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Let G be a complex semisimple group and let P be a parabolic subgroup of
G. In this paper, we are interested in the Belkale-Kumar product ®g on the
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Abstract

Let G be a complex semisimple algebraic group. In 2006, Belkale-
Kumar defined a new product ®g on the cohomology group H*(G/P,C)
of any projective G-homogeneous space G/P. Their definition uses the
notion of Levi-movability for triples of Schubert varieties in G/P.

In this article, we introduce a family of G-equivariant subbundles of
the tangent bundle of G/P and the associated filtration of the De Rham
complex of G/P viewed as a manifold. As a consequence one gets a filtra-
tion of the ring H*(G/P,C) and prove that ®¢ is the associated graded
product. One of the aim of this more intrinsic construction of ®g is that
there is a natural notion of fundamental class [Y]e, € (H*(G/P,C), ®o)
for any irreducible subvariety Y of G/P.

Given two Schubert classes o, and o, in H*(G/P,C), we define a
subvariety Xj, of G/P. This variety should play the role of the Richardson
variety; more precisely, we conjecture that [X3]o, = cu®oon. We give
some evidence for this conjecture, and prove special cases.

Finally, we use the subbundles of TG/ P to give a geometric character-
ization of the G-homogeneous locus of any Schubert subvariety of G/P.

Introduction

cohomology group of the flag variety G/P.

The Belkale-Kumar product. Fix a maximal torus 7" and a Borel subgroup
B such that T C B C P. Let W and Wp denote respectively the Weyl groups
of G and P. Let W be the set of minimal length representative in the cosets of
W/Wp. For any w € WF | let X,, be the corresponding Schubert variety (that
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is, the closure of BwP/P) and let [X,,] € H*(G/P,C) be its cohomology class.
The structure coefficients c;., of the cup product are written as

[Xu][Xo] = Z Coun [ Xw]- (1)

weWwP

Let L be the Levi subgroup of P containing 7. This group acts on the tan-
gent space Tp,pG/P of G/P at the base point P/P. Moreover, this action is
multiplicity free and we have a unique decomposition

as sum of irreducible L-modules. It turns out that, for any w € W7, the
tangent space T, := Tp,pw X, of the variety w™'X,, at the smooth point
P/P decomposes as

Tw:(vlmTw)@"'@(VemTw)- (3)

Set T := T, NV;. Since [X,,] has degree 2(dim(G/P) —dim(T,)) in the graded
algebra H*(G/P), if ¢¥, # 0 then

dim(7,) + dim(T,,) = dim(G/P) + dim(T,), (4)

or equivalently

S S

> (dim(Tg) + dim(Tj)) => (dim(Vi) - dim(Tg,)). (5)

i=1 i=1

The Belkale-Kumar product requires the equality (5) to hold term by term.
More precisely, the structure constants ¢, of the Belkale-Kumar product [BK06],

[Xu]®o[Xo] = Z Criw [ Xw] (6)
weW?r

can be defined as follows (see [RR11, Proposition 2.4]):

(7)

s v, ifVl<i<s dim(T%)+ dim(T}) = dim(V;) + dim(T%)),
v 0 otherwise.

The product ®q defined in such a way is associative and satisfies Poincaré du-

ality. The Belkale-Kumar product was proved to be the more relevant product

for describing the Littlewood-Richardson cone (see [BK06, Res10, Resl1al).

Motivations. If G//P is cominuscule then T'p,pG/ P is an irreducible L-module
(that is, s = 1). In this case, the Belkale-Kumar product is simply the cup
product. This paper is motivated by the guess that several known results for
cominuscule G/P could be generalized to any G/P using the Belkale-Kumar
product. In particular, it might be a first step toward a positive geometric



uniform combinatorial rule for computing the coeflicients ¢,. Indeed, we define
a subvariety 3% which is encoded by combinatorial datum (precisely a subset
of roots of G). We also define a Belkale-Kumar fundamental class [X%]g, and
conjecture that [XV]o, = [Xu]®0[Xu]-

A geometric construction of the Belkale-Kumar ring. The first aim of
this paper is to give a geometric construction of the Belkale-Kumar ring which
does not deal with the Schubert basis. Consider the connected center Z of L
and its character group X (Z). The Azad-Barry-Seitz theorem (see [ABS90])
asserts that each V; in the decomposition (2) is an isotipical component for the
action of Z associated to some weight denoted by a; € X(Z). The group P
acts on Tp,pG/ P but does not stabilize the decomposition (2). But, the group
X (Z) is endowed with a partial order = (see Section 3.1 for details), such that
for any oo € X(Z) the sum

VEY = @ai>aVi (8)

is P-stable. Since V7% is P-stable, it induces a G-homogeneous subbundle
T7“G/P of the tangent bundle TG/P. We obtain a family of distributions
indexed by X (Z). This family forms a decreasing multi-filtration: if a3 then
T7>G /P is a subbundle of T##G/P. Moreover, these distributions are globally
integrable in the sense that

[T7°G/P,T7PG/P] c T7**AG/P. (9)

This allows us to define a filtration (“a la Hodge”) of the De Rham complex and
so of the algebra H*(G/P, C) indexed by the group X (Z) x Z. We consider the
associated graded algebra.

Theorem 1 The (X(Z) x Z)-graded algebra GrH*(G/P,C) associated to the
(X (Z)XZ)-filtration is isomorphic to the Belkale-Kumar algebra (H*(G/P,C), ®y).

The first step to get Theorem 1 is to give it a precise sense defining the
orders on X(Z) and X (Z) x Z and the filtrations. The key point to prove the
isomorphism is that the Schubert basis ([Xy]),ewr of H*(G/ P, C) is adapted to
the filtration. Indeed each subspace of the filtration is spanned by the Schubert
classes it contains. To obtain this result, we use Kostant’s harmonic forms
[Kos61].

Theorem 1 is closed to [BK06, Theorem 43| obtained by Belkale-Kumar.
In [BKO6], the filtration on H*(G/P,C) is defined using the Schubert basis.
On the other hand, the filtration on H},;(G/P,C) is defined using Kostant’s
K-invariant forms (where K is a compact form of G). Here, the filtration is
defined independently of any basis or any choice of a compact form of G.

This “intrinsic” definition of the Belkale-Kumar also gives a pleasant inter-
pretation of the functoriality result of [RR11, Theorem 1.1]. Indeed, let 7 be a
one-parameter subgroup of Z such that

Vo € X(Z) a=0 = (r,a) >0,



and
Vi<i#j<s (T, 05) # (T, j). (10)

Setting for any n € Z
VZ” = @<T,a)2n‘/%7

one gets a globally integrable family of distributions on G/P indexed by Z.
Then, one gets a Z-filtration of the ring H*(G/P,C). By (6) and (10), the
associated Z-graded ring is isomorphic to Gr H*(G/P,C). Then, [RR11, Theo-
rem 1.1] is a direct consequence of the immediate lemma 12 below.

A conjecture. The main motivation to show Theorem 1 is to define the funda-
mental class for the Belkale-Kumar product of any irreducible subvariety Y of
G/P. This class [Y]@, which belongs to Gr H*(G/ P, C) is defined in Section 4.4.

Let wg and wl be the longest elements of W and Wp respectively. If v € WP
then vV := wovwl belongs to W¥ and [X,v] is the Poincaré dual class of [X,].
Consider the weak Bruhat order < on W¥. We are interested in the product
[X.]®0[X,] € H(G/P,C), for given u and v in W¥. Lemma 24 below shows
that if [X,]®0[X,] # 0 then vV <u. Assume that vV <u and consider the group

HY := v 'Bu N wlv ' Bow}. (11)

It is a closed connected subgroup of G containing 7T'; in particular, it can be
encoded by its set @Y of roots. Let XU denote the closure of the H}-orbit of
P/P:

%’ = Hy.P/P. (12)

Another characterization of this subvariety is given by the following state-
ment.

Proposition 1 The variety X%, is the unique irreducible component of the in-
tersection u~1X, Nwlv=1X, containing P/P. Moreover, this intersection is
transverse along X7,.

Our main conjecture can be stated as follow.
Conjecture 1 If vV < u then
[Em@o = [Xu]QO[XU] € GI‘H*(G/P, (C)

Write
Soloe = Y db[Xu).

weWwr

By Proposition 11 d¥, are integers. Moreover, Conjecture 1 is equivalent to
év = dv, for any w € WF. The first evidence is the following weaker result.

Proposition 2 Then



(1) dijy #0 = &y, #0;

(i) dy, < ¢y,

Known cases. Conjecture 1 generalizes another one for G/B. Indeed, if G/P =
G/B is a complete flag variety then Conjecture 1 is equivalent to the following
one.

Conjecture 2 For G/B and any u,v, and w in W, the structure constant ¢,
is equal to 1 if for any 1 <i < s, dim(T%) + dim(T?) = dim(V;) + dim(T%)) and
0 otherwise.

In particular, Conjecture 2 implies that we have a uniform combinatorial and
geometric model for the Belkale-Kumar product. Conjecture 2 was explicitly
stated in [DR09]. E. Richmond proved in [Ric09] and [Ric12] this conjecture
for G = SL,,(C) or G = Sp,,,(C). In Section 7, we prove it for G = SOg,,41(C)
(this proof is certainly known from some specialists but I have shortly included
it for convenience). Very rencently, Dimitrov-Roth got also a proof for classical
groups and G2 [DR17]. Using [BK06, Corollary 44|, we wrote a program [Res13|
to check this conjecture: it is checked in type F; and Fj.

Conjecture 1 will be proved in type A in a forthcoming paper.

Combinatorial evidences. Consider the following degenerate version of Con-
jecture 1.

Conjecture 3 The product [X,|®o[X,] only depends on the set ®L.

The expression of the Belkale-Kumar structure coefficients as products given
in [Ric09] shows that Conjecture 3 holds in type A. Consider now the case
G = S02,41(C) or Sp,,(C) and P maximal. In this case, in [Resl2|, it is
proved that the set of triples (u,v,w) € WF such that é”, = 1 only depends
on @Y, according to Conjecture 3. If G/P is cominuscule &%, = ¢, for any
(u,v,w) € WF. Then the Thomas-Young combinatorial rule [TY09] for c%,

implies that Conjecture 3 holds.

Distributions and Schubert varieties. In Section 3, we study the restriction
of the distributions to the Schubert varieties X,,. More precisely, for any z in X,
and a € X (Z) we are interested in T, X,, NT7*G/P. For « fixed, the dimension
of T, X, N Tf"‘G/P has a fixed value for x € X, general and can jump for x
in a strict subvariety of X,,. Consider the maximal open subset X? of X, such
that for any a € X(Z) the dimension of T, X, N T7*G/P does not depend on
x € X0. Consider the global stabilizer Q,, of X,, that is, the set of g € G such
that ¢g.X, = X,. Since X,, is B-stable, @), is a standard parabolic subgroup of
G.



Proposition 3 With above notation, we have
X% =Q,.uP/P.

If G/P is cominuscule, the filtration is trivial and Proposition 3 asserts that
Q. acts transitively on the smooth locus of X,,. This was previously proved
by Brion and Polo in [BP00]. Proposition 3 is in the philosophy to generalize
known results from cominuscule homogeneous spaces to any homogeneous space
G/ P, using the Belkale-Kumar product.

Note that Proposition 3 is equivalent to [BKR12, Theorem 7.4]. Neverthe-
less, we think that the distributions give a pleasant interpretation of this result.
In Section 3 we present a proof using the properties of the Peterson map.

Retruning to the setting of Conjecture 1, we assume moreover that the in-
tersection u =X, Nwdv~1X, is proper. Then Conjecture 1 is implied by the
fact that X} is the only irreducible component of this intersection that has the
same X (Z)-dimension (see Section 2.3). Proposition 3 is clearly related to this
version of Conjecture 1.
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2 Infinitesimal filtrations

2.1 The case of a vector space

Ordered group. Let I be a finitely generated free abelian group whose the law
is denoted by +. Consider the vector space I'®zQ. Assume that a closed strictly
convex cone C in I' ®z Q of nonempty interior is given. Moreover, we assume
that C is rational polyhedral, that is defined by finitely many linear rational
inequalities, or equivalently generated, as a cone, by finitely many vectors in
I' ®z Q. We consider the partial order < on I' defined by a=<f if and only if
B — a belongs to C. The group I endowed with the order < is an ordered group:

Va, B, vl ax8 = (a+7)<x(B+7). (13)

The order < satisfies the following version of the Ramsey theorem (see also
Bolzano-Weirstrass’ theorem).

Lemma 1 Let (an)nen be a sequence of pairwise distinct elements of I' such
that a,, <0 for any n.
Then there erists a subsequence (Qty(n))nen such that for any n

Qp(n+1) <A (n)-



Proof. Let ¢1,...,ps be elements of Hom(T', Z) such that « € C if and only if
wi(r) >0 foranyi=1,...,s.
Consider first the sequence ¢1(cv,) and set

Li={n[Vm=>n ¢i(an) > i)}

Assume, for a contradiction that I; is infinite. Denoting by ¢(k) the k' element
of I;, we get an increasing subsequence of (¢1(ay,))nen. But ¢1(ay) € Z and
v1(ap) < 0: a contradiction. Hence I is finite.

Up to taking a subsequence, we may assume that I; is empty; that is

Yn >0 dm>n v1(am) < p1(ap).

This property allows to construct a nonincreasing subsequence of @1 (o, ). Hence,
by considering such a subsequence, we may assume that

Vn >0 v1(ant1) < @i(ay).

By successively proceeding similarly, for i = 2,...,s, one gets a subsequence
Qi (n) Such that

Vi=1,...,n Vn ©i(apnt1)) < P1(aym))-

Since the a, are pairwise distinct, we deduce that ay,(,41)<Qyp(n)- O
Remark. Consider the cone C = {(z,y) € R? : y > 0 and v2z —y > 0} and
the group I' = Z2. Lemma 1 does not hold for the induced order 3= showing the
rationality assumption on C is necessary. Indeed, denote by m : R? — R the
linear projection on the line y = 0 with kernel the line y = v/2z. Then 7(Z?)

is dense as the group generated by 1 and g In particular, one can construct

a sequence (T, Yn)nen such that ¥y, 1 < yp < 0 and 0 > V22,41 — Y1 >
V2z, — yn. Then the elements of the sequence are pairwise incomparable for
the partial order =.

I'-filtration. The group I" is used here to index filtrations.

Definition. Let V be a finite dimensional real or complex vector space. A
I-filtration of V is a collection F7#V of linear subspaces of V indexed by 5 € T’
satisfying

(i) axB = F7PV C F7V,
(ii) 3Bp €T s.t. V = Frhoy,
(iii) if F7*V # {0} then a=<0.

Lemma 2 Let (F7PV)ger be a D-filtration. Then the set {F7PV |3 € T'} of
linear subspaces of V is finite.



Proof. By contradiction, assume that there exists a sequence F7%"V of pair-
wise distinct linear subspaces of V. By axiom (iii), o, <0 for any but eventu-
ally one n. Now, Lemma 1 implies that there exists a decreasing subsequence
Qg(k)- Since the linear subspaces F' 7anV/ are pairwise distinct, the subsequence

F7%®V is increasing. This contradicts the assumption that V is finite dimen-
sional. O

I-filtrations coming from decompositions. For each g € T, Zm—ﬁ Fray
is a linear subspace of 7V . Let us choose a supplementary subspace S°:

FPV = SP @ > F7°V. (14)

a>f

One of the motivation for axiom (iii) in the definition of I'-filtration is the
following lemma.

Lemma 3 With above notation,

FPOV =3~ 5. (15)

axzp

Proof. It is clear that the sum is contained in F7?V. Conversely, since V is
finite dimensional, we have

FPPV = S8 @ (FFPOV 4 .. 4 PO,

for some a; € T such that «;>0. By axiom (iii), we may assume that for any
i=1,...,5 we have o;<0. If each F7*V satisfies the lemma, the lemma is
proved for F7PV. Otherwise, we restart the proof with each «; in place of 3.
Since I' is discrete, the set of a € T' such that 0>« is finite. In particular,
the procedure ends by axiom (iii) of the definition of a I'-filtration. O

Conversely, assume that a linear subspace S of V' is given for any a € I'.
If these linear subspaces satisfy (S* # {0} = a=0), and there exist aq,...,as
such that V' = 8% 4 ... + §% then the formula (15) defines a I-filtration of
V. The T'-filtration of V' is said to come from a decomposition if there exists a
decomposition

V=@ s, with §* # {0} = a<0, (16)

ael’

such that (15) holds.

The f-dimension vector (f stand for filtered) of the T-filtration, is the vector
(fd?(V))ger of NI defined by

I — N, g+ fd°(V) = dim(F7PV),



for any 8 € I'. Define the grading associated to the I'-filtration by setting

FFB
Grv = 4 and GrV = @GrB V. (17)

= TeavU
Za>—/3 ey Ber

The g-dimension vector (g stands for graded) (gd?(V))ger of the Ifiltration is
defined by
I — N, 8 gd?(V) := dim(Gr” V).

Lemma 4 The I'-filtration comes from a decomposition if and only if
dim(GrV) = dim(V). (18)

In this case, the g-dimension vector of V only depends on the f-dimension vector
of V.

Proof. Assume first that the I'-filtration comes from a decomposition. Fix
linear subspaces S® satisfying the conditions (16) and (15). For any 8 € T', the
identity (14) holds and dim(Gr” V) = dim(S?). Hence the lemma follows from
the condition (16).

Conversely, assume that the condition (18) is fulfilled and choose linear sub-
spaces S? satisfying (14). Let By € I such that F7%V = V. Lemma 3 implies
that V=35 SP. The condition (18) implies that the sum is direct. More-
over, it implies that S7 = {0} if v %&fp. Using Lemma 3 once again, we deduce
that the filtration comes from the decomposition V' = P4 S 8.

If fd? =0 then F7PV = {0}, Gr” = {0} and gd” = 0. Let T',,4, be the set
of maximal elements among the elements (3 in I satisfying F7#V # {0}. For
B € Tiax, we have gd?(V) = fd?(V). Et cactera. d

Example. Consider the group Z? endowed with the order (a,b)<(a’,V’) if
and only if a < a’ and b < ¥'. Fix a two dimensional vector space V' and three
pairwise distinct lines Iy, o, and I3 in V. Consider the following family (S?) gez?
of linear subspaces of V: §(=20) =, §0.=2) — [, §(-1.=1) — 15 and S = {0}
if 8 ¢ {(—2,0),(0,—2),(—1,—1)}. The filtration defined by the formula (15)
does not come from a decomposition. More precisely, GrV ~ [; @ Iy @ I3 has
dimension three whereas V' has dimension two.

Another useful notion is the weight p(V') of the I'-filtration of V' defined by

p(V) =Y gd’(V)B. (19)

Ber

Filtrations induced on a linear subspace. Let W be a linear subspace of
V. The I'filtration on V induces one on W by setting

Vel F7PW .=WwnF7PV. (20)

10



Lemma 5 If the I'-filtration on V' comes from a decomposition then the induced
I-filtration on W comes from a decomposition.

Proof. Fix linear subspaces Se and S‘/,BV of V such that
V=250 ®FPV, W=_85oFPW, Sh cSh.
Lemma 3 implies that

W=>" S5 (21)

Ber
Lemma 4 shows
Vot
Ber
Since S€V C S‘ﬁ, it follows that the sum (21) is direct. O

Filtrations induced on p-forms. Let p a nonnegative integer. A I'-filtration
of V induces a filtration on the space A" V* of skewsymmetric p-forms on V' as
follows.

Definition. Let 3 € T. Denote by <% AP V* the linear subspace of forms
w € A’ V* such that for any any a4, ...,q, € T, for any v; € F7*V, we have

a1+...+ap7éﬂjw(vl7...,vp):0. (22)

The first properties of these linear subspaces are.
Proposition 4 (i) If B<y then FS8 NP V* ¢ FSY NP V™.

(ii) Let By € T be such that F75%V = V. If FS7Y NP V* # {0} then vi=pfo.

(iii) We have FSO NP V* = AP V*,

(iv) For 8 and v in T, we have FSP NP V* A FSTN\TV* € PSPy \PHLY >,
Proof. If 8<v then oy + -+ + oAy implies a; + -+ + ap&AB. Hence the
conditions defining F'<Y A* V* are conditions defining F=# AP V*. The first
assertion follows.

Let v#pBo. The definition of FSY AP V* with a = -+ = ap = P implies
that F=7 AP V* is reduced to zero.
Let w be any p-form. We want to prove that w € FSY AP V*. Let aq, ...,

such that o+ - -4, £0. Then some iy satisfies a;, Z0. In particular, F7®oV =
{0}. This implies that w is zero on F7*1V x ... x F7%:V,

11



Let w; and wy belong to FS¥ AP V* and FS* ATV* respectively. Let
Qi,...,Qpqq be such that ag + -+ + apiqAB + 7. Let v; € F7* V. Then

(wl /\WQ)(Ul, . ,Up+q) =

(23)
Tiq)! desp+q £(0)w1(Vo(1)s -+ Vo (p)) W2 (Vo (pt1)s - - - > Vo(ptq))-

It is sufficient to prove that any term in the sum (23) is zero. Since (g +
-t aa(p)) + (aa(erl) +- 4+ ao’(erq)) #ﬁ +, either (aa(l) +-+ Oétr(p)) %/8 or

(Qo(pt1) + -+ Qo(ptq)) A7+ In the two cases, the product
w1 (Ua(l)v v 7UU(p))'w2(U0(p+1)’ CER va(p+q))

is equal to zero. O

Remark. The three first assertions of Proposition 4 mean that (F~% AP V*)ger
is a [-filtration of A’ V* up to the changing of index 8 + pBy — 3. Indeed,
even for p = 1, taking orthogonal reverses inclusions and exchanges {0} with
the whole space.

Filtrations coming from a decomposition.

Lemma 6 Let p be a positive integer. If the T-filtration on V' comes from
a decomposition then the induced T'-filtration F7PPo=8 NPV* on AP V* comes
from a decomposition.

Proof. Write
V=@s* and F7V=_ps,

ael’ a=

with (S*V # {0} = a<0). For any $ € I', denote by T the orthogonal of
@D,z5 5 in V*. It can be identified with the dual of S# and

ve=pr’. (24)
ger

For any collection of subspaces Fi,...,F, of V* n(F; ® --- ®@ F),) denotes the
subspace of APV* obtained by adding wedge products of elements of the sub-
spaces F;. For any 6 € T, set

WvHl= Y w(@e---eTh)
Brt-t Bp=0

It is clear that (24) implies that

NV = PNV’

oer

Moreover, for any § € T, (APV*)? is the set of p-forms w such that for any
a; € T and v; € S* such that oy + -+ + o, # 6 we have w(vy,...,v,) =0.

12



We claim that

PSPV = P(ArVe)°. (25)
o<p

Indeed F~# AP V* is the subspace of forms w € AP V* such that for any
oq,...,ap €I, any v; € S, we have

a1_|_...+ap7é/3:>w(v1,-~va):0'

Let 6 such that (APV*)? 2 {0}. Then there exist £i,..., 3, in I' such that
Bi+--+ B, =0 and TP # {0} for any i. Hence S% # {0} for any i and 3;<0.
We deduce that 6<0. O
2.2 The case of manifolds

Let M be a smooth connected manifold and let TM denote its tangent bundle.
Here comes the central definition of this work.

Definition. An infinitesimal I'-filtration of M is a collection FZPTM of vector
subbundles of TM indexed by 5 € I' satisfying

(i) axB = F?8TM C F7*TM,
(ii) 38y € ' s.t. TM = F7PoT M,
(iii) if F7*TM # {0} then a<0.

The f-rank vector of the infinitesimal filtration is the map
B — rk(F7PTM), (26)
and belongs to NI,

Definition. An infinitesimal I'-filtration is said to come from a decomposition
if for any « € M, the I'-filtration of T, M comes from a decomposition.

Remark. We do not require a I'-decomposition of the tangent bundle T"M but
only for a punctual decomposition.

Lemma 7 Consider an infinitesimal T-filtration on M coming from a decom-

position. Then for any 3, the sum Ea>ﬂ F72TM is a subbundle of TM.

Proof. Fix x in M and a I'-decomposition of T, M = &,5“ such that the
identities (16) and (15) hold. Then >_ . 4 F7oT, M = > asp 5S¢ In particular,
its dimension only depends on the g-dimension vector of the filtration of T, M.
This g-dimension vector only depends on the f-dimension by Lemma 4. Tt

13



follows that the dimension of )7 . s F 7T, M does not depend on x. Now, the
lemma, follows from classical properties of vector subdundles. O

Define the grading associated to the infinitesimal T'-filtration coming from a
decomposition by setting

F7PTM
Gr'TM = =—————— and GTM =G’ TM. (27)
FaT M
Za>—ﬁ FreT BeT

They are vector bundles on M. The g-rank vector (gdﬁ(M))Ber‘ of the I'-
filtration is defined by

I — N, g+ gd? (M) := rk(Gr” TM).

2.3 The case of varieties

Let X be a smooth complex irreducible variety. Consider the complex tangent
bundle TX.

Definition. An infinitesimal T'-filtration of X is said to be algebraic if each
F7ZBTX is a complex algebraic vector subbundle of TX.

Let Y be an irreducible subvariety of X. For y € Y, the Zariski-tangent
space T,Y of Y at the point y is a complex subspace of T\, X. Set

FAPT,Y = F7PT, X NT,Y. (28)

Even if Y is smooth, F*ﬁTyY does not define a subbundle of TY since its
dimension depends on y.

Lemma 8 For any € ' and y € Y, there exists an open neighborhood U of
y' 'Y such that for any y' € U we have

dim(F7PT,Y) > dim(F7°T,Y). (29)

Proof. Locally in y € Y the subspace F7°T,Y of T, X can be expressed as the

kernel of a matrix whose coefficients depends algebraically on y. The lemma
follows. O

The point y € Y is said to be I'-regular if

Vel dim(F7PT,Y) = min dim(F7°T,Y). (30)
y'e
Since I is countable, Lemma 8 shows that a very general point in Y is I'-regular.
More precisely, Lemma 2 implies that the set of I'-regular points in Y is open.
The open set of I'-regular points of Y is denoted by YT & If x € YT —"& the
g-dimesnion of T,.Y is called the I'-dimension of Y.

14



3 Infinitesimal filtration of G/P and Schubert va-
rieties

3.1 Infinitesimal filtration of G/P

As in the introduction, G is a complex semisimple group, P is a parabolic
subgroup of G, T' C B C P are a fixed maximal torus and a Borel subgroup.
Moreover, L denotes the Levi subgroup of P containing 7" and Z denotes the
neutral component of its center. The group of multiplicative characters of Z
is denoted by X(Z). Set I' = X(Z). Our main example is an infinitesimal
X (Z)-filtration of G/P.

Let S be any torus. If V is any S-module then ®(V,S) denotes the set of
nonzero weights of S on V. For 5 € X(5), Vg denotes the eigenspace of weight
B.

Denote by p and g the Lie algebras of P and G and consider the convex cone
C generated by ®(p,Z) in X(Z) ® Q. It is a closed strictly convex polyhedral
cone of nonempty interior in X (Z)®Q. The associated order on X (Z) is denoted
by =. The decomposition of g/p under the action of Z:

o/p= P (@/pa (31)

aEX(Z)

is supported on —C N X(Z). The group P acts on g/p by the adjoint action
but does not stabilize the decomposition (31). For any 8 € X(Z), the linear
subspace

FPa/p= " @  (8/pa (32)
ae X(Z)
ax=p

is P-stable. More precisely, the set of F7g/p forms a P-stable X (Z)-filtration
of g/p coming from the decomposition (31). The tangent bundle T'(G/P) iden-
tifies with the fiber bundle G x p g/p over G/P. These remarks allow to define a
G-equivariant infinitesimal X (Z)-filtration on G/ P by setting for any § € X(Z)

F7PT(G/P) =G xp F7g/p. (33)

Consider the set ®(g/p,T) of weights of T acting on g/p. Then ®(g/p,T)
is a subset of ®. Let w belong to W and consider the centered Schubert
variety w='X,,. Then P/P belongs to the open w~!Bw-orbit in w='X,,. In
particular, it is X (Z)-regular. Denote by ®(w) the set of weights of T acting on
Tp/pw ' Xy. Then ®(w) = &~ Nw '®F is the inversion set of w. Moreover,
®(w) is contained in ®(g/p,T). Since P/P is X (Z)-regular in w™'X,, the g-
dimension of X,, is equal to the g-dimension of Tp/p’lUile. The following
result follows directly:
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Lemma 9 The g-dimension of gd(X,,) of X, is equal to

X(Z) — Zxo
a — #Oed(w): 0z =al,

where 0 belongs to X(T') and 0,z denotes its restriction to Z.

3.2 Peterson’s application

Let V'’ be any T-module without multiplicity and let 8 € X(T). Under the
action of Ker 3 C T', V' decomposes

V' = @ (BrezVairg) - (34)
aEX(T) /28

A subset A of ®(V’,T) is said to be S-convez if
a€N at+BedV T)=a+pcA. (35)

For any submodule V of V’, V# denotes the unique sub-T-module of V' iso-
morphic to V as a Ker(3)-module and such that ®(V?,T) is S-convex. In other
words, on each line a + Z3 N ®(V’',T), one pushes the elements of ®(V,T) in
the direction 3 to get ®(VA,T).

Let w € W. The point wP/P is denoted by w. Let V be a T-submodule
of T,;G/P. Let 8 be a root of (G,T). We are interested in the action of the
unipotent one-parameter subgroup Ug associated to § on w and V. Consider
the point © = lim,_, o, Ug(7)w. For any 7 € C, Ug(7)V is a linear subspace of
TUﬁ(T)u-,G/P of the same dimension as V. Hence it is a point of a bundle in
Grassmannian over G/P. Consider the limit in this bundle

T(V,B) = TlLH;O Ug(T)V. (36)

This limit 7(V, 8) is a T-stable submodule of the T-module without multiplicity
T,G/P.
We can now state a Peterson’s result (see [CK03, Section 8]).

Lemma 10 The T-submodule sg7(V,3) of TyG/P is equal to V5.

Proof. The set {Us(7)w : 7 € C}U® is a T-stable curve isomorphic to P!. The
computation of 7(V, 3) lies in a bundle in Grassmannians over this line. This
computation can be made quite explicitly by trivializing this bundle on the two
T-stable open affine subsets of P'. O

3.3 A lemma on T-varieties

The following result is used in this paper to characterize Schubert varieties in
terms of their tangent spaces among the irreducible T-stable subvarieties of
G/P.
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Lemma 11 Let V be a T-module. Let C be a strictly convex cone in X (T) ®Q.
Let X be a closed T-stable subvariety of V' such that

(i) ¥ is smooth at 0;
(ii) ToX = ByecVy -
Then 3 = @yecVy-

Proof. Since C is strictly convex and ®(V,T) is finite, there exist finitely many
one-parameter subgroups A1, ..., Ax of T such that

Vx € X(T) xe€C < Vi (\,x)>0.

For any i, there exists a T-stable neighborhood of 0 in ¥ such that any point
x in this neighborhood satisfies lim;_,o A;(t)x = 0. Consider the set W of v € V
such that lim; o A;(t)v = 0, for any i. By the second condition, W is precisely
ToX. We just proved that TyX contains an open subset of . But these two
varieties are irreducible and of same dimension (since ¥ is assumed to be smooth
at 0). Hence ¥ = TpX. O

3.4 Schubert varieties

Let Y be a subvariety of G/P. Let G(X) denote the stabilizer of Y in G; it is
the set of g in G such that gY =Y. If G(Y) has an open orbit in Y then this
orbit is called the homogeneous locus of Y; otherwise, the homogeneous locus
of Y is defined to be empty. In other words, the homogeneous locus of Y is the
biggest open subset of Y homogeneous under a subgroup of G; it is denoted by
Yhom.

Recall that X,, = BwP/P. If Y = X,, (for some w € W) then the group
G(X,) contains B: it is a standard parabolic subgroup of G. In particular, it
is characterized by a subset A,, of simple roots. Precisely we set

Ay ={a€eA : P,X, =Xy}
Proposition 5 We have
Xi}((Z)freg _ Xil;om'

Proof. Since the infinitesimal filtration is G-invariant, it is clear that Xfu( (Z)—reg

is G(X,,)-stable and contains X2°™  Moreover Lemma 8 implies that X (Z)—reg
is open in X,,.

Assume that Xf(z)fmg — Xhom i nonempty. Choose an open B-orbit in

X (#)7ree _ xhom and a T-fixed point @ on it.

Obviously v is smaller than w for the Bruhat order. Since the Bruhat order
is generated by T-stable curves, there exists a positive root 3 such that sgv €
WP and v < sgv < w. Since B. is dense in an irreducible component of

xX(Z)—res _ Xhom g 59 belongs to Xhom,

w
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Since sg0 is a T-fixed point in G(X,,).w, it is equal to uw for some u €
W(G(Xw))-
We claim that

sg € G(Xy)/T. (37)

Let us first explain how the claim leads to a contradiction. Since u belongs to
G(Xy)/T, the claim implies that sgu~t Xhom = xhom Byt ¢ = sgu~1 and w
belongs to X1o™. Hence © € X2°™ which is a contradiction.

Consider v = +w~tuB where the sign is chosen to make v negative. Since

u € G(X,)/T, Claim (37) is equivalent to sgu™'X,, = u='X,, or to s,sXy =
X, or to

Sy (Wt Xy) = w X, (38)

Look these two varieties in a neighborhood of P/P. More precisely, consider
the unique affine open T-stable neighborhood Q of P/P in G/P. Then Q is
isomorphic as a T-variety to a T-module without multiplicity. Since the two
varieties of (38) are irreducible, it is sufficient to prove that

QNs,(wX,)=2Nw X,. (39)

Since s, P/P € w™'X,,, v € ®(w). In particular, w='X,, is U,-stable. But,
s4P/P and P/P are smooth points in w™'X,,. Hence

Tli)H;O UW(T)TP/Pw71X111 = sﬂ,P/Pwile-

Then Lemma 10 shows that

(I)(Tp/pS,\/w_le,T) == S,Y(I)(Tswp/pw_le,T)
=5, (limT_)oo U,Y(T)Tp/pw_le, T)
=& ((Tp/pw_le)_’Y,T) .

Since P/P is I-regular in s,w™ X,
Vo€ X(Z) dim(F7(Tp/pw ' X,) ") = dm(F7*(Tp pw™ ' X,)).  (40)

But v ¢ ®(P), hence vz is non trivial. Then, equality (40) implies that
O((Tp/pw'X,) P, T) = ®(Tp/pw ' X,),T). Equality (39) follows and the
theorem is proved. O

4 Infinitesimal filtration and cohomology

4.1 Filtration of differential forms on a manifold

In this subsection, M is a smooth connected manifold of dimension d endowed
with an infinitesimal I'-filtration. The notion that allows to control the differ-
ential relatively to the filtration is the following one.
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Definition. An infinitesimal I-filtration of M is said to be integrable if for any
«a and B in I' we have

[F7“TM, F7PTM] C F7**PTM. (41)

Example. Let L be an integrable distribution on M. We get an integrable
infinitesimal Z-filtration be setting

FPeTM =TM Va € Zo,
FAOTM = I,
FPTM =0  Va € Zso.

Example. Let L be any distribution on M. We get an integrable infinitesimal
Z-filtration be setting

FP*TM =TM Va < -2,
FF=1TM =L,
FPTM =0  Va € Zso.

Consider the sheaf QP of differential p-forms on M and the De Rham differ-
ential d,, : QP — QP! The De Rham cohomology group is

Ker d,(M)
HD (M, R) = —— P
DR( I ) Im dpfl(M)

The exterior product

A QPx QY — et
(w,w') +— wAW

induces a product A in cohomology since
dwAw') = (dw) AN’ + (=1)Pw A dw'.
In particular, H%, 5 (M, R) := &{_,H% o (M, R) is a graded algebra.

We now consider the I'-filtration on the sheaf (2” induces by the infinitesimal
Ifiltration.

Definition. Let 8 € I and let U be an open subset of M. The subspace

FSBQP(U) of QP(U) is defined to be the set of forms w € QP(U) such that for
any ai,...,a, €I, for any x € U and for any & € F7*T, M, we have

a1+ Fap &b = wi(br, ..., &) =0. (42)
A direct consequence of Proposition 4 is
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Proposition 6 (i) If By then FS8QP ¢ FS7QP.
(ii) Let By € T be such that F75TM = TM. If FS7QP # {0} then v=pSo.
(iii) We have FS0QP = QP.

(iv) For B and ~ in T, we have FSBQP A FS7Q4 C FSBTyQpta,

The integrability is essential in the following result.

Proposition 7 Assume that the infinitesimal filtration is I'-integrable. Then

forany peT
dp(F'*pr) c FSBQp+L,

Proof. Let U be an open subset of M and let w € FS#QP(U). Let x € U and
let & € F7*TM be defined in a neighborhood of z such that g+ - -+, 11 &£fB.
It remains to prove that

dp(w)ﬂ?(fla e 75p+1) =0.

Cartan’s formula implies

dp(w)$(§1v"'a§p+1) = Zi :I:gi'w(§17"'aéi7"'7€p-‘y:1) R
+Z1Z<j iwz([fia&j]vflv e 751') v afja s 7£p+1)'

Since [&;,&;] € F7*T% M and
(i taj)fon4-Fdit - Fdj+-+ophb,

the term wx([fi,gj],fl, e 75@'7 “ee 75_]‘, cee 7£p+1) is zero.
Consider now a term

Si'w(§17"‘7é’i7"’7§p+1)- (43)

If ;A0 then & = 0 and the term (43) is zero. Assume now that a;=<0. The
weight of &1,...,&, ..., §py1is 6 := Z?i% aj —ay;. Since 04 a; A8 and a; <0, we
have §43. Since w belongs to F~#QP(U), it follows that w(&;, . .. NI Jpr1) =
0. (]

4.2 Filtration of the cohomology

The T-filtration on M induces an increasing I'-filtration on the cohomology.
Indeed, Propositions 6 and 7 show that the De Rham complex is I'-filtered.
Namely, we set

Ker(d,) N FSPQP(M,R)
& (@ 1(M,R)) N F<PQW(M,R)’

FSPHP(M,R) := (44)

Propositions 6 and 7 show the following one.
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Proposition 8 The sets FS? HP(M,R) are canonically identified with subspaces
of HP(M,R).

(i) If F75M = TM then F7PPo—BHP(M,R) is a I-filtration of H?(M,R).

(ii) The filtration respects the structure of algebra. Namely, for  and v in T,
we have

FSPHP(M,R) A FSYHY(M,R) C FSPHY HPYI(M | R).

Remark. The I'-filtration is defined at the level of the de Rham complex and
not only at the level of the cohomology. In particular, it induces a spectral se-
quence which should be study to understand the relations between the ordinary
and the Belkale-Kumar cohomologies. Here we only study the Belkale-Kumar
product.

Consider now the (I’ x Z)-graded algebra associated to this I-filtration of
the Z-graded (by degree) algebra H*(M,R) by setting

FSBHP(M,R)
> s FXYHP(M,R)

GrP HP(M,R) := (45)

and

GreH (M,R):= @ GrPHP(M,R). (46)
BET, peEN

Then Gr® H*(M,R) is a ring graded by T" x Z.
Now, we observe the following easy functoriality result.

Lemma 12 Let M and N be two smooth manifolds endowed with integrable
infinitesimal T-filtrations. Let ¢ M — N a smooth map such that

Yael  TH(FZ*TM) C FZ°TN.
Then the pullback ¢* : H*(N,R) — H*(M,R) respects the T'-filtration. In
particular, it induces a T'-graded morphism Gr¢* : Gr H*(N,R) — Gr H*(M,R).
4.3 Cohomology with complex coefficients

Recall that M is a connected manifold. Consider the cohomology group H* (M, C)
with complex coefficients and consider the following complex vector bundle on
M

T°M :=TM &g C.

A complex infinitesimal T -filtration of M is a family of complex subbundles

FSBTCM  TCM,
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indexed by 8 € T satisfying the three assertions of Definition 2.2. A complex
infinitesimal [-filtration is said to be I'-integrable if for any 8 and ~ in I', we
have

[FSBTCM, FSOTC M) ¢ PSP TCM. (47)

A complex infinitesimal integrable I'-filtration induces a filtration of the De
Rham complex and of the groups H? (M, C).

Example. Let M be an holomorphic manifold. Let J denote the complex
structure on the tangent bundle TM. Since J? = —Id, its eigenvalues acting on
TM @ C are ++/—1. Let TH9M (resp. T%1 M) denote the complex subbundle
of TM ® C associated to the eigenvalue /—1 (resp. —v/—1). There is a natural
C-linear isomorphism ¢*° : TM — TYOM. Tt is well known that T"9M is an
integrable distribution in T7CM. Then we get a complex infinitesimal integrable
Z-filtration by setting

FPeTCM =TCM  Va € Z.y,
FAOTCM =T M
F7eTCM =0, Va € Zso.

The Z-filtration of H? (M, C) is called the Hodge filtration of M (see for example
[Voi07]).

4.4 The case of a smooth complex variety

Let M be a smooth complex irreducible variety endowed with an algebraic
I-filtration. Assume that this filtration is integrable and comes from a decom-
position (recall the definition from Section 2.2). Set I' := T' x Z endowed with
the order (8,n)%=(v, m) if and only if 5=~ and n > m.

Define a complex I-filtration on TCM by setting for any 8 € T,

FrBa)TChAr — T7Cpf Ya € Z<o,
FrBOTCN = LO(FFBT M),
FrBa)TChr — 0, Va € Z>o.

Integration along subvarieties. Let N be an irreducible subvariety of M.
Denote by n the dimension of M and by d that of N. By Lemma 4, the
dimension vector (fd?(T,N))ser does not depend on z € N general. This
general value of the dimension vector is by definition the f-dimension vector of
N and is denoted by fd?(N). For any z in N, the I-filtration of T, N comes
from a decomposition by Lemma 5. In particular, Lemma 4 shows that the
g-dimensional vector of T,,/N does not depend on x in N general. This remark
allows to define the g-dimension vector of N. Then the weight p(NV) € T' of N
is defined by the formula
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p(N) = gd®(N)B. (48)
per
Consider the extended notions to I': ;&(ﬁ,o)(N) = gdP(T,N ® C) = gd°(N),

—~(0,—1 —~(B,a
gd( )(N) =d and gd(ﬁ )(N) = 0 otherwise. Note that p(N) = (p(N), —d).
Consider now the linear map
Q2(M,C) —  C
w — [y wN-

The following lemma relies the filtration and the integration.

Lemma 13 Let 8 € T and let e € Z such that (3,e) #p(N). Ifw € FSBOQ2A(M, C)

then
/ OJ‘N = O
N

Proof. Let x € N be a general point. By Lemma 5, the I'-filtration on T, N
comes from a decomposition. Then there exists a basis (£1,...,&q) of T, N such
that for any 3 € T, the set of & which belong to F##T, N spans F#PT,N.
Such a basis exists since by Lemma 5, the I'-filtration on T, N comes from a
decomposition. Let «; be the maximal element of I such that & belongs to
F7T, N.

Consider the basis (110 (&;), ..., t(10(&y), 0D (&), ..., 10D (&y)) of T,N®
C. Since x is any general point on N, it is sufficient to prove that

w(L(LO) (61)7 ey L(LO) (é-d)v L(OJ)(SI)) ey L(071)(€d)) =0.

But ((10)(¢&;) € FA@OTCN and OV (¢;) € F7O~DTCN. Hence the weight
of (L(LO) (51)7 R L(LO) (gd)a L(O’l)(gl)a R L(O’l) (gd)) is E?:l(aia 0) + d(07 _1) =
p(N). The lemma follows. O

The restriction of the map w — || N win to the closed 2d-forms is zero on
the exact forms and induces a linear map

/ : H*(M,C) — C.
N

Consider now the restriction of this map to F<P(N) H* ()M, C). By Lemma 13,
this restriction induces a linear map

/ : GrPW™) g2\, C) — C.
N

Poincaré pairing. Assume that M is compact and recall that it is orientable
since it is holomorphic. Let p be an integer such that 0 < p < 2d. The
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integration allows to define a paring
HP(M,C) x H**"P(M,C) — C
([wl]a[WQ]) — wal N wa.
By Poincaré duality, this bilinear form is non degenerated. In particular, H? (M, C)

and H2?7P (M, C) have the same dimension.
Let & € T'. Consider the following restriction of the bilinear form (49):

(49)

FS&HP(M,C) x FSp(M)=a H2d’p(M, C) — C (50)
([wl]y[WZ]) — wal N ws.
Since .
a=p(M) = FSQ2(M) = Q*(M), and
ap(M) = FS8Q2(M) =0,
Lemma 13 shows that
&+ Bp(M) = FSYHP(M,C) A FSPH24-P(M, C) = {0}. (51)
In particular, the pairing (50) passes to the quotient and induces a pairing
Gr®HP(M,C) x GrPM-ay2d=r(pr C) — C (52)
(), 2)) [y A

Definition. The T-filtration of H*(M, C) is said to be compatible with Poincaré
duality if for any integer 0 < p < 2d and for any & € I, the pairing (52) is non
degenerate.

Lemma 14 The I-filtration of H* (M, C) is compatible with Poincaré duality if
and only if for any nonnegative integer p and any & € ', we have

dim(Gr® HP(M, C)) = dim(Gr’™) =% H24-P()f, C)) (53)

Proof. If the I-filtration of H*(M,C) is compatible with Poincaré duality we
obviously have the equalities of dimensions.

Assume now that (53) hold. In a basis adapted to the filtration, impli-
cation (51) implies that the matrix A of the pairing (49) is upper triangular.
Moreover, the matrices (in the induced basis) of the pairings (52) are the diag-
onal blocs of A. But equalities (53) imply that these blocs are square. Since A
is invertible, it follows that any bloc is invertible. O

Definition. Let N be an irreducible subvariety of a compact smooth irreducible
complex variety M endowed with an integrable infinitesimal I'-filtration coming
from a decomposition. Assume that the I-filtration is compatible with Poincaré
duality. Define [N]o, € GrPPM=PN) g2(=d) (A1 C)) to satisfy the following

formula
J 1= [ NIy ALl (54)

for any [w] € Gr?™) H* (M, C).
On can refer to Proposition 11 for a more concerte characterization of [N]g
and in particular its relation with [N], in the case when M = G/P.

0
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5 Isomorphism with the Belkale-Kumar product

5.1 The Belkale-Kumar product
In this section, we recall the Belkale-Kumar notion of Levi-movability (see [BK06]).

The cycle class of the Schubert variety X, in H*(G/P, C) is denoted by o,
and it is called a Schubert class. The degree of oy, is 2(dim G/P — l(w), where
l(w) = §®(w) is the length of w. The Schubert classes form a basis of the
cohomology of G/P:

H*(G/P,C)= & Cou. (55)
weWF

The Poincaré dual of o, is denoted by o,. Note that o, is the class of the
point. Let o, 0,, 0, be three Schubert classes (with u,v,w € WF). If there
exists an integer d such that 0,,.0,.0, = do. then we set ¢y = d; We set Cypw =
0 otherwise. These coefficients are the (symmetrized) structure coefficients of
the cup product on H*(G/P,C) in the Schubert basis in the following sense:

Ou-Oy = Z CurwT o)
weWP
and Cypw = Couw = Cuwo-
Consider the tangent space T, of the orbit u=!BuP/P at the point P/P;
and, similarly consider T, and T,,. Using the transversality theorem of Kleiman,

Belkale and Kumar showed in [BK06, Proposition 2| the following important
lemma.

Lemma 15 The coefficient Cyqyy s nonzero if and only if there exist py, py, puw €
P such that the natural map

To(G/P)  Tp(G/P) _ Te(G/P)

Tp(G/P) —
r(G/P) puTl poTy PuTi

s an isomorphism.
Then Belkale-Kumar defined Levi-movability.

Definition. The triple (oy, 0y, 0y) is said to be Levi-movable if there exist
lu,ly, lw € L such that the natural map

Tp(G/P)  Tr(G/P)  Tp(G/P)

Te(G/P) — = 1T, 1uTw

is an isomorphism.
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Belkale-Kumar set

©Oo { Cuvw  if (04, 0y, 0y) is Levi — movable;

uwow 0 otherwise.

They defined on the group H*(G/P,C) a bilinear product ®¢ by the formula

- ®o LV
0,00y = g Coros T
weWw?r

Theorem 2 (Belkale-Kumar 2006) The product ®g is commutative, asso-
ciative and satisfies Poincaré duality.

[RR11, Proposition 2.4| gives an equivalent characterization of Levi-movability.
It can be formulated as follows.

Proposition 9 Let u, v, w € W such that cypw # 0. Then (04, 0y, 0u) 18
Levi-movable if and only if

2gd(G/P) = gd(X.) + gd(X,) + gd(Xw).

5.2 The statements

The first aim of this section is to prove (see Section 5.4.10) the following result
of compatibility between the basis of Schubert classes and the I'-filtration on

H*(G/P,C).

Proposition 10 For any B el and for any integer p, the linear subspace
FSAHP(G/P,C) is spanned by the Schubert classes it contains.

More precisely, FSPHP(G/P,C) is spanned by the Schubert classes oyv
where w € WF satisfies (p(Xy,), —1(w))<3.

For any w € WP, denote by g the class of g,v € FS(P(Xw).~Lw) gU)(G/p, C)
in Gr(P(Xw): =) glw)(G/p C). Proposition 10 implies that (Tuv)ewr is a
basis of Gr H*(G/P,C). Consider now the obvious linear isomorphism

v : H'G/P,C) —» GrH*(G/P,C)
TV — Twv for any w € W7,

Theorem 3 The linear isomorphism ¥ from the algebra (H*(G/P,C), ®p) onto
the algebra Gr H*(G/P,C) is an isomorphism of algebras.

The theorem is proved in Section 5.5 after some preparation. The first
consequence concerns Poincaré duality (see Section 5.4.10).

Corollary 1 The (X (Z)XZ)-filtration of H*(G/ P, C) is compatible with Poincaré
duality.
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This corollary allows to define the graded Schubert classes by setting, for
any w € WP,

080 = [Xw]Qo' (56)

Finally, we get, by applying Proposition 11 to Y = X, the following result
of compatibility.

Lemma 16 For any w € W¥, we have

V(o) = o0,

5.3 An upper bound for dim(F~*H?(G/P,C))

For any w € W, as a consequence of the relation @~ = (¢~ Nw 1dT) U (®~ N
wt®~), we have (see |[Kum02, 1.3.22.3|)

Z a=w"ltp—p (57)

acEP—Nw—1o+

Assume that w € W¥. Since P/P is X(T)-regular and T acts on Tp,pw ™' X,,
without multiplicities and with weights ®~ Nw~'®*, we have

p(Xu) = plw™ X,) = ( > a> =(w'p=p),- (58)
acd-nw-let /g
In particular
p(G/P) =2(pr = p) |z = —2p|z, (59)

since py, is trivial on Z. Hence

p(G/P) = p(Xuw) = (=p—w™'p) , . (60)
Lemma 17 For any w € W, we have

p(G/P) = p(Xuw) = p(Xuwv).

Proof. Remark that

(@)1 p)iz = (W w™ wop) 2z = —wf (w™'p)jz = —(w™'p) 2,

since w{ belongs to L and acts trivially on Z. The lemma follows. O

Lemma 18 Letn denote the dimension of G/P. The dimension of F=f H2"=49(G/P,C)
is less or equal to the number of w € WT such that p(G/P) — p(Xw)<B and
l(w) =d.
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Proof. For each w € W¥ such that p(G/P) — p(X,,) 4 and [(w) = d, consider
the linear form
/ :H2"=9(G/P,C) — C.
X,V

By Lemmas 17 and 13, this linear form is zero on F=# Hz("_d)(G/P, C). But
by Poincaré duality these linear forms are linearly independent. This implies
that the codimension of F<# H2"~9 (G /P, C) in H2"~9(G/P,C) is at least the
number of w € W¥ such that p(G/P) — p(X,)#&B and I[(w) = d. The lemma
follows. O

5.4 Kostant’s harmonic forms
5.4.1 The role of Kostant’s harmonic forms in this paper

Let w in WP, In 1963, B. Kostant constructed an explicit C-valued closed
differential form w,, on G/P such that the associated cohomology class [w,,] is
equal to o, up to a scalar multiplication. Kostant’s form w,, is used here to
localize the Schubert class relatively to the filtration.

Lemma 19 The Schubert class oy belongs to FSP(Xw).=Lw) i) (Gq/p C).

Before proving Lemma 19 in Section 5.4.10, we recall Kostant’s construction.

5.4.2 Restriction to K-invariant forms

Let K be a maximal compact subgroup of G such that TN K is a maximal torus
of K. Then K is a connected compact Lie group.
Consider the subcomplex of K-invariant forms:

d, : Q°(G/P,C)¥ — QrtY(Gq/P,C)%,

and its cohomology H},x(G/P,C)%. The identity d,_1(QP~1(G/P,C)K) =
dp—1(QP~H(G/P,C)) N QP(G/P,C)¥ allows to define a morphism

Hpr(G/P,C) — HpRr(G/P,C),

which is an isomorphism.
Since K acts transitively on G/P, the restriction map to the tangent space
at P/P provides a linear isomorphism

p KNL
Qr(G/pP,0)K — </\HomR(g/p,C)> : (61)

Let ¢ denote the Lie algebra of K. This compact form ¢ determines a real
structure [0* on g. More precisely, O is a C-antilinear endomorphism of g such
that £ is the set of £ € g such that £* = —¢€.

Consider now the complex dual (g/l)* of the complex vector space g/[. Since
[ is stable by (0*, g/l is endowed with a real structure still denoted by [01*. Then
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(g/h)* is also endowed with a real structure by setting ¢* = ¢(0O*), for any
© € (g/1)*. Define a morphism

6 : Homg(g/p,C) — (g/0)*

where ¢ is C-linear and ¢ is C-antilinear. One checks that 6 is a C-linear
isomorphism and that it commutes with the real structure and the actions of
K N L. Note that L also acts on (g/l). Since K N L is Zariski dense in L, we
have

KNL

(/\p(g/l)*> = (/\p(g/l)*>L. (62)

Finally we get an isomorphism

o (G/P,C)K — (/\p(g/[)*)L. (63)

5.4.3 The Lie algebra ¢

Let u and u™ be the algebras of the unipotent radicals of P and its opposite
parabolic subgroup P~. Consider the sum

t=u Qu (64)

endowed with a Lie algebra structure [, -], defined by keeping the brackets on
u~ and u unchanged and by setting [u—,u], = 0. The L-equivariant linear
isomorphism v ~ g/l and its transpose (g/l)* ~ t* induce isomorphisms

~ (A ®/\'u*)L. (65)

The term A®(u™)* corresponds to holomorphic forms on G/P and the term
A® u* corresponds to antiholomorphic forms.

Combining [0* and the Killing form (-, -) one obtains an Hermitian form {-, -}
on g. Explicitly,

Q*(G/P,C)* ~ (Homg(g/p, C))" ~ (/\.“*)L

{5777} = _(6777*)7

for any £, n € g. Denote by {-, -} its restriction to t. The decomposition
u~ @ u = v is orthogonal for {-,-}.. Consider now the graded exterior algebra
A®t* = @, APt* and extend the bilinear form {-, -} on A*t*. The decomposition
t=u" @ u induces a N2-grading A®t* = D(p,g)enz NP7 " by setting

AP = AP (1) @ AT (1)

Moreover, the sum @, yen2 A7 ¢t* is orthogonal for {-,-}. .
Let b € End(A®t*) be the Chevalley-Eilenberg coboundary operator of the
Lie algebra t. It has degree 41, more precisely

b(APIe*) C APTLAEs y AP-at+Lex
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Set b = 10 + %! according to this decomposition. Let d € End(A®t) denote
the Chevalley-Eilenberg boundary operator. Using the Killing form, we identify
v and t* and transport 0 to an operation 9* € End(A®*t*) of degree —1. Decom-
pose 9* = 9710 4+ 9%~1 according to the decomposition AP~1dr* @ API~1¢*,
Set

L=0"0b+bod". (66)
[Kos63, Proposition 4.2] gives an alternative expression of L:

1
L= 5@ ot 4170 0", (67)

5.4.4 The (X(Z) x Z)-filtration of A®t*
Consider the action of Z x C* on t given by
(z,7).(§ + &) = (72£7,¢), VeeZ, 1eC & eu, e (68)

Then the group Z x C* acts on A®t* and induces a I-decomposition

A= @ (), (69)

BeX(Z)XZ

Note that the weights of Z acting on (u™)* are the weights of Z acting on u; in
particular, they are positive for the order >=. As a consequence, we have

(A*t)5 # {0} = 0. (70)
Set
F<6(/\.t*) = @dﬁ,é(/\.t*)d' (71)
Consider now, like in the formula (65), the diagonal action of L on t:
L +& =1 +1¢, VieL & eu e

Since Z is contained in the center of L; the action (68) of Z x C* and the above
action of L commute. In particular the decomposition (69) is L-stable. Set
C = (A*t*)l and Cz = CN(A*t")5. The (Z x C*)-module C' decomposes as
follows

C:=Pc;. (72)

gel
The associated filtration of C is:

FS80 = Fs3(av)nC.
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5.4.5 Action of L on A*(u™)*

*

We now recall results of Kostant in [Kos61] on the action of T on A®(u™)*.

Theorem 4 (i) The set of vertices of the convex hull of the weights of T
acting on \°*(u™)* is the set of p—w™'p where w € WF,

These weights are multiplicity free and the eigenline corresponding to p —
w™p is generated by

Ow ::¢a1/\"'/\¢o¢pv

where {aq,...,a,} = T Nw™1®~; and ¢,, € (u™)* is a vector of weight
(67

(ii) For any w € WT the vector ¢, is an highest weight vector for L. Denote
by M,, the simple L-module generated by ¢,,.

5.4.6 A first differential form

We are now ready to define a first K-invariant differential form on G/P. Set
hay = Tdyy € My, @ M, C (AP(u™)* @ APu) " (73)

where p is the length of w, that is s the codimension of X,,v. Since Z is central
in L, Z acts with weight (p — w_lp)‘z on M,,. In particular,

hu € C((p—w”p)\z,—p)' (74)

If G/P is cominuscule then h,, corresponds by the isomorphism (65) to the
wanted closed differential form representing o,,. In general, more work is useful.

5.4.7 An Hermitian product on ¢

Recall that the Hermitian product {-, -}, on t induces Hermitian inner products
on A®t and A*t* still denoted by {-, -}+.

Lemma 20 For any nonnegative integer p, the (X (Z) x Z)-decomposition (72)
is {-, -}c-orthogonal.
Proof. It is sufficient to prove that the decomposition
t=ud @ u, (75)
aeX(2)

is {, - }c-orthogonal. Since u* = u~ and the Killing form vanishes on u™, u and
u~ are {-,-}-orthogonal. Let now fix { € uy and n € ug, with 8 # 8’ € X(Z).
Consider the adjoint action of Z on g, the induced one on End(g) and the
corresponding decomposition

End(g) = @aex(z) End(g)a-

Note that for any A € End(g), with a # 0, we have tr(4) = 0. The endomor-
phism Ad(n*) belongs to End(g)_a. It follows that Ad(n*) o Ad(§) belongs to
End(g)s_s and that {€,7} = —(€,7°) = — tr(Ad(y°) 0 Ad(€)) = 0. 0
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5.4.8 Operators on A®*(t*)
Recall, from the formula (66), the definition of the operator £ € End(A®t*).

Lemma 21 The operator L stabilizes C(q ) for any integer p and any o €
X(2).

Proof. By [Kos63, Proposition 3.4], 8%!(C(q ) is contained in C(q pi1y. By
[Kos63, formula 3.5.3], 0%~ 1(C(qa,p+1)) is contained in C(, ). We deduce that
(0971 0 91)(Cla,p) is contained in C(y ). Similarly, (b%! 0 8%71)(Ca,p)) is
contained in C(, ). We conclude using the formula (67). O

Note that £ is an Hermitian operator. In particular, we have a {-, }.-
orthogonal decomposition Ker £ & Im £ = A®t*. Consider the quasiinverse Ly
of L: Ly is the Hermitian endomorphism of A®t* such that Ker Ly = Ker £ and

Lojtme = (Ljme) ™"

Let 7 : v — End(A®t*) be induced by the coadjoint action. Let f; be
eigenvectors in u~ for the action of Z that form a basis of u™. Let g; be the
basis of u defined by the conditions (f;, g;) = ¢! (the Kronecker symbol). Set

&= QZﬂ(gi) om(f;) € End(A®t"). (76)

Kostant defined a third operator
R :=—Lyo& € End(A®t"), (77)
he proved that R is nilpotent and he defined
5w = (Id—R) " (hu) = hu + R(hw) + R*(hy) + -+ . (78)

Here, we need the following improvement of [Kos63, Lemma 4.6] that proves the
nilpotency of R.

Lemma 22 For any integer p and o € X(Z), we have

R(Claw) € P Ciop)-

B<a

Proof. Lemma 21 asserts that £ stabilizes the (X (Z) x Z)-decomposition of C'.
Since this decomposition is {-,-}.-orthogonal by Lemma 20, this implies that
Ly also stabilizes the T-decomposition of C'. By the formula (77), it remains to
prove that £(C,,p)) C Dszn Ciap)-

But each 7 (f;) vanishes on A®u* and each 7(g;) respects the degree. It follows
that £(Clap) C Bpex(z) Cipp)- But m(g;) vanishes on A*(u~)*. Moreover,
fi belongs to u™ and has a weight v<0. It follows that 7(f;)(A®(u™)j3) C
A*(u™)5_,. The claim follows. O
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5.4.9 Kostant’s theorem
Theorem 5 ([Kos63] ) Let w € WF. The element s, € \°t* defined by (78)

is L-invariant. In particular, s, corresponds by the isomorphism (65) to a
K -invariant form w,, on G/P.

Then the form w,, is closed and its class [wy] in Hpr(G/P,C) is equal to
the Schubert class 0., up to a positive real scalar.

w?

5.4.10 Application

We can now prove Lemma 19.

Proof.[of Lemma 19] By Theorem 5, it is sufficient to prove that w,, belongs
to FSPW)QUw)(G/P,C). But w, and the filtration are K-invariant on the K-
homogeneous space GG/P. Hence it is sufficient to prove that s, belongs to
FSPw)C. This is a consequence of the property (74) and Lemma 22. O

Proof.[of Proposition 10]~Let B eT and let p be an integer such that 0 < p <
dim(G/P). Consider FSPH?*(G/P,C). On one hand, Lemma 18 shows that
the dimension of F=# HP(G/P,C) is not more than the cardinality of the set

W(B,p) = {w e W¥ : 5(G/P) - p(Xw)<p and l(w) = n — p}.

On the other hand, Lemma 19 shows that F'<7 HP(G/P,C) contains the classes
o, for w in the set

W (B.p) = {w e W" : p(X,)<0 and I(w) = p}.

But Lemma 17 implies that the Poincaré duality w + w" induces a bijection
between W (B3, p) and W'(B,p). Since the family (ouv),cw (3, 18 linearly in-
dependant the proposition follows. O

Proof.|of Corollary 1] The corollary is a direct consequence of Lemma 14 and
the above proof of Proposition 10. (]

5.5 Proof of Theorem 3

Let u and v be elements of W, Consider the following product in the ordinary
cohomology ring H*(G/P,C)

_ w
Oy.Oy = E CoupOw-

weWr

By Lemma 19 and Lemma 17, o, belongs to F'<P(G/P)=5(Xu) fiwows)=1w) G/ p, C).
Similarly, o, belongs to F=P(G/P)=p(Xe) Hl(w‘)“’f)_l(”)(G/P7 C). Now Proposi-
tion 8 shows that

0u-Oy € F<2ﬁ(G/P)7ﬁ(Xu)7ﬁ(Xv) HQZ(“’OU’(I:)_I(U)_I(U) (G’/P7 (C)
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By Proposition 10, this means that
cio 70 = p(G/P) = p(Xw) x26(G/P) — p(Xu) = p(Xo), (79
= B(X) + (X0) < A(Xu) + (G P). (80)

Proposition 10 implies also that

[ Z cy T (81)

wew?
ﬁ(X1L)+ﬁ(X11):ﬁ(XwH”ﬁ(G/P)

On the other hand, Proposition 9 shows that

u@o0y = > - (82)

wew?
9d(Xu)+gd(Xy)=9d(Xw)+gd(G/P)

Comparing the identities (81) and (82), it remains to prove, under the assump-

tion ¢y, # 0, that the equivalence
P(Xu)+p(Xo) = p(Xw)+p(G/P) <= gd(Xu)+gd(X,) = gd(Xw)+gd(G/P)
holds.

The implication “<” is an immediate consequence of the definition (19)
of p(-). Conversely, assume that p(X,) + p(X,) = p(Xw) + p(G/P). Since
c?, # 0, the Belkale-Kumar numerical criterion of Levi-movability (see [BKO6,
Theorem 15]) implies that o,©g0,Ogowv = ¢, [pt]. In particular, Proposition 9
implies that gd(X,,) + ¢gd(X,) = 9d(X.) + 9gd(G/P). The theorem is proved.

5.6 The Belkale-Kumar fundamental class

Recall from Section 4.4 the definition of the Belkale-Kumar fundamental class
of any subvariety of G/P. We can now give a simple characterization of this
class using the notion of X (Z)-dimension.

Proposition 11 Let Y be an irreducible subvariety of G/P of dimension d.
Consider the expansion of its fundamental class in the Schubert basis

Y= > duow.
weWwr
Then the expansion of its @g-fundamental class in the Schubert basis is
[Y]Go = Z dwo_go'
wew

p(Xuw)=p(Y)

Proof. It remains to prove that for any [w] € GrY) H*¢(G/P,C),

[e=taoi ¥ duow).

wew?
p(Xw)=p(Y)
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Since the two members of the equality depend linearly on [w], it is sufficient to
prove it for [w] = o,v, for any u € WT such that p(X,) = p(Y) and I(u) = d.
By ordinary Poincaré duality, this case is equivalent to the following equality

ouv Z dow) = v Oo( Z dyow).
wew?

weWw?
l(w)=n—d p(Xw)=p(Y)

Since the only product o,v.o,, that is nonzero in the above formula is o,v.0y,
the proposition follows. O

6 Intersecting Schubert varieties

Given u,v € WF such that vV < u, we construct in this section a familly of
varieties containing both the Richardson variety X, NwyX, (up to translation)
and the variety 7. We prove (see Proposition 13) that Conjecture 4 holds for
Y, if and only if it holds for all these varieties. To end this section, we show
that Conjecture 4 is equivalent to a formula using the Kostant harmonic forms
that looks like a Fubini formula.

6.1 Products on H*(G/P,C) and Bruhat orders
The Bruhat order on W is defined by

u<v <= X, CX,.

This order is generated by u < v if [(v) = I(u) 4+ 1 and v = s,u for some positive
root a. The weak Bruhat order on W7 is generated by the relation u < v if
I(v) =1l(u) +1 and v = s,u for some simple root . The relation between these
two orders is

u<v =u <. (83)

A useful characterization of the weak Bruhat order is given by the following
result (see [Bou68]).

Lemma 23 Let u and v in WP. Then u < v if and only if ®(u) is contained
in ®(v).

The following relation between the cup product and the Bruhat order is well
known
0u.0, 20 = vY <.

We have the following relation between the Belkale-Kumar product and the
weak Bruhat order.

Lemma 24 Let v and v in W, If 0,000, # 0 then vV < u.
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Proof. By assumption, there exists w € W such that (u,v,w) is Levi-movable
and I(u) + I(v) + l(w) = l(wow?'). Hence, for (I1, ls, [3) in a nonempty open
subset of L3:

LT, NiT, NIsT, = {0}.

In particular, [y T, + 2T, = Tp,;pG/P. Since AL.(B,wf Br) is open in L2,
there exist [ € L, by,by € By, such that [b;T, + lw(l)DbgTU = Tp/pG/P. But T},
and T, are Bp-stable and Tp,pG/P is L-stable, hence

T, +w{T, =TppG/P.

It follows that ®(u) U wl®(v) = ®(G/P). But ®(vY) = ®(G/P) — wl ®(v).
Hence ®(vY) C ®(u) and vV < u. O

Remark. The converse of the implication of Lemma 24 does not hold. Indeed
consider SL3(C) with its usual maximal torus and Borel subgroup B. Denote
the two simple reflections of W by s; and s3. Then o4,4,000s,5, = 0 while
(8251)\/ = S9 < S182.

6.2 Like Richardson’s varieties

Let u,v € WF. The Richardson variety X? is defined by
X, =X, NwoX,.

It is well known that X is irreducible, normal and satisfies [X!] = 0,.0,. In
particular, X? is empty if and only if vV < .

Assume now that vV < u. Fix y € W such that vV <y < u. Consider the
intersection

I’(y) =y ' X, Nwlv1.X,. (84)

The first example I2(vY) = (v¥)~1 X7 is just a translated Richardson variety.

By the relation (83), the point yP/P belongs to X,. It follows that P/P
belongs to y~'X,. Since vP/P belongs to X,, P/P belongs to wtv™1t.X,. Tt
follows that

P/P e I(y). (85)

The following lemma shows that the variety I!(y) contains a translated
Richardson variety.

Lemma 25 Let u, v, and y in WF such that v¥ <y < u. Then I}jv (y) is
contained in IY(y).

Proof. It remains to prove that y’lXuﬂwéD(yV)’l.va is contained in 5~ X, N
whv™1.X,. It is sufficient to prove that (y¥)~'.X,v is contained in v='.X,.
But (yV)"1.X,v = ((y¥)"'ByY).P/P and v~ '.X,, = (v—1Bv).P/P. Hence it is
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sufficient to prove that ®(g/p, T)N(y") 1@ is contained in ®(g/p, T)Nv~1dT.
But vV < y and hence y¥ < v. Lemma 23 allows to conclude. O

The fact that X, and X, are B-stable implies that the group H!(y) :=
y 1By N wlv 1 Bvwl acts on I¥(y). Set y' = y(v¥)~! in such a way that
y = y'vY. Note that ywl v~ = y'wy and that
Hi(y) = ")y !By n B~ . (86)
The group HY(y) is a connected subgroup of G, containing T' and acting on
I¥(y). Consider now the group U(y') =y~ Uy’ NU".
Let G/P = B~ P/P denote the open T-stable affine cell containing P/P.

Set IV (y) = G/P N I%(y); it is an open T-stable affine neighborhood of P/P in
I?(y). The following statement describes the geometry of this neighborhood.

Theorem 6 Let u, v, and y in W' such that vV <y < u. Then the following
morphism

VoUWl ) — L)
(u, ) — (vY) " tuwY.x

s an isomorphism.

Proof. The weights of T acting on the Lie algebra of the group U(y) = U~ N
y~ Uy are ®(y) = @~ Ny~ 1d*+. The weights of T acting on the tangent space

at the point P/P of the variety w{ (y")~1X,v are ®(g/p, T)Ny 1®~. But G/P
is isomorphic as a T-variety to the affine space g/p. It follows that the map

Uy) x [wh (4)' X, NG/P] — GJP (87)
(u, x) —  ux

is an isomorphism. The variety y !X, is stable by y~!By and so by U(y). It
follows that the map

Uly) x [wf )" ' X,»NnG/Pny~'X,] — G/Pny'X,
(u7x) — uzx

is an isomorphism.
Since vV <y and y = y'vY, the set ®(y) is the disjoint union of ®(v¥) and
(vY).®(y') (see for example [Bou02|). Then the map
Uly)xU@") — Uly)

(', ) — (V)" luvVa
is an isomorphism. Note that in the above expression we have fixed represen-
tative (still denoted by v“) of vV in the normalizer of the torus 7. Composing
these isomorphisms gives the following one:

UW) x UWY) x I (5) — G/Pny~'X,
(v, u, x) — (vY) vV,
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Since ®(y') is contained in (v¥)~1®~, and wlv™1X, = ((vV)"1B-vY).P/P,
the variety w v~ X, is stable under the action of U(y’). Hence

Uly') x [(U@Y)- 14 (y) Nwiv' X, | — I3 (y)

(U@") - 18 () nwbv X, = 1% (y).

o]
Let u € U(v") and z € I¥ (y) such that uz belongs to wlv=1X,,. It is sufficient
to prove that v = e. Replacing y¥ by v in the morphism (87), we get an
isomorphism

0 : UWY)x[wtviX,nG/P] — G/P
(u',2") —  u'a.

One can easily check that x belongs to w{v='X, N G/P and that ©(u,z)
O(e,ux). Now, the injectivity of © implies that u = e.

o

An important consequence of Theorem 6 for our purpose is the following
statement.

Corollary 2 The variety I (y) is normal at the point P/P. In particular, there
exists an unique irreducible component X (y) of I (y) which contains P/P.

Proof. The corollary follows from the theorem and the fact that the Richardson
varieties are irreducible and normal (see [KWY13] for a short proof). O

If y = vV then Theorem 6 is trivial. In the opposite situation when y = u it
implies the following result.

Corollary 3 Let u and v in WP such that vV < wu. The orbit HY(u).P/P is
open in IY(u). In other words, ¥%(u) is the closure of HY (u).P/P.

Proof. If y = u then the translated Richardson variety I¥ (y) = I* (u) is
reduced to the point P/P. The corollary follows immediately. O

6.3 A conjecture

Here comes our main conjecture.
Conjecture 4 Let u,v € WP such that vV <u. Then

[Zh(W]o, = 00y
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Some observations on this conjecture are collected in the following proposi-
tions.

Proposition 12 Ezpand [Zf(u)le, and 0u®Gooy in the Schubert basis:
[0 (W)]oo = X wewr di,oe?, and
7000050 =Y ewr ClnTw-

Then, for any w € WF,

(i) & = diy;

(ii) ¢, #0 <— d¥, #0.

Proof. Write [E7(u)] = Y cwr €iy0w and 0y.04 = > cyyp Cioy O in ordinary
cohomology. Since X! (u) is an irreducible component of the intersection IY(u)
and that this intersection is proper along this component, the inequality
Cuo 2 Caty (88)
holds for any w € W¥. Consider now a coefficient d¥, for some fixed w € WP If
dy, = 0 then the first assertion of the proposition is obvious. Assume d;;, # 0.
By Proposition 11, d¥, = e¥ . Comparing the inequality (88) and the first
assertion, one observes that it is sufficient to prove that ¢, = ci,; that is that
El'ljl:)?) # 0'
Since d¥, # 0, Proposition 11 implies that p(X,,) = p(X%(u)). Since P/P

belongs to the open HY(u)-orbit in X% (u) and is X (Z)-regular. In particular

p(Zh(w) = Y dim[(Tp,pS5(u)) )y,
v€EX(2)

where (Tp,pX},(u)) is the weight space of weight ~y of the Z-module Tp, pX} (u).
But Tp/pXy, (u) is the transverse intersection of Tp/pu_lXu and Tp/pw(])Dv_le.
It follows that p(X%(u)) = p(u=1X,) + p(wfv=1X,) = p(Xy,) + p(X,). Finally
p(Xyw) = p(Xy) + p(X,) and Proposition 11 shows that ¢, = ¢¥,.

Assuming that di, # 0, the first assertion implies that ¢, # 0. Assume
conversely that é¥, # 0 in other words that (u,v,w") is Levi-movable. Arguing
like in the proof of Lemma 24, one can check that there exists [ € L such that
u X, whv1X, and I(w") !X, intersect transversally at P/P. It follows
immediately that 32 (u) and [(w") ™! X,,v intersect transversally at P/P. Hence
e, # 0.

It remains to prove that el, = d¥,. The condition ¢, # 0 in the X (Z)-
graded algebra GrH"(G/P,C) implies that p(X,) = p(X.) + p(X,). But
p(Xu) + p(Xy) = p(Z%(u)). Proposition 11 shows that e, = d¥, . O

Proposition 13 Let u,v € W such that vV < u.
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(i) Conjecture 4 holds if X% (u) has dimension 0, 1 or 2.

(ii) Conjecture 4 holds if and only if for any y € W such that vV <y <u we
have [EZ(y)]Qo = 0yOp0y.-

Proof. If XY (u) has dimension 0 then u = vV. In particular [X%(y)]e, = [pt] =
[ NONIE

If ¥?(u) has dimension 1 then u = s,v", for some simple root . Moreover,
I(u) = I(vV)+1. This implies that X, is stable by the action of P, (the minimal
parabolic subgroup associated to «). In particular s, X, = X,. It follows that
ulX, = u s, Xy = (vY)71X,. In particular I?(u) = I%(vY) is a translated
Richardson variety and is irreducible. Moreover, oy.0, = [I2(u)] = [2%(u)].
Proposition 11 implies that o,®g0, = [Z2(u)]e,-

Assume now that u = s,sgv”, for some simple roots « and / such that
I(u) = 1(vY) + 2. Then (note that s, X, = X,)

I'(w) = wlX,NnuwlvlX,
= (vv)il(sﬁsaXu m'1110-}(1;)
= (vY) 1sp(saXu NwossXy),

where * = —wp. But the condition v¥ < sgv¥ implies that sg«v < v (see for
example Lemma 23). Then sg-X, = X, and I’(u) is obtained by translation
from the Richardson variety s, X, Nwosg«X,. The first assertion of the propo-
sition follows.

Let o be a simple root such that y < soy < u. Set f = —y~'a and set
Us : C — G, the associated additive one-parameter subgroup. Consider the
flat limit lim;— oo Ug(t)X%(y). Since Ug(t)y~'B/B tends to y~'s,B/B when
t goes to infinity, limy_ Up(t)y ™' X, = y s, Xy. Since vV <y < sy, B €
D(sqy) — ®(vY) and wfB € ®(v). In particular, wlv=1X, is Usg-stable. But
¥?(s4y) is an irreducible component of the intersection y~1s, X, Nwfv=1X, ;
and, this intersection is transverse along this component. It follows that X% (s,y)
is an irreducible component of lim;_,., Ug(t)X? (y). Writing

X (y)] = Z dyyow and  [¥(say)] = Z Ay 0w,
weWPF weWr

we deduce that
! <d, NYweWw?r. (89)

Write now
EL@V)] = > dwow and [Sh(u)]= D ewou.
weWr weW?r
Since 3Y(vY) is a translated of the Richardson variety X, NwoX,,

Oy-Op = g dwOw-

weWP
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By an immediate induction, we deduce from (89) that

ew <d,<d, NYweW?r.

Conjecture (4) holds for y = u if and only if for any w € W such that (u,v,w)
is Levi-movable e,, = d,,. Then, d/, = d,, for any such w € W¥ and [X%(y)]e, =
Uu®00v~ D
6.4 Interpretation in terms of harmonic forms

Kostant’s harmonic forms allow to formulate Conjecture 4 as an identity of
integrals.

Proposition 14 Let u and v in W such that v¥ < u. Then 0,000, =

[XV(u)]e, if and only if for any w in WF such that (u,v,w) is Levi-movable,
we have

/ wuv./ wvv./ WV :/ WyV N\ Wyv A WV .
(u¥)~1X,v (vV) 71X v = (u) (Pv)~

Proof. For any w € W, consider the Kostant’s harmonic form w, and the
nonzero complex number A, (see Theorem 5) such that

(W] = Awoy- (90)

Then

Aw = / Wy - (91)
w1 X,

By Propositions 11 and 12, Conjecture 4 is equivalent to the fact that for any
w € WP such that (u,v,w) is Levi-movable, we have

OO0y = [ (1)].0. (92)
But on one hand
1 fw_lX(w) Wy A Wyv
Ou-Op.Ow = m[wuv A wyv].oy = S . (93)
And on the other hand
fE“ u) WwY
(S ()]0 = =, (94)

In particular the equality (92) is equivalent to

)\w\/./ Wyv N\ Wyv = /\uv.Avv./ WV s (95)
w1 X, 2v (u)
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which is, by (91), equivalent to

/\wv./ WV N\ Wyv =/ o.)uv./ wvv./ WV - (96)
w1l Xy, (u¥)"1X,v (vV) "1 X,v 4 (u)

We claim that

)\wv./ WyV N\ Wyv = / WyV N\ Wyv A WepV . (97)
woix (P

w

Let d be the positive integer such that o,.0,.0,, = d[pt]. We have
d*/ Wyv A Wyv A Wyyv
o A e Ay
Since 0,,.0, = do,v, we also have

WV N WyV
d— / Way Aty
w—lX(w) )\uv)\vv

Claim (97) is obtained by identifying these two expressions of d.
The proposition follows now from the equations (97) and (96). O

Remark. Observe that (P*)~ is isomorphic to the product of the three T-
stable affine neighborhoods of P/P in (u¥)"!X,v, (v¥)71X,v and XY (u). With
this observation the equality of Proposition 14 looks like a Fubini formula.

7 The case of the complete flag varieties

Given u in W, set ®(u)¢ := &~ — P(u). Let u,v, and w in W. For the complete
flag variety G/B the Levi-movability is easy to understand. Indeed T, T,
and Ty, are L = T-stable. In particular, (o,,0,,04) is Levi-movable if and
only if the natural map Ts,5(G/B) — TB/BJS“G/B) @ TB/BQE“G/B) @ TB/E;Ef/B)
is an isomorphism. This is equivalent to the fact that &~ is the disjoint union
of ®(u)¢, ®(v)¢, and ®(w)¢. Since P(w)¢ = P(w"), one gets the following
equivalence

Cy 70 <= P(w)° = O(u)° U P(v)°.
Conjecture 4 generalizes a classical one on G/B.

Proposition 15 Let G be a semisimple group and consider the Belkale-Kumar
cohomology of G/B. Let u and v belong to W. Then 0,000, = [E2(u)]e, if
and only if 0,090, is either equal to zero or to o, for some w € W.

Proof. Assume that o,0p0, = [X2(u)] e, -

Case 1. Suppose there exists w € W such that ®(w) = ®(HY(u)).

Then (see for example Lemma 11) XU (u) = w™!X,,; hence [X%(u)], = 0w- In
particular o,®g0, = 04 .
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Case 2. Suppose there exists no w € W such that ®(w) = ®(HY(u)).

Since ®(H!(u)) = ®(u) N ®(v), there is no w € W such that ®(w)® = & (u)° U
®(v)¢. Hence there is no w € W such that (o, 0y, 0wv) is Levi-movable. Then
0.®00, = 0. Moreover Proposition 10 implies that Gr?(¢/P)=PEu(W) g*(q/p, C) =
{0}. In particular, [X%(u)]e, = 0.

Assume now that o,®g0, = o, for some w € W.
Since ®(w)¢ = ®(u)¢ U ®(v)¢, Lemma 11 shows that w~1X,, = 32(u). Hence
0u®e0y = [ZZ(U)]QO

Assume finally that o,®qg0, = 0.
It remains to prove that [XY(u)]lg, = 0. Since ®(H!(u)) = ®(u) N D(v),
[%2 (u)] o, belongs to GrPX«)+P(X) H*(G/B, C). If there is no w in W such that
p(Xw) = p(Xu)+p(X,) then Proposition 10 shows that Gr?X«)**(X) H*(G/B, C) =
{0}. In particular [E?(u)]e, = 0. Assume now that there exists w in W such
that p(Xy) = p(Xu) + p(Xy). Then [X?] = doy, + --- for some integer d. If
d = 0 there is nothing to prove. If d # 0 then ¢,.0, = eo,,+- - - for some integer
e > d. The numerical criterium [BK06, Theorem 15] shows that 0,90, = €0y.
This contradicts the assumption o,®q0, = 0. O

Proposition 15 shows that, for G/B, Conjecture 4 is equivalent to the fol-
lowing one.

Conjecture 5 Let u,v, and w in W such that ®(w)® = ®(u)° U &(v)°. Then
0u®00, = 0y in H(G/B,C).

Conjecture 5 was stated by Dimitrov and Roth in [DR09]. If G = SL,,(C)
then Conjecture 5 was proved by Richmond in [Ric09]. If G = Sp,,, (C) then
Conjecture 5 was proved independently in [Ric12] and [Res11b]|. Dimitrov and
Roth have a proof for each simple classical GG, but it is not published. Here we
include a proof for the group SOs2,4+1(C).

Proposition 16 Conjecture 5 holds for the group SOsy,41(C).

Proof. Let V be a (2n + 1)-dimensional complex vector space and let B =
(z1,...,Tan+1) be a basis of V*. Let G be the special orthogonal group associ-
ated to the quadratic form Q = miﬂ + >0 | Ti%ant2—i. Consider the maximal
torus T = {diag(t1,...,tn, 1,t;",...,t7") : t; € C*} of G. Let B be the Borel
subgroup of G consisting of upper triangular matrices in the dual base of B.
Consider W, ®, &1 associated to T C B C G.

Let u, v, and w in W such that ¢,000,000, = d[pt] for some positive
integer d. It remains to prove that d = 1. The Levi-movability implies that
O™ = P(u)UP(v)° U P(w)e.

Consider the linear group G = GL(V). Let T denote the subgroup of G
consisting of diagonal matrices and let B denote the subgroup of G consisting
of upper triangular matrices in G. Consider W, ®, T associated to 7' C B C G.
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Since T is a regular torus in G, the group W identifies with a subgroup of w.
In particular, u,v, and w belong to W. One can easily check that the similar
property of &~ implies that &~ = ®(u)° LU ®(v)° U ®(w)°. Consider now the
three Schubert varieties Xu, X,,, and X,, in G’/B The fact that Conjecture 5
holds for G implies that

wX, Nnv X, nw X, = {B/B}. (98)

Consider now the inclusion G/B c G/B. Then X, is contained in X, (and
similar inclusions hold for v and w). In particular, the condition (98) implies
that

v X, Nv X, Nnw X, = {B/B}. (99)

Moreover, the condition on ®~ implies that the intersection in (99) is transverse.
It follows that d = 1. O

Proposition 17 Conjecture 5 holds for the groups of type Fy and FEg.

Proof. For w € W set
pwy= ] (o),

acdtNuwdt

where (-, -) is a W-invariant scalar product and p is the half sum of the positive
roots. Let w,v, and w in W such that ®(w)® = ®(u)° U ®(v)¢. By [BKO6,
Corollary 44|,

p(w).p(v)

p(w)

in H*(G/B,C). To prove the proposition, it is sufficient to check that p(w) =
p(u).p(v). This is checked by a Sage program (see [Resl3]). For example, in
type Fy, if

0u©p0y = Ow

uY = 53598359, U = 51595354525351525354 and
W™ = 51528535452535152535453525352

then

3
p(u) =5 p(v) = 113400 p(w) = 170100.

And, in type Eg, if

U = S655545352545586S5583 U — 545359254555453525459
W = 5655545352545556555453525455545352545352

then
p(u) = 20160 p(v) = 4320 p(w) = 87091200.
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