) = ρ(Xu) + ρ(Xv) and Proposition 11 shows that c̃wuv = cwuv.

Assuming that dwuv 6= 0, the first assertion implies that c̃wuv 6= 0. Assume
conversely that c̃wuv 6= 0 in other words that (u, v, w∨) is Levi-movable. Arguing
like in the proof of Lemma 24, one can check that there exists l ∈ L such that
u−1Xu, wP0 v−1Xv and l(w∨)−1Xw∨ intersect transversally at P/P . It follows
immediately that Σvu(u) and l(w∨)−1Xw∨ intersect transversally at P/P . Hence
ewuv 6= 0.

It remains to prove that ewuv = dwuv. The condition c̃wuv 6= 0 in the X(Z)-
graded algebra Gr H∗(G/P,C) implies that ρ(Xw) = ρ(Xu) + ρ(Xv). But
ρ(Xu) + ρ(Xv) = ρ(Σvu(u)). Proposition 11 shows that ewuv = dwuv. �

Proposition 13 Let u, v ∈WP such that v∨ l u.
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(i) Conjecture 4 holds if Σvu(u) has dimension 0, 1 or 2.

(ii) Conjecture 4 holds if and only if for any y ∈WP such that v∨ l yl u we
have [Σvu(y)]�0

= σu�0σv.

Proof. If Σvu(u) has dimension 0 then u = v∨. In particular [Σvu(y)]�0 = [pt] =
σu�0σv.

If Σvu(u) has dimension 1 then u = sαv
∨, for some simple root α. Moreover,

l(u) = l(v∨)+1. This implies that Xu is stable by the action of Pα (the minimal
parabolic subgroup associated to α). In particular sαXu = Xu. It follows that
u−1Xu = u−1sαXu = (v∨)−1Xu. In particular Ivu(u) = Ivu(v∨) is a translated
Richardson variety and is irreducible. Moreover, σu.σv = [Ivu(u)] = [Σvu(u)].
Proposition 11 implies that σu�0σv = [Σvu(u)]�0

.

Assume now that u = sαsβv
∨, for some simple roots α and β such that

l(u) = l(v∨) + 2. Then (note that sαXu = Xu)

Ivu(u) = u−1Xu ∩ wP0 v−1Xv

= (v∨)−1(sβsαXu ∩ w0Xv)
= (v∨)−1sβ(sαXu ∩ w0sβ∗Xv),

where β∗ = −w0β. But the condition v∨ l sβv
∨ implies that sβ∗v l v (see for

example Lemma 23). Then sβ∗Xv = Xv and Ivu(u) is obtained by translation
from the Richardson variety sαXu ∩w0sβ∗Xv. The first assertion of the propo-
sition follows.

Let α be a simple root such that y l sαy l u. Set β = −y−1α and set
Uβ : C −→ G, the associated additive one-parameter subgroup. Consider the
flat limit limt→∞ Uβ(t)Σvu(y). Since Uβ(t)y−1B/B tends to y−1sαB/B when
t goes to infinity, limt→∞ Uβ(t)y−1Xu = y−1sαXu. Since v∨ l y l sαy, β ∈
Φ(sαy) − Φ(v∨) and wP0 β ∈ Φ(v). In particular, wP0 v−1Xv is Uβ-stable. But
Σvu(sαy) is an irreducible component of the intersection y−1sαXu ∩wP0 v−1Xv ;
and, this intersection is transverse along this component. It follows that Σvu(sαy)
is an irreducible component of limt→∞ Uβ(t)Σvu(y). Writing

[Σvu(y)] =
∑

w∈WP

d′wσw and [Σvu(sαy)] =
∑

w∈WP

d′′wσw,

we deduce that
d′′w ≤ d′w ∀w ∈WP . (89)

Write now

[Σvu(v∨)] =
∑

w∈WP

dwσw and [Σvu(u)] =
∑

w∈WP

ewσw.

Since Σvu(v∨) is a translated of the Richardson variety Xu ∩ w0Xv,

σu.σv =
∑

w∈WP

dwσw.
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By an immediate induction, we deduce from (89) that

ew ≤ d′w ≤ dw ∀w ∈WP .

Conjecture (4) holds for y = u if and only if for any w ∈WP such that (u, v, w)
is Levi-movable ew = dw. Then, d′w = dw for any such w ∈WP and [Σvu(y)]�0

=
σu�0σv. �

6.4 Interpretation in terms of harmonic forms
Kostant’s harmonic forms allow to formulate Conjecture 4 as an identity of
integrals.

Proposition 14 Let u and v in WP such that v∨ l u. Then σu�0σv =
[Σvu(u)]�0 if and only if for any w in WP such that (u, v, w) is Levi-movable,
we have∫

(u∨)−1Xu∨

ωu∨ .

∫
(v∨)−1Xv∨

ωv∨ .

∫
Σvu(u)

ωw∨ =

∫
(Pu)−

ωu∨ ∧ ωv∨ ∧ ωw∨ .

Proof. For any w ∈ WP , consider the Kostant’s harmonic form ωw and the
nonzero complex number λw (see Theorem 5) such that

[ωw] = λwσ
∨
w. (90)

Then

λw =

∫
w−1Xw

ωw. (91)

By Propositions 11 and 12, Conjecture 4 is equivalent to the fact that for any
w ∈WP such that (u, v, w) is Levi-movable, we have

σu.σv.σw = [Σvu(u)].σw. (92)

But on one hand

σu.σv.σw =
1

λu∨λv∨
[ωu∨ ∧ ωv∨ ].σw =

∫
w−1X(w)

ωu∨ ∧ ωv∨
λu∨λv∨

. (93)

And on the other hand

[Σvu(u)].σw =

∫
Σvu(u)

ωw∨

λw∨
. (94)

In particular the equality (92) is equivalent to

λw∨ .

∫
w−1Xw

ωu∨ ∧ ωv∨ = λu∨ .λv∨ .

∫
Σvu(u)

ωw∨ ; (95)
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which is, by (91), equivalent to

λw∨ .

∫
w−1Xw

ωu∨ ∧ ωv∨ =

∫
(u∨)−1Xu∨

ωu∨ .

∫
(v∨)−1Xv∨

ωv∨ .

∫
Σvu(u)

ωw∨ . (96)

We claim that

λw∨ .

∫
w−1Xw

ωu∨ ∧ ωv∨ =

∫
(Pu)−

ωu∨ ∧ ωv∨ ∧ ωw∨ . (97)

Let d be the positive integer such that σu.σv.σw = d[pt]. We have

d =

∫
G/P

ωu∨ ∧ ωv∨ ∧ ωw∨
λu∨λv∨λw∨

.

Since σu.σv = dσw∨ , we also have

d =

∫
w−1X(w)

ωu∨ ∧ ωv∨
λu∨λv∨

.

Claim (97) is obtained by identifying these two expressions of d.
The proposition follows now from the equations (97) and (96). �

Remark. Observe that (Pu)− is isomorphic to the product of the three T -
stable affine neighborhoods of P/P in (u∨)−1Xu∨ , (v∨)−1Xv∨ and Σvu(u). With
this observation the equality of Proposition 14 looks like a Fubini formula.

7 The case of the complete flag varieties
Given u in W , set Φ(u)c := Φ−−Φ(u). Let u, v, and w in W . For the complete
flag variety G/B the Levi-movability is easy to understand. Indeed Tu, Tv,
and Tw are L = T -stable. In particular, (σu, σv, σw) is Levi-movable if and
only if the natural map TB/B(G/B) −→ TB/B(G/B)

Tu
⊕ TB/B(G/B)

Tv
⊕ TB/B(G/B)

Tw

is an isomorphism. This is equivalent to the fact that Φ− is the disjoint union
of Φ(u)c, Φ(v)c, and Φ(w)c. Since Φ(w)c = Φ(w∨), one gets the following
equivalence

c̃wuv 6= 0 ⇐⇒ Φ(w)c = Φ(u)c t Φ(v)c.

Conjecture 4 generalizes a classical one on G/B.

Proposition 15 Let G be a semisimple group and consider the Belkale-Kumar
cohomology of G/B. Let u and v belong to W . Then σu�0σv = [Σvu(u)]�0

if
and only if σu�0σv is either equal to zero or to σw for some w ∈W .

Proof. Assume that σu�0σv = [Σvu(u)]�0 .
Case 1. Suppose there exists w ∈W such that Φ(w) = Φ(Hv

u(u)).
Then (see for example Lemma 11) Σvu(u) = w−1Xw; hence [Σvu(u)]�0

= σw. In
particular σu�0σv = σw.
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Case 2. Suppose there exists no w ∈W such that Φ(w) = Φ(Hv
u(u)).

Since Φ(Hv
u(u)) = Φ(u) ∩ Φ(v), there is no w ∈ W such that Φ(w)c = Φ(u)c t

Φ(v)c. Hence there is no w ∈W such that (σu, σv, σw∨) is Levi-movable. Then
σu�0σv = 0. Moreover Proposition 10 implies that Grρ̃(G/P )−ρ̃(Σvu(u)) H∗(G/P,C) =
{0}. In particular, [Σvu(u)]�0

= 0.

Assume now that σu�0σv = σw for some w ∈W .
Since Φ(w)c = Φ(u)c t Φ(v)c, Lemma 11 shows that w−1Xw = Σvu(u). Hence
σu�0σv = [Σvu(u)]�0

.

Assume finally that σu�0σv = 0.
It remains to prove that [Σvu(u)]�0

= 0. Since Φ(Hv
u(u)) = Φ(u) ∩ Φ(v),

[Σvu(u)]�0 belongs to Grρ(Xu)+ρ(Xv) H∗(G/B,C). If there is no w inW such that
ρ(Xw) = ρ(Xu)+ρ(Xv) then Proposition 10 shows that Grρ(Xu)+ρ(Xv) H∗(G/B,C) =
{0}. In particular [Σvu(u)]�0

= 0. Assume now that there exists w in W such
that ρ(Xw) = ρ(Xu) + ρ(Xv). Then [Σvu] = dσw + · · · for some integer d. If
d = 0 there is nothing to prove. If d 6= 0 then σu.σv = eσw+ · · · for some integer
e ≥ d. The numerical criterium [BK06, Theorem 15] shows that σu�0σv = eσw.
This contradicts the assumption σu�0σv = 0. �

Proposition 15 shows that, for G/B, Conjecture 4 is equivalent to the fol-
lowing one.

Conjecture 5 Let u, v, and w in W such that Φ(w)c = Φ(u)c t Φ(v)c. Then
σu�0σv = σw in H∗(G/B,C).

Conjecture 5 was stated by Dimitrov and Roth in [DR09]. If G = SLn(C)
then Conjecture 5 was proved by Richmond in [Ric09]. If G = Sp2n(C) then
Conjecture 5 was proved independently in [Ric12] and [Res11b]. Dimitrov and
Roth have a proof for each simple classical G, but it is not published. Here we
include a proof for the group SO2n+1(C).

Proposition 16 Conjecture 5 holds for the group SO2n+1(C).

Proof. Let V be a (2n + 1)-dimensional complex vector space and let B =
(x1, . . . , x2n+1) be a basis of V ∗. Let G be the special orthogonal group associ-
ated to the quadratic form Q = x2

n+1 +
∑n
i=1 xix2n+2−i. Consider the maximal

torus T = {diag(t1, . . . , tn, 1, t
−1
n , . . . , t−1

1 ) : ti ∈ C∗} of G. Let B be the Borel
subgroup of G consisting of upper triangular matrices in the dual base of B.
Consider W , Φ, Φ+ associated to T ⊂ B ⊂ G.

Let u, v, and w in W such that σu�0σv�0σw = d[pt] for some positive
integer d. It remains to prove that d = 1. The Levi-movability implies that
Φ− = Φ(u)c t Φ(v)c t Φ(w)c.

Consider the linear group Ĝ = GL(V ). Let T̂ denote the subgroup of Ĝ
consisting of diagonal matrices and let B̂ denote the subgroup of Ĝ consisting
of upper triangular matrices in Ĝ. Consider Ŵ , Φ̂, Φ̂+ associated to T̂ ⊂ B̂ ⊂ Ĝ.
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Since T is a regular torus in Ĝ, the group W identifies with a subgroup of Ŵ .
In particular, u, v, and w belong to Ŵ . One can easily check that the similar
property of Φ− implies that Φ̂− = Φ̂(u)c t Φ̂(v)c t Φ̂(w)c. Consider now the
three Schubert varieties X̂u, X̂v, and X̂w in Ĝ/B̂. The fact that Conjecture 5
holds for Ĝ implies that

u−1X̂u ∩ v−1X̂v ∩ w−1X̂w = {B̂/B̂}. (98)

Consider now the inclusion G/B ⊂ Ĝ/B̂. Then Xu is contained in X̂u (and
similar inclusions hold for v and w). In particular, the condition (98) implies
that

u−1Xu ∩ v−1Xv ∩ w−1Xw = {B/B}. (99)

Moreover, the condition on Φ− implies that the intersection in (99) is transverse.
It follows that d = 1. �

Proposition 17 Conjecture 5 holds for the groups of type F4 and E6.

Proof. For w ∈W set
p(w) =

∏
α∈Φ+∩wΦ+

(ρ, α),

where (·, ·) is a W -invariant scalar product and ρ is the half sum of the positive
roots. Let u, v, and w in W such that Φ(w)c = Φ(u)c t Φ(v)c. By [BK06,
Corollary 44],

σu�0σv =
p(u).p(v)

p(w)
σw

in H∗(G/B,C). To prove the proposition, it is sufficient to check that p(w) =
p(u).p(v). This is checked by a Sage program (see [Res13]). For example, in
type F4, if

u∨ = s3s2s3s2, v∨ = s1s2s3s4s2s3s1s2s3s4 and
w∨ = s1s2s3s4s2s3s1s2s3s4s3s2s3s2

then
p(u) =

3

2
p(v) = 113400 p(w) = 170100.

And, in type E6, if

u = s6s5s4s3s2s4s5s6s5s3 v = s4s3s2s4s5s4s3s2s4s2

w = s6s5s4s3s2s4s5s6s5s4s3s2s4s5s4s3s2s4s3s2

then
p(u) = 20160 p(v) = 4320 p(w) = 87091200.

�
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