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Abstract Let G be a connected reductive subgroup of a complex connected
reductive group Ĝ. Fix maximal tori and Borel subgroups of G and Ĝ. Con-
sider the cone L R(G, Ĝ) generated by the pairs (ν, ν̂) of dominant charac-
ters such that V ∗

ν is a submodule of Vν̂ (with usual notation). Here we give
a minimal set of inequalities describing L R(G, Ĝ) as a part of the dominant
chamber. In other words, we describe the facets of L R(G, Ĝ) which intersect
the interior of the dominant chamber. We also describe smaller faces. Finally,
we are interested in some classical redundant inequalities.

Along the way, we obtain results about the faces of the Dolgachev-Hu
G-ample cone and variations of this cone.
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1 Introduction

1.1 The branching cone

In this article, we are mainly interested in the faces of the G-ample cone as
defined by Dolgachev-Hu in [9]. In this introduction, we firstly explain the
applications to the generalized Horn problem.

Let G be a connected reductive subgroup of a connected reductive group
Ĝ both defined over an algebraically closed field K of characteristic zero. We
consider the following question:

What irreducible representations of G appear in a given irreducible
representation of Ĝ?

Once maximal tori (T ⊂ T̂ ) and Borel subgroups (B ⊃ T and B̂ ⊃ T̂ ) are
fixed, the question is to understand the set LR(G, Ĝ) of dominant characters
(ν, ν̂) of T × T̂ such that the dual of the G-module associated to ν can be
G-equivariantly embedded in the Ĝ-module associated to ν̂. By a result of
M. Brion and F. Knop (see [10]), LR(G, Ĝ) is a finitely generated submonoid
of the character group of T × T̂ . Our purpose is to study the linear inequal-
ities satisfied by this monoid. More precisely, we consider the convex cone
L R(G, Ĝ) generated by LR(G, Ĝ): it is a closed rational polyhedral cone.
We are interested in the faces of L R(G, Ĝ).

1.2 Spectral interpretation

In this subsection, we work with complex numbers. Let K (resp. K̂) be a
maximal compact subgroup of G (resp. Ĝ) such that K ⊂ K̂ . Let k and k̂ de-
note the Lie algebras of K and K̂ . Consider the restriction map p : k̂∗ −→ k∗
from the dual of k̂ to that of k. We are interested in the projections of coadjoint
orbits of k̂∗ in k∗.

Up to changing T , we may assume that H = K ∩ T is a Cartan sub-
group of K . Consider the Lie algebra h of H . Via the Cartan-Killing form,
we embed the dual h∗ of h in the dual k∗ of k. Let us recall that the map
h∗+ �−→ k∗/K, ξ �→ K.ξ is a homeomorphism, where h∗+ denotes the domi-
nant Weyl chamber of h∗. We use similar notation for Ĝ and K̂ .

If ξ̂ ∈ k̂∗ then the K-orbits in p(K̂ξ̂ ) are parameterized by p(K̂ξ̂ ) ∩ h∗+.
As it was pointed out by Guillemin-Sternberg [13], Heckman’s work [14] (see
also [20]) implies that the closure of L R(G, Ĝ) in h∗ × ĥ∗ is the set of pairs
(ξ, ξ̂ ) ∈ h∗+ × ĥ∗+ such that −w0ξ ∈ p(K̂ξ̂ ). Here w0 is the longest element
of the Weyl group of G.
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In the case of the diagonal embedding of GLn in GLn × GLn, the prob-
lem to describe L R(G, Ĝ) can be reformulated as follows: what can be
said about the eigenvalues of a sum of two Hermitian matrices, in terms of
the eigenvalues of the summands? In 1912, H. Weyl [44] obtained the first
nontrivial inequalities for this question. In 1962, Horn [17] gave a conjec-
tural recursive description of a complete list of inequalities to characterize
L R(GLn,GLn × GLn). This cone will be called the Horn cone. In 1998,
A. Klyachko [23] made an important step in solving the Horn conjecture: he
found a complete list of inequalities which characterize the Horn cone. In
1999, Knutson-Tao [25] shown the saturation conjecture; this implies that the
inequalities given by the Horn conjecture and the Klyachko theorem coincide,
and so, ends the proof of the Horn conjecture.

In [23], the problem of describing the Horn cone is interpreted in terms of
semistability for toric vector bundles on P

2. Following Klyachko, we study
here the cones L R(G, Ĝ) using semistability in Geometric Invariant Theory
as in [3, 4].

1.3 A characterization of L R(G, Ĝ)

We assume, from now on that no nonzero ideal of the Lie algebra of G is an
ideal of that of Ĝ. In Proposition 12, using a result of [32], we will prove that
this assumption implies that the interior of L R(G, Ĝ) is nonempty.

In [4], Berenstein-Sjamaar gave a list of inequalities which characterizes
L R(G, Ĝ). In [3], Belkale-Kumar obtained a smaller list which also charac-
terizes this cone in the case when G is diagonally embedded in Ĝ = Gs . This
case corresponds to the problem of decomposition of the tensor product of
s irreducible representations of G. Our first result is a generalization of the
Belkale-Kumar result in the Berenstein-Sjamaar setting.

To make our statements precise, we introduce notation. Consider the nat-
ural pairing 〈· , ·〉 between the one parameter subgroups and the characters
of tori T or T̂ . Let W (resp. Ŵ ) denote the Weyl group of T (resp. T̂ ). If λ

is a one parameter subgroup of T (or so of T̂ ), we denote by Wλ (resp. Ŵλ)
the stabilizer of λ for the natural action of the Weyl group. For w ∈ W/Wλ

and ŵ ∈ Ŵ/Ŵλ, we consider the following linear form on the character group
X(T × T̂ ) of T × T̂ :

ϕw,ŵ,λ : (ν, ν̂) �→ 〈ŵλ, ν̂〉 + 〈wλ,ν〉.
In fact, all the inequalities in Theorem A below will have the following form
ϕw,ŵ,λ(ν, ν̂) ≥ 0. We need some notation to explain which triples (w, ŵ, λ)

will appear.
Let P(λ) denote the usual parabolic subgroup of G associated to λ (see

Sect. 2.4). The cohomology group H∗(G/P (λ),Z) is freely generated by the
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Schubert classes σw parameterized by the elements w ∈ W/Wλ. We will con-
sider Ĝ/P̂ (λ), σŵ as above but with Ĝ in place of G. Consider also the canon-
ical G-equivariant immersion ι : G/P(λ) −→ Ĝ/P̂ (λ); and the correspond-
ing morphism ι∗ in cohomology.

Let g and ĝ denote the Lie algebras of G and Ĝ. Let ρ, ρ̂ and ρ̂λ be
the half-sum of positive roots of G, Ĝ and of the centralizer Ĝλ of λ in Ĝ

respectively. Consider the set WtT(ĝ/g) of nontrivial weights of T in ĝ/g.
Let X(T ) ⊗ Q denote the rational vector space generated by the characters
of T . We consider the set of hyperplanes H of X(T ) ⊗ Q spanned by some
elements of WtT(ĝ/g). For each such hyperplane H there exist exactly two
opposite indivisible one parameter subgroups ±λH which are orthogonal (for
the paring 〈·, ·〉) to H . The so obtained one parameter subgroups form a set
stable by the action of W . Let {λ1, . . . , λn} be the set of dominant such one
parameter subgroups.

We can now give our list of inequalities:

Theorem A We assume that no nonzero ideal of g is an ideal of ĝ. Then,
L R(G, Ĝ) has nonempty interior in X(T × T̂ ) ⊗ Q.

A dominant weight (ν, ν̂) belongs to L R(G, Ĝ) if and only if for any
i = 1, . . . , n and for any pair of Schubert classes (σw, σŵ) of G/P(λi) and
Ĝ/P̂ (λi) associated to (w, ŵ) ∈ W/Wλi

× Ŵ/Ŵλi
such that

(i) ι∗(σŵ) · σw = σe ∈ H∗(G/P (λi),Z), and
(ii) 〈wλi, ρ〉 + 〈ŵλi, ρ̂〉 = 〈λi, ρ〉 + 〈λi,2ρ̂λi − ρ̂〉,
we have

ϕw,ŵ,λi
(ν, ν̂) = 〈wλi, ν〉 + 〈ŵλi, ν̂〉 ≥ 0. (1)

In [4], Berenstein-Sjamaar showed that (ν, ν̂) belongs to L R(G, Ĝ) if and
only if ϕw,ŵ,λ(ν, ν̂) ≥ 0 for a finite list (including λ1, . . . , λn) of one para-
meter subgroups λ and for any pair of Schubert classes (σw, σŵ) such that
ι∗(σŵ) · σw = d.σe for some positive integer d . In the case when G is diago-
nally embedded in Gs , Kapovich-Leeb-Millson proved that one may assume
that d = 1. Again in the case when G is diagonally embedded in Gs , Belkale-
Kumar obtained in [3] the same inequalities as in Theorem A.

1.4 Irredundancy

Whereas the Berenstein-Sjamaar list is redundant, our list is proved to be
irredundant. In some sense, our main result asserts that Theorem A is optimal:

Theorem B In Theorem A, Inequalities (1) are pairwise distinct and no one
can be omitted.
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This result was known is some particular cases. Indeed, Knutson, Tao and
Woodward showed in [26] the case when G = SLn is diagonally embedded
in SLn × SLn using combinatorial methods. Using the interpretation of the
Littlewood-Richardson coefficients as structure coefficients of the cohomol-
ogy rings of the Grassmann varieties, Belkale made a geometric proof of
the Knutson-Tao-Woodward result (see [2]). Using explicit calculation with
the help of a computer, Kapovich, Kumar and Millson proved the case when
G = SO(8) is diagonally embedded in G × G in [18]. Our proof is different
and uses Geometric Invariant Theory.

1.5 Other classical inequalities

Let λ be a one parameter subgroup of G. Let (σw, σŵ) be a pair of Schubert
classes of G/P(λ) and Ĝ/P̂ (λ) such that ι∗(σŵ) · σw = 0 ∈ H∗(G/P (λ),Z).
The points (ν, ν̂) ∈ L R(G, Ĝ) satisfy ϕw,ŵ,λ(ν, ν̂) ≥ 0. The inequalities
given by the Horn conjecture or by the Berenstein-Sjamaar theorem have this
form. For simplicity, we now assume that λ = λi is a one parameter subgroup
which appears in Theorem A. Consider the face F (w, ŵ, λi) of L R(G, Ĝ)

associated to this inequality, that is the set of (ν, ν̂) ∈ L R(G, Ĝ) such that
ϕw,ŵ,λi

(ν, ν̂) = 0. Theorem B shows that if Conditions (i) and (ii) of Theo-
rem A are fulfilled, then F (w, ŵ, λi) is a facet, else, F (w, ŵ, λi) is smaller.
In fact, we obtain that the extra inequalities are redundant in a stronger way:

Theorem C Let us fix a λi . Let (σw, σŵ) be a pair of Schubert varieties of
G/P(λi) and Ĝ/P̂ (λi) such that ι∗(σŵ) · σw = 0 ∈ H∗(G/P (λi),Z). Then,

(i) either, F (w, ŵ, λi) has codimension one,
(ii) or, F (w, ŵ, λi) contains no point (ν, ν̂) with ν or ν̂ strictly dominant.

For the Horn cone, this result is due to Knutson-Woodward (see [11, Propo-
sition 10]). Note that the proof of Theorem C explains directly and geomet-
rically why a given redundant inequality is redundant; instead of showing
that other inequalities are sufficient to characterize the cone. Note that Theo-
rem 12 in Sect. 7 actually applies to any one parameter subgroup λ, and not
only with some λi .

1.6 Smaller faces

Theorems A and B can be thought as a description of the facets of L R(G, Ĝ)

which intersect the interior of the dominant chamber. In Theorem 11 below,
we study the smaller faces of L R(G, Ĝ). To avoid some notation in the in-
troduction, we only state our results about these faces in the case when G

is diagonally embedded in Gs for some integer s ≥ 2. Indeed, the beautiful
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Belkale-Kumar cohomology product (see [3]) allows a pleasant statement in
this case.

If α is a simple root of G, ωα∨ denotes the corresponding fundamental one
parameter subgroup. If I is a set of simple roots, P(I) denotes the standard
parabolic subgroup associated to I and WI its Weyl group. In [3], Belkale-
Kumar defined a new product �0 on the cohomology groups H∗(G/P (I),Z).

Theorem D We assume that G is semisimple and diagonally embedded in
Ĝ = Gs for some integer s ≥ 2.

(i) Let I be a set of d simple roots and (w0, . . . ,ws) ∈ (W/WI )
s+1 such that

σw0 �0 · · · �0 σws = σe ∈ H∗(G/P (I),Z). Then, the set of (ν0, . . . , νs) ∈
L R(G,Gs) such that

∀α ∈ I
∑

i

〈ωα∨,w−1
i νi〉 = 0,

is a face of codimension d of L R(G,Gs).
(ii) Any face of L R(G,Gs) intersecting the interior of the dominant chamber

of Gs+1 is obtained in this way.

Even though there is a lot of literature on the facets, the smaller faces have
not been studied in detail. Derksen-Weyman (see [8]) obtained results in the
quiver setting which can be applied to describe all the faces of the Horn cone.
Note that Theorem D gives an application of the Belkale-Kumar product �0
for any G/P whereas in [3] only the case when P is maximal was used.

1.7 GIT-cones

The starting point of the proofs of Theorems A to D is the Borel-Weil theorem
which gives an interpretation of the cone L R(G, Ĝ) in terms of Geometric
Invariant Theory. This method essentially due to Klyachko for the Horn cone,
was already used in [3, 4].

Consider the variety X = G/B × Ĝ/B̂ endowed with the diagonal action
of G. To any character (ν, ν̂) of T × T̂ , one associates a G-linearized line
bundle L(ν,ν̂) on X such that H0(X, L(ν,ν̂)) = V ∗

ν ⊗ V ∗
ν̂

. Hence, (ν, ν̂) be-

longs to L R(G, Ĝ) if and only if a positive power of L(ν, ν̂) admits a nonzero
G-invariant section. If L(ν, ν̂) is ample this means that X admits semistable
points for L(ν, ν̂). So, one can use classical results of Geometric Invariant
Theory such as the Hilbert-Mumford theorem.

We obtain results in the following more general context. Consider a con-
nected reductive group G acting on a normal projective variety X. To any G-
linearized line bundle L on X we associate the following open subset Xss(L)
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of X:

Xss(L) = {x ∈ X : ∃n > 0 and τ ∈ H0(X, L⊗n)G such that τ(x) = 0}.
The points of Xss(L) are said to be semistable for L. Note that if L is not
ample, this notion of semistability is not the standard one. In particular, the
quotient πL : Xss(L) −→ Xss(L)//G is a good quotient, if L is ample; but
not in general. In this context, we ask for:

What are the L’s such that Xss(L) = ∅?

Let us fix a free finitely generated subgroup  of the group PicG(X) of G-
linearized line bundles on X. Let Q denote the Q-vector space containing
 as a lattice. Consider the convex cones T CG

(X) (resp. A CG
(X)) generated

in Q by the L’s (resp. the ample L’s) in  which have nonzero G-invariant
sections. By [9] (see also [39]), A CG

(X) is a closed convex rational poly-
hedral cone in the ample cone of Q (see Sect. 3.1 for a precise definition).
The cones A CG

(X) and T CG
(X) (and also S A CG

(X) which will be defined
in Sect. 3.1) will be called the GIT-cones. We are interested in the faces of
GIT-cones.

Generalizing Levi-movability of [3], we are now going to define the
notion of well covering pair. Let λ be a one parameter subgroup of G

and C be an irreducible component of its fixed point set Xλ. Consider
C+ = {x ∈ X | limt→0 λ(t)x ∈ C} and the natural G-equivariant map η :
G ×P(λ) C+ −→ X (see Sects. 2.5.1 and 3.2.2 for details). The pair (C,λ) is
said to be well covering if η induces an isomorphism over an open subset of
X intersecting C. The pair is said to be dominant if η is dominant.

When X = (G/B)3, C+ is a P(λ)3-orbit corresponding to three Schubert
cells X1, X2, X3 in G/P(λ). For i = 1, 2, 3, let σi denote the cycle class
in the cohomology H∗(G/P (λ),Z) of the closure of Xi . For any point x =
(g1B/B, g2B/B, g3B/B) ∈ X the fiber η−1(x) identifies naturally with the
intersection g−1

1 X1 ∩ g−1
2 X2 ∩ g−1

3 X3. By Kleiman’s transversality theorem,
η is birational if and only if σ1 · σ2 · σ3 = σe. The pair (C,λ) is well covering
if in addition (σ1, σ2, σ3) is Levi-movable as defined in [3].

The use of the map η in the context of Geometric Invariant Theory is clas-
sical (see for example [21]). This map plays also a central role in Vakil’s work
about Schubert calculus (see [42]).

For L ∈ PicG(X), we denote by μL(C,λ) the integer giving the action of λ

on the restriction of L to C. We now give a first description of A CG
(X) (see

Proposition 4 and Theorem 3 for more general statements):

Theorem E An ample G-linearized line bundle L ∈  belongs to A CG
(X) if

and only if for any well covering pair (C,λ) with a dominant one parameter
subgroup λ of T we have μL(C,λ) ≤ 0.
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If, in addition X = Ĝ/B̂ × Y , for some normal projective G-variety Y ,
Q = PicG(X) ⊗ Q and A CG

(X) has nonempty interior, then it is sufficient
to keep the pairs (C,λ) such that C contains points with isotropy group of
dimension one.

Theorem E is a generalization and clarification of methods used in [1, 3,
4, 9, 23]. The use of optimal destabilizing subgroup in eigenvalue problems
actually originates in [1]; the use of the Kempf-Hesselink stratification to
study how Xss(L) depends on L originates in [9].

If (C,λ) is a dominant pair, then the set of L ∈ T CG
(X) such that

μL(C,λ) = 0 is a face of T CG
(X) denoted by T F (C,λ). Note that the cen-

tralizer Gλ of λ in G acts on C. To obtain Theorem B, one has to prove that
if (C,λ) is a well covering pair as in Theorem E then the face T F (C,λ) is a
facet. We prove this by induction using the following:

Theorem F Let (C,λ) be a well covering pair. We assume that Q =
PicG(X) ⊗ Q. Consider the linear map ρ induced by the restriction:

ρ : PicG(X) ⊗ Q −→ PicGλ

(C) ⊗ Q.

Then, T F (C,λ) and the pullback by ρ of T CGλ

 (C) span the same subspace.

Theorem C is a consequence of the more general

Theorem G We assume that X = Ĝ/B̂ × Y , for some normal projective G-
variety Y . Let (C,λ) be a dominant pair and L ∈ T F (C,λ) be ample. Con-
sider the set of semistable points Css(L,Gλ) for the action of Gλ on C.

Then,

(i) Xss(L)//G is isomorphic to Css(L,Gλ)//Gλ; and,
(ii) (C,λ) is well covering.

Theorem D is mainly a consequence of the following

Theorem H Let F be a face of A CG
(X).

Then, there exists a well covering pair (C,λ) such that F = T F (C,λ) ∩
A CG

(X).

In this article, we are mainly interested in the cones L R(G, Ĝ) whereas
there are other interesting GIT-cones. For example, if Y is any G-variety
endowed with an ample G-linearized line bundle L the moment polytope
P(Y, L) is an affine section of the cone T CG

(G/B ×Y) for a well chosen .
These polytopes were studied from symplectic point of view (see [43]) or
from an algebro-geometric point of view in [6, 31].
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The Hilbert-Mumford numerical criterion and the Kempf theorem are re-
called with some complements in Sect. 2. In Sects. 3 to 6, we prove our
general results about GIT-cones. We apply them to the branching cones
L R(G, Ĝ) in Sect. 7. One can move on Sect. 7 after Sects. 3, 4, 5 or 6 to
obtain respectively Theorems A, B, D or C.

Convention The ground field K is assumed to be algebraically closed of
characteristic zero. The notation introduced in the environments “Notation”
are fixed for all the sequence of the article.

2 The Hilbert-Mumford numerical criterion

Notation Let K
∗ denote the multiplicative group of K. If G is an affine alge-

braic group, X(G) denotes the group of characters of G; that is, of algebraic
group homomorphisms from G to K

∗. If G acts algebraically on a variety
X, X is said to be a G-variety. If x ∈ X, we will denote by Gx its isotropy
subgroup and by G.x its orbit. As in [33], we denote by PicG(X) the group
of G-linearized line bundles on X. If L ∈ PicG(X), H0(X, L) denotes the
G-module of regular sections of L.

We will use classical results about the Hilbert-Mumford numerical crite-
rion. In this section, we present these results and give some complements. Let
us fix a connected reductive group G and an irreducible projective algebraic
G-variety X.

2.1 An ad hoc notion of semistability

Notation If L is a line bundle on X and x is a point in X, Lx denotes the
fiber in L over x.

As in the introduction, for any G-linearized line bundle L on X, we con-
sider the following set of semistable points for L:

Xss(L) = {x ∈ X : ∃n > 0 and τ ∈ H0(X, L⊗n)G such that τ(x) = 0}.
To avoid confusion, we sometimes denote Xss(L) by Xss(L,G). The subset
Xss(L) is open and G-stable. A point x in X is said to be unstable for L if it
is not semistable for L.

Remark Note that this definition of Xss(L) is NOT standard. Indeed, it is usu-
ally agreed that the open subset defined by the nonvanishing of τ be affine.
This property which is useful to construct a good quotient of Xss(L) is au-
tomatic if L is ample but not in general; hence, our definition coincides with
the usual one if L is ample.
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If L is ample, there exists a categorical quotient:

π : Xss(L) −→ Xss(L)//G,

such that Xss(L)//G is a projective variety and π is affine.
The following lemma is easy and well known.

Lemma 1 Let L be a G-linearized line bundle on X and x ∈ X be a semi-
stable point.

Then, the restriction of L to G.x has finite order in PicG(G.x).

Proof Let us recall that for any L ∈ PicG(G.x), the action of Gx on the
fiber Lx determines a character μL(x,Gx) of Gx . Moreover, the map
PicG(G.x) −→ X(Gx), L �→ μL(x,Gx) is an injective homomorphism.

Now, let us assume that the character μL(x,Gx) has infinite order. It re-
mains to prove that x is unstable for L. Let τ be a G-invariant section of
L⊗n for some n > 0. Then τ(x) is fixed by Gx and belongs to L⊗n

x . Since,
n.μL(x,Gx) is nontrivial, τ(x) must be zero. So, x is unstable. �

2.2 The functions μ•(x, λ)

Let L ∈ PicG(X). Let x be a point in X and λ be a one parameter subgroup
of G. Since X is complete, limt→0 λ(t)x exists; let z denote this limit. The
image of λ fixes z and so the group K

∗ acts via λ on the fiber Lz. There exists
an integer denoted by μL(x, λ) such that for all t ∈ K

∗ and z̃ ∈ Lz we have:

λ(t).z̃ = t−μL(x,λ)z̃.

One can immediately prove that the numbers μL(x, λ) satisfy the following
properties:

(i) μL(g · x, g · λ · g−1) = μL(x, λ) for any g ∈ G;
(ii) the map L �→ μL(x, λ) is a group homomorphism from PicG(X) to Z;

(iii) for any G-variety Y and for any G-equivariant morphism f : X −→ Y ,
μf ∗(L)(x, λ) = μL(f (x), λ), where x ∈ X and L ∈ PicG(Y ).

A less direct property is

Proposition 1 Let L, x, λ and z be as above. Let x̃ be a nonzero point in Lx .
We embed X in L using the zero section. Then, when t tends to 0,

(i) λ(t)x̃ tends to z, if μL(x, λ) < 0;
(ii) λ(t)x̃ tends to a nonzero point z̃ in Lz, if μL(x, λ) = 0;

(iii) λ(t)x̃ has no limit in L, if μL(x, λ) > 0.
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Proof Set V = {λ(t).x | t ∈ K
∗} ∪ {z}: it is a locally closed subvariety of X

stable by the action of K
∗ via λ. Moreover, z is the unique closed K

∗-orbit
in V . So, [39, Lemma 7] implies that PicK

∗
(V ) is isomorphic to X(K∗); and

finally that the restriction L to V is the trivial line bundle endowed with the
action of K

∗ given by −μL(x, λ). The proposition follows immediately. �

The integers μL(x, λ) are used in [33] to give a numerical criterion
(namely the Hilbert-Mumford criterion) for stability with respect to an ample
G-linearized line bundle L:

x ∈ Xss(L) ⇐⇒ μL(x, λ) ≤ 0 for any one parameter subgroup λ.

A line bundle L over X is said to be semiample if a positive power of
L is base point free. With our notion of semistability, the Hilbert-Mumford
theorem admits the following direct generalization:

Lemma 2 Let L be a G-linearized line bundle over X and x be a point in X.
Then,

(i) if x is semistable for L, then μL(x, λ) ≤ 0 for any one parameter sub-
group λ of G;

(ii) for any one parameter subgroup λ of G, if x is semistable for L and
μL(x, λ) = 0, then limt→0 λ(t)x is semistable for L;

(iii) if in addition L is semiample, x is semistable for L if and only if
μL(x, λ) ≤ 0 for any one parameter subgroup λ of G.

Proof Assume that x is semistable for L and consider a G-invariant sec-
tion τ of L⊗n which does not vanish at x. Since λ(t)τ (x) = τ(λ(t)x) tends
to τ(z) when t → 0, Proposition 1 shows that μL(x, λ) ≤ 0. If in addition
μL(x, λ) = 0, Proposition 1 shows that τ(z) is nonzero; and so that z is semi-
stable for L. This proves the two first assertions.

Assume now that L is semiample. Let n be a positive integer such that
L⊗n is base point free. Let V denote the dual of H0(X, L⊗n): V is a fi-
nite dimensional G-module. Moreover, the usual map φ : X −→ P(V ) is
G-equivariant. Let Y denote the image of φ and M denote the restriction
of O(1) to Y .

Then L⊗n is the pullback of M by φ. Since X is projective, φ induces
isomorphisms from H0(Y, M⊗k) onto H0(X, L⊗nk) (for any k). So, Xss(L) =
φ−1(Y ss(M)). We deduce the last assertion of the lemma by applying the
Hilbert-Mumford criterion to Y and M and Property (iii) of the functions
μ•(x, λ). �

Remark

(i) If L is ample, Assertion (ii) of Lemma 2 is [39, Lemma 3].
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(ii) The proof of Assertion (iii) shows that a lot of properties of semistability
for ample line bundles are also available for semiample line bundles (see
Propositions 2 and 7, and Theorems 1 and 2 below).

2.3 Definition of the functions M•(x)

Notation Let � be any affine algebraic group. Its identity component is de-
noted by �◦. Let Y(�) denote the set of one parameter subgroups of �. Note
that if �◦ is a torus, Y(�) is a group.

If  is an Abelian group, we denote by Q (resp. R) the tensor product
of  with Q (resp. R) over Z.

2.3.1

Let T be a maximal torus of G. The Weyl group W of T acts linearly on
Y(T )R. Since W is finite, there exists a W -invariant Euclidean norm (defined
over Q) ‖ · ‖ on Y(T )R. On the other hand, for any λ ∈ Y(G) there exists
g ∈ G such that g · λ · g−1 ∈ Y(T ). We set ‖λ‖ = ‖g · λ · g−1‖. This does not
depends on the choice of g since if two elements of Y(T ) are conjugate by
an element of G, then they are by an element of the normalizer of T (see [33,
Lemma 2.8]).

If L ∈ PicG(X), we now introduce the following notation:

μL(x, λ) = μL(x, λ)

‖λ‖ , ML(x) = sup
λ∈Y (G)

λ nontrivial

μL(x, λ).

In fact, we will see in Corollary 1 that ML(x) is finite.

2.3.2 M•(x) for a torus action

Notation If Y is a variety, and Z is a part of Y , the closure of Z in Y will be
denoted by Z. If � is a group acting on Y , Y� denotes the set of fixed points
of � in Y .

If V is a finite dimensional vector space, and v is a nonzero vector in V , [v]
denotes the class of v in the projective space P(V ). If V is a �-module, and χ

is a character of �, we denote by Vχ the set of v ∈ V such that g.v = χ(g)v

for any g ∈ �.

In this subsection we consider the action of a torus T on a variety X. Let
L ∈ PicT (X) and z ∈ XT . Consider the character μL(z, T ) of T such that for
all t ∈ T and z̃ ∈ Lz, we have:

t.z̃ = μL(z, T )(t−1)z̃.
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We obtain a morphism

μ•(z, T ) : PicT (X) −→ X(T ).

For any point x in X, we denote by P L
T (x) the convex hull in X(T )R of

characters μL(z, T ) for z ∈ T .x
T

.
The following proposition is an adaptation of a result of L. Ness and gives

a pleasant interpretation of the number ML(x):

Proposition 2 We assume that L is semiample. We have:

(i) The point x is unstable if and only if 0 does not belong to P L
T (x). In this

case, ML(x) is the distance from 0 to P L
T (x).

(ii) There exists a unique indivisible λ ∈ Y(T ) such that μL(x, λ) = ML(x).

Proof Since L is semiample, there exist a positive integer n, a T -module V ,
and a T -equivariant morphism φ : X −→ P(V ) such that L⊗n = φ∗(O(1)).
Since μ•(z, T ) is a morphism, we have: P L⊗n

T (x) = nP L
T (x) for any x. More-

over, μL⊗n
(x, λ) = nμL(x, λ), for all x and λ; so, ML⊗n

(x) = nML(x). As a
consequence, it is sufficient to prove the proposition for L⊗n; in other words,
we may assume that n = 1.

Let us recall that:

V =
⊕

χ ∈ X(T )

Vχ .

Let x ∈ X and v ∈ V such that [v] = φ(x). There exist unique vectors
vχ ∈ Vχ such that v = ∑

χ vχ . Let Q be the convex hull in X(T )R of the χ ’s

such that vχ = 0. It is well known (see [36]) that the fixed points of T in T .[v]
are exactly the [vχ ]’s with χ vertex of Q. Moreover, T acts by the character
−χ on the fiber O(1)[vχ ] over [vχ ] in O(1). One deduces that Q = P L

T (x).
So, it is sufficient to prove the proposition with Q in place of P L

T (x) and [v]
in place of x (because of our nonstandard definition of semistability): this is
a statement of [34]. Note that in [34], an adapted one parameter subgroup
λ satisfies ‖λ‖ = 1 (in particular, it is a virtual one parameter subgroup).
Here, we have chosen a different normalization: an adapted one parameter
subgroup is assumed to be undivisible. This is possible, since the quadratic
form associated to ‖ · ‖ is assumed to be defined on Q. �

2.3.3 M•(x) in general

An indivisible one parameter subgroup λ of G is said to be adapted to x and
L if μL(x, λ) = ML(x).
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Using the fact that any one parameter subgroup is conjugated to one in a
given torus, Proposition 2 implies easily

Corollary 1

(i) The numbers ML(x) are finite (even if L is not semiample, see [9, Propo-
sition 1.1.6]).

(ii) If L is semiample then there exists an adapted one parameter subgroup
to x and L.

We can now reformulate the numerical criterion for stability: if L is semi-
ample, we have

Xss(L) = {x ∈ X : ML(x) ≤ 0}.

2.4 Adapted one parameter subgroups

To the one parameter subgroup λ of G, we associate the parabolic subgroup
(see [33]):

P(λ) = {
g ∈ G : lim

t→0
λ(t).g.λ(t)−1 exists in G

}
.

The unipotent radical of P(λ) is

U(λ) = {
g ∈ G : lim

t→0
λ(t).g.λ(t)−1 = e

}
.

Moreover, the centralizer Gλ of the image of λ in G is a Levi subgroup
of P(λ). For p ∈ P(λ), we set p = limt→0 λ(t).p.λ(t)−1. Then, we have the
following short exact sequence:

1 � U(λ) � P(λ)
p �→ p� Gλ � 1.

Note that for g ∈ P(λ), we have μL(x, λ) = μL(x, g · λ · g−1). The fol-
lowing theorem due to G. Kempf is a generalization of the last assertion of
Proposition 2.

Theorem 1 (see [19]) Let x be an unstable point for a semiample G-
linearized line bundle L. Then:

(i) The group P(λ) does not depend on the one parameter subgroup adapted
to x and L. We denote by P L(x) this subgroup.

(ii) Any two one parameter subgroups adapted to x and L are conjugate by
an element of P L(x).
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Note that L is assumed to be ample in [19]; the semiample case follows
from the argument used in the proof of Proposition 2.

We will also use the following theorem obtained independently by Ness
and Ramanan-Ramanathan.

Theorem 2 ([35, Theorem 9.3] or [38, Proposition 1.9]) Let x and L be as
in Theorem 1. Let λ be an adapted one parameter subgroup to x and L. We
consider z = limt→0 λ(t) · x. Then, λ is adapted to z and L and ML(x) =
ML(z).

2.5 Stratification of X induced from L

2.5.1

Let L be a semiample G-linearized line bundle on X. If d > 0 and 〈τ 〉 is a
conjugacy class of one parameter subgroups of G, we set:

SL
d,〈τ 〉 = {x ∈ X : ML(x) = d, and

〈τ 〉 contains an element adapted to x and L}.

We now recall the notion of parabolic fiber bundle. It will be used to de-
scribe the geometry of SL

d,〈τ 〉.
Let us fix a parabolic subgroup P of G and a P -variety Y . Consider over

G × Y the action of G × P given by the formula (with obvious notation):

(g,p).(g′, y) = (gg′p−1,py).

Since the quotient map G −→ G/P is a Zariski-locally trivial principal P -
bundle, one can easily construct a quotient G×P Y of G×Y by the action of
{e}×P . The action of G×{e} induces an action of G on G×P Y . Moreover,
the first projection G × Y −→ G induces a G-equivariant map G ×P Y −→
G/P which is a locally trivial fibration with fiber Y .

The class of a pair (g, y) ∈ G × Y in G ×P Y is denoted by [g : y]. If Y

is a P -stable locally closed subvariety of a G-variety X, it is well known that
the map

G ×P Y −→ G/P × X,[
g : y] �−→ (gP,gy)

is an immersion; its image is the set of (gP, x) ∈ G/P × X such that
g−1x ∈ Y .
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2.5.2

If T is the set of conjugacy classes of one parameter subgroups, Theorem 1
gives us the following partition of X:

X = Xss(L) ∪
⋃

d>0, 〈τ 〉∈T
SL

d,〈τ 〉. (2)

W. Hesselink showed in [16] that this union is a finite stratification by
G-stable locally closed subvarieties of X. We will call it the stratification
induced from L.

To describe the geometry of these strata, we need additional notation. For
λ ∈ 〈τ 〉, we set:

SL
d,λ := {x ∈ SL

d,〈τ 〉 : λ is adapted to x and L},
and

ZL
d,λ := {x ∈ SL

d,λ : λ fixes x}.
By Theorem 2, we have the map

pλ : SL
d,λ −→ ZL

d,λ, x �−→ lim
t→0

λ(t).x.

Proposition 3 With above notation, if d is positive, we have:

(i) ZL
d,λ is open in Xλ and stable by Gλ;

(ii) SL
d,λ = {x ∈ X : limt→0 λ(t).x ∈ ZL

d,λ} and is stable by P(λ);
(iii) there is a bijective morphism G ×P(λ) SL

d,λ −→ SL
d,〈λ〉, which is an iso-

morphism if SL
d,〈λ〉 is normal.

Proof If X is nonsingular, the proof is made in [21, Sect. 13]. Now, X is any
projective G-variety. Up to changing L by a positive power, one may assume
that there exist a G-module V and a G-equivariant morphism φ : X −→ P(V )

such that L is the pullback of O(1). We apply [21] to P(V ), and then, deduce
the proposition for X. �

3 First descriptions of the GIT-cones

3.1 Definitions

We fix some definitions about convex cones:
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Definition Let E be a finite dimensional rational vector space and C be a
convex cone in E. We will denote by 〈C〉 the subspace of E spanned by C .
The dimension of 〈C〉 will be called the dimension of C .

Let U be a subset of E. A convex cone of U is the intersection of U with
a convex cone of E. The cone C is said to polyhedral in U if it is determined
as a part of U by finitely many linear inequalities.

Let C be a convex cone of U , not necessarily closed or polyhedral. Let ϕ

be a linear form on E which is nonnegative on C . The set of x ∈ C such that
ϕ(x) = 0 is called a face of C . Note that any face is a convex cone, that it may
be empty and that C is always a face of C . A face different from C is said to
be strict.

Let us recall from the introduction that  is a free finitely generated sub-
group of PicG(X). Since Xss(L) = Xss(L⊗n), for any G-linearized line bun-
dle L and any positive integer n, we can define Xss(L) for any L ∈ Q. The
central object of this article is the following total G-cone:

T CG
(X) = {L ∈ Q : Xss(L) is not empty}.

Since the tensor product of two nonzero G-invariant sections is a nonzero
G-invariant section, T CG

(X) is a convex cone.
Consider the convex cones +

Q
and ++

Q
generated respectively by the

semiample and ample elements of . Define the following semiample and
ample G-cones:

S A CG
(X) = T CG

(X) ∩ +
Q

and A CG
(X) = T CG

(X) ∩ ++
Q

.

By [9] (see also [39]), A CG
(X) is a closed convex rational polyhedral cone

in the open cone ++
Q

.

If PicG(X) has finite rank and  satisfies Q = PicG(X)Q, we will denote
S A CG(X), A CG(X) and T CG(X) without .

3.2 Well covering pairs

3.2.1

Let X be any quasiprojective G-variety. If X is isomorphic as a G-variety to
a (quasi)-projective G-stable subvariety of some P(V ) (for some G-module
V ), we will say that X is G-(quasi)-projective. By [24], if X is normal, then
it is G-quasiprojective. >From now on, all the considered G-varieties will be
G-quasiprojective.

Let λ be a one parameter subgroup of G and C be an irreducible compo-
nent of Xλ. Since Gλ is connected, C is a closed Gλ-stable subvariety of X.



406 N. Ressayre

We set:

C̃+ := {x ∈ X : lim
t→0

λ(t)x exists and belongs to C}. (3)

On can easily check that C̃+ is P(λ)-stable. Since X is G-quasiprojective,
C̃+ is locally closed in X (one can prove it for P(V ) and then deduce it for X).
Moreover, the map pλ : C̃+ −→ C, x �−→ limt→0 λ(t)x is a morphism satis-
fying:

∀(l, u) ∈ Gλ × U(λ) pλ(lu.x) = lpλ(x).

We do not know if C̃+ is always locally closed (see [27] for results about
this question). If X is smooth, a Białynicki-Birula result (see Theorem 5 be-
low) shows that C̃+ is a locally closed irreducible and smooth subvariety
of X. Note that for the application to L R(G, Ĝ), X will always be a product
of flag manifolds of Levi subgroups of G and Ĝ.

3.2.2 Definition

Here comes a central definition in this work:

Definition For any irreducible component C+ of C̃+, consider the following
G-equivariant map

η : G ×P(λ) C+ −→ X,

[g : x] �−→ g.x.

The pair (C,λ) is said to be covering (resp. dominant) if η is birational (resp.
dominant) for some irreducible component C+ of C̃+. It is said to be well
covering if in addition there exists a P(λ)-stable open subset � of C+ inter-
secting C such that η induces an isomorphism from G ×P(λ) � onto an open
subset of X.

3.2.3 A basic lemma

Let L ∈ PicG(X). Since C is irreducible, μL(x, λ) does not depend on x ∈
C+; we denote by μL(C,λ) this integer.

Lemma 3 Let (C,λ) be a dominant pair and let L ∈ T CG
(X). Then,

(i) μL(C,λ) ≤ 0;
(ii) μL(C,λ) = 0 if and only if Xss(L) intersects C.
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Proof Since Xss(L) is a G-stable nonempty open subset of X and (C,λ)

is dominant, there exists a point x ∈ C+ semistable for L. Since x ∈ C+,
μL(x, λ) = μL(C,λ). Since x ∈ Xss(L), Lemma 2 shows that μL(x, λ) ≤ 0.

Now, if Xss(L) intersects C, Lemma 1 shows that μL(C,λ) = 0. Con-
versely, assume that μL(C,λ) = 0. Let x ∈ Xss(L) ∩ C+ and set z =
limt→0 λ(t)x. By Lemma 2, z is semistable for L and belongs to C. �

The lemma gives linear inequalities satisfied by the cone T CG
(X). It

turns out that all the inequalities considered in this article or in [4] or in
the Horn conjecture can be obtained from Lemma 3. Note that the face of
T CG

(X) associated to the inequality μL(C,λ) ≤ 0 only depends on C. We
will denote by T F (C), S A F (C) and A F (C) the corresponding faces
of T CG

(X), S A CG
(X) and A CG

(X) respectively. If Q = PicG(X) we will
forget the  and we will denote T F (C) for example.

3.2.4 A description of GIT-cones

Proposition 3 allows us to give a first description of the cone A CG
(X):

Proposition 4 We assume that X is normal. Let T be a maximal torus of G

and B be a Borel subgroup containing T .
Then, the cone A CG

(X) (resp. S A CG
(X)) is the set of L ∈ ++

Q
(resp.

of L ∈ +
Q

) such that for any well covering pair (C,λ) with a dominant one

parameter subgroup λ of T we have μL(C,λ) ≤ 0.

Proof Lemma 3 shows that S A CG
(X) and A CG

(X) are respectively con-
tained in the part of +

Q
and ++

Q
defined by the inequalities μL(C,λ) ≤ 0

of the proposition.
Conversely, let L ∈ +

Q
such that Xss(L) is empty. It remains to construct

a well covering pair (C,λ) such that μL(C, L) > 0. Proposition 3 gives such
a pair. More precisely, consider the dense stratum SL

d,〈τ 〉 in X. Let λ be a

dominant one parameter subgroup of T in the class 〈τ 〉. Since SL
d,〈τ 〉 is open

in X, it is normal and irreducible. Now, Proposition 3 implies that SL
d,λ and

then ZL
d,λ are irreducible. Moreover, Proposition 3 implies that ZL

d,λ is open
in Xλ. It follows that the closure C of ZL

d,λ is an irreducible component of

Xλ. Still by Proposition 3, the closure C+ of SL
d,λ in C̃+ is an irreducible

component of C̃+ defined as in (3). Finally, the last assertion of Proposition 3
shows that (C,λ) is well covering. Moreover, μL(C,λ) = d > 0. �

Proposition 4 characterizes the cone A CG
(X) by infinitely many linear

inequalities. Starting with one of these inequalities, the aim of the following



408 N. Ressayre

section is to bound from above the dimension of the corresponding face. This
will make us able to remove a lot of inequalities in Proposition 4.

3.3 Abundance

3.3.1 The Borel-Weil theorem

Let P be a parabolic subgroup of G. Let ν be a character of P . Let Kν denote
the field K endowed with the action of P defined by p.τ = ν(p−1)τ for all
τ ∈ Kν and p ∈ P . The fiber product G ×P Kν is a G-linearized line bundle
on G/P , denoted by Lν . In fact, the map X(P ) −→ PicG(G/P ), ν �−→ Lν

is an isomorphism.
Let B be a Borel subgroup of G contained in P , and T be a maximal

torus contained in B . Then, X(P ) identifies with a subgroup of X(T ). For
ν ∈ X(P ), Lν is semiample if and only if it has nonzero sections if and only
if ν is dominant. Moreover, H0(G/P, Lν) is the dual of the simple G-module
of highest weight ν. For ν dominant, Lν is ample if and only if ν cannot be
extended to a subgroup of G bigger than P .

3.3.2 Diagonizable reductive isotropies

The following assumption about isotropies will be useful:

Definition A G-variety X is said to have diagonalizable reductive isotropies
if for any x in X such that Gx is reductive, Gx is diagonalizable.

Let Ĝ be a connected reductive group containing G. Consider the variety
Ĝ/B̂ of Borel subgroups of Ĝ endowed with the natural G-action. Let Y be
any G-variety.

Proposition 5 The G-variety X = Ĝ/B̂ × Y has diagonalizable reductive
isotropies.

Proof Let x in X such that Gx is reductive. The group Gx is contained in a
Borel subgroup of Ĝ; so, it is reductive and solvable; and finally it is diago-
nalizable. �

3.3.3 Abundance

We call a subgroup �′ of an Abelian group � cofinite if �/�′ is finite. The
following definition is an adaptation of that of Dolgachev-Hu (see [9]).

Definition The subgroup  is said to be abundant if for any x in X such that
Gx is reductive, the image of the restriction  −→ PicG(G.x) is cofinite.
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The main example of abundant subgroup comes when X = Ĝ/B̂ × Y :

Proposition 6 Let p1 : X −→ Ĝ/B̂ denote the projection map and p∗
1 :

PicG(Ĝ/B̂) −→ PicG(X) the associated homomorphism.
Then, the image of p∗

1 is abundant.

Proof Let x ∈ X such that Gx is reductive. Let B̂ denote the Borel subgroup
of Ĝ corresponding to p1(x). Let L ∈ PicG(G.x) and χ be the corresponding
character of Gx . Note that Gx is a subgroup of B̂ and that the restriction map
X(B̂) −→ X(Gx) is surjective. There exists ν̂ ∈ X(B̂) such that ν̂|Gx = χ .
The restriction of p∗

1(Lν̂ ) to G.x equals L; the proposition follows. �

3.3.4 A description of GIT-cones

We will denote by Imλ the image of the one parameter subgroup λ. The above
assumptions allow to improve Proposition 4:

Theorem 3 We assume that X has diagonalizable reductive isotropies and
that  is abundant. We assume that A CG

(X) has nonempty interior in Q.
We fix T ⊂ B ⊂ G. Let L ∈ ++

Q
. The following are equivalent:

(i) L ∈ A CG
(X);

(ii) for all dominant indivisible one parameter subgroups λ of T and well
covering pairs (C,λ) such that there exists x ∈ C with G◦

x = Imλ, we
have μL(C,λ) ≤ 0.

Proof By Proposition 4, the first assertion implies the second one. Since,
A CG

(X) has nonempty interior, by this proposition, it is sufficient to prove
that for any well covering pair (C,λ) such that A F (C) has codimension
one there exists x ∈ C with G◦

x = Imλ.
Recall from [9] that the GIT-class of a point L ∈ ++

Q
is the set of

M ∈ ++
Q

such that Xss(L) = Xss(M). By [9, 39], there are finitely many
GIT-classes which are locally closed convex cones. Moreover, the second as-
sertion of Lemma 3 implies that A F (C) is an union of GIT-classes. We
deduce that there exists a GIT-class with nonempty interior in A F (C);
let L be a point in such a class. Let x ∈ Xss(L) ∩ C whose the G-orbit is
closed in Xss(L). Then, Gx is reductive. Since Imλ is contained in Gx , with
our assumption about X, it is sufficient to prove that the rank of X(Gx) �
PicG(G.x) is one. But, Lemma 1 implies that the GIT-class of L, and so,
A F (C) are contained in the kernel of the restriction Q −→ PicG(G.x)Q.
We conclude using abundance of . �
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4 Irredundancy

4.1 From well covering pairs to faces of the total G-cone

Proposition 4 shows that any facet of A CG
(X) is obtained from a well cover-

ing pair. Conversely, each such pair gives (see Lemma 3) a face of T CG
(X).

The point to obtain irredundancy in Theorem B is to show that certain faces
coming from well covering pairs have codimension one. This will be made
by induction using

Theorem 4 Let X be a smooth projective G-variety. We assume the rank of
PicG(X) is finite and consider T CG(X). Let (C,λ) be a well covering pair.
Consider the linear map ρ induced by the restriction:

ρ : PicG(X)Q −→ PicGλ

(C)Q.

Then, T F (C) and the pullback by ρ of T CGλ
(C) span the same subspace of

PicG(X)Q.

Sketch of proof Let L be a G-linearized line bundle on X whose the restric-
tion M to C belongs to T CGλ

(C). Up to changing L by a positive power,
let τ be a nonzero Gλ-invariant section of M. To obtain the theorem, one
essentially has to extend τ to a regular G-invariant section of L; indeed, the
existence of such a section implies that L ∈ T F (C). Unfortunately, this is
not always possible: instead, we firstly extend τ to a rational G-invariant sec-
tion of L and then add invariant divisors to kill the polar parts. The fact that
(C,λ) is well covering implies that the so constructed G-invariant section is
nonidentically zero on C; and so, that we have produced a point on T F (C).
Actually, to prove the theorem we will make the above construction with a
family of such L’s which spans the subspace of the statement.

Proof Lemma 2 implies that ρ(T F (C)) is contained in T CGλ
(C).

We denote by F the subspace spanned by ρ−1(T CGλ
(C)). Let L1, . . . , Ln

in PicG(X) which span F and whose the restrictions to C belong to T CGλ
(C).

Denote by Mi the restriction of Li to C. For each i, up to changing Li by
a positive power, one may assume that there exists a nonzero regular Gλ-
invariant section τi of Mi .

We first prove that each τi can be extended to a rational G-invariant sec-
tion σi of Li . Consider pλ : C+ −→ C, defined in Sect. 3.2.1. Consider the
G-linearized line bundle G ×P(λ) pλ

∗(Mi) on G ×P(λ) C+. Since η∗(Li )

and G ×P(λ) pλ
∗(Mi) have the same restriction to C, Lemmas 4 and 5 be-

low show that η∗(Li ) = G ×P(λ) pλ
∗(Mi ). Moreover, since μMi (C,λ) = 0,
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Lemma 5 shows that τi admits a unique P(λ)-invariant extension τ ′
i which

is a section of pλ
∗(Mi ). On the other hand, Lemma 4 below shows that τ ′

i

admits a unique G-invariant extension τ̃i from C+ to G ×P(λ) C+. Since η

is birational, τ̃i descends to a rational G-invariant section σi of Li . So, we
obtain the following commutative diagram:

Li
� η∗(Li ) = G ×P(λ) pλ

∗(Mi ) � pλ
∗(Mi ) � Mi

X
�

σi

�

� η
G ×P(λ) C+

�

τ̃i

�

� C+
�

τ ′
i

�

pλ � C.
�

τi

�

We are now going to construct an element L0 ∈ T F (C) which kills the po-
lar part of each σi . More precisely, each σi will induce a regular G-invariant
section of Li ⊗ L0. Let X◦ be a G-stable open subset of X such that η in-
duces an isomorphism from η−1(X◦) onto X◦. Since (C,λ) is well covering,
we may (and shall) assume that X◦ intersects C. Let Ej be the irreducible
components of codimension one of X − X◦. For any j we denote by aj the
maximum of 0 and the −νEj

(σi)’s with i = 1, . . . , n; where νEj
denotes

the valuation associated to Ej . Consider the line bundle L0 = O(
∑

ajEj )

on X. Since the Ej ’s are stable by the action of G, L0 is canonically G-
linearized. By construction, the σi’s induce G-invariant regular sections σ ′

i of
L′

i := Li ⊗ L0. Moreover, since no Ej contains C, the restriction of σ ′
i to C

is nonzero. In particular, the L′
i’s belong to T F (C).

Moreover, replacing L0 by L⊗2
0 if necessary, we may (and shall) assume

that the L′
i ’s span F . This ends the proof of the theorem. �

4.2 Line bundles on parabolic fiber products

Notation If Y is a locally closed subvariety of X, and L is a line bundle on X,
L|Y will denote the restriction of L to Y .

Let P be a parabolic subgroup of G and Y be a P -variety. In this subsec-
tion, we prove results about G-linearized line bundles on G ×P Y used in
Theorem 4.

Lemma 4 With above notation, we have:

(i) The map L �−→ G ×P L defines a morphism

e : PicP (Y ) −→ PicG(G ×P Y ).
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(ii) The map ι : Y −→ G ×P Y, y �−→ [e : y] is a P -equivariant closed im-
mersion. We denote by ι∗ : PicG(G ×P Y ) −→ PicP (Y ) the associated
restriction homomorphism.

(iii) The morphisms e and ι∗ are the inverse one of each other; in particular,
they are isomorphisms.

(iv) For any L ∈ PicG(G ×P Y ), the restriction map from H0(G ×P Y, L) to
H0(Y, ι∗(L)) induces a linear isomorphism

H0(G ×P Y, L)G � H0(Y, ι∗(L))P .

Proof Let M be a P -linearized line bundle on Y . Since the natural map
G × M −→ G ×P M is a categorical quotient, we have the following com-
mutative diagram:

G × M � G ×P M

G × Y
�

� G ×P Y.

p
�

Since G −→ G/P is locally trivial, the map p endows G×P M with a struc-
ture of line bundle on G×P Y . Moreover, the action of G on G×P M endows
this line bundle with a G-linearization. This proves Assertion (i). The second
one is obvious.

By construction, the restriction of G ×P M to Y is M. So, ι∗ ◦ e is the
identity map. Conversely, let L ∈ PicG(G ×P Y ). Then, we have:

e ◦ ι∗(L) � {(gP, l) ∈ G/P × L : g−1l ∈ L|Y }.
The second projection induces an isomorphism from e ◦ ι∗(L) onto L. This
ends the proof of Assertion (iii).

The map H0(G ×P Y, L)G −→ H0(Y, ι∗(L))P is clearly well defined and
injective. Let us prove the surjectivity. Let τ ∈ H0(Y, ι∗(L))P . Consider the
morphism

τ̂ : G × Y −→ G ×P L,

(g, y) �−→ [g : τ(y)].
Since τ is P -invariant, so is τ̂ ; and τ̂ induces a section of G ×P L over
G ×P Y which is G-invariant and extends τ . �

4.3 Line bundles on C+

In this subsection we prove results about the line bundles on C+ used in
Theorem 4.
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Let X be any G-variety, λ ∈ Y(G) and x ∈ Xλ. We consider the natural
action of K

∗ induced by λ on the Zariski tangent space TxX of X at x. We
consider the following K

∗-submodules of TxX:

TxX>0 = {ξ ∈ TxX : limt→0 λ(t)ξ = 0},
TxX<0 = {ξ ∈ TxX : limt→0 λ(t−1)ξ = 0},
TxX0 = (TxX)λ, TxX≥0 = TxX>0 ⊕ TxX0 and TxX≤0 = TxX<0 ⊕ TxX0.

A classical result of Białynicki-Birula (see [5]) is

Theorem 5 We assume that X is smooth and fix an irreducible component C

of Xλ. We have:

(i) C is smooth and for any x ∈ C we have TxC = TxX0;
(ii) C+ is smooth and irreducible and for any x ∈ C we have TxC

+ =
TxX≥0;

(iii) the morphism pλ : C+ −→ C induces a structure of vector bundle on C

with fibers isomorphic to TxX>0, for x ∈ C.

Let L be a P(λ)-linearized line bundle on C+. Whereas X is not necessar-
ily complete, for x ∈ C+, limt→0 λ(t).x exists and μL(x, λ) is well defined.
Moreover, it does not depend on x and will be denoted by μL(C,λ).

Lemma 5 We assume that X is smooth. Then, we have:

(i) The restriction map PicP(λ)(C+) −→ PicGλ
(C) is an isomorphism.

Let L ∈ PicP(λ)(C+).
(ii) If μL(C,λ) = 0, then H0(C, L|C)λ = {0}.

(iii) If μL(C,λ) = 0, then the restriction map induces an isomorphism
from H0(C+, L)P (λ) onto H0(C, L|C)G

λ
. Moreover, for any τ ∈

H0(C+, L)P (λ), we have:

{x ∈ C+ : τ(x) = 0} = pλ
−1({x ∈ C : τ(x) = 0}).

Proof Since pλ is P(λ)-equivariant, for any M ∈ PicGλ
(C), p∗

λ(M) is P(λ)-
linearized. Since pλ is a vector bundle, p∗

λ(L|C) and L are isomorphic as
line bundles without linearization. But, X(P (λ)) � X(Gλ), so the P(λ)-
linearizations must coincide; and p∗

λ(L|C) and L are isomorphic as P(λ)-
linearized line bundles. Assertion (i) follows.

Assertion (ii) is a direct application of Lemma 1.
Let us fix L ∈ PicP(λ)(C+) and denote by p : L −→ C+ the projection.

We assume that μL(C,λ) = 0. Let τ ∈ H0(C+, L)P (λ). We just proved that

L � p∗
λ(L|C) = {(x, l) ∈ C+ × L|C : pλ(x) = p(l)}.



414 N. Ressayre

Let p2 denote the projection of p∗
λ(L|C) onto L|C .

For all x ∈ C+ and t ∈ K
∗, we have:

τ(λ(t).x) = (
λ(t).x, p2(τ (λ(t).x))

)

= λ(t).
(
x, p2(τ (x))

)
since τ is invariant,

= (
λ(t).x, p2(τ (x))

)
since μL(C,λ) = 0.

We deduce that for any x ∈ C+, τ(x) = (x, τ (pλ(x))). Assertion (iii) fol-
lows. �

Note that Assertion (iii) of Lemma 5 is a direct generalization of [3, Re-
mark 31].

5 The smaller faces of the G-ample cone

In the proof of Proposition 4, starting with an element L in ++
Q

without
semistable points we have constructed a well covering pair (C,λ) and so a
face A F (C) of A CG

(X). Proposition 4 implies that any facet of A CG
(X) is

obtained in such a way. The goal of this section is to prove that any nonempty
strict face of A CG

(X) is obtained from such a L. We first give some comple-
ments about the Hilbert-Mumford numerical criterion and recall a powerful
result of Luna. From now on, X is an irreducible G-projective variety.

5.1 A description of ZL
d,λ

Let λ be a one parameter subgroup of G. Let Z denote the identity component
of the center of Gλ and Gλ

ss be the maximal semisimple subgroup of Gλ. The
product induces an isogeny Z × Gλ

ss −→ Gλ. Let T1 be a maximal torus of
Gλ

ss. Set T = Z.T1. Note that T is a maximal torus of Gλ and G. Let S be the
subtorus of Z such that Y(S.T1)R is the hyperplane of Y(T )R orthogonal to λ.
Set Hλ = S.Gλ

ss. The map K
∗ × Hλ −→ Gλ, (t, h) �−→ λ(t)h is an isogeny.

Theorem 6 (Ness-Kirwan) Let L be a semiample G-linearized line bundle
on X. The one parameter subgroup λ is assumed to be indivisible. Let x ∈ Xλ

be such that μL(x, λ) > 0.
Then, λ is adapted to x and L (that is, x ∈ ZL

μ(x,λ),λ) if and only if x is

semistable for L and the action of Hλ.

Theorem 6 is a version of [35, Theorem 9.4]. Whereas Ness’ proof works
without changing (even if L is semiample), the statement in [35] is not cor-
rect. In [21, Remark 12.21], F. Kirwan made the above correction. The fact
that if λ is adapted to x then x is semistable for the action of Hλ was inde-
pendently proved by Ramanan-Ramanathan in [38, Proposition 1.12].
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5.2 The dense stratum

5.2.1

Let L be a semiample G-linearized line bundle on X. We denote by X◦(L)

the dense stratum of Stratification (2). If Xss(L) is not empty then X◦(L) =
Xss(L). If Xss(L) is empty then X◦(L) is the stratum used in the proof of
Proposition 4.

The following proposition is a result of finiteness for the set of functions
M•(x). It will be used to understand how Xss(L) depends on L (see Lemma 7
below).

Proposition 7 When x varies in X, one obtains only a finite number of func-
tions M•(x) : +

Q
−→ R.

Proof Let T be a maximal torus of G. Consider the partial forgetful map rT :
PicG(X) −→ PicT (X). Since M•(x) = maxg∈G MrT (•)(g.x), it is sufficient
to prove the proposition for the torus T .

If z and z′ belong to the same irreducible component C of XT then the
morphisms μ•(z, T ) and μ•(z′, T ) are equal.

By Proposition 2, ML(x) only depends on P L
T (x), which only depends on

the set of irreducible components of XT which intersect T .x. Since, XT has
finitely many irreducible components, the proposition follows. �

Remark Proposition 7 implies that the set of open subsets of X which can
be realized as Xss(L) for some semiample G-linearized line bundle L on X

is finite. This result is due to Dolgachev-Hu (see [9, Theorem 3.9]; see also
[41]) if L is assumed to be ample.

5.2.2

We have the following characterization of X◦(L):

Lemma 6 Let L be a semiample G-linearized line bundle on X. If
Xss(L) = ∅, set d0 = 0; else, set d0 = minx∈X ML(x). Then, X◦(L) is the
set of x ∈ X such that ML(x) ≤ d0.

Proof If d0 = 0, ML(x) ≤ 0 if and only if x ∈ Xss(L) = X◦(L). We now
assume that d0 > 0.

Up to changing L by a positive power, one may assume that there exist a
G-module V and a morphism φ : X −→ P(V ) such that L = φ∗(O(1)).

Let us fix the positive real number d and an indivisible one parameter sub-
group λ such that X◦(L) = SL

d,〈λ〉. For i ∈ Z, set Vi = {v ∈ V |λ(t)v = t iv}.
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Set V + = ⊕i>d‖λ‖Vi , C = {x ∈ X : φ(x) ∈ P(Vd‖λ‖)} and C+ = {x ∈ X :
φ(x) ∈ P(Vd‖λ‖ ⊕ V +)}.

We first prove that d = d0; that is, that ML(x) ≥ d for any x ∈ X. Con-
sider the morphism η : G ×P(λ) C+ −→ X. Since G/P(λ) is projective, η

is proper; but, the image of η contains SL
d,〈λ〉; so, η is surjective. Let x ∈ X.

There exists g ∈ G such that gx ∈ C+. Then, ML(x) ≥ μ̄L(gx,λ) ≥ d .
Conversely, let x ∈ X such that ML(x) = d0. Let g ∈ G such that gx ∈ C

+
.

Let v1 ∈ Vd‖λ‖ and v2 ∈ V + such that gφ(x) = [v1 + v2]. Since μL(gx,λ) ≤
d0, v1 is nonzero; so, μL(gx,λ) = d0 = ML(x). In particular, λ is adapted
to x and L; that is, x ∈ X◦(L). �

5.2.3

We will need the following result of monotonicity for the function L �→
X◦(L):

Lemma 7 With above notation, there exists an open neighborhood U of L in
+

Q
such that for any M ∈ U , X◦(M) ⊂ X◦(L).

Proof By Proposition 7 and Lemma 6, there exist only finitely many open
subsets of X which are of the form X◦(M) for M ∈ +

Q
. Let X◦

1, . . . ,X
◦
s be

those which are not contained in X◦(L). For each i, fix xi ∈ X◦
i − X◦(L). It

remains to prove that for each i, there exists an open neighborhood Ui of L
in +

Q
such that xi ∈ X◦(M) for any M ∈ Ui . Indeed, U = ∩iUi will work.

Fix i ∈ {1, . . . , s}. Set d0 be as in Lemma 6 for L. Since xi ∈ X◦(L),
ML(xi) > d0. Let e be such that ML(xi) > e > d0. By Proposition 7, there
exists an open neighborhood U ′ of L in +

Q
such that minx∈X MM(x) < e

for any M ∈ U ′. Moreover, there exists U ′′, such that MM(xi) > e for any
M ∈ U ′′. Lemma 6 implies that for any M ∈ U ′ ∩ U ′′, xi ∈ X◦(M). �

5.3 A theorem of Luna

Notation If H is a subgroup of G, GH denotes the centralizer of H in G.

We will use the following interpretation of a result of Luna:

Proposition 8 Let L be a semiample G-linearized line bundle on an irre-
ducible projective G-variety X. Let H be a reductive subgroup of G. Let C

be an irreducible component of XH . Then, the reductive group (GH)◦ acts
on C.

Let x be a point in C. Then, the following are equivalent:
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(i) x is semistable for L;
(ii) x is semistable for the action of (GH)◦ on C and the restriction of L.

Proof [29, Lemma 1.1] shows that (GH)◦ is reductive. Changing L by a pos-
itive power if necessary, one may assume there exist a G-module V and a
G-equivariant morphism φ : X −→ P(V ) such that L = φ∗(O(1)). Let v ∈ V

such that [v] = φ(x).
Let χ be the character of H such that hv = χ(h)v for any h ∈ H .
If χ has infinite order, so is its restriction to the connected center Z of H .

Then, Z.v = K
∗v and 0 ∈ (GH)◦.v. In this case, x is unstable for the action

of G or (GH)◦.
Let us now assume that χ has finite order. Changing L by a positive power

if necessary, one may assume that χ is trivial, that is H fixes v. In this case,
[28, Corollary 2 and Remark 1] shows that

0 ∈ G.v ⇐⇒ 0 ∈ (GH)◦.v.

Since x is unstable if and only if G.v contains 0, the proposition follows. �

5.4 Face viewed from a L without semistable points

5.4.1

Let L be a semiample line bundle in  without semistable points. Let d be
the positive real number and λ be a one parameter subgroup of G such that
X◦(L) = SL

d,〈λ〉.

Lemma 8 We have:

(i) ZL
d,λ is irreducible; and the closure C of ZL

d,λ is an irreducible compo-

nent of Xλ.
(ii) The pair (C,λ) is dominant. If in addition X is normal, the pair (C,λ)

is well covering.
(iii) The conjugacy class of the pair (C,λ) only depends on L (and not on

λ).

Proof The two first assertions make more explicit the arguments used in the
proof of Proposition 4. The proof is the same. Since λ is unique up to conju-
gacy, the last assertion follows. �

Lemma 8 implies that the linear form μ•(C,λ) on Q only depends on L.
We set:

H(L) = {M ∈ Q : μM(C,λ) = 0}, and

H(L)>0 = {M ∈ Q : μM(C,λ) > 0}.
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Lemma 3 implies that H(L) ∩ A CG
(X) is a face of A CG

(X): this face is
denoted by A F (L) and called the face viewed from L.

The aim of this section is to prove

Theorem 7 Any nonempty face A F of A CG
(X) with empty interior in Q is

viewed from some ample point in  without semistable points.

Sketch of proof The proof works by induction on the codimension of A F in
Q. If A F has codimension one, Proposition 4 allows to conclude. Other-
wise, Proposition 4 gives a face (or a linear subspace if A CG

(X) has empty
interior) A F 1 of codimension one and containing A F . Moreover, one can
find an ample L without semistable points such that A F 1 = A F (L). Let
(C,λ) be the pair associated to L as in Lemma 8. Considering the restriction,
we obtain a face of A CGλ

(C) to which we can apply the induction. Lem-
mas 9, 10 and 11 below allow to compare the faces of A CG(X) and those of
A CGλ

(C).
If X is assumed to be smooth (for example, for the applications to the

branching cones) then C is smooth. So, the induction flows through smooth
varieties. Now, if X is only assumed to be normal, C may not be. So, we
have to work with nonnecessarily normal varieties; instead of, we work with
G-projective varieties. Since our varieties are not assumed to be normal, we
speak about faces viewed from L instead of associated to well covering pairs
(see Lemma 8).

5.4.2

We start by proving Lemmas 9, 10 and 11 which study how A F (L) depends
on L. Let us fix L ∈ ++

Q
without semistable points. Let (C,λ) be as in

Lemma 8. Consider the subgroup Hλ of Gλ defined in Sect. 5.1. Consider
the morphism induced by restriction p : Q −→ PicHλ

(C)Q. We first prove
the following improvement of Lemma 3:

Lemma 9 Let M ∈ ++
Q

. The following are equivalent:

(i) M ∈ A F (L);
(ii) Css(M,Gλ) is not empty;

(iii) M ∈ H(L) and Css(M,Hλ) is not empty.

Remark Writing Css(M,Gλ) for example, we write M instead of its restric-
tion to C endowed with its Gλ-linearization.

Proof Note that M ∈ H(L) if and only if λ acts trivially on M|C . The
equivalence between the two last assertions follows. Let us assume that
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Css(M,Gλ) is not empty. There exists x ∈ C which is semistable for the
action of Gλ and M. Proposition 8 shows that x is semistable for G and M.
So, M ∈ A CG

(X).
Conversely, let M ∈ A F (L). By Lemma 3, C intersects Xss(M). So,

Css(M,Gλ) is not empty. �

Lemma 10 Let L′ ∈ H(L)>0 ∩ ++
Q

. We assume that Css(L′,Hλ) is not
empty.

Then, A F (L′) = A F (L). More precisely, the pair (C,λ) satisfies
Lemma 8 for L′.

Proof Let x ∈ C+ such that limt→0 λ(t)x ∈ Css(L′,Hλ). Note that the set of
such x’s is open in C+. By Theorem 6 and Proposition 3, λ is adapted to x and
L′. Since (C,λ) is covering, SL′

μL′
(x,λ),〈λ〉 = X◦(L′). The lemma follows. �

Lemma 10 shows that if p(L) belongs to the interior of A CHλ

p()(C), the
function L �→ A F (L) is constant around L. The following lemma implies
that if p(L) belongs to the boundary of A CHλ

p()(C), A F (L′) is also deter-
mined by p(L′) for L′ close to L.

Lemma 11 There exists an open neighborhood U of L in ++
Q

such that for
any L′ in U , L′ has no semistable points and A F (L′) ⊂ A F (L).

If in addition the above inclusion is strict then Css(L′,Hλ) is empty. More-
over, A F (L′) is the set of M ∈ H(L) ∩ ++

Q
such that p(M) belongs to

the face of A CHλ

p()(C) viewed from p(L′).

Proof We will first describe X◦(L′) in terms of the action of Hλ on C, for
L′ sufficiently close to L. Let x ∈ C+ ∩ X◦(L). Set d = μL(C,λ) and z =
limt→0 λ(t).x. Let L′ ∈ ++

Q
be without semistable points. We assume that

Css(L′,Hλ) is empty and z belongs to C◦(L′,Hλ). We claim that for L′
sufficiently close to L, x belongs to X◦(L′).

Let T be a maximal torus of G containing the image of λ. By [21,
Lemma 12.19], there exists a one parameter subgroup adapted to z and L′
which commutes with λ. So, there exist h0 ∈ Hλ and a one parameter sub-
group ζ of T which is adapted to h0z and L′. Set d ′ = μ(h0z, ζ ).

By Theorem 2, λ is adapted to z and L, and so to h0z and L. In particular,
λ is the unique one parameter subgroup of T adapted to h0z, L and the action
of T . On the other hand, ζ is the unique one parameter subgroup of T adapted
to h0z, L′ and the action of T . It follows that ζ

‖ζ‖ ∈ Y(T )R tends to λ
‖λ‖ when

L′ tends to L. Now, working in T .h0x, we deduce that limt→0 ζ(t)h0x =
lim ζ(t)h0z =: z′ for L′ sufficiently close to L.
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Let Hζ be the subgroup of Gζ defined in Sect. 5.1. Since ζ is adapted to
h0z and L′, Theorem 6 implies that z′ is semistable for the action Hζ and L′.
So, by Theorem 6 again, ζ is adapted to h0x and L′. It follows that x belongs
to SL′

d ′,〈ζ 〉.
The set of x ∈ C+ satisfying our assumption (z ∈ C◦(L′,Hλ)) is open in

C+. Since G.(C+ ∩ X◦(L)) is dense in X, this implies that SL′
d ′,〈ζ 〉 is X◦(L′).

Remark that we need to find a neighborhood of L which works for any such
x ∈ C+. This is possible, since the neighborhood constructed above only de-
pends on the set of irreducible components of XT which intersect T .h0x; in
particular, there are only finitely many possibilities. This proves the claim.

Let Cζ denote the closure of ZL′
d ′,ζ . Since ζ

‖ζ‖ ∈ Y(T )R tends to λ
‖λ‖ , one

may assume that Cζ is contained in C. It follows that μ•(Cζ , ζ ) tends to
μ•(C,λ) when L′ tends to L. By a general argument in convex geometry, this
implies that there exists an open neighborhood U of L, such that A F (L′) ⊂
A F (L) for any L′ ∈ U .

Let us now assume that A F (L′) = A F (L) for a given L′ ∈ U .
By Lemma 10, Css(L′,Hλ) is empty. Let M ∈ A F (L′). By Lemma 9,

Css
ζ (M,Gζ ) and so Css

ζ (M,Gζ ∩ Hλ) are not empty. By Lemma 9 again,

p(M) belongs to the face of A CHλ

p()(C) viewed from p(L′). Conversely, let

M ∈ H(L)∩++
Q

such that p(M) belongs to the face of A CHλ

p()(C) viewed

from p(L′). Since ζ
‖ζ‖ ∈ Y(T )R tends to λ

‖λ‖ when L′ tends to L, we may

assume that Gζ ⊂ Gλ. In this case, Gζ = (Gζ ∩ Hλ).Imλ. Now, Lemma 9
implies that M ∈ A F (L′). �

5.4.3

We can now prove the theorem.

Proof of Theorem 7 We will prove the following assertion, by induction on
the codimension codim(A F ) of A F in Q using Lemma 11:

Let X be a not necessarily normal variety. Let G,  and A F be as in the
theorem. Let U be an open subset of Q intersecting A F . Then, there exists
L ∈ U such that A F (L) = A F .

Let M be a point in the relative interior of A F ∩ U . By Lemma 7, there
exists L ∈ U without semistable points and such that X◦(L) ⊂ Xss(M). Let
(C,λ) be associated to L as in Lemma 8. Since C intersects X◦(L) it inter-
sects Xss(M); so, μM(C,λ) = 0 and M ∈ A F (L). Since M belongs to
the relative interior of A F , we deduce that A F ⊂ A F (L). We may assume
that this inclusion is strict; otherwise, we have finished.

We now want to “push” p(L) on the boundary of A CHλ

p()(C) with-
out changing A C(L) By Lemma 9, A F ∩ U is a face of U ∩ H(L) ∩
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p−1(A CHλ

p()(C)). So, there exists a face Ã F 1 of p−1(A CHλ

p()(C)) such that

A F = ++
Q

∩ H(L) ∩ Ã F 1. Let us assume that Ã F 1 is of maximal dimen-

sion among such faces. Since H(L)>0 ∩ p−1(A CHλ

p()(C)) is nonempty (it

contains L !), we may assume that Ã F 1 intersects H(L)>0. Let A F 1 denote
the unique face of A CHλ

p()(C) such that Ã F 1 = p−1(A F 1).

Since Ã F 1 intersects H(L)>0, Lemma 10 allows to move L on Ã F 1 with-
out changing A F (L) nor (C,λ). From now on, we assume that L ∈ Ã F 1.

Let U ′ ⊂ U be an open neighborhood of L contained in H(L)>0 and
satisfying Lemma 11. Since A F ⊂ Ã F 1 ∩ H(L) and Ã F 1 intersects
H(L)>0, we have: codim(Ã F 1) < codimA F . But, codim(Ã F 1) =
codimp()(A F 1). Moreover, p is linear and so open. We apply the induc-
tion to the action of Hλ on C, the face A F 1 and the open subset p(U ′)
of p()Q: there exists L′ in U ′ such that A F (p(L′)) = A F 1. Lemma 11
implies now that A F (L′) = A F . �

5.5 From faces to well covering pairs

Theorem 7 can be restated in terms of well covering pairs:

Corollary 2 We assume that X is normal. Let A F be a nonempty face of
A CG

(X) of codimension r ≥ 1 in . Then, there exist a r-dimensional torus
S in G, a one parameter subgroup λ of S and an irreducible component C of
XS such that:

(i) C is an irreducible component of Xλ;
(ii) the pair (C,λ) is well covering;

(iii) A F = A F (C).

Proof Let L be an ample line bundle on X without semistable points and
such that A F is viewed from L. Let d be the positive number and λ be a one
parameter subgroup of G such that SL

d,〈λ〉 is open in X. Let C be the closure

of ZL
d,λ.

By Lemma 8, it remains to prove that there exists a torus S of dimension
r containing the image of λ and acting trivially on C. The proof of the ex-
istence of such a S can easily be integrated in the induction of the proof of
Theorem 7. �

The next statement is a precision of Corollary 2.

Corollary 3 Let X be a normal projective variety with diagonalizable reduc-
tive isotropies. We assume that  ⊂ PicG(X) is abundant (see Sect. 3.3.3).
Let A F be a nonempty face of A CG

(X) of codimension r ≥ 1 in . Then,
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there exist a r-dimensional torus S in G, a one parameter subgroup λ of S

and an irreducible component C of XS such that:

(i) for general x ∈ C, we have G◦
x = S;

(ii) C is an irreducible component of Xλ;
(iii) the pair (C,λ) is well covering;
(iv) A F = A F (C).

Proof We just have to prove that if (C,λ) and S satisfy Corollary 2, they also
satisfy the first assertion.

Let L be an ample G-linearized line bundle on X and x be a semistable
point for L. We claim that Gx is diagonalizable. Consider π : Xss(L) −→
Xss(L)//G. Let y be a point in the closure of G.x such that G.y is closed in
Xss(L). The isotropy Gy is reductive and so diagonalizable. By the Luna
slice theorem, π−1(π(y)) � G ×Gy � for an affine Gy variety �. Since
x ∈ π−1(π(y)), we deduce that Gx is conjugated to a subgroup of Gy . In
particular, Gx is diagonalizable.

Let us fix a point x in the intersection of the finitely many sets Xss(L) ∩ C

for L ∈ A F .
Since  is abundant and Gx diagonalizable, the rank of μ•(x,Gx) equals

the dimension of Gx . Since A F is contained in the kernel of μ•(x,Gx), the
dimension of Gx is less or equal to r . Since S ⊂ Gx , it follows that G◦

x = S. �

Remark As in the proof of Theorem 3, let L be in A F whose the GIT-class
has nonempty interior in A F . In the above proof, x can be replaced by any
point whose the G-orbit is closed in Xss(L). In this way, we do not use the
Luna slice theorem.

6 About the faces corresponding to dominant pairs

6.1 Dominant pairs and quotient varieties

The following proposition is a description of the quotient variety associated
to a point in A CG

(X) which belongs to a face associated to a dominant pair.

Proposition 9 Let (C,λ) be a dominant pair and L be an ample G-linearized
line bundle on X such that μL(C,λ) = 0 and Xss(L) = ∅.
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Consider the morphism θ which makes the following diagram commuta-
tive:

Css(L,Gλ) ⊂ � Xss(L)

Css(L,Gλ)//Gλ

πC

�
θ� Xss(L)//G.

π

�

Then, θ is finite and surjective.

Proof The inclusion of Css(L,Gλ) in Xss(L) is a direct consequence of
Proposition 8. Since Css(L,Gλ)//Gλ is projective, to prove the proposition,
it is sufficient to prove that θ is dominant and its fibers are finite.

Since (C,λ) is dominant, C+ must intersect Xss(L). Let x ∈ C+ ∩Xss(L).
Set z = limt→0 λ(t)x. By Assertion (ii) of Lemma 2, z is semistable for L.
This implies that π(C+ ∩Xss(L)) = π(Css(L,Gλ)). It follows that θ is dom-
inant.

Let ξ ∈ Xss(L)//G. Let Oξ be the unique closed G-orbit in π−1(ξ). The
points in the fiber θ−1(ξ) correspond bijectively to the closed Gλ-orbits in
π−1(ξ)∩C. But, [28, Corollary 2 and Remark 1] implies that these orbits are
contained in Oξ . We conclude that θ−1(ξ) is finite, by using [40, Theorem A]
which implies that Oλ

ξ contains only finitely many Gλ-orbits. �

6.2 If X = Ĝ/B̂ × Y . . .

In this section, we will explain how Proposition 9 can be improved if X =
Ĝ/B̂ × Y with notation of Sect. 3.3.2.

Theorem 8 We use notation of Proposition 9, assuming in addition that X =
Ĝ/B̂ × Y with a normal projective G-variety Y .

Then, θ is an isomorphism and (C,λ) is a well covering pair.

Proof Since X is normal, so is Xss(L)//G. But, Proposition 9 shows that θ

is finite; it is sufficient to prove that it is birational. Since the base field has
characteristic zero, it remains to prove that θ is bijective to obtain the first
assertion.

Let ξ ∈ Xss(L)//G and Oξ denote the only closed G-orbit in π−1(ξ). As
noticed in the proof of Proposition 9, the points in θ−1(ξ) correspond bijec-
tively to the Gλ-orbits in Oξ ∩ C. So, by [40] it is sufficient to prove that
Oξ ∩ C is irreducible.

Consider the first projection p1 : X −→ Ĝ/B̂ and fix x ∈ Oξ ∩ C. Let
B̂ denote the stabilizer in Ĝ of p1(x). Since Oξ is closed in π−1(ξ), Gx
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is diagonalizable. Let T̂ be a maximal torus of Ĝ such that Gx ⊂ T̂ ⊂ B̂ .
Consider the morphisms q : Oξ −→ Ĝ/T̂ , g.x �→ gT̂ /T̂ and q̂ : Ĝ/T̂ −→
Ĝ/B̂, ĝT̂ /T̂ �→ ĝB̂/B̂ induced by these inclusions; we have, p1 = q̂ ◦ q .

We claim that q̂−1(ĜλB̂/B̂)λ = ĜλT̂ /T̂ . Since Ĝλ is connected, each ir-
reducible component of q̂−1(ĜλB̂/B̂)λ is Ĝλ-stable, and so, it maps onto
ĜλT̂ /T̂ . In particular, it intersects q̂−1(B̂/B̂) = B̂/T̂ . But, B̂/T̂ is isomor-
phic to the Lie algebra of the unipotent radical of B̂ as a T̂ -variety; in partic-
ular, (B̂/T̂ )λ is irreducible and so is q̂−1(ĜλB̂/B̂)λ. The claim now follows
from [40].

Note that C is the product of one irreducible component of (Ĝ/B̂)λ and
one of Yλ; this implies that p1(C) = ĜλB̂/B̂ . So, Oξ ∩ C is contained in
p−1

1 (ĜλB̂/B̂)λ and so in Oξ ∩q−1(ĜλT̂ /T̂ ). But, since T̂ is contained in Ĝλ,
ĜλT̂ /T̂ ∩ GT̂ /T̂ = GλT̂ /T̂ . It follows that Oξ ∩ C = Gλ.x is irreducible.
This ends the proof of the first assertion.

Consider now η : G ×P(λ) C+ −→ X. We claim that for any x ∈ C+ ∩
Xss(L), η−1(x) is only one point. Since η is dominant and the ground field
has characteristic zero, the claim implies that η is birational. Since Xss(L)∩C

is nonempty, the claim implies that η is bijective over on open subset of X

intersecting C. Since X is normal, Zariski’s main theorem (see [12, §8.12])
implies that (C,λ) is well covering.

Let us prove the claim. Let g ∈ G such that g−1x ∈ C+. We have to prove
that g ∈ P(λ). Set x′ = g−1x, z = limt→0 λ(t)x and z′ = limt→0 λ(t)x′. Ob-
viously x′ ∈ Xss(L), and by Assertion (ii) of Lemma 2, z, z′ ∈ Xss(L) as well.
It is also clear that π(x) = π(x′) = π(z) = π(z′) =: ξ .

Let x0 ∈ C ∩ π−1(ξ) whose the orbit is closed in Xss(L). Set H = Gx0 .
Consider the set � (resp. �C) of y in X (resp. C) such that x0 is contained in
the closure of H.y (resp. of Hλ.y). By [30] (see also [37]), π−1(ξ) � G×H �

and π−1
C (θ−1(ξ)) � Gλ ×Hλ �C . Consider the natural G-equivariant mor-

phism γ : G ×H � −→ G/H . Since π−1(ξ) ∩ C = π−1
C (θ−1(ξ)), it equals

Gλ.�C . So, γ (π−1(ξ) ∩ C) = GλH/H . Since γ is “continuous” and G-
equivariant, we deduce that limt→0 λ(t)γ (x) and limt→0 λ(t)γ (x′) belong to
GλH/H . Lemma 12 below proves that there exist p and p′ in P(λ) such that
γ (x) = pH/H and γ (x′) = p′H/H . Since gx′ = x, we have g ∈ pHp′−1.
By Proposition 5, H is diagonalizable. But, H contains the image of λ; so,
H ⊂ Gλ. Finally, g ∈ P(λ). �

It remains to prove the following lemma. In fact, it is an adaptation of the
main result of [40]:

Lemma 12 Let O be any G-homogeneous space. Let λ be a one parameter
subgroup of G. Let C be an irreducible component of Oλ. Set C+ := {x ∈ O :
limt→0 λ(t)x exists and belongs to C}.

Then, C+ is a P(λ)-orbit.
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Proof Let x ∈ C. The differential of the map g �→ g.x induces a surjective
linear map φ : g −→ Tx O. Since x is fixed by λ, λ acts on Tx O; it also acts
by the adjoint action on g, and φ is equivariant. In particular, the restriction
φ̄ : g≥0 −→ (Tx O)≥0 of φ is also surjective. But, on one hand (Tx O)≥0 =
TxC

+ by Theorem 5 and on the other hand g≥0 is the Lie algebra of P(λ).
One can conclude that TxC

+ = TxP (λ)x. Since P(λ)x is smooth, this implies
that P(λ)x is open in C+. Since C+ is irreducible, it contains a unique open
P(λ)-orbit O0 which contains C.

Note that C+ − O0 is P(λ)-stable and closed in C+. Since for any y ∈ C+
limt→0 λ(t)y ∈ C ⊂ O0, this implies that C+ − O0 is empty. �

Remark Here, is an example which proves that the assumption on X in The-
orem 8 is useful. Let V be a vector space of dimension 2. Make the group
G = K

∗ × SL(V ) acting on X = P(K ⊕ V ⊕ V ) by:

(t, g).[τ : v1 : v2] = [τ, gv1, t
2gv2]. (4)

Consider (with obvious notation), the following one parameter subgroup

λ(t) =
(

t−1,

(
t−1 0
0 t

))
.

Note that C = {[1 : 0 : 0]} is an irreducible component of Xλ. Formula (4)
gives also a linearization L of the line bundle O(1). Then, μL(C,λ) = 0,
and L ∈ A CG(X) (more precisely, Xss(L) is the set of [τ : v1 : v2] such that
τ = 0). The map η associated to (C,λ) is birational, but the fiber over the
only point of C is P

1: so (C,λ) is covering but not well covering.

7 If X = G/Q × Ĝ/Q̂. . .

7.1 Interpretations of the GIT-cones

7.1.1

From now on, we assume that G is embedded in a connected reductive group
Ĝ. Let us fix maximal tori T (resp. T̂ ) and Borel subgroups B (resp. B̂) of G

(resp. Ĝ) such that T ⊂ B ⊂ B̂ ⊃ T̂ ⊃ T . Let Q (resp. Q̂) be a parabolic
subgroup of G (resp. Ĝ) containing B (resp. B̂); let L (resp. L̂) denote the
Levi subgroup of Q (resp. Q̂) containing T (resp. T̂ ).

In this section, X denotes the variety G/Q × Ĝ/Q̂ endowed with the di-
agonal action of G. We will apply the results of the preceding sections to X

with  = PicG(X).
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7.1.2

Let us describe PicG(X)Q. Consider the natural action of G × Ĝ on X.
Using notation of Sect. 3.3.1 we have the following isomorphism X(Q) ×
X(Q̂) −→ PicG×Ĝ(X), (ν, ν̂) �−→ L(ν, ν̂).

Lemma 13 The following complex is exact

0 � X(Ĝ)Q

ν̂ �→ L(−ν̂|Q, ν̂|Q̂)
� PicG×Ĝ(X)Q

r�G
Q� PicG(X)Q

� 0,

where the second linear map is induced by the restriction r�G of the action
of G × Ĝ to G diagonally embedded in G × Ĝ.

Proof Let χ and χ̂ be characters of G and Ĝ respectively. The trivial bundle

on X linearized by (χ, χ̂) belongs to PicG×Ĝ(X). The image of this line
bundle in PicG(X) is the trivial line bundle linearized by the character χ + χ̂|G
of G. In particular, any G-linearization of the trivial bundle belongs to the
image of r�G.

Let L ∈ PicG(X). Let L′ ∈ Pic(X) be obtained from L by forgetting the
action of G. By [24], there exists a G × Ĝ-linearization M of L′⊗n for some
positive integer n. Then M∗ ⊗ L⊗n is the trivial line bundle over X; so, it
belongs to the image of r�G. Finally, L⊗n belongs to the image of r�G. This
proves that r�G

Q
is surjective.

Let L be in the kernel of r�G. Since L is trivial as a line bundle, there exist
characters χ and χ̂ of G and Ĝ such that L = L(χ|Q, χ̂|Q̂). The G-linearization

of this line bundle is trivial if and only if χ + χ̂|G is trivial. This ends the
proof of the lemma. �

7.1.3

The relations between the three GIT-cones of X and the branching rule prob-
lem are as follow:

Proposition 10

(i) T CG(X) = S A CG(X) is a closed convex polyhedral cone in PicG(X)Q.
(ii) Let (ν, ν̂) ∈ X(Q)Q ×X(Q̂)Q. Then, r�G

Q
(L(ν,ν̂)) ∈ T CG(X) if and only

if ν and ν̂ are dominant and for some positive integer n Vnν ⊗ Vnν̂ con-
tains nonzero G-invariant vectors.

(iii) If A CG(X) is nonempty, its closure in PicG(X)Q is S A CG(X).
(iv) If Q and Q̂ are Borel subgroups of G and Ĝ then A CG(X) is nonempty.
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Proof Since X is homogeneous under the action of G× Ĝ and since any line
bundle has a linearizable power, every bundle with a nonzero section is semi-
ample. Hence, T CG(X) = S A CG(X). Note that +

Q
is closed in PicG(X)Q.

Proposition 4 implies that S A CG(X) is a closed convex cone.
Let now ν and ν̂ be characters of Q and Q̂. If ν or ν̂ is not dominant then

L(ν,ν̂) has no regular section. Otherwise, the Borel-Weil theorem shows that
H0(X, L(ν,ν̂)) is isomorphic as a G × Ĝ-module to V ∗

ν ⊗ V ∗
ν̂

. The second
assertion of the proposition follows.

The third assertion is satisfied since ++
Q

is the interior of +
Q

.
Let w0 be the longest element of the Weyl group of G. Assume that Q = B

and Q̂ = B̂ . Let ν̂0 be any character of B̂ such that Lν̂0 is ample over Ĝ/B̂ .
Let ν be any dominant weight of the G-module V ∗

ν̂0
. Then, r�G(L(−w0ν,ν̂0))

belongs to S A CG(X).
Let ν0 be any character of B such that Lν0 is ample over G/B . Since

the restriction K[Ĝ] −→ K[G] is surjective, the Frobenius theorem implies
that V ∗

ν0
is contained in an irreducible Ĝ-module V ∗

ν̂
. Then, r�G(L(−w0ν0,ν̂))

belongs to S A CG(X).
Since S A CG(X) is convex, it contains r�G(L(−w0(ν0+ν),ν̂+ν̂0)). But the

line bundle L(−w0(ν0+ν),ν̂+ν̂0) is ample. The last assertion is proved.
Since A CG(X) is polyhedral in ++

Q
and +

Q
is polyhedral, the two last

assertions imply that S A CG(G/B ×Ĝ/B̂) is polyhedral. But, S A CG(G/Q×
Ĝ/Q̂) identifies with a linear section of S A CG(G/B × Ĝ/B̂); so, it is poly-
hedral. �

7.2 Dominant and well covering pairs

Notation Let W and Ŵ denote the Weyl groups of G and Ĝ. If P is a par-
abolic subgroup of G containing T , WP denotes the Weyl group of the Levi
subgroup of P containing T . This group WP is canonically a subgroup of W .

We are going to describe the well covering pairs in the case when X =
G/Q × Ĝ/Q̂.

7.2.1

Let λ be a one parameter subgroup of T and so of T̂ . It is well known that the
fixed point set of λ in X is

Xλ =
⋃

w∈WP(λ)\W/WQ

ŵ∈Ŵ
P̂ (λ)

\Ŵ/Ŵ
Q̂

GλwQ/Q × ĜλŵQ̂/Q̂.
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For (w, ŵ) ∈ WQ\W/WP(λ) × Ŵ
Q̂

\Ŵ/Ŵ
P̂ (λ)

, we set

C(w, ŵ) = Gλw−1Q/Q × Ĝλŵ−1Q̂/Q̂.

Note that, for later use, we have introduced a −1 in this definition. Note also
that (see for example Lemma 12)

C+(w, ŵ) = P(λ)w−1Q/Q × P̂ (λ)ŵ−1Q̂/Q̂.

7.2.2

Let P be a standard (that is, containing B) parabolic subgroup of G. We
consider the cohomology ring H∗(G/P,Z) of G/P . Here, we use singular
cohomology with integer coefficients.

Notation The elements of W/WP will be denoted w as elements of W : in
other word, the notation does not distinguish a coset and a representative.
Each times we use this abuse the reader has to check that the considered
quantities does not depend on the representative.

If Y is an irreducible closed subvariety of G/P , we denote by [Y ] ∈
H∗(G/P,Z) its cycle class in cohomology. If w ∈ W/WP , we denote by
σP

w the corresponding Schubert class; we have: σP
w = [BwP/P ]. Note that,

[pt] = σP
e . Let us recall that

H∗(G/P,Z) =
⊕

w∈W/WP

ZσP
w .

We use similar notation for Ĝ/P̂ .
We now consider the case when P = P(λ) and P̂ = P̂ (λ). Since P = G ∩

P̂ , G/P identifies with the G-orbit of P̂ /P̂ in Ĝ/P̂ ; let ι : G/P −→ Ĝ/P̂

denote this closed immersion. The map ι induces a map ι∗ in cohomology:

ι∗ : H∗(Ĝ/P̂ ,Z) −→ H∗(G/P,Z).

Lemma 14 Let (w, ŵ) ∈ WQ\W/WP × Ŵ
Q̂

\Ŵ/Ŵ
P̂

. Then, we have:

(i) the pair (C(w, ŵ), λ) is dominant if and only if [QwP/P ] ·
ι∗([Q̂ŵP̂ /P̂ ]) = 0;

(ii) the pair (C(w, ŵ), λ) is covering if and only if [QwP/P ] ·
ι∗([Q̂ŵP̂ /P̂ ]) = [pt].
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Proof Consider the map:

η : G ×P C+(w, ŵ) −→ X.

Since the characteristic of K is zero, η is birational (resp. dominant) if and
only if for x in an open subset of X, η−1(x) is reduced to one point (resp.
nonempty). Consider the projection p : G ×P C+(w, ŵ) −→ G/P . For any
x in X, p induces an isomorphism from η−1(x) onto the following locally
closed subvariety of G/P :

Fx := {hP ∈ G/P : h−1x ∈ C+(w, ŵ)}.

Let (g, ĝ) ∈ G × Ĝ and set x = (gQ/Q, ĝQ̂/Q̂) ∈ X. We have:

Fx = {hP/P ∈ G/P : h−1gQ/Q ∈ Pw−1Q/Q and

h−1ĝQ̂/Q̂ ∈ P̂ ŵ−1Q̂/Q̂}
= {hP/P ∈ G/P : h−1 ∈ (Pw−1Qg−1) ∩ (P̂ ŵ−1Q̂ĝ−1)}
= ι(gQwP/P ) ∩ (ĝQ̂ŵP̂ /P̂ ).

Let us fix g arbitrarily. By Kleiman’s transversality theorem (see [22]),
there exists an open subset of ĝ’s in Ĝ such that the intersection gQwP/P ∩
ĝQ̂ŵP̂ /P̂ is transverse. Moreover (see for example [3]), one may assume that

(gQwP/P ) ∩ (ĝQ̂ŵP̂ /P̂ ) is dense in gQwP/P ∩ ĝQ̂ŵP̂ /P̂ . We deduce
that the following are equivalent:

(i) for general ĝ, Fx is reduced to a point (resp. Fx = ∅),

(ii) [QwP/P ] · ι∗([Q̂ŵP̂ /P̂ ]) = [pt] (resp. = 0).

Since η is G-equivariant, the above Condition (i) is clearly equivalent to
the fact that η is birational respectively dominant. �

7.2.3

Notation From now on, g and b will denote the Lie algebras of G and B , R

(resp. R+) will denote the set of roots (resp. positive roots) of g. We denote
by ρ the half sum of positive roots of g. We will also use the following similar
notation for Ĝ: ĝ, b̂, R̂, R̂+, ρ̂.

Let w ∈ W/WP and consider the associated B-orbit in G/P . We define
γ P
w to be the sum of weights of T in the normal space at wP/P of BwP/P

in G/P . Similarly, we define γ̂ P̂
ŵ

.
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Lemma 15 The character γ P
w is the sum of weights of T in g/(b + w.p). We

have:

γ P
w = −(ρ + w̃ρ),

where w̃ denotes the longest element in the coset w ∈ W/WP .

Proof Consider the map G −→ G/P, g �→ gwP/P and its tangent map
ϕ : g −→ TwP/P G/P . Since ϕ is T -equivariant, surjective and b + w.p =
ϕ−1(TwP/P BwP/P ), γ P

w is the sum of weights of T in g/(b + w.p).
Consider the G-equivariant surjective map π : G/B −→ G/P . The de-

finition of w̃ implies that π(w̃B/B) = wP/P and Bw̃B/B is open in
π−1(BwP/P ). It follows that γ P

w is the sum of weights of T in the nor-
mal space at w̃B/B of Bw̃B/B in G/B; that is, the sum of weights of T in
g/(b + w̃.b). Since the sum of all the roots is zero, we obtain that

−γ P
w =

∑

α∈R+∪w̃R+
α

= 1

2

( ∑

α∈R+
α +

∑

α∈w̃R+
α +

∑

α∈R+\w̃R+
α +

∑

α∈w̃R+\R+
α

)

= 1

2

(
2ρ + 2w̃ρ +

∑

α∈R+\w̃R+
α +

∑

α∈w̃R+\R+
α

)

= ρ + w̃ρ

where the last equality holds since R+\w̃R+ = −(w̃R+\R+). �

Remark In [3], Belkale-Kumar defined characters χw−1 for w of minimal
length in its coset in WP \W . We have γ P

w−1 = −w̃−1wP (χw−1), where wP

denote the longest element of WP .

7.2.4

Notation If Y is a smooth variety of dimension n, T Y denotes its tan-
gent bundle. The line bundle

∧n T Y over Y will be called the determi-
nant bundle and denoted by DetY . If ϕ : Y −→ Y ′ is a morphism between
smooth varieties, we denote by T ϕ : T Y −→ T Y ′ its tangent map, and by
Detϕ : DetY −→ DetY ′ its determinant.

We denote by rT : X(T̂ ) −→ X(T ) the restriction morphism.

Let us fix again a dominant one parameter subgroup λ of T , w ∈ W and
ŵ ∈ Ŵ . To simplify notation, we set P = P(λ), C = C(w, ŵ) and C+ =
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C+(w, ŵ). Consider

η : G ×P C+ −→ X = G/Q × Ĝ/Q̂.

Consider the restriction of T η to C+:

T η|C+ : T (G ×P C+)|C+ −→ T (X)|C+,

and the restriction of Detη to C+:

Detη|C+ : Det(G ×P C+)|C+ −→ Det(X)|C+ .

Since η is G-equivariant, the morphism Detη|C+ is P -equivariant; it can be
thought as a P -invariant section of the line bundle Det(G ×P C+)∗|C+ ⊗
Det(X)|C+ over C+. We denote by LP,w,ŵ this last P -linearized line bun-
dle on C+.

Lemma 16 Let (w, ŵ) ∈ WQ\W/WP × Ŵ
Q̂

\Ŵ/Ŵ
P̂

. Let w̃ ∈ W (resp. ˜̂w ∈
Ŵ ) be the longest element in the class w (resp. ŵ).

Then, the torus T acts on the fiber over the point (w̃−1Q/Q, ˜̂w−1
Q̂/Q̂) in

LP,w,ŵ by the character

w̃−1γ P
w + rT ( ˜̂w−1

γ P̂
ŵ

) − γ P
e .

Proof If Z is a locally closed subvariety of a variety Y and z is a point of Z,
we denote by NY

z (Z) the quotient TzY/TzZ of the tangent spaces at z of Y

and Z. If V is a T -module WtT(V) denotes the multiset of weights of T

in V . Let χ denote the character of the action of T on the fiber over the point

x = (w̃−1Q/Q, ˜̂w−1
Q̂/Q̂) in LP,w,ŵ . Let p denote the Lie algebra of P .

Since η induces the identity on C+, we have:

χ = −
∑

α∈WtT(N
G×PC+
x (C+))

α +
∑

α∈WtT(NX
x (C+))

α.

Moreover, we have the following T -equivariant isomorphisms:

NG×P C+
x (C+) � NG

e (P ) � g/p,

NX
x (C+) � N

G/Q

w̃−1Q/Q
(Pw−1Q/Q) ⊕ N

Ĝ/Q̂

˜̂w−1
Q̂/Q̂

(P̂ ŵ−1Q̂/Q̂)

� N
G/B

w̃−1B/B
(P w̃−1B/B) ⊕ N

Ĝ/B̂

˜̂w−1
B̂/B̂

(P̂ ˜̂w−1
B̂/B̂)

� g/(p + w̃−1
b) ⊕ ĝ/(p̂ + ˜̂w−1

b̂)

Now, the lemma is direct consequence of Lemma 15. �
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One can now describe the well covering pairs of X:

Proposition 11 Let λ be a dominant one parameter subgroup of T . Let
(w, ŵ) ∈ W/WP × Ŵ/Ŵ

P̂
be such that BwP/P and B̂ŵP̂ /P̂ are open in

QwP/P and Q̂ŵP̂ /P̂ respectively.
The following are equivalent:

(i) The pair (C(w, ŵ), λ) is well covering.
(ii) σP

w .ι∗(σ P̂
ŵ

) − σP
e = 0, and 〈wλ,γ P

w 〉 + 〈ŵλ, γ P̂
ŵ

〉 − 〈λ,γ P
e 〉 = 0.

Proof By Lemma 14, we may (and shall) assume that (C,λ) is covering. Note
that wλ is well defined, since WP is precisely the stabilizer of λ in W . We
choose w̃ and ˜̂w as in Lemma 16. Note that

〈λ, w̃−1γ P
w + rT ( ˜̂w−1

γ P̂
ŵ

) − γ P
e 〉 = 〈wλ,γ P

w 〉 + 〈ŵλ, γ P̂
ŵ

〉 − 〈λ,γ P
e 〉.

In particular, by Lemma 16, 〈wλ,γ P
w 〉 + 〈ŵλ, γ P̂

ŵ
〉 − 〈λ,γ P

e 〉 = 0 if and only
if λ acts trivially on the restriction of LP,w,ŵ to C.

Assume that (C,λ) is well covering. Then Detη|C is not identically zero.
Since Detη|C is a Gλ-invariant section of LP,w,ŵ |C , λ which pointwise fixes
C has to act trivially on LP,w,ŵ |C (see for example Lemma 1).

Conversely, assume Condition (ii) is satisfied. Since η is birational, Detη is
G-invariant and nonzero; hence, Detη|C+ is P -invariant and nonzero. Since
μLP,w,ŵ (C,λ) = 0, Lemma 5 shows that the restriction of Detη|C is not iden-
tically zero. Since η is birational, this implies that η is an isomorphism over
an open subset intersecting C. �

Remark As pointed out in the introduction, the notion of well covering pair
is an adaptation of Belkale-Kumar’s Levi-movability. Now, Proposition 11 is
an adaptation of [3, Theorem 15].

7.3 The case X = G/B × Ĝ/B̂

7.3.1

Let us recall that L R(G, Ĝ) denotes the cone of pairs (ν, ν̂) ∈ X(T )Q ×
X(T̂ )Q such that for some positive integer n, nν and nν̂ are dominant weights
such that Vnν ⊗ Vnν̂ contains nonzero G-invariant vectors.

From now on, X = G/B × Ĝ/B̂ . By Proposition 10, a point (ν, ν̂) belongs
to L R(G, Ĝ) if and only if r�G(L(ν,ν̂)) belongs to T CG(X) = S A CG(X).
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Proposition 12 The following are equivalent:

(i) no nonzero ideal of g is an ideal of ĝ;
(ii) the interior of L R(G, Ĝ) in X(T )Q × X(T̂ )Q is not empty;

(iii) the interior of A CG(X) in PicG(X)Q is not empty.

Proof The equivalence between the two last assertions follows immediately
from Proposition 10. By [32, Corollaire 1], the codimension of L R(G, Ĝ)

in PicG(X)Q is the dimension of the general isotropy of T acting on ĝ/g.
This general isotropy is also the kernel of the action of T on Ĝ/G. So, it is
contained in

⋂
ĝ∈Ĝ

ĝGĝ−1. Since this group is normal in Ĝ and G, it is finite
if and only if no nonzero ideal of g is an ideal of ĝ. �

7.3.2 Admisible subtore

Consider the G-module ĝ/g. Let WtT(ĝ/g) be the set of nontrivial weights of
T in ĝ/g. For I ⊂ WtT(ĝ/g), we will denote by TI the identity component of
the intersection of the kernels of the χ ∈ I . A subtorus of the form TI is said to
be admissible. The subtorus TI is said to be dominant if Y(TI )Q is spanned by
its intersection with the dominant chamber of Y(T )Q. Notice that WtT(ĝ/g)

being stable by the action of W , any admissible subtorus is conjugated by an
element of W to a dominant admissible subtorus. A one parameter subgroup
of T is said to be admissible if its image is.

To each χ ∈ WtT(ĝ/g), we associate the hyperplane Hχ in Y(T )Q spanned
by the λ ∈ Y(T ) such that χ ◦ λ is trivial. The Hχ ’s form a W -invariant
arrangement of hyperplanes in Y(T )Q. Moreover, Y(TI )Q is the intersection
of the Hχ ’s with χ ∈ I .

The role of admissible subtori of T is explained by Corollary 3 and the
following

Lemma 17 Let S be a subtorus of T . We consider the action of GS on the
complete flag variety X′ of the group GS × ĜS . If there exists x ∈ X′ such
that the identity component of GS

x is S then S is admissible

Proof Since S acts trivially on X′, the condition of the lemma on the isotropy
of x is open in x; in particular, for x ∈ X′ general, we have (GS

x)◦ = S.
Hence, the general isotropy of BS/S acting on ĜS/B̂S is finite; that is, by

the Bruhat theorem, the general isotropy of BS/S acting on B̂S/T̂ is finite.
Since US acts freely on B̂S/T̂ , for x ∈ ÛS/US general, T ◦

x = S. But, ÛS/US

is isomorphic to ûS/uS as a T -variety. So, S is the identity component of the
kernel of the action of T on ûS/uS = (û/u)S . It follows that S is admissible. �
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7.3.3 Inequalities for L R(G, Ĝ)

The following theorem is a generalization of [3, Theorem 28] for general
branching problem:

Theorem 9 We assume that no nonzero ideal of g is an ideal of ĝ. Any domi-
nant weight (ν, ν̂) belongs to L R(G, Ĝ) if and only if

〈wλ,ν〉 + 〈ŵλ, ν̂〉 ≥ 0, (5)

for any indivisible dominant admissible one parameter subgroup λ of T and
for any (w, ŵ) ∈ W/WP(λ) × Ŵ/Ŵ

P̂ (λ)
such that

(i) σ
P(λ)
w · ι∗(σ P̂ (λ)

ŵ
) = σ

P(λ)
e ∈ H∗(G/P (λ),Z), and

(ii) 〈wλ,γ
P(λ)
w 〉 + 〈ŵλ, γ

P̂ (λ)

ŵ
〉 = 〈λ,γ

P(λ)
e 〉.

Proof Since L R(G, Ĝ) is the pullback of S A CG(X) which is the closure of
A CG(X), it is sufficient to prove the theorem for A CG(X). Let (C,λ) be a
well covering pair as in Theorem 3. Since C is isomorphic to the complete
flag variety of Gλ × Ĝλ, Lemma 17 shows that λ is admissible. Now, the
theorem follows immediately from Theorem 3 and Proposition 11. �

7.3.4 Irredundancy

The following is our irredundancy result:

Theorem 10 In Theorem 9, Inequalities (5) are pairwise distinct and no one
can be omitted.

Proof Note that the stabilizer in W (resp. Ŵ ) of λ ∈ Y(T ) (resp. λ ∈ Y(T̂ ))
is precisely WP(λ) (resp. Ŵ

P̂ (λ)
). It follows that the inequalities are pairwise

distinct.
Let (C,λ) be a well covering pair of X corresponding to one inequal-

ity. Consider the associated face T F (C) of T CG(X). We have to prove
that T F (C) has codimension one. Consider the restriction morphism ρ :
PicG(X) −→ PicGλ

(C). Since PicG×Ĝ(X) � PicGλ×Ĝλ
(C), Lemma 13 im-

plies that ρ is surjective. By Theorem 4, we have to prove that A CGλ
(C) has

codimension one in PicGλ
(C)Q; or, equivalently that, L R(Gλ, Ĝλ) has codi-

mension one. Since λ is admissible, [32, Corollaire 1] gives this codimension.
One ends the proof of the theorem noting that T F (C) is not a face of the

dominant chamber (for the group G × Ĝ). �
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Remark In Theorems 9 and 10, the weight (ν, ν̂) is assumed to be dominant
a priori. This imposes linear inequalities which can be redundant as shown
by the following example. Set Ĝ = SL3 and G � SL2 diagonally embedded
in Ĝ. With usual notation, the irreducible representations of Ĝ correspond to
the nondecreasing sequences of two nonnegative integers: ν̂ = (ν̂1 ≥ ν̂2 ≥ 0).
Those of G correspond to nonnegative integers ν ≥ 0. Applying Theorem 9,
one can recover the well known following equality:

L R(G, Ĝ) = {(ν, ν̂) : ν̂1 ≥ ν ≥ ν̂2}.
Clearly, the inequality ν̂1 ≥ ν̂2 is a consequence of ν̂1 ≥ ν and ν ≥ ν̂2 and so
is redundant.

7.3.5 Smaller faces

We now state our result about the smaller faces of L R(G, Ĝ).

Notation With notation of Lemma 16, we set θP
w = w̃−1γ P

w and θP̂
ŵ

=
˜̂w−1γ P̂

ŵ
.

Theorem 11 We assume that no nonzero ideal of g is an ideal of ĝ.

(i) Let F be a face of L R(G, Ĝ) of codimension r ≥ 1 which intersects the
interior of the dominant chamber. Then there exist a dominant admissible
subtorus TI (with I ⊂ WtT(ĝ/g)) of T of dimension r , a dominant indi-
visible one parameter subgroup λ of TI , and an irreducible component
C(w, ŵ) of Xλ (and XTI ) such that:

(a) σ
P(λ)
w · ι∗(σ P̂ (λ)

ŵ
) = σ

P(λ)
e ∈ H∗(G/P (λ),Z),

(b) θ
P (λ)
w + rT (θ̂

P̂ (λ)

ŵ
) − θ

P (λ)
e is trivial on TI , and

(c) F is the set of (ν, ν̂) ∈ L R(G, Ĝ) such that 〈wλ,ν〉 + 〈ŵλ, ν̂〉 = 0.
(ii) Conversely, let λ be a dominant one parameter subgroup of T and C =

C(w, ŵ) be an irreducible component Xλ. Set I = {χ ∈ WtT(ĝ/g) | χ ◦
λ is trivial} and denote by r the dimension of TI . If

(a) σ
P(λ)
w · ι∗(σ P̂ (λ)

ŵ
) = σ

P(λ)
e ∈ H∗(G/P (λ),Z) and

(b) θ
P (λ)
w + rT (θ̂

P̂ (λ)

ŵ
) − θ

P (λ)
e is trivial on TI ,

then the set of (ν, ν̂) ∈ L R(G, Ĝ) such that 〈wλ,ν〉+ 〈ŵλ, ν̂〉 = 0 is
a face of L R(G, Ĝ) of codimension r .

Proof A face as in the first assertion corresponds to one A F of A CG(X) of
codimension r . Let S be a torus in G, λ be an indivisible one parameter sub-
group of S and C be an irreducible component of XS satisfying Corollary 3.
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Up to conjugacy, we may assume that S is contained in T and that S and λ

are dominant.
Lemma 17 implies that S is admissible. Now, we obtain Assertion (i) using

Proposition 11.
Conversely, let w, ŵ, λ and I be as in Assertion (ii) of the theorem. By

Proposition 11, (C(w, ŵ), λ) is a well covering pair. Consider the associated
face T F (C(w, ŵ)) of T CG(X). It remains to prove that the codimension of
T F (C(w, ŵ)) equals the dimension r of TI .

By Lemma 13, the restriction ρ : PicG(X) −→ PicGλ
(C(w, ŵ)) is surjec-

tive. By Theorem 4, it remains to prove that T CGλ
(C(w, ŵ)) has codimen-

sion r in PicGλ
(C(w, ŵ))Q. By [32, Corollaire 1], this codimension is the

dimension of the kernel of the action of T on ĝλ/gλ = (ĝ/g)λ. By definition,
TI is the identity component of this kernel. �

7.3.6 Redundant inequalities

Theorem 9 gives a minimal list of inequalities which determine L R(G, Ĝ) as
a part of the dominant chamber. Other classical inequalities like those given
by the Horn conjecture or the Berenstein-Sjamaar theorem (see [4]) come
from dominant pairs. We now want to understand the face corresponding to
such a redundant inequality.

Let us fix a dominant one parameter subgroup λ. Let (σ
P (λ)
w , σ

P̂ (λ)

ŵ
) be a

pair of Schubert classes in G/P(λ) and Ĝ/P̂ (λ) such that σ
P(λ)
w · ι∗(σ P̂ (λ)

ŵ
) =

0 in H∗(G/P (λ),Z). By Lemma 3, for any (ν, ν̂) ∈ L R(G, Ĝ), we have
〈wλ,ν〉+〈ŵλ, ν̂〉 ≥ 0. In particular, the set F (w, ŵ, λ) of (ν, ν̂) ∈ L R(G, Ĝ)

such that 〈wλ,ν〉 + 〈ŵλ, ν̂〉 = 0 is a face of L R(G, Ĝ). By Theorem 9, if the
pair (C(w, ŵ), λ) is not well covering then F (w, ŵ, λ) has not codimension
one. The following theorem improves this remark proving that F (w, ŵ, λ) is
contained in a codimension two boundary of the dominant chamber.

Theorem 12 We assume that (C(w, ŵ), λ) is dominant but not well covering.
Then, F (w, ŵ, λ) contains no point (ν, ν̂) with ν OR ν̂ strictly dominant.

Proof Set x = (w−1B/B, ŵ−1B̂/B̂) and C = C(w, ŵ). We assume that
F (w, ŵ, λ) contains a weight (ν, ν̂) with ν̂ strictly dominant. We are going
to prove that (C,λ) is well covering.

Consider the parabolic subgroup Q of G containing B such that L(ν,ν̂) is
an ample line bundle on G/Q× Ĝ/B̂ (denoted by X from now on). Consider
the natural G × Ĝ-equivariant morphism p : X −→ X. Set x = p(x). Let C

denote the irreducible component of X
λ

containing x and C
+

the correspond-
ing Białynicki-Birula cell.
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Since C (resp. C
+

) is an orbit of Gλ × Ĝλ (resp. of P(λ) × P̂ (λ)), we
have p(C) = C and p(C+) = C

+
. Since (C,λ) is dominant, we deduce that

(C,λ) is dominant. Now, Theorem 8 implies that (C,λ) is well covering.
Let y ∈ C be general and g ∈ G such that g−1y ∈ C+. Since p(C) = C,

p(y) is general in C. But, (C,λ) is well covering and g−1p(y) ∈ C
+

; so,
g ∈ P(λ). This proves that (C,λ) is well covering.

The case when F (w, ŵ, λ) contains a weight (ν, ν̂) with ν strictly domi-
nant works similarly. Note that Theorem 8 can be applied with “Ĝ = G”. �

Example As an example, we consider the first redundant inequality given by
the Horn conjecture. The computations was made using [7] and [15]: I want
to thank their authors. Consider G = SL6 and the cone L R(G,G × G).
As usually, we identify the dominant weights of SL6 with the sequences
α = (α1 ≥ α2 ≥ · · · ≥ α5 ≥ 0). We denote by (α,β, γ ) the elements of
L R(G,G × G). Let λ(t) be the diagonal matrix with diagonal entries
(t, t, t, t−1, t−1, t−1). The variety G/P(λ) is the Grassmann variety Gr(3,6).
Let σ ∈ H3(Gr(3,6),Z) be the Schubert class associated to the part {2,4,6}
(in usual way). We have σ · σ · σ = 2.σe. In particular, (σ, σ, σ ) corresponds
to a (conjugacy class of) dominant pair (C,λ) of G/B3. The corresponding
inequality is

α2 + α4 + β2 + β4 + γ2 + γ4 ≥ 0.

The extremal rays of T F (C) are (ω2,ω2,ω2), (ω4,ω4,ω4) and the 6 ele-
ments obtained by permuting the three entries of (0,ω2,ω4).

Let F l(2,4,6) denote the partial flag manifold of flags V2 ⊂ V4 ⊂
K

6 where V2 and V4 have dimension 2 and 4. With obvious identifica-
tion T F (C) has nonempty interior in PicG(F l(2,4,6)3); so, T F (C) =
T CG(F l(2,4,6)3).

7.4 Application to the tensor product

In this section, G is assumed to be semisimple. We also fix an integer s ≥ 2
and set Ĝ = Gs , T̂ = T s and B̂ = Bs . We embed G diagonally in Ĝ. Then
S A CG(X) ∩ X(T )s+1 identifies with the set of (s + 1)-uples (ν0, . . . , νs) of
dominant weights such that for n big enough Vnν0 ⊗ · · · ⊗ Vnνs contains a
nonzero G-invariant vector.

The set of weights of T in ĝ/g is simply the root system R of G. Let � be
the set of simple roots of G for T ⊂ B . Let I be a part of �. Let L(I) denote
the Levi subgroup of G containing T and having � − I as simple roots.
Let TI denote the identity component of the center of L(I); TI is dominant.
Note that the dimension of TI is the cardinality of I . Moreover, any dominant
admissible subtorus of T is obtained in such a way. We will also denote by
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P(I) the standard parabolic subgroup with Levi subgroup L(I). We denote
by WI the Weyl group of L(I).

Let λ be a dominant one parameter subgroup of T . For (w, ŵ) =
(w0, . . . ,ws) ∈ W × Ŵ = Ws+1, and (ν, ν̂) = (ν0, . . . , νs) ∈ PicG(X)Q =
X(T )s+1

Q
we have:

• rT (ŵν̂) = ∑s
i=1 wiνi , and rT (θ̂

P̂ (λ)

ŵ
) = ∑s

i=1 θ
P (λ)
wi

,

• ι∗(σ P̂ (λ)

ŵ
) = σ

P(λ)
w1 · · · · ·σP(λ)

ws ,

In [3], Belkale-Kumar defined a new product denoted �0 on the cohomol-
ogy groups H∗(G/P,Z) for any parabolic subgroup P of G. By [3, Proposi-
tion 17], this product �0 has the following very interesting property.

For wi ∈ W/WI , the following are equivalent:

(i) σ
P(I)
w0 · · · · · σ

P(I)
ws = σ

P(I)
e and, the restriction of θ

P (I)
w0 + · · · + θ

P (I)
ws −

θ
P (I)
e to TI is trivial;

(ii) σ
P(I)
w0 �0 · · · �0 σ

P(I)
ws = σ

P(I)
e .

Using this Belkale-Kumar result our Theorem 11 gives the following corol-
lary. If α is a root of G, α∨ denotes the corresponding coroot. If α is a simple
root, ωα∨ denotes the corresponding fundamental one parameter subgroup.

Corollary 4

(i) A point (ν0, . . . , νs) ∈ X(T )s+1
Q

belongs to the cone L R(G,Gs) if and
only if
(a) each νi is dominant; that is 〈α∨, νi〉 ≥ 0 for any simple root α.
(b) for any simple root α; for any (w0, . . . ,ws) ∈ (W/Wα)s+1 such that

σ
P(α)
w0 �0 · · · �0 σ

P(α)
ws = σ

P(α)
e ∈ H∗(G/P (α),Z), we have:

s∑

i=0

〈wiωα∨, νi〉 ≥ 0.

(ii) We assume either that g does not contain any factor of rank one or s ≥ 3.
In the above description of L R(G,Gs), the inequalities are pairwise
distinct and no one can be omitted (neither in (a) nor (b)).

(iii) Let F be a face of L R(G,Gs) of codimension r ≥ 1 which intersects
the interior of the dominant chamber. There exist a subset I of r simple
roots and (w0, . . . ,ws) ∈ (W/WI )

s+1 such that:
(a) σ

P(I)
w0 �0 · · · �0 σ

P(I)
ws = σ

P(I)
e ∈ H∗(G/P (I),Z),

(b) the subspace spanned by F is the set of (ν0, . . . , νs) ∈ X(T )s+1
Q

such
that:

∀α ∈ I
∑

i

〈wiωα∨, νi〉 = 0.
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(iv) Conversely, let I be a subset of r simple roots and (w0, . . . ,ws) ∈
(W/WI )

s+1 such that σ
P(I)
w0 �0 · · ·�0 σ

P(I)
ws = σ

P(I)
e ∈ H∗(G/P (I),Z).

Then, the set of (ν0, . . . , νs) ∈ L R(G,Gs) such that

∀α ∈ I
∑

i

〈wiωα∨, νi〉 = 0,

is a face of codimension r of L R(G,Gs).

Proof Inequalities (a) are pairwise distinct and are not repeated in Inequali-
ties (b). Moreover, by [32, Proposition 7] they define codimension one faces
of L R(G,Gs).

The rest of the corollary is a simple rephrasing of Theorems 9, 10 and
11. �

Remark Assertion (i) of Corollary 4 is [3, Theorem 22]. The proof made
here is very similar to that of Belkale-Kumar. The main difference is the use
of abundance in the proof of Theorem 3 instead of [3, Theorem 26].

The description of the smaller faces of CG((G/B)s+1) gives an application
of the Belkale-Kumar product �0 for any complete homogeneous space.
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