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Abstract. In 2006 Belkale and Kumar defined a new product on the cohomol-
ogy of flag varieties and used this new product to give an improved solution to
the eigencone problem for complex reductive groups. In this paper, we give a
generalization of the Belkale-Kumar product to the branching Schubert calcu-
lus setting. The study of branching Schubert calculus attempts to understand
the induced map on cohomology of an equivariant embedding of flag varieties.
The main application of our work is a compact formulation of the solution to
the branching eigencone problem.

1. Introduction

LetG be a connected complex reductive group and let G̃ be a connected reductive
subgroup of G. Let i : G̃ ↪→ G denote the embedding of groups. For any one
parameter subgroup λ : C∗ → G̃, we have the corresponding parabolic subgroup

P̃ (λ) := {g ∈ G̃ | lim
t→0

λ(t)gλ(t)−1 exists in G̃}.

Similarly, we define P (λ) := P (i ◦ λ) ⊆ G. Let WP ⊆ W denote the Weyl groups
of P (λ) and G respectively. For any w ∈ WP � W/WP , let Λw ⊆ G/P (λ) denote
the corresponding Schubert variety and let [Λw] ∈ H∗(G/P (λ)) = H∗(G/P (λ),Z)

denote the Schubert class of Λw. We also have Schubert varieties Λw̃ ⊆ G̃/P̃ (λ)

and Schubert classes [Λw̃] ∈ H∗(G̃/P̃ (λ)) for any w̃ ∈ W̃P � W̃/W̃P . Consider the

G̃-equivariant map of flag varieties

φλ : G̃/P̃ (λ) ↪→ G/P (λ).

The term “branching Schubert calculus” means to compute the comorphism

φ∗
λ([Λw]) =

∑

w̃∈W̃P

dw̃w[Λw̃]
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in terms of the basis of Schubert classes in H∗(G̃/P̃ (λ)). Observe that if G/P (λ) =

G̃/P̃ (λ)× G̃/P̃ (λ) and φλ is the diagonal embedding, then

φ∗
λ([Λũ × Λṽ]) = [Λũ] · [Λṽ].

In [3], Belkale and Kumar define the ring (H∗(G/P (λ)),�0). Additively, this
ring is the same as H∗(G/P (λ)). In Section 3, we construct a map

φ�
λ : H∗(G/P (λ)) → H∗(G̃/P̃ (λ))

from φ∗
λ. This map is a generalization of the Belkale-Kumar product in the sense

that if we consider the diagonal embedding where G/P (λ) = G̃/P̃ (λ) × G̃/P̃ (λ),
we have that

φ�
λ ([Λũ × Λṽ]) = [Λũ]�0 [Λṽ].

In general, cohomology equipped with �0 is not functorial. Our main result is
on the functoriality of φ�

λ with respect to the Belkale-Kumar product �0 and its

relationship with the natural map φ∗
λ on cohomology. For any (w, w̃) ∈ WP × W̃P ,

define the structure constants cw̃w, d
w̃
w ∈ Z≥0 by the comorphisms

φ�
λ ([Λw]) =

∑

w̃∈W̃P

cw̃w[Λw̃]

and

φ∗
λ([Λw]) =

∑

w̃∈W̃P

dw̃w[Λw̃].

Theorem 1.1. The map φ�
λ is a graded ring homomorphism from (H∗(G/P (λ)),�0)

on (H∗(G̃/P̃ (λ)),�0).
Moreover, if cw̃w �= 0, then cw̃w = dw̃w.

The proof of the above theorem requires a modification on the construction of
the Belkale-Kumar product in [3]. In [10], the first author gives a minimal list of

inequalities which characterize the eigencone of the pair G̃ ⊆ G. In Section 5, we
use the comorphism φ�

λ to give a more elegant formulation of this statement.

2. Preliminaries and Levi-movability

Fix the maximal tori H̃ ⊆ H of G̃ and G respectively such that Im(λ) ⊆ H̃ .

Furthermore, fix the Borel subgroups B̃ and B of G̃ and G respectively such that
H̃ ⊆ B̃ ⊆ P̃ (λ), H ⊆ B ⊆ P (λ) and B̃ = G̃∩B. Observe that such Borel subgroups
always exist by choosing an appropriate generic rational one parameter subgroup
λ′ close to λ and setting B̃ = P̃ (λ′) (resp. B = P (λ′)). Let WP ⊆ W denote the
Weyl groups of P (λ) and G respectively, and let WP denote the set of minimal
length representatives of W/WP . For any w ∈ WP , we define the shifted Schubert
variety

Λw := w−1BwP (λ)/P (λ).

The cohomology classes {[Λw]}w∈WP form an additive basis for H∗(G/P (λ)). For

any w̃ ∈ W̃P � W̃/W̃P , we will denote the corresponding Schubert variety in

G̃/P̃ (λ) by Λw̃.
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2.1. A generalization of Levi-movability. Our discussion begins with a gener-
alized notion of Levi-movable defined in [3]. Define the Levi subgroup L(λ) ⊆ P (λ)
to be the centralizer of Im(λ) in G. For any w ∈ WP , consider the comorphism

φ∗
λ([Λw]) =

∑

w̃∈W̃P

dw̃w[Λw̃],

expanded in the Schubert basis. Let w0, wP denote the longest elements in W
and WP respectively (we also have longest elements w̃0 and w̃P in W̃ and W̃P

accordingly), and for any w ∈ WP (resp. w̃ ∈ W̃P ), let w∨ := w0wwP ∈ WP (resp.

w̃∨ ∈ W̃P ). By Kleiman’s tranversality [9], if the coefficient dw̃w �= 0, then it can be
realized as the cardinality of the intersection of translates

|φ−1
λ (gΛw) ∩ g̃Λw̃∨ | = dw̃w

in G̃/P̃ (λ) for generic (g, g̃) ∈ G× G̃. The following lemma is proved in [3]:

Lemma 2.1. If eP ∈ gΛw, then there exists a p ∈ P (λ) such that gΛw = pΛw.

Let T and T̃ denote the tangent spaces of G/P (λ) and G̃/P̃ (λ) at the identity,

and for any (p, p̃) ∈ P (λ)× P̃ (λ) and (w, w̃) ∈ WP × W̃P let pTw and p̃T̃w̃ denote

the tangent spaces of pΛw and p̃Λ̃w̃ at the identity. Assume that

codim(Λw;G/P (λ)) = codim(Λ̃w̃; G̃/P̃ (λ)).

Otherwise, dw̃w = 0. By Lemma 2.1, the coefficient dw̃w �= 0 if and only if the
intersection

φ−1
λ (pΛw) ∩ p̃Λw̃∨

is transverse at the point eP̃ (λ) ∈ G̃/P̃ (λ) for generic (p, p̃) ∈ P (λ)× P̃ (λ). This is
equivalent to having an isomorphism on the map between tangent spaces

(2.1) T̃ → T

pTw
⊕ T̃

p̃T̃w̃∨

given by v �→ ((φλ)∗(v), v) for generic (p, p̃) ∈ P (λ)×P̃ (λ). The following definition
is a generalization of Levi-movable and is given in [13].

Definition 2.2. We say (w, w̃) ∈ WP is Levi-movable with respect to φλ if for

generic (l, l̃) ∈ L(λ) × L̃(λ) the following natural map on tangent spaces is an
isomorphism:

T̃ → T

lTw
⊕ T̃

l̃T̃w̃

.

Observe that if (w, w̃∨) ∈ WP is Levi-movable with respect to φλ, then dw̃w �= 0.
The converse is not true in general.

2.2. The Belkale-Kumar numerical criterion. We now want to explain how
the Belkale-Kumar numerical criterion can be generalized to our setting. We first
establish some notation for root systems associated to Lie algebras. Denote the
Lie algebras of groups G,H,B, P (λ), L(λ) by the corresponding German letters

g, h, b, p, lP . Similarly we have Lie algebras g̃, h̃, b̃, p̃, l̃P for subgroups of G̃.
Let R ⊆ h∗ be the set of roots and let R± ⊆ R denote the set of positive roots

(negative roots) with respect to the Borel subgroup B. Let Δ = {α1, . . . , αn}
denote the simple roots in R. Let RP denote the set of roots corresponding to lP

and let R±
P denote the set of positive roots (negative roots) with respect to the
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Borel subgroup BP := B ∩ L(λ) of L(λ). Let Δ(P ) be the set of simple roots that

generate R+
P . Similarly, we have the roots R̃, R̃±, R̃P , R̃

±
P , Δ̃, Δ̃(P ) ⊆ h̃∗.

The following character is defined in [3] and will play an important role in con-
structing φ�

λ . For w ∈ WP , define χw ∈ h∗ by

χw :=
∑

β∈(R+\R+
P )∩w−1R+

β.

Similarly, for any w̃ ∈ W̃P we can define χ̃w̃ ∈ h̃∗. Define

λ̇ :=
d

dt
λ(1) ∈ h̃.

Observe that α(λ̇) ∈ Z for any α ∈ R̃ since λ is a one parameter subgroup of H̃ .

Moreover, for any R̃+ we have that α(λ̇) ≥ 0 with equality only when α ∈ R̃+
P . This

implies that χ̃w̃(λ̇) is integral and nonnegative. Likewise, we have that i∗(χw)(λ̇)
is also integral and nonnegative since i ◦λ is a one parameter subgroup of H. Here
we are abusing notation by letting i : h̃ ↪→ h denote the induced map on Cartan
subalgebras. These characters are connected to the tangent spaces given in (2.1) in
the sense that h acts on the complex line det (T/Tw) by multiplication by χw.

Proposition 2.3. Let (w, w̃∨) ∈ WP × W̃P such that dw̃w �= 0. Then

(i∗(χw)− χ̃w̃)(λ̇) ≤ 0.

Moreover, (w, w̃∨) is Levi-movable with respect to φλ if and only if (i∗(χw) −
χ̃w̃)(λ̇) = 0.

Proof. The proposition is proved in the second author’s thesis [14] and for the
diagonal embedding by Belkale and Kumar in [3, Theorem 15, Theorem 29]. We
give a sketch of the proof here.

For any w ∈ WP , let Tw := P (λ) ×BL
Tw denote the corresponding P (λ)-

equivariant vector bundle on P (λ)/BL. Observe that Tw is a BL-module since the
action of BL on Λw fixes the identity. If Tw = T , then we simply denote Tw by
T . For any w̃ ∈ W̃P , we can define analogous P̃ (λ)-equivariant vector bundles T̃w̃
on P̃ (λ)/B̃L. The map on tangent spaces given in (2.1) induces a P̃ (λ)-equivariant
map on vector bundles

Θ : T̃ ′ ⊕ T̃ → T /Tw ⊕ T̃ /T̃w̃∨

on P (λ)/BL × P̃ (λ)/B̃L, where P̃ (λ) acts diagonally on T̃ ′ := P (λ)/BL × T̃ .

If dw̃w �= 0, then the map (2.1) is an isomorphism for generic (p, p̃) ∈ P (λ)× P̃ (λ).
Hence the induced determinant map det(Θ) on top exterior powers is nonzero. The

map det(Θ) can be viewed as a nonzero P̃ (λ)-invariant section of the line bundle

L := (det T̃ ′ � det T̃ )∗ ⊗ (det T /Tw � det T̃ /T̃w̃∨)

on P (λ)/BL × P̃ (λ)/B̃L. Hence the points in P (λ)/BL × P̃ (λ)/B̃L are generically

semi-stable with respect to action of P̃ (λ) on L. The Hilbert-Mumford criterion
for semi-stability implies that

(i∗(χw) + χ̃w̃∨ − χ̃1)(λ̇) = (i∗(χw)− χ̃w̃)(λ̇) ≤ 0.

If (w, w̃∨) is Levi-movable with respect to φλ, then the restriction of det(Θ)

to L(λ)/BL × L̃(λ)/B̃L is also nonzero. Since λ is central acting diagonally on
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L(λ)× L̃(λ), we have that λ acts trivially on L restricted to L(λ)/BL × L̃(λ)/B̃L.
Hence

(2.2) (i∗(χw)− χ̃w̃)(λ̇) = 0.

Conversely, if (2.2) is satisfied and dw̃w �= 0, then det(Θ) restricted to L(λ)/BL ×
L̃(λ)/B̃L is nonzero. This implies that the map (2.1) is an isomorphism for generic

(l, l̃) ∈ L(λ)× L̃(λ) and hence (w, w̃∨) is Levi-movable. �

2.3. Revisiting the numerical criterion. For the ordinary comorphism φ∗
λ,

there is an obvious numerical condition for a structure coefficient to be nonzero:
namely, the dimension (or degree) condition. We explain how Levi-movability can
be checked by a multidimension condition.

For any j ∈ Z, we set T j := {ξ ∈ T : λ(t)ξ = tjξ} and T j
w = T j ∩Tw. Note that

T j = {0} for j ≥ 0 and for almost all j < 0. Since the translated Schubert cells are
stable by the action of λ, we have

T =
⊕

j∈Z<0

T j and Tw =
⊕

j∈Z<0

T j
w.

In the same way we define T̃ j and T̃ j
w̃. Now, for all j ∈ Z<0, we set dj = dimT j ,

δjw = dj − dimT j
w, d̃

j = dim T̃ j and δjw̃ = d̃j − dim T̃ j
w̃. We now form the following

vector dimension and codimension:

Dim(T̃ ) :=

(
d̃j
)

j∈Z<0

, CoDim(T̃w̃) :=

(
δjw̃

)

j∈Z<0

and CoDim(Tw) :=

(
δjw

)

j∈Z<0

.

Proposition 2.4. Let (w, w̃) ∈ WP × W̃P such that dw̃
∨

w �= 0. Then the following
are equivalent:

(1) (w, w̃) is Levi-movable with respect to φλ;

(2) Dim(T̃ ) = CoDim(T̃w̃) + CoDim(Tw).

Proof. Let us first assume that (w, w̃) is Levi-movable with respect to φλ. Let

(l, l̃) ∈ L(λ)× L̃(λ) be such that the natural map

T̃ → T

lTw
⊕ T̃

l̃T̃w̃

is an isomorphism. Since this linear map is λ-equivariant, it induces an isomorphism
between each λ-eigenspace. Then, the equality of the vector dimensions in the
proposition follows from the fact that λ commutes with l and l̃.

Conversely, let us assume that Dim(T̃ ) = CoDim(T̃w̃) +CoDim(Tw). One easily

checks that (i∗(χw) + χ̃w̃ − χ̃1)(λ̇) =
∑

j j(d̃
j − (δjw̃ + δjw)) = 0. Now, the result

follows from Proposition 2.3. �

Remark 2.5. Proposition 2.4 can be applied with any one parameter subgroup
giving P̃ and P . To obtain optimal decompositions of T̃ and T one should choose
a generic one parameter subgroup giving P̃ and P .

2.4. The Azad-Barry-Seitz theorem. In this subsection, we explain how the
Azad-Barry-Seitz theorem (see [1]) gives another interpretation of the T i’s in the
case of G ⊂ G×G (we omit the tilde above G for simplicity).

We are interested in the action of L(λ) on T = g/p. For any α ∈ R, we denote
by gα the eigenspace in g of weight α for H. Since T has no multiplicity for the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

840 NICOLAS RESSAYRE AND EDWARD RICHMOND

action of H, it has no multiplicity for the action of L(λ) and, hence, has a canonical
decomposition T =

⊕
j Vj as a sum of irreducible L(λ)-modules. Since H ⊂ L(λ),

each Vi is a sum of gα for some α ∈ R+\R+
P : the decomposition T =

⊕
j Vj

corresponds to a partition R+\R+
P =

⊔
j Rj .

Let β and β′ be two negative roots. We write

β =
∑

α∈Δ(P )

cαα+
∑

α∈Δ\Δ(P )

dαα(2.3)

with cα, dα ∈ Z≤0. We also write β′ in the same way with some c′α and d′α. We
write β ≡ β′ if and only if

∑
α∈Δ\Δ(P ) dαα =

∑
α∈Δ\Δ(P ) d

′
αα. The relation ≡ is

obviously an equivalence relation. Let S denote the set of equivalence classes in
R+\R+

P for ≡. We can now rephrase the main result of [1]:

Theorem 2.6 (Azad-Barry-Seitz). For any s ∈ S, Vs :=
⊕

α∈s gα is an irreducible
L(λ)-module. In particular,

⊔
j Rj is the partition in equivalence classes for ≡.

An interesting consequence is the following corollary.

Corollary 2.7. For λ generic such that P = P (λ), the subspaces T i defined in
Section 2.3 are irreducible L(λ)-modules.

Proof. Consider the center Z of L(λ) and its neutral component Z◦. By the theo-
rem, it is sufficient to prove that β ≡ β′ if and only if 〈λ, β〉 = 〈λ, β′〉. There exists
an open subset of λ in Y (Z◦)⊗Q such that P = P (λ). So, for λ generic, we have
for all pairs (β, β′) ∈ R2,

〈λ, β〉 = 〈λ, β′〉 if and only if β|Z◦ = β′
|Z◦ .

Under the action of Z◦ we have a decomposition

g/p =
⊕

χ∈X(Z◦)

Vχ

as a sum of eigenspaces. Since Z◦ is central in L(λ), each Vχ is L(λ)-stable. Note
that Z◦ ⊂ Z ⊂ H, and more precisely that

Z =
⋂

α∈Δ(P )

Kerα.

It follows that the family (α|Z◦)α∈Δ\Δ(P ) is free. For β as in equation (2.3), we
have β|Z◦ =

∑
α∈Δ\Δ(P ) dαα|Z◦ . We obtain that

β ≡ β′ ⇐⇒ β|Z◦ = β′
|Z◦ .

�

3. The main result

In this section we define the map φ�
λ on cohomology and prove Theorem 1.1.

This construction is analogous to the construction of the Belkale-Kumar product
in [3, Section 6]. For any (u, v, w) ∈ (WP )3 define the usual structure coefficients
dwu,v by the usual cohomology product

[Λu] · [Λv] =
∑

w∈WP

dwu,v[Λw].
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Similarly, we have structure coefficients dw̃ũ,ṽ for H∗(G̃/P̃ (λ)). Let the symbol τ

denote an indeterminant and consider the Z-moduleH∗(G/P (λ))⊗ZZ[τ ].We define
a product structure by

[Λu]�• [Λv] :=
∑

w∈WP

(τ (χw−χu−χv)(i(λ̇))) dwu,v[Λw].

We extend this product Z[τ ]-linearly to all of H∗(G/P (λ))⊗Z Z[τ ]. We also define

�• on H∗(G̃/P̃ (λ))⊗ZZ[τ ] using the characters χ̃w̃ and replacing i(λ̇) by λ̇. By [3,
Proposition 17], this product structure is well defined, commutative and associative.
We remark that the product �• is very similar to the product � defined in [3] by
Belkale and Kumar. The main difference is that �• uses the single indeterminant
τ whereas � uses several indeterminants, one for each simple root in Δ\Δ(P ).

Lemma 3.1. The product [Λu] �• [Λv]
∣∣
τ=0

= [Λu] �0 [Λv], where �0 denotes the
Belkale-Kumar product.

Proof. By the definition of �0 found in [3, Section 6], it suffices to show that

α(i(λ̇)) > 0 for all α ∈ Δ\Δ(P ) and α(i(λ̇)) = 0 for all α ∈ Δ(P ). This is
immediate from the definition of P = P (λ). �

Recall that for any (w, w̃) ∈ WP × W̃P the structure coefficients dw̃w of the map
φ∗
λ are defined by expanding in the Schubert basis

φ∗
λ([Λw]) =

∑

w̃∈W̃P

dw̃w[Λw̃].

We define the Z[τ ]-linear map

φ•
λ : H∗(G/P (λ))⊗Z Z[τ ] → H∗(G̃/P̃ (λ))⊗Z Z[τ ]

by

φ•
λ([Λw]) :=

∑

w̃∈W̃P

(τ χ̃w̃(λ̇)−χw(i(λ̇))) dw̃w[Λw̃].

For the rest of this section, we will denote χw(i(λ̇)) simply by χw(λ̇) when
working with characters of h. By Proposition 2.3, φ•

λ is well defined since the value

of χ̃w̃(λ̇)− χw(λ̇) ≥ 0 and the integral for all dw̃w �= 0.

Proposition 3.2. The map φ•
λ is a ring homomorphism with respect to the product

�•.

Proof. Consider the following calculations:

φ•
λ([Λu]�• [Λv]) = φ•

λ

(
∑

w∈WP

(τ (χw−χu−χv)(λ̇)) dwu,v[Λw]

)

=
∑

w∈WP

(τ (χw−χu−χv)(λ̇)) dwu,vφ
•
λ([Λw])

=
∑

w∈WP

(τ (χw−χu−χv)(λ̇)) dwu,v
∑

w̃∈W̃P

(τ χ̃w̃(λ̇)−χw(λ̇)) dw̃w[Λw̃]

=
∑

(w,w̃)∈WP×W̃P

(τ χ̃w̃(λ̇)−(χu+χv)(λ̇)) dwu,vd
w̃
w[Λw̃]
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and

φ•
λ([Λu])�• φ

•
λ([Λv]) =

⎛

⎝
∑

ũ∈W̃P

(τ χ̃ũ(λ̇)−χu(λ̇)) dũu[Λũ]

⎞

⎠

�•

⎛

⎝
∑

ṽ∈W̃P

(τ χ̃ṽ(λ̇)−χv(λ̇)) dṽv[Λṽ]

⎞

⎠

=
∑

(ũ,ṽ)∈(W̃P )2

⎛

⎝(τ (χ̃ṽ+χ̃ũ)(λ̇)−(χv+χu)(λ̇)) dũud
ṽ
v

·
∑

w̃∈W̃P

(τ (χ̃w−χ̃u−χ̃v)(λ̇)) dw̃ũ,ṽ[Λw̃]

⎞

⎠

=
∑

(ũ,ṽ,w̃)∈(W̃P )3

(τ χ̃w̃(λ̇)−(χu+χv)(λ̇)) dũud
ṽ
vd

w̃
ũ,ṽ[Λw̃].

The proposition follows from the fact that φ∗
λ is a ring homomorphism. �

Definition of φ�
λ and proof of Theorem 1.1. We define the map

φ�
λ := φ•

λ|τ=0.

Clearly this gives a map

φ�
λ : H∗(G/P (λ)) → H∗(G̃/P̃ (λ)),

since the indeterminant vanishes in (H∗(G̃/P̃ (λ))⊗ZZ[τ ],�•). Define the structure
constants cw̃w by expanding with respect to the Schubert basis

φ�
λ ([Λw]) =

∑

w̃∈W̃P

cw̃w[Λw̃].

By the definition of φ•
λ, we have that cw̃w = dw̃w when χ̃w̃(λ̇) − χw(λ̇) = 0 and

cw̃w = 0 otherwise. Moreover, by Lemma 3.1 and Proposition 3.2, φ�
λ is a ring

homomorphism with respect to the Belkale-Kumar product �0 on cohomology. �
Observe that cw̃w �= 0 if and only if (w, w̃∨) is Levi-movable with respect to φλ.

Also if φλ is the diagonal embedding, we have that

φ�
λ ([Λũ × Λṽ]) = [Λũ]�0 [Λṽ].

The following lemma considers cominuscule flag varieties and is a generalization of
[3, Lemma 19].

Lemma 3.3. If G/P (λ) is cominuscule, then φ∗
λ and φ�

λ coincide.

Proof. Let w ∈ WP and w̃ ∈ W̃P . With notation in Theorem 1.1, it is sufficient
to prove that if dw̃w �= 0, then (w, w̃∨) is Levi-movable. Since dw̃w �= 0, there exists

(p, p̃) ∈ P (λ)× P̃ (λ) such that the natural map

T̃ → T

pTw
⊕ T̃

p̃T̃w̃∨

is an isomorphism. Multiplying (p, p̃) by (p̃, p̃−1), we may assume that p̃ = e. Let
us write p = lu, with l ∈ L(λ) and u in the unipotent radical U(λ) of P (λ). Since
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G/P (λ) is cominuscule, U(λ) acts trivialy on T and pTw = lTw. It follows that
(w, w̃∨) is Levi-movable. �

The next lemma relates the comorphism φ�
λ to recent formulas for decomposing

structure constants. The proof is an immediate consequence of [13, Theorems 1.6
and 1.8].

Lemma 3.4. Multiplicative formulas for decomposing structure constants found in
[12] and [13] apply to all structure constants associated to the comorphism φ�

λ .

4. Examples

Examples 4.1 and 4.2 require a basic observation on the map φ∗
λ restricted to

H2. We remark that this same technique is used by Berenstein and Sjamaar in
[4]. Let Ω(G) ⊆ h∗ denote the weight lattice of G. By [5, 8], we have that Ω(G) is
isomorphic to H2(G/B) by mapping μ �→ c1(Lμ), where c1(Lμ) is the first Chern
class of the line bundle Lμ with weight μ. To any simple root αk ∈ Δ we let
sk ∈ W denote the corresponding simple reflection and πk ∈ Ω(G) denote the
corresponding fundamental weight. Under the above isomorphism, we have that
πk �→ [Λs∨k

]. Consider the commutative diagram

(4.1) Ω(G)
i∗ ��

��

Ω(G̃)

��

H2(G/B)
φ2
λ �� H2(G̃/B̃)

where i∗ is the induced map from the inclusion i : h̃ ↪→ h. It is easy to see that
computing φ∗

λ([Λs∨k
]) is equivalent to computing i∗(πk).

4.1. Principal SL(C2) embeddings. Let G̃ = SL(C2) and G = SL(Vn), where

Vn is the irreducible representation of G̃ associated to the integral weight n ∈ Z+

that is of dimension n+1. We remark that the example of SL(C2) embeddings has
been studied in [4, Section 5.3]. Choose the one parameter subgroup

λ(t) := diag(t, t−1) ⊆ G̃.

With respect to the morphism i : G̃ → G, we have that

i ◦ λ(t) = diag(tn, tn−2, . . . , t2−n, t−n) ⊆ G.

Note that if n is even, i is not injective and one should replace SL(C2) by PSL(C2).

Here, P̃ (λ) and P (λ) are Borel subgroups, and hence G̃/P̃ (λ) is the complex pro-
jective line and G/P (λ) is the complete flag variety on Cn+1. To compute the
map

φ∗
λ : H∗(G/P (λ)) → H∗(G̃/P̃ (λ))

we only need to determine φ∗
λ restricted to H0 and H2, since φ∗

λ ≡ 0 on Hp for
p ≥ 3. We have that

H0(G/P (λ)) = Z[Λw0
] and H2(G/P (λ)) =

n⊕

k=1

Z[Λs∨k
],

where s1, . . . , sn denote the simple generators of W . Clearly

φ∗
λ([Λw0

]) = [Λw̃0
],
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and using (4.1), we have that

φ∗
λ([Λs∨k

]) = mk[Λ1̃],

where

mk :=
k∑

i=1

n− 2i.

Note that for any k, the value mk = mn+1−k and m1 = mn = n. We also remark
that the sum

∑n
k=1mk is equal to the Dynkin index of the representation Vn.

To compute φ�
λ we determine for which (w, w̃) ∈ {(w0, w̃0), (ws∨1

, 1), . . . , (ws∨n , 1)}
we have

i∗(χw)(λ̇) = χ̃w̃(λ̇).

Note that χw0
≡ 0 and χ̃w̃0

≡ 0 since R+ ∩ w0R
+ = R̃+ ∩ w̃0R̃

+ = ∅. Let

{x1, . . . , xn} ⊆ h and {x̃1} ⊆ h̃ denote the dual basis to the simple roots Δ and

Δ̃ respectively. For the pairs (ws∨k
, 1), we observe that i(λ̇) = 2

n∑

i=1

xi ∈ h and

λ̇ = 2x̃1 ∈ h̃. Thus,

i∗(χs∨k
)(λ̇) = 2αk

(
n∑

i=1

xi

)
= 2 and χ̃1(λ̇) = 2α̃1(x̃1) = 2

since R+ ∩ s∨kR
+ = {αk}. Hence we have φ�

λ = φ∗
λ. Note that G/P (λ) is not a

cominuscule flag variety in this case.

4.2. Tensor embedding. Fix an integer n > 0 and let G̃ = SL(Cn)×SL(Cn) and

G = SL(Cn ⊗Cn), with the embedding i : G̃ ↪→ G given by the natural action of G̃
on C

n ⊗C
n. Fix integers k, l < n and let k̄ := n− k and l̄ := n− l. Define the one

parameter subgroup

λ(t) := diag(tk̄, . . . , tk̄︸ ︷︷ ︸
k

, t−k, . . . , t−k

︸ ︷︷ ︸
k̄

)× diag(tl̄, . . . , tl̄︸ ︷︷ ︸
l

, t−l, . . . , t−l

︸ ︷︷ ︸
l̄

) ⊆ G̃.

Then

i ◦ λ(t) = diag(tk̄+l̄, . . . , tk̄+l̄

︸ ︷︷ ︸
kl

, tk̄−l, . . . , tk̄−l

︸ ︷︷ ︸
k̄l+kl̄

, t−(k+l), . . . , t−(k+l)

︸ ︷︷ ︸
k̄l̄

) ⊆ G.

Here we have that G̃/P̃ (λ) is the product of Grassmannians Gr(k,Cn)×Gr(l,Cn)
and G/P (λ) is the two-step flag variety F�(kl, n2− k̄l̄;Cn⊗Cn). In general the map
φ∗
λ is quite difficult to explicitly compute. We will compute φ∗

λ restricted to H2.
With respect to the Schubert basis, we have that

H2(G/P (λ)) = Z[Λs∨kl
]⊕ Z[Λs∨

n2−k̄l̄
] � Z

2,

where skl, sn2−k̄l̄ denote the simple reflections in WP and

H2(G̃/P̃ (λ)) = Z[Λw̃1
]⊕ Z[Λw̃2

] � Z
2,

where

Λw̃1
:= Λs̃∨k

×Gr(l,Cn) and Λw̃2
:= Gr(k,Cn)× Λs̃∨l

.

Using (4.1), we find that

φ∗
λ([Λs∨kl

]) = l[Λw̃∨
1
] + k[Λw̃∨

2
]
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and

φ∗
λ([Λs∨

n2−k̄l̄
]) = l̄[Λw̃∨

1
] + k̄[Λw̃∨

2
].

Let {x1, . . . , xn2−1} and {x̃1, . . . x̃n−1, x̃
′
1, . . . , x̃

′
n−1} denote the dual basis to Δ

and Δ̃ respectively. Writing λ̇ in terms of this basis gives

λ̇ = n(x̃k + x̃′
l) and i(λ̇) = n(xkl + xn2−k̄l̄).

Computing the characters χ gives

χ̃w1
= α̃k, χ̃w2

= α̃′
l

and

χskl
= αkl, χsn2−k̄l̄

= αn2−k̄l̄.

Hence

χ̃w1
(λ̇) = χ̃w2

(λ̇) = i∗(χskl
)i(λ̇) = i∗(χsn2−k̄l̄

)(λ̇) = n.

Thus φ�
λ = φ∗

λ restricted to H2.

4.3. Odd orthogonal embedding. Fix a positive integer m and let n = 2m+ 1.
Let G̃ = SO(Cn) denote the special orthogonal group on Cn with respect to the
quadratic form

Q(
∑

tiei) := t2m+1 +
m∑

i=1

tit2m+2−i,

where {e1, . . . , en} is the standard basis of Cn. Let G = SL(Cn) and let i : G̃ ↪→ G
be the natural embedding of groups. Fix an integer k ≤ m and define the one
parameter subgroup

λ(t) := diag(t, . . . , t︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−2k

, t−1, . . . , t−1

︸ ︷︷ ︸
k

) ⊆ G̃.

It is easy to see that i ◦ λ(t) ⊆ G has the same presentation as λ(t) above.

Here we have that G̃/P̃ (λ) is the orthogonal Grassmannian OG(k,Cn) of isotropic
k-planes in Cn with respect to Q and G/P (λ) is equal to the two step flag variety
F�(k, n − k;Cn). The embedding φλ is given by φλ(V ) = (V, V ⊥), where V is an
isotropic k-plane in C

n and V ⊥ denotes the orthogonal complement of V in C
n.

While φ∗
λ is very difficult to determine in general, we can compute φ∗

λ([Λw]) for
certain w ∈ WP . Consider the diagram

(4.2) OG(k,Cn)
φλ ��

ψ1 ��������������
F�(k, n− k,Cn)

ψ2

��

Gr(k,Cn)

where ψ1 is the natural inclusion of OG(k,Cn) in Gr(k,Cn) and ψ2 is the natural
projection of F�(k, n − k,Cn) onto Gr(k,Cn). In [7], Coskun gives a branching
algorithm which determines the map ψ∗

1 on cohomology with respect to the Schubert
basis. By the commutivity of diagram (4.2), we can compute φ∗

λ([Λw]) for any
Schubert class that can be written as [Λw] = ψ∗

2([Λw′ ]) for some Schubert class
[Λw′ ] ∈ H∗(Gr(k, n)).
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For the following example, we adopt the notation found in [6, Chapter 3]. Let
n = 9 and k = 3. In this case, we can identify the Weyl groupW with the symmetric
group S9, and W̃ can be identified with the subgroup of S9 given by

W̃ = {(a1 · · · a9) ∈ S9 | ai + a10−i = 10}.

Let w = (468579123) ∈ WP . Then [Λw] = ψ∗
2([Λw′ ]), where w′ = (468123579).

Hence

φ∗
λ([Λw]) = φ∗

λ ◦ ψ∗
2([Λw′ ]) = ψ∗

1([Λw′ ]).

By [7, Example 4.4] we have that

ψ∗
1([Λw′ ]) = 4[Λw̃1

] + 2[Λw̃2
] + 2[Λw̃3

],

where

w̃1 = (348159267), w̃2 = (168357249), w̃3 = (267159348).

Let (x1, . . . , x8) and (x̃1, x̃2, x̃3) denote the dual basis to Δ and Δ̃ respectively.

Writing λ̇ in terms of this basis gives

λ̇ = x̃3 and i(λ̇) = x3 + x6.

By [15, Theorem 1(i)] and the definition of χw we have that

i∗(χw)(λ̇) = χw(x3) + χw(x6) = 6,

and by an odd orthogonal analogue of [2, Lemma 50] we have that

χ̃w̃1
(λ̇) = χ̃w̃2

(λ̇) = χ̃w̃3
(λ̇) = 9.

Hence φ�
λ ([Λw]) = 0. Observe that in this case φ�

λ �= φ∗
λ.

5. Application to eigencones

In this section, we make the assumption that no ideal of g̃ is an ideal of g.
Let X(H) denote the group of characters of H and set X(H)Q := X(H)⊗Z Q.

If ν ∈ X(H) is dominant, we will denote by Vν the irreducible representation of

highest weight ν. We will use similar notation for G̃.
We denote by LR(G̃, G) the cone of the pairs (ν̃, ν) ∈ X(H̃)Q × X(H)Q such

that nν̃ and nν are dominant weights and Vnν̃ ⊗ Vnν contains nonzero G̃-invariant
vectors for some positive integer n. The set LR(G̃, G) is a closed convex rational

polyhedral cone contained in the dominant chamber X(H̃)+
Q
×X(H)+

Q
. Moreover,

by [10, Proposition], our assumption implies that LR◦(G̃, G) has nonempty interior.

The aim of this section is to describe LR◦(G̃, G) as a part of X(H̃)+
Q
×X(H)+

Q
by

a minimal list of inequalities. We first introduce some notation.
Let WtH̃(g/g̃) be the set of the nontrivial weights for the H̃-action on g. Let

X(H̃) ⊗ Q denote the rational vector space generated the characters of H̃. We

consider the set of hyperplanes H of X(H̃)⊗Q spanned by elements of WtH̃(g/g̃).
For each such hyperplane h ∈ H there exist exactly two opposite indivisible one pa-
rameter subgroups ±λh which are orthogonal (for the pairing 〈·, ·〉) to h. These one

parameter subgroups of H̃ form a set stable by the action of W̃ . Let {λ1, . . . , λn}
be the set of dominant one parameter subgroups obtained from the hyperplanes in
H.
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Theorem 5.1. We assume that no ideal of g̃ is an ideal of g.
A point (ν̃, ν) ∈ X(H̃)+

Q
×X(H)+

Q
belongs to LR(G̃, G) if and only if for all i =

1, . . . , n and for all pairs of Schubert classes ([Λ̃w̃], [Λw]) of G̃/P̃ (λi) and G/P (λi)

associated to (w̃, w) ∈ W̃ P̃ (λi) ×WP (λi) such that

φ�
λi
([Λw])�0 [Λ̃w̃] = [Λ̃e] ∈ H∗(G̃/P̃ (λi),Z),(5.1)

we have

〈w̃λi, ν̃〉+ 〈wλi, ν〉 ≥ 0.(5.2)

Moreover, one can omit no inequalities in the above list.

Proof. Let ρ and ρ̃ denote the half sum of all positive roots of g and g̃ respectively.
By [10, Theorems A and B], we only have to prove that φ�

λi
([Λw])�0 [Λ̃w̃] = [pt] if

and only if φ∗
λi
([Λw]).[Λ̃w̃] = [pt] and “〈w̃λi, ρ̃〉+ 〈wλi, ρ〉 = 〈λi, ρ̃〉+ 〈λi, 2ρ

λi − ρ〉”
(with notation of [10]). This follows immediately from Proposition 2.3. �

Remark 5.2. In [11], the first author gives a bijective parametrization of the faces

of LR(G̃, G) which intersect the interior of the dominant chamber. The morphism
φ�
λ can also be used to simplify the statements of [11]. For example, with notation

of [11, Paragraph 7.2.3], the conditions

(1) φ∗
λ([BwP (λ)/P (λ)]) · [B̃P̃ (λ)/P̃ (λ)] = [pt] ∈ H∗(G̃/P̃ (λ),Z) and

(2) (θ
P (λ)
w )|S̃ = (θP̃ (λ) − 2(ρ̃− ρ̃S̃))|S̃

are equivalent to

φ�
λ ([BwP (λ)/P (λ)])�0 [B̃P̃ (λ)/P̃ (λ)] = [pt] ∈ H∗(G̃/P̃ (λ),Z).
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