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Chapter 1

Reductive groups and
Affine quotients

1.1 Affine algebraic variety

1.1.1 — Let us fix an algebraically closed field k. We endow kn with the Zariski
topology. If U is open in kn, we set:

Okn(U) := {f
g

: U −→ k | f, g ∈ k[x1, · · · , xn] with g(x) 6= 0 ∀x ∈ U}.

Then Okn is a sheaf on kn. The ringed space (kn,Okn) is denoted An and called
the affine space.

1.1.2 — Let I be an ideal of k[x1, · · · , xn] and X = V (I) be the associated
closed subset of An endowed with the induced topology. Consider on X the
following sheaf:

OX(U) := {f
g

: U −→ k | f, g ∈ k[x1, · · · , xn] with g(x) 6= 0 ∀x ∈ U}.

Definition. An affine variety is a ringed space isomorphic to some (X,OX) as
above.

1.1.3 — The first fundamental result of algebraic geometry is

Theorem 1 (Hilbert’s Nullstellensatz) If
√
I = {f ∈ k[x1, · · · , xn] : ∃n >

0 fn ∈ I}, we have
OX(X) ' k[x1, · · · , xn]/

√
I.

As a consequence, OX(X) is a finitely generated k-algebra without non zero
nilpotent element. Conversely, we have:
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Proposition 1 Let A be a finitely generated k-algebra without non zero nilpo-
tent element. Then, there exists a unique affine algebraic variety X such that
OX(X) ' A.

Proof. Since A is finitely generated there exist a surjective morphism φ :
k[x1, · · · , xn] −→ A. Since A has no non zero nilpotent element, the kernel I of
φ satisfies I =

√
I. Then, X = V (I) works. �

1.1.4 — By restriction, any open subset U in an affine variety, is endowed
with a sheaf. We have:

Proposition 2 Let X be an affine variety and f ∈ OX(X) be a regular func-
tion. Consider U := {x ∈ X | f(x) 6= 0}.

Then, U is an affine algebraic variety with OU (U) = OX(X)[1/f ].

Proof. Let Γ be the subset of X × k defined by xf(x) = 1. It is easy to see
that Γ is an affine variety isomorphic to U as a ringed space. �

1.2 Affine algebraic groups

1.2.1 — Consider GLn(k) ⊂ Mn(k) as an affine variety. Notice that the product
GLn(k)×GLn(k) −→ GLn(k) is a morphism. Moreover, by Kramer’s formula,
the inverse map GLn(k) −→ GLn(k) is also a morphism. So, GLn(k) is the
first example of affine algebraic group.

Definition. An affine algebraic group is a closed (in Zariski topology) subgroup
of GLn(k) endowed with its structure of affine variety and group.

Remark. Actually, one can prove that any affine variety H with a law of group
which is given by morphisms is isomorphic to a closed subgroup of GLn(k).

The first examples are GLn(k), Un(k), Bn(k), Tn(k), SLn(k). In particular,
the additive and multiplicative groups Ga and Gm are affine algebraic groups.
The finite groups are also affine algebraic groups.

1.2.2 — Let G be an affine algebraic group and X be an (affine) algebraic
variety. An action θ : G×X −→ X is said to be algebraic if it θ is a morphism.

If x ∈ X, we denote by G.x and Gx the orbit and the stabilizer of x. Let
XG denote the set of fixed points of G in X.

The first result about algebraic actions is

Proposition 3 The G-orbits in X are open in their closure.

Proof. Let x ∈ X. Consider the morphism θ : G −→ X, g 7−→ g.x. It is a
general fact about algebraic morphisms that its image contains an open subset
Ω of its closure. Then, the image of θ is the union of the g.Ω and hence is open
in its closure. �
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1.2.3 — A representation of an algebraic group G in a finite dimensional
vector space V is a morphism ρ : G −→ GL(V ). A rational representation of G
is a vector space W (possibly of infinite dimension) endowed with a linear action
of W and covered by representations (of finite dimension) of G. A fundamental
rational representation come from actions on affine varieties:

Proposition 4 The algebra OX(X) is a rational representation of G.

Proof. Consider the action σ : G × X −→ X and the induced morphism
σ∗ : OX(X) −→ OG(G) ⊗ OX(X). Let f ∈ OX(X). We have to prove that
the orbit of G is contained in a finite dimensional subspace of OX(X). Set
σ∗(f) =

∑
ai ⊗ fi. One easily checks that G.f is contained in the subspace

spanned by the fi’s. �

1.3 Reductive groups

1.3.1 Linearly reductive groups

1.3.1.1 — The first definition comes from representation theory.
Definition. An algebraic group is said to be linearly reductive if for any repre-
sentation V and any non zero invariant vector v ∈ V there exists an invariant
linear form φ ∈ V ∗ such that φ(v) = 1.

1.3.1.2 — In this paragraph, we assume that k = C is the field of complex
numbers. Let K be a compact Lie subgroup of GLn(R). Consider the Zariski
closure KC of K in GLn(C). Indeed, one can prove that KC only depends on
K and not on its embedding in GLn(R).

The group KC is linearly reductive.

Such examples are C∗, GLn(C), SLn(C), SO(n,C), Sp2n(C). Actually, any
complex reductive group equals KC for some compact Lie group K.

1.3.1.3 — Consider an algebraically closed field k of positive characteristic
p. The group G = Z/pZ acts on V = kp by τ.(x1, · · · , xp) = (xp, x1, · · · , xp−1),
where τ the class of 1 in G. The vector v = (1, · · · , 1) is fixed by G. The set
of G-invariant vectors of V ∗ is the line generated by ϕ =

∑
xi. But, φ(v) = 0.

So, G is not linearly reductive.

1.3.1.4 — Representations of linearly reductive groups have very useful
properties:

Proposition 5 Let G be a linearly reductive group. Then,

1. Any (rational) representation of G is completely reducible.

2. Let V be a (rational) representation of G. Then, V G has a unique stable
supplementary.
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3. Let φ : V −→ W be a surjective G-equivariant linear map between two
(rational) representations. Then, φ(V G) = WG.

Proof. Let S be G-stable subspace of a representation V of G. Consider
W := V ⊗ S∗ ' Hom(S, V ). Let θ ∈ W corresponding to the inclusion of S in
V . Since G is linearly reductive, there exists φ ∈ V ∗⊗S such that φ(θ) = 1. The
kernel of φ considered as a linear map from V to S isG-stable and supplementary
to S.

By induction, on the dimension one easily deduce that any representation is
completely reducible.

With notation of the second assertion, we fix a supplementary S of V G.
We claim that S is the sum of non trivial irreducible submodules of V . The
claim trivially implies the unicity of S. Consider the G-equivariant projection
p : V −→ V G with kernel S. Let W be a non trivial irreducible submodule of
V . Since W is irreducible, W ∩ S is {0} or W . If it were {0}, the restriction of
p to W is injective and W is trivial: contradiction. So W ⊂ S.

The last point is an easy consequence of the fact the above proof. �

1.3.1.5 — The following representation t.(x, y) = (x, y + tx) of Ga is not
completely reducible. So, Ga is not linearly reductive.

Definition. A group G is said to be reductive if it does not contain Ga as a
normal subgroup.

Theorem 2 (Weyl) Assume the characteristic of k is zero. Then, G is reduc-
tive if and only if G is linearly reductive.

1.3.2 Geometrically reductive groups

In positive characteristic, the good notion is:

Definition. A group G is said to be geometrically reductive if for any repre-
sentation V of G and any non zero fix point v ∈ V there exists a G-invariant
homogeneous polynomial f on V of positive degree such that f(v) = 1.

The following representation t.(x, y) = (x, y + tx) of Ga shows that Ga is
not geometrically reductive.

Theorem 3 (Haboush, [Hab75]) An algebraic group G is reductive if and
only if it is geometrically reductive.

1.4 Hilbert-Nagata’s Theorem

1.4.1 — Let us consider an action of an affine algebraic group G over an affine
algebraic variety X. One goal of Geometric Invariant Theory is to construct
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a quotient Z of X under the action of G. If we ask Z for being an affine
algebraic variety, it is equivalent by Proposition 1 to constructOZ(Z). A natural
candidate to be OZ(Z) is OX(X)G. So, the first question is: Is OX(X)G finitely
generated ?

1.4.2 — Now, one can state the:

Theorem 4 (Hilbert-Nagata-Haboush, [Nag65]) Let A be a finitely gen-
erated k-algebra endowed with a rational action of a reductive group G.

Then, AG is finitely generated.

Proof.[in characteristic zero]
A reduction. We firstly prove that it is sufficient to prove the theorem for
A = k[V ] for a finite dimensional G-representation V .

Let W be a finite dimensional G-submodule of A which generates A as a
k-algebra. It exists since A is finitely generated and rational. The inclusion
W ⊂ A extend to a surjective equivariant morphism of algebras:

ϕ : S(W ) = k[W ∗] −→ A.

Since G is linearly reductive, ϕ induces a surjective map k[W ∗]G −→ AG. So,
it is equivalent to prove the theorem for A = k[W ∗].

From now on, A = k[V ] for a finite dimensional G-representation V . Con-
sider the unique G-equivariant projection:

ρ : A −→ AG.

Firstly AG is noetherian since A is noetherian and for any ideal I ⊂ AG, we
have (I.A)G = I.

ConsiderAG,+ the ideal ofAG of elements of positive valuation. Let a1, · · · , as

be generators of the ideal AG,+. We claim that a1, · · · , as generate AG as a k-
algebra. Let B denote the k-algebra generated by a1, · · · , as. Let f ∈ AG

homogeneous of degree d. We will prove that f ∈ B by induction on the degree
d of f . If d = 0, it is obvious. Else, f ∈ AG,+ and f =

∑
aifi with ai ∈ AG of

strictly less degrees. We can conclude by induction. �

Actually, we just proved the theorem for linearly reductive groups: this proof
is essentially due to Hilbert. Nagata proved that this proof can be modified to
work for geometrically reductive groups: Nagata’s proof is much more difficult.

1.5 The categorical quotient

1.6 Definition

Let G be a geometrically reductive group acting on an affine varietyX. Consider
Y := Spec(OX(X)G) and the morphism π : X −→ Y induced by inclusion.
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Theorem 5 With above notation, we have:

1. (Y, π) is a categorical quotient.

2. The morphism π is surjective.

3. Let F1 and F2 be two closed and G-stable subsets of X. If F1 and F2 are
disjoint then π(F1) and π(F2) are disjoint.

4. If F is closed and G-stable in X, then π(F ) is closed in Y .

5. Each fiber of π contains exactly one closed orbit.

Proof. The first point is obvious with affine varieties. The general case is
obtained by gluing.

Let us prove that π is surjective. It is sufficient to prove that for any
ideal I in OX(X)G such that I.OX(X) = OX(X), we have I = OX(X)G.
In characteristic zero this follows from the decomposition as OX(X)G-module
: OX(X) = OX(X)G ⊕ S. In general, this is more difficult (see [FSR05,
Lemma 11.4.2]).

Let F1 and F2 be as in the statement.
First proof in characteristic zero. Let I1 and I2 be the ideals of F1 and F2.

Since F1 and F2 are disjoint, I1+I2 = k[X]. By Proposition 5, IG
1 +IG

2 = k[X]G.
The statement follows.

Proof in arbitrary characteristic. One can find φ ∈ OX(X) such that φ|Z1 =
0 and φ|Z1 = 0.

Consider the subspace W spanned by the G-orbit of φ. Let φ1, · · · , φs ∈
G.φ be a base of W . These regular functions define a regular G-equivariant
morphism:

θ : X −→ W ∗

x 7−→ (φ1(x), · · · , φs(x)).

Moreover, θ(Z1) = (0, · · · , 0) and θ(Z2) = (1, · · · , 1). Since G is geometrically
reductive there exists F ∈ (SqW )G (with q > 0) such that F (1, · · · , 1) = 1.
Let f be the element of OX(X) corresponding to F . Then, f ∈ OY (Y ) and
f(π(Z1)) = 0 and f(π(Z2)) = 1.

Let F be a closed and G-stable in X. Assume that π(F ) is not closed: there
exists y ∈ π(Z)−π(Z). Since π is surjective, Z2 = π−1(y) is a non empty closed
G-stable subset of X disjoint from Z1. Now, the proof of the last point implies
a contradiction. �

1.7 Examples

1.7.1 — Consider the action of the symmetric group Sn over Z[x1, · · · , xn].

Theorem 6 We have: Z[x1, · · · , xn]Sn = Z[σ1, · · · , σn]. Moreover, the σi’s are
algebraically independent.
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Proof. By induction on n. �

This implies that An/Sn ' An.

1.7.2 — Consider the action of the group with two elements on k2 by mul-
tiplication by −1. The invariants are generated by x2, y2 and xy. In particular,
the quotient k2// ± 1 ' Spec(k[X,Y, Z]/(Z2 − XY ) which is not smooth and
even non factorial.

1.7.3 — Let us consider the action of SLn(k) by conjugacy on Mn(k). One
can prove that the quotient is the map π : Mn(k) −→ kn which maps a matrix
on the coefficients of its characteristic polynomial.

Each fiber contains a unique diagonalisable orbit. By Dunford decomposi-
tion, this is the closed orbit of the fiber.

1.8 Local properties of the quotient

Proposition 6 Let G be reductive group acting on an affine variety X.

1. If X is irreducible X//G is.

2. If X is normal, X//G is.

3. Assume G is semi-simple (reductive connected with finite center). If X is
factorial, X//G is.

Proof. The two first points are obvious. A key point for the last assertion is
the fact that a semisimple group has no non trivial character. Let f ∈ k[X]G.
Let f = p1. · · · .pk be a decomposition as a product of irreducible elements of
k[X]. We claim that each pk is G-invariant. By unicity of the decomposition
and connectedness of G, for any g ∈ G and g.pi ∈ k[X]∗.pi. Let us fix x ∈ X.
If pi(x) = 0, then g.pi(x) = 0. Else, for any g ∈ G there exists a unique λg ∈ k∗

such that g.pi(x) = λgpi(x). One easily checks that g 7−→ λg is a character of
G; so, is trivial. Finally, pi is G-invariant. �

1.8.1 — Let p, q and n be positive integers. Consider the following action
of GLn on Mpn ×Mnq:

g.(A,B) = (gA,Bg−1).
We have an obvious invariant morphism π : Mpn × Mnq −→ Mn, (A,B) 7−→
BA, where Mn is the subvariety of Mpq of matrices of rank less or equal n.

It is a classical result of GIT that this morphism is the GIT-quotient (see [KP00]).
In particular, this implies that Mn is normal.

1.9 Stable points

Proposition 7 Let G be reductive group acting on an affine variety X. We
assume that there exists points in X with finite isotropy. Consider π : X −→
X//G. Let x ∈ X. The following are equivalent:
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1. π−1(π(x)) = G.x;

2. G.x is closed in X and Gx is finite.

Proof. Assume that G.x is closed in X and Gx is finite. By Theorem 5, G.x
is the only closed orbit in π−1(π(x)): for any y ∈ π−1(π(x)) G.y ⊃ G.x. Since
the dimension of G.x is maximal, Proposition 3 implies that G.y = G.x.

Conversely, assume that π−1(π(x)) = G.x. The set of points in X with finite
isotropy is open. In particular, generically the fibers of π have dimension greater
than dim G. By the semicontinuity Theorem for the fibers, the dimension of
π−1(π(x)) is greater than dim G. Since this fiber is G.x, the second assertion
follows. �

A point satisfying the second assertion of the proposition is said to be stable.
We denote by Xs the set of stable points.

Proposition 8 The subset Xs of X is open.

Proof. Let F be the set of x ∈ X such that Gx is NOT finite. Applying the
semicontinuity Theorem to G × X −→ X × X, we see that F is closed and
obviously G-stable in X. Since X − Xs = π−1(π(F )), Theorem 5 shows that
Xs is open. �



Chapter 2

Projective Quotients

2.1 The case P(V )

2.1.1 The construction

Let V be a representation of a reductive group G. We consider the action of G
on P(V ).

Consider the graduation by degree: k[V ] =
⊕

d k[V ]d, and k[V ]G =
⊕

d k[V ]Gd .

Lemma 1 There exists a positive d0 and homogeneous G-invariant polynomials
f0, · · · , fs such that

k[f0, · · · , fs] =
⊕
r≥0

k[V ]Grd0
.

Proof. It is a very classical result. See [Gro61, Lemma 2.1.6] or [Bou61]. �

Consider πd0 : P(V )− −− > Ps, x 7−→ [f0 : · · · : fs]. Set P(V )ssd0
:= {[v] ∈

P(V ) | ∃i fi(v) 6= 0} and Yd0 the closure of πd0(P(V )ssd0
). We also denote by πd0

the restriction:
πd0 : P(V )ssd0

−→ Yd0 .

The properties of this construction are

Theorem 7 1. P(V )ssd0
is the set of [v] ∈ P(V ) such that there exists a G-

invariant homogeneous polynomial f of positive degree such that f(v) 6= 0.

2. The morphism πd0 is an affine morphism and for all open affine subset
U ⊂ Y we have k[U ] = k[π−1

d0
(U)]G.

Before giving the proof we explain a consequence:

Corollary 1 1. Actually, P(V )ssd0
, πd0 and Yd0 does not depend on d0. So,

we will forget d0.

11
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2. The morphism π is a categorical quotient of P(V )ss. It is surjective.

We will denote Y by P(V )ss//G.

Proof.[of the theorem]
The first assertion is easy. It is sufficient to prove the second one for an open

and affine covering of Y . Set Ui := (xi 6= 0) ∩ Y (with obvious notation). One
can check that π−1

d0
(Ui) = P(V )fi is affine and k[P(V )fi ]

G = k[Ui]. �

2.1.2 First Examples

2.1.2.1 — Consider the following action of k∗ on kn+2 = V :

t.(x0, · · · , xn+1) = (t2.x0, · · · , t2.xn, xn+1).

We have k[V ]k
∗

= k[xn+1]. So, Y is a point, P(V )ss is the affine open subset
defined by xn+1 6= 0.

Consider the following action of k∗ on kn+2 = V :

t.(x0, · · · , xn+1) = (x0, · · · , xn, t
−2xn+1).

Note that this action on V induces the same action of k∗ on P(V ) as above. We
have k[V ]k

∗
= k[x0, · · · , xn]. So, Y = Pn, P(V )ss = P(V )−{[0 : · · · : 0 : 1]} and

π is the projection from [0 : · · · : 0 : 1].

Consider the following action of k∗ on kn+2 = V :

t.(x0, · · · , xn+1) = (t.x0, · · · , t.xn, t
−1xn+1).

Note that this action on V induces again the same action of k∗ on P(V ) as above.
The ring k[V ]k

∗
is generated by the xi.xn+1’s for i = 0, · · · , n. So, Y = Pn,

P(V )ss = P(V )−P(V )k
∗

identifies with kn+1−{0}. Then, π : kn+1−{0} −→ Pn

is the usual quotient map.

These examples shows that whereas the construction does not depends on
d0 it depends really on the linear action of G on V and not only on the induced
action on P(V ).

2.1.2.2 — For an action of a finite group, one have X = Xss = Xs. So, GIT
constructs orbit spaces. A very simple example is:

(P1)n/Sn ' Pn.

2.2 The general case

2.2.1 — If X is a closed G-stable subvariety of P(V ), we set Xss = P(V )ss ∩X
and restrict π to obtain

π : Xss −→ Xss//G.
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2.2.2 — We denote by Xus the complementary of Xss in X. Let X̃ (X̃us)
be the affine cone over X (resp. X̃us) in V . Actually, Xss//G is the quotient
by k∗ of the quotient of the affine cone X̃ by G. More precisely, we have the
commutative diagram

X̃ − X̃us π- X̃//G− {π(0)}

Xss
?

−→ Xss//G.

//k∗

?

2.2.3 — If L is the restriction of O(1) to X, we have: Γ(X,L⊗d) = k[X̃]d.
More generally, if L is an ample G-linearized line bundle on X, we set

Xss(L) = {x ∈ X : ∃d > 0 and σ ∈ Γ(X,L⊗d)G σ(x) 6= 0}.

We also consider the G-invariant morphism

π : Xss(L) −→ Proj(⊕dΓ(X,L⊗d)G)

associated to the inclusion of ⊕dΓ(X,L⊗d)G in ⊕dΓ(X,L⊗d).

Theorem 8 With above notation, we have:

1. π is a categorical quotient. We denote Proj(⊕dΓ(X,L⊗d)G) by Xss(L)//G.

2. The morphism π is affine and surjective.

3. Let F1 and F2 be two closed and G-stable subsets of Xss(L). If F1 and F2

are disjoint then π(F1) and π(F2) are disjoint.

4. If F is closed and G-stable in X, then π(F ) is closed in Y .

5. Each fiber of π contains exactly one closed orbit in Xss(L).

6. The sheaf OXss(L)//G is π∗(OG
Xss(L)).

2.2.4 — Points of Xss(L) are said to be semistable. A point which is not
semistable is said to be unstable. A point x ∈ Xss(L) is said to be stable if G.x
is closed in Xss(L) and Gx is finite. We have the same properties for the set
Xs(L) of stable points as in the affine case:

Proposition 9 Let G be reductive group acting on an affine variety X. Let L
be an ample G-linearized line bundle. We assume that there exists points in X
with finite isotropy. Consider π : Xss(L) −→ Xss(L)//G. Let x ∈ Xss(L).

1. π−1(π(x)) = G.x if and only if x is stable.

2. Xs(L) is open in X.
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2.3 Hilbert-Mumford’s Theorem

2.3.1 The statement

2.3.1.1 — Let V be a representation of a reductive group G. Let X be a closed
G-stable subvariety of P(V ). We denote by X̃ the affine cone over X in V .

Lemma 2 Let v ∈ V be a non zero vector.

1. [v] ∈ Xss ⇐⇒ 0 6∈ G.v.

2. [v] ∈ Xs ⇐⇒ G.v is closed and Gv is finite.

Proof. Consider the quotient π̃ : V −→ V//G. The point [v] is unstable iff
π̃(v) = π̃(0); that is, by Theorem 5 0 ∈ G.v.

If Gv is finite and [v] is semistable, G[v] is finite. Else, G[v] acts non trivially
on the line [v] in V and 0 belongs to the closure of G.v. The second assertion
follows easily. �

2.3.1.2 — A one parameter subgroup of G is a morphism of groups λ :
Gm −→ G. The set of one parameter subgroups of G is denoted by Y (G). Let
Y be a G-variety (actually, V , P(V ), X̃ or X) and y be a point in Y . Consider
σ : k∗ −→ Y, t 7−→ λ(t).y. Since Y is separated, if σ can be extended to a
morphism σ̃ : A1 −→ Y the value σ̃(0) does not depends on the extension.
This value is denoted by limt→0 λ(t).y. If Y is complete the limit always exists.

2.3.1.3 — We can now state Hilbert-Mumford’s Theorem:

Theorem 9 (Hilbert-Mumford verion 1) With above notation,we have:

1. x = [v] ∈ X −Xss ⇐⇒ ∃λ ∈ Y (G) limt→0 λ(t).v = 0.

2. x = [v] ∈ X −Xs ⇐⇒ ∃λ ∈ Y (G) limt→0 λ(t).v exists in V .

2.3.2 Maximal tori

An algebraic torus is a group isomorphic to a product of copies of Gm. Over C
they are the complexifications of the tori (S1)s. A fundamental theorem about
the structure of algebraic groups is (see [Hum75])

In an algebraic group all the maximal tori are conjugated.

Let T be a maximal torus in a group G. A consequence of this statement
is that any one parameter subgroup of G is conjugated to a one parameter
subgroup of T .

For G = GLn(k), the set of diagonal matrices is a maximal torus.
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2.3.3 Iwahori Decomposition

2.3.3.1 — Let k[[t]] denote the ring of formal series. Note that an element
f =

∑
i≥0 ait

i is invertible in k[[t]] if and only if a0 is non zero. The fraction
field of k[[t]] is k((t)) = {t−kf : for k ∈ N and f ∈ k[[t]]}.

For any affine algebraic group G we set:

G(k[[t]]) = Hom(Spec(k[[t]]), G) = Hom(k[G],k[[t]]),

and
G(k((t)) ) = Hom(Spec(k((t)) ), G) = Hom(k[G],k((t)) ).

For G = GLn(k), G(k[[t]]) identifies with the set of matrices with coefficient in
k[[t]] and invertible determinant, and G(k((t)) ) = GLn(k((t)) ).

2.3.3.2 — Note that k[k∗] = k[t, t−1] is contained in k((t)) as a sub-k-
algebra. In particular, G(k[t, t−1]) = Hom(Spec(k[t, t−1]), G) = Hom(k[G],k[t, t−1])
is contained in G(k((t)) ). In particular, Y (G) is contained in G(k((t)) ).

Theorem 10 (Iwahori Decomposition) Let G be a reductive group and T
be a maximal torus of G. Then,

G(k((t)) ) = G(k[[t]]).Y (T ).G(k[[t]]).

Proof.[for G = GLn] Let A ∈ GLn(k((t)) ). We write A = t−r.A′, where A′

is a matrix with its coefficients in k[[t]]. Note that A′ does not always belong
to GLn(k[[t]]). Since k[[t]] is euclidean, there exists P, Q ∈ GLn(k[[t]]) and a
diagonal matrix D (with entries in k[[t]]) such that A′ = P.D.Q. (Moreover,
one may assume that each diagonal coefficient divides the following one). Since
the determinant of D is not zero (in k[[t]]), one can write D = D′.∆, where
D′ ∈ Y (T ) and ∆ ∈ GLn(k[[t]]). Then, A = P.(D′.t−r).(∆Q) and the theorem
follows. �

2.3.3.3 — We can now prove the theorem.

Proof.[of Theorem 9.] Let us assume that 0 ∈ G.v. Then by the valuative cri-
terion of properness, there exists φ ∈ G(k((t)) ) such that the following diagram
commutes

Spec(k((t)) )
φ - G

g 7→ g.v- V

Spec(k[[t]])
?

φ̄

-

and φ̄((t)) = 0. This means that limt→0 φ(t).v = 0 !
We now apply Iwahori’s Theorem to φ: φ = ψ1.λ.ψ2. Since ψ1 has a limit

in G when t → 0, limt→0 λ(t).ψ2(t).v = 0. Set g2 = limt→0 ψ2(t) ∈ G and
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λ′ = g−1
2 .λ.g2. We have: limt→0 λ

′(t).(g−1
2 ψ2(t)).v = 0; that one may assume

that g2 = e. In this case, ψ2(t).v = v + tw(t), with w ∈ V (k[[t]]). So, we have;
λ(t)ψ2(t)v = λ(t)v+ tλ(t).w(t). Using a base where λ acts diagonally one easily
deduces that limt→0 λ(t)v = 0.

Let us prove the second point. Let x = [v] be a non stable point. The
morphism σ : G −→ V, g 7→ g.v is not proper. So, by the valuative criterion of
properness, there exists φ ∈ G(k((t)) ) such that σ ◦φ has a limit at 0 in V . We
can conclude by the same argument as above. �

2.3.4 Action of one parameter subgroups

A one parameter subgroup acts on V diagonally: there exists a decomposition
V = ⊕iVi of V and pairwise distinct integers ri such that t.vi = trivi for all
vi ∈ Vi. Let v =

∑
i vi be a non zero vector. Let µ be the opposite of the

minimum of the ri’s such that vi 6= 0 and i0 its corresponding index. Then, we
have:

limt→0 λ(t)[v] = [vi0 ]
limt→0 λ(t)v = 0 ⇐⇒ µ < 0
limt→0 λ(t)v exists ⇐⇒ µ ≤ 0

2.3.5 The numerical criterion

2.3.5.1 — Definition. Let L be a G-linearized line bundle over a projective
G-variety X. Let x ∈ X. Set z = limt→0 λ(t).x. The group Gm fixes z and so
acts on the line Lz linearly: this gives an integer denoted by µL(x, λ).

In the case when L = O(1), we have: µL([v], λ) = µ (with the notation of the
preceding paragraph). One can now state a second version of Hilbert-Mumford
Theorem:

Theorem 11 (Hilbert-Mumford version 2) Let L be an ample G-linearized
line bundle over a projective G-variety X. Then, we have:

1. x = [v] ∈ Xss(L) ⇐⇒ ∀λ ∈ Y (G) µL(x, λ) ≤ 0.

2. x = [v] ∈ Xs(L) ⇐⇒ ∀λ ∈ Y (G) non trivial µL(x, λ) < 0.

2.3.5.2 — Here we give a simple geometric interpretation of the sign of
µL(x, λ).

Lemma 3 Let λ be a one parameter subgroup of G. Let x ∈ X. Set z =
limt→0 λ(t).x. Let x̃ be a non zero point in Lx.

Then, we have,

1. µL(x, λ) > 0 ⇐⇒ limt→0 λ(t)x̃ = z.

2. µL(x, λ) = 0 ⇐⇒ limt→0 λ(t)x̃ exists and is a non zero element of Lz.



2.4. EXAMPLE: ACTIONS OF A TORUS 17

3. µL(x, λ) < 0 ⇐⇒ limt→0 λ(t)x̃ does not exists.

Proof. Consider Y := {λ(t).x | t ∈ k∗} ∪ {z}. Consider θ : H0(Y,L|Y ) −→
k, σ 7−→ σ(z). Since Y is affine, a general Serre’s Theorem shows that θ is
surjective. Moreover, θ is Gm-equivariant. Since Gm is reductive, there exists
σ ∈ H0(Y,L|Y ) such that k.σ is Gm-stable and σ(z) = 1. Then, the set of y ∈ Y
such that σ(y) = 0 is closed, Gm-stable and does not contain y: it is empty. So,
L|Y is trivial. The lemma follows easily. �

2.4 Example: Actions of a torus

Consider a torus T = Gr
m action linearly on a finite dimensional vector space

V . This action is diagonalisable, and the diagonal entries are elements of
Hom(Gr

m,G). This group is called the group of characters of T and denoted by
X(T ). It is isomorphic to Zr.

For χ ∈ X(T ), we set Vχ := {v ∈ V : t.v = χ(t)v}. Then, V = ⊕χ∈X(T )Vχ.
If [v] ∈ P(V ), we write v =

∑
vχ and denote by St(v) the set of χ’s such that

vχ 6= 0.
Note also that Y (T ) is also isomorphic to Zr and that the composition

induces a perfect paring X(T ) × Y (T ) −→ Z = Hom(Gm,Gm), denoted by
〈χ, λ〉.

We have:
µ([v], λ) = min

χ∈St(v)
〈χ, λ〉.

Consider P(v) the convex hull of St(v) in X(T ) ⊗ R. By Hahn-Banach’s
Theorem, we have:

[v] is semistable (resp. stable) if and only if 0 belong to P(v) (resp. the
interior of P(v).
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Chapter 3

The space of rational maps
on P1 over a field

3.1 Introduction

Let us fix a field k and an integer d ≥ 2. Let P and Q be two polynomial
of degree less than d. In the usual coordinate on P1 we consider: φ(z) =
P (z)/Q(z). If P and Q are coprime, φ is a morphism from P1 to P1. If moreover
at least one is of degree d, φ is said to be a rational morphism of P1 of degree
d. Let Ratd denote the set of rational morphisms of degree d.

The group SL2(k) acts on P1. So, it acts on Ratd by:

g.φ = g ◦ φ ◦ g−1.

We are interested to Ratd modulo SL2(k).

Let us rewrite in a more intrinsic way. From now on, we assume that k is
algebraically closed. Let V be a fixed k-vector space of dimension two. We
denote by P1, the projective space P(V ). Consider P(k[V ]d ⊗ V ) endowed with
the natural action SL(V ). The resultant Res of (P,Q) can be thought as an
homogeneous polynomial function on k[V ]d ⊗ V which is SL(V )-invariant. Let
Ratd denote the open subset of P(k[V ]d ⊗ V ) defined by Res 6= 0. Then, Ratd

is a smooth affine variety. We are interested in

Md := Ratd//SL2(k) and M ss
d := P(k[V ]d ⊗ V )ss//SL2(k).

First, by Theorem 7 M ss
d is a projective compactification of Md.

3.2 The semistable points

A point (P,Q) ∈ k[V ]d ⊗ V induces a linear map θ(P,Q) : V ∗ −→ k[V ]d; its
image is the subspace spanned by P and Q. Let [P : Q] ∈ P(k[V ]d⊗ V ). Let D

19
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denote the gcd of (P,Q). Then [P : Q] induces a rational map φ′ : P1 −→ P1

of degree d− deg(D).

Proposition 10 Let (P,Q) ∈ P(k[V ]d ⊗ V ).

1. Assume d = 2r even. A point [P : Q] ∈ P(k[V ]d ⊗ V ) is unstable if and
only if it is not stable if and only if either

(a) there exists a ζ ∈ P1 which is a root of P and Q of order r + 1; or

(b) there exists a fix point ζ ∈ P1 of φ′ which is a root of P and Q of
order r.

2. Assume d = 2r + 1 is odd.

A point [P : Q] is unstable if and only if either

(a) there exists a ζ ∈ P1 which is a root of P and Q of order r + 2; or

(b) there exists a fix point ζ ∈ P1 of φ′ which is a root of P and Q of
order r + 1.

3. d = 2r + 1. A point [P : Q] is not stable if and only if

(a) there exists a ζ ∈ P1 which is a root of P and Q of order r + 1; or

(b) there exists a fix point ζ ∈ P1 of φ′ which is a root of P and Q of
order r.

Proof. Consider λ(t) = diag(t, t−1) ∈ Y (SL2(k)). Since any one parameter
subgroup of SL2(k) is conjugated to a positive multiple of λ it is sufficient to
understand limt→0 λ(t).(P,Q). Details are left to the reader. �

Note that the proposition implies that Ratd ⊂ P(k[V ]d⊗V )s. In particular,
points in Md correspond to SL2-orbits in Ratd.

This proposition also implies that for d even, P(k[V ]d⊗V )ss = P(k[V ]d⊗V )s.
In this case, M ss

d is the space of the orbits of SL2(k) in P(k[V ]d ⊗ V )ss.

3.2.1 First Invariants

3.2.1.1 — The aim of this section is to construct elements in k[Ratd]SL2(k). We
firstly construct these functions a applications Ratd −→ k. We will prove after
that these functions are regular.

Let us fix φ = P/Q ∈ Ratd. Let us start with a fix point ζi of φ. Consider the
tangent maps of φ at ζi: this is an endomorphism of TζiP1; so, its determinant
is a well defined element µi of k.

Consider the set of fixed points of φ, that is the roots of Y P − XQ with
multiplicities. This gives a well defined point (ζ1, · · · , ζd+1) in (P1)d+1/Sd+1. To
each ζi is associated a µi; so, we have a well defined point in (µ1, · · · , µd+1) ∈
kd+1/Sd+1. The elementary functions of the µi are well defined functions

σi : Ratd −→ k.



3.2. THE SEMISTABLE POINTS 21

By construction, it is clear that σi is SL2(k)-invariant.

3.2.1.2 — We have now to prove:

Proposition 11 The functions σi are regular and SL2(k)-invariant.

Proof. We fix a base of V and so coordinated (X,Y ). Consider the closed
subvariety F ⊂ P1 × Ratd defined by Fix := Y P −XQ. Notice that Fix is an
homogeneous element of degree d + 1 in Ratd[X,Y ]. Consider the projection
p : F −→ Ratd.

The variety Ratd is covered by open subsets of the form Uζ = {φ |φ(ζ) 6= ζ}.
So, it is sufficient to prove that σi is regular on the Uζ ; finally on U∞.

Let P = a0X
d+a1X

d−1Y +· · ·+adY
d and Q = b0X

d+b1Xd−1Y +· · ·+bdY d.
The point [P : Q] ∈ Ratd belongs to U∞ iff b0 6= 0. So, we may assume that
b0 = 1. Moreover, p−1(U∞) ⊂ k×Ratd defined by : Xd+1+(b1−a0)Xd+· · · = 0.
One easily deduces that k[p−1(U∞)] is a free k[U∞]-module of rank d+ 1.

Consider now the following morphism:

Θ : P1 × Ratd −→ P1 × Ratd, (ζ, φ) 7−→ (φ(ζ), φ).

Since P1 × Ratd is smooth, one can consider the tangent bundle T (P1 × Ratd)
and the tangent map TΘ. Since Θ restricts to F as the identity, TΘ induces a
endomorphism of the vector bundle T (P1 × Ratd)|F . Consider p1 : F −→ P1.
By restriction and projection, TΘ induces an endomorphism θ of p∗1(P1) = L.
In other words θ is a section of L∗ ⊗ L; that is, a regular function on F .

The function θ′p−1(U∞) is an element of k[p−1(U∞)]. The functions σi|U∞
are just the coefficients of the characteristic polynomial of the multiplication
by θ′p−1(U∞) in k[p−1(U∞)] viewed as a free k[U∞]-module of rank d + 1. In
particular, it is an element of k[U∞]. �

3.2.2 More invariants

The idea to produce new invariants is to apply the preceding proposition to
φ◦n. This obviously produces invariant σn

j . But, the set of fixed points of φ◦n

contains the set of fixed points of φ◦m for any m|n. It would be better to
consider only the points of order exactly n.

Set Fn ⊂ P1 × Ratd be the set of fixed points of φ◦n. It is an hypersurface
of P1 × Ratd. Obviously, Fm ⊂ Fn for any m|n. Consider the closure F ∗n of
Fn − ∪m|nFm: it is an union of irreducible components of Fm.

Using F ∗m in place of F in Proposition 11, one obtain new invariants σ(n)
i for

i = 1, · · · ,deg(F ∗m).
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3.3 The case d = 2

3.3.1 The affine case

3.3.1.1 — We now consider the case d = 2. Consider:

ϕ : M2 −→ k2, (σ1, σ2).

One of the main Silverman’s results is that ϕ is actually an isomorphism. He
also proved that ϕ can be extended to an isomorphism from M ss

d onto P2.

3.3.1.2 — One step of Silverman’s proof is to show that ϕ is bijective, that
is, Rat2 −→ k2, (σ1, σ2) separates the orbits and is surjective. To do this, one
has to understand the orbits in Ratd:

Lemma 4 Let φ ∈ Ratd.

1. Assume that φ has at least two fixed points. Then, there exists a1, b1 ∈ k
such that φ is conjugated to

φ0 :=
z2 + a1z

b1z + 1
.

Moreover, the multiplier of φ0 at 0 (resp. at ∞) equals a1 (resp. b1).
The third fixed point is a1−1

b1−1 and its multiplier is a1+b1−2
a1b1−1 . In particular,

Res(φ0) = a1b1 − 1 (with an abuse of notation), σ1(φ0) = (a2
1b1 + a1b

2
1 −

2)/Res and σ2(φ0) = (a2
1b

2
1 + a1b1 − 2b1 + b21 + a2

1 − 2a1)/Res.

2. If φ a a unique fixed point; it is equivalent to z+ 1
z . Moreover, σ1 = σ2 = 3

en φ; and, the multiplier of φ at infinity is 1.

Moreover, σ3 = σ1 − 2.

Proof. If φ has at least two fixed points, an element of its orbits fixes 0 and
∞. So, we may assume that φ = (az2 + a1z)/(b1z + b2). Since the numerator
and denominator of φ are coprime, a 6= 0 and b2 6= 0; so, one may assume that
a = 1. The action of the diagonal elements in SL2(k) (that is the stabilizer of
0 and ∞) allows to assume that b2 = 1. The first assertion follows after some
easy computation.

If φ = P/Q has a unique fixed point, we may assume that it is ∞. Then,
zP −Q has to be a constant polynomial in z; so, φ = z + 1/z. �

Lemma 5 The map ϕ : M2 −→ k2 is bijective.

Proof. First, notice that the knowledge of (σ1, σ2) is equivalent to the knowl-
edge of the three multipliers.

First, we will prove that ϕ is injective. In the first case of Lemma 4, if the
two multipliers a1 and b1 equal 1 then φ0 = (z2 + z)/(z + 1) 6∈ Rat2. This
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implies that the image by ϕ of the orbits of the first case of Lemma 4 does not
contain the image of z + 1/z. Now the injectivity of φ is obvious.

Let us prove the surjectivity. Let us fix σ1 and σ2 which determines the µi’s
(up to order). If µ1 = µ2 = µ3 = 1 then (σ1, σ2) = ϕ(z + 1/z). Assume now
that µ1 6= 1 and set φ = (z2 + µ1z)/(µ2 + 1). Notice that, φ belongs to Ratd

excepted if µ1µ2 = 1. But, since µ1 + µ2 + µ3 = µ1µ2µ3 + 2, if µ1µ2 = 1 then
µ1 = µ2 = µ3 = 1; which is a contradiction. So, φ belongs to Rat2. Moreover,
its image by ϕ is necessary (σ1, σ2). �

Now, we are ready to prove one of the Silverman’s result if the characteristic
of k is zero.

Theorem 12 The morphism ϕ is an isomorphism.

Proof.[in characteristic zero] Since the characteristic is zero and ϕ is bijective,
it is birational. Now, ϕ is a birational bijective morphism from Md onto A2

(which is normal). Zariski’s Main Theorem (see [GD66, §8.12]) proves that ϕ is
an isomorphism. �

3.3.2 Working over Z
3.3.2.1 — The above proof of Theorem 12 does not work over a field k of
positive characteristic. Indeed, the map k −→ k, x 7−→ xp is bijective but not
birational.

Silverman’s idea to avoid this problem is to work over Z. Actually, an
isomorphism over Z implies an isomorphism over any field. This idea implies
several changes.

3.3.2.2 — An affine group scheme over Z is a affine scheme G = Spec(A)
endowed with two morphisms: G × G −→ G and G −→ G and a Z-point
SpecZ −→ G which satisfy properties of a product, inverse and neutral element
of a group. An action of G over an affine scheme X = Spec(B) is a morphism
σ : G×X −→ X satisfying usual properties of an action. Consider the corre-
sponding morphism σ∗ : B −→ A⊗B. An element f ∈ B is said to be invariant
if σ∗(f) = 1⊗ f .

3.3.2.3 — Since the resultant is defined over Z, Ratd can be thought as a
scheme Ratd over Z. Moreover, SL2 = SpecZ[a, b, c, d]/(ad− bc = 1) is a group
scheme. Actually, Seshadri proved in [Ses77] that GIT works in this context
(see also [MFK94, Appendix Chapter 1]); in particular, the set of invariants
ORatd

(Ratd)G is finitely generated ring. Let Md denote the associate affine
scheme.

We have to prove that the σi’s are defined over Z: in the proof of Proposi-
tion 11, one has just to replace tangent bundles by the sheaf of relative differ-
ential forms (which has a better behavior in the schematic context).

The advantage of working over Z is in the proof of Theorem 12. Since the
fraction field of Z[x, y] is of characteristic zero, to prove that ϕ is birational it
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is sufficient to prove that ϕ is bijective on the geometric points; that is over any
field ! Lemma 5 precisely proves this. After, Zariski Main’s Theorem can be
applied directly (see [GD66, §8.12]).

The method used here is slightly different from the original one by Silverman.
I hope this proof is simpler. It is actually a direct adaptation of Proposition 0.2
of [MFK94]. Two properties of the candidate quotient A2 are particularly im-
portant in this proof: it is normal and the characteristic of the residual field of
its generic point is zero.

We obtain the following statement:

Theorem 13 Let Ratd denote the affine scheme over Z of rational maps of
degree d over P1; that is, Ratd = Spec((Z[ai, bi][ 1

Res ])0). Let G be the group
scheme Spec(Z[a, b, c, d]/(ad − bc = 1)). The action G × Ratd −→ Ratd is a
morphism of schemes over Z. Set Md = Ratd//G = Spec((Z[ai, bi][ 1

Res ])
G
0 ).

By Seshadri’s Theorem, is an affine scheme over Z of finite type. Consider
the morphism ϕ : Md −→ A2

Z = Spec(Z[x, y]) corresponding to the morphism
Z[x, y] −→ (Z[ai, bi][ 1

Res ])
G
0 , x 7→ σ1, y 7→ σ2.

The morphism ϕ is an isomorphism of schemes over Z.

3.3.3 The projective case

3.3.3.1 — Let us recall that k is any algebraically closed field. By Lemma 4,
for i = 1 or 2, σi = σ̃i

Res for well defined homogeneous polynomial σ̃i in the
coefficients of P and Q. So, we can consider the following rational map:

θ : P(k[V ]2 ⊗ V )− −− > P2, [Res : σ̃1 : σ̃2].

Consider Ω the open subset of P(k[V ]2⊗ V ) defined by (Res, σ̃1, σ̃2) 6= (0, 0, 0).

Theorem 14 In fact, Ω equals P(k[V ]2 ⊗ V )s and θ is the projective GIT-
quotient.

We will prove Theorem 14 using the same method than in the affine case.

3.3.3.2 — The first step is analogous to Lemma 4.

Lemma 6 Let φ ∈ P(k[V ]2 ⊗ V )s − Rat2. We have:

1. Let (a, b) ∈ k2. The point [az : z + b] ∈ P(k[V ]2 ⊗ V ) − Rat2 is stable if
and only if (a, b) 6= (0, 0).

2. There exists (a, b) ∈ k2−{(0, 0)} such that [az : z+ b] belongs to the orbit
of φ.

3. For (a, b) ∈ k2 − {(0, 0)}, we denote by [a : b] the corresponding point in
P1. Two points [az : z+b] and [a′z : z+b′] belong to the same SL2(k)-orbit
if and only if [a : b] = [a′ : b′] or [a : b] = [a′ : b′].



3.3. THE CASE D = 2 25

Proof. The first assertion is easy using Proposition 10. Set φ = [P : Q].
Since φ 6∈ Rat2, P and Q have a common root ζ. Since φ = [P : Q] is stable,
φ′ (with notation of Proposition 10) have a fix point ξ 6= ζ. Let g ∈ SL2(k)
be such that gζ = ∞ and gξ = 0. Then, g.φ = [az : cz + b] for a, b and c in
k. Moreover, ∞ cannot be fixed by az

cz+b , so c 6= 0. The second assertion follows.

The last assertion need more computation. The formula(
u 0
0 u−1

)
.[az : z + b] = [u−2z : z + u−2z] (3.1)

implies that the orbit of [az : z + b] only depends on the point [a : b] ∈ P1.
This orbit will be denoted by O[a:b]. It remains to prove that O[a:b] = O[a′:b′] if
and only if [a′ : b′] equals [a : b] or [b : a]. The formula(

1 b− a
0 1

)
.[az : z + b] = [bz : z + az] (3.2)

implies the ”if part”. Let us assume that O[a:b] = O[a′:b′]. Notice that a or b
is zero if and only if the degree of the gcd of the numerators and denominators
(view as elements of k[V ]2) equals two. In this case, a′ or b′ equals zero and
[a′ : b′] equals [a : b] or [b : a]. Now we may assume that a and b are non zero.
Then a′ and b′ are non zero. Let g ∈ SL2(k) such that g.[az : z+b] = [a′z : z+b′].
In this case, ∞ is the only common root to az and z + b (viewed as elements of
k[V ]2): so, g.∞ = ∞. The rational map [az : z+ b] has exactly two fixed points
0 and a− b. So, g−1.0 equals 0 or a− b. It g.0 = 0, g is diagonal and the above
Formula 3.1 shows that [a′ : b′] = [a : b]. If g−1.0 = a− b, g is the product of a
diagonal elements SL2(k) and the matrix of Formula 3.2. So, the two formulas
imply that [a′ : b′] = [a : b]. �

3.3.3.3 — Proof.[of Theorem 14] It is clear that Ω is contained in the locus
of stable points. Moreover, direct computations show that

σ̃1([az : z + b]) = −ab and σ̃2([az : z + b]) = −a2 − b2.

With Lemma 6, this implies easily that any stable point in P(k[V ]2⊗V ) belongs
to Ω. These formulas also proves that θ induces a bijection from (P(k[V ]2 ⊗
V )s − Rat2)/SL2(k) onto P1. With Theorem 12, θ is bijective.

Since P2 is normal (since smooth), if the characteristic of k is zero, one can
conclude exactly as in the affine case. If the characteristic is not zero, one can
easily prove that θ is actually an isomorphism over Z. �
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