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A GENERALIZATION OF FULTON’S CONJECTURE FOR ARBITRARY GROUPS

PRAKASH BELKALE, SHRAWAN KUMAR, AND NICOLAS RESSAYRE

ABSTRACT. We prove a generalization of Fulton’s conjecture which relates intersection theory on
an arbitrary flag variety to invariant theory.

1. INTRODUCTION

1.1. The context of Fulton’s original conjecture. Let L be a connected reductive complex al-
gebraic group with a Borel subgroup BL and maximal torus H ⊂ BL. The set of isomorphism
classes of finite dimensional irreducible representations of L are parametrized by the set X(H)+ of
L-dominant characters of H via the highest weight. For λ ∈ X(H)+, let V (λ) = VL(λ) be the cor-
responding irreducible representation of Lwith highest weight λ. Define the Littlewood-Richardson
coefficients cνλ,µ by:

V (λ)⊗ V (µ) =
∑
ν

cνλ,µV (ν).

The following result was conjectured by Fulton and proved by Knutson-Tao-Woodward [KTW].
(Subsequently, geometric proofs were given by Belkale [B2] and Ressayre [R2].)

Theorem 1.1. Let L = GL(r) and let λ, µ, ν ∈ X(H)+. Then, if cνλ,µ = 1, we have cnνnλ,nµ = 1 for
every positive integer n.

(Conversely, if cnνnλ,nµ = 1 for some positive integer n, then cνλ,µ = 1. This follows from the
saturation theorem of Knutson-Tao.)

Replacing V (ν) by the dual V (ν)∗, the above theorem is equivalent to the following:

Theorem 1.2. Let L = GL(r) and let λ, µ, ν ∈ X(H)+. Then, if [V (λ)⊗ V (µ)⊗ V (ν)]SL(r) = 1,
we have [V (nλ)⊗ V (nµ)⊗ V (nν)]SL(r) = 1, for every positive integer n.

The direct generalization of the above theorem for an arbitrary reductive L is false (see Exam-
ple 8.3(3)). It is also known that the saturation theorem fails for arbitrary reductive groups. It is a
challenge to find an appropriate version of the above result for GL(r) which holds in the setting of
general reductive groups.

The aim of this paper is to achieve one such generalization. This generalization is a relationship
between the intersection theory of homogeneous spaces and the invariant theory. To obtain this
generalization, we must first reinterpret the above result for GL(r) as follows.

Without loss of generality, we only consider the irreducible polynomial representations of GL(r).
These are parametrized by the sequences λ = (λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0), where we view any such
λ as the dominant character diag(t1, . . . , tr) 7→ tλ1

1 . . . tλr
r of the standard maximal torus consisting

of the diagonal matrices in GL(r). Let P(r) be the set of such sequences (also called Young
diagrams or partitions) λ = (λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0) and let Pk(r) be the subset of P(r)
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consisting of those partitions λ such that λ1 ≤ k. Then, the Schubert cells in the Grassmannian
Gr(r, r + k) of r-planes in Cr+k are parametrized by Pk(r) (cf. [F2, §9.4]). For λ ∈ Pk(r), let
σλ be the corresponding Schubert cell and σ̄λ its closure. By a classical theorem (cf. loc. cit.),
the structure constants for the intersection product in H∗(Gr(r, r+ k),Z) in the basis [σ̄λ] coincide
with the corresponding Littlewood-Richardson coefficients for the representations of GL(r). Thus,
the above theorem can be reinterpreted as follows:

Theorem 1.3. Let L = GL(r) and let λ, µ, ν ∈ Pk(r) (for some k ≥ 1) be such that the intersection
product

[σ̄λ] · [σ̄µ] · [σ̄ν ] = [σ̄λo ] inH∗(Gr(r, r + k),Z),

where λo := (k ≥ · · · ≥ k) (r copies of k). Then, [V (nλ) ⊗ V (nµ) ⊗ V (nν)]SL(r) = 1, for every
positive integer n.

1.2. Generalization for arbitrary groups. Our generalization of Fulton’s conjecture to an arbi-
trary reductive group is by considering its equivalent formulation in Theorem 1.3. Moreover, the
generalization replaces the intersection theory of the Grassmannians by the deformed product �0

in the cohomology of G/P introduced in [BK]. The role of the representation theory of SL(r) is
replaced by the representation theory of the semisimple part Lss of the Levi subgroup L of P .

To be more precise, let G be a connected reductive complex algebraic group with a Borel sub-
group B and a maximal torus H ⊂ B. Let P ⊇ B be a (standard) parabolic subgroup of G. Let
L ⊃ H be the Levi subgroup of P , BL the Borel subgroup of L and Lss = [L,L] the semisimple
part of L. Let W be the Weyl group of G, WP the Weyl group of P , and let W P be the set of mini-
mal length coset representatives inW/WP . For anyw ∈ W P , letXw be the corresponding Schubert
variety and [Xw] ∈ H2(dimG/P−`(w))(G/P,Z) the corresponding Poincaré dual class (cf. Section
2). Also, recall the definition of the deformed product �0 in the singular cohomology H∗(G/P,Z)
from [BK, Definition 18]. The following is our main theorem (cf. Theorem 8.2).

Theorem 1.4. Let G be any connected reductive group and let P be any standard parabolic sub-
group. Then, for any w1, . . . , ws ∈ W P such that

(1) [Xw1 ]�0 · · · �0 [Xws ] = [Xe] ∈ H∗(G/P ),

we have, for every positive integer n,

(2) dim
([
VL(nχw1)⊗ · · · ⊗ VL(nχws)

]Lss)
= 1,

where VL(λ) is the irreducible representation of L with highest weight λ and χw is defined by the
identity (16).

Remark 1.5. LetM be the GIT quotient of (L/BL)s by the diagonal action of Lss linearized by
L(χw1) � · · ·�L(χws). Then, the conclusion of Theorem 1.4 is equivalent to the rigidity statement
that M = point. Theorem 1.4 can therefore be interpeted as the statement “multiplicity one in
intersection theory leads to rigidity in representation theory”.

Our proof builds upon and further develops the connection between the deformed product�0 and
the representation theory of the Levi subgroup as established in [BK]. In loc. cit., for any w ∈ W P ,
the line bundle LP (χw) on P/BL was constructed (see Section 6 for the definitions). Further, the
following result was proved in there (cf. [BK, Corollary 8 and Theorem 15]).
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Proposition 1.6. Let w1, . . . , ws ∈ W P be such that

[Xw1 ]�0 · · · �0 [Xws ] = d[Xe] ∈ H∗(G/P ), for some d 6= 0.

Then, m := dim
(
H0
(
(L/BL)s,

(
LP (χw1) � · · ·� LP (χws)

)
|(L/BL)s

)Lss)
6= 0.

Note that, by the Borel-Weil theorem, for any w ∈ W P , H0(L/BL,LP (χw)|(L/BL)) = VL(χw)∗.
The condition (1) can be translated into the statement that a certain map of parameter spacesX →

Y = (G/B)s appearing in Kleiman’s theorem is birational. HereX is the “universal intersection” of
Schubert varieties. It is well known that, for any birational map X → Y between smooth projective
varieties, no multiple of the ramification divisor R in X can move even infinitesimally (i.e., the
corresponding Hilbert scheme is reduced, and of dimension 0 at nR for every positive integer n).
We may therefore conclude that h0(X,O(nR)) = 1 for every positive integer n. In our situation,
X is not smooth, and moreover H0(X,O(nR)) needs to be connected to the invariant theory. We
overcome these difficulties by taking a closer look at the codimension one boundary of Schubert
varieties.

The proof also brings into focus the largest (standard) parabolic subgroup Qw acting on a Schu-
bert variety Xw ⊆ G/P (where w ∈ W P ), the open Qw orbit Yw ⊆ Xw and the smooth locus
Zw ⊆ Xw. The difference Xw \ Zw is of codimension at least two in Xw (since Xw is normal) and
can effectively be ignored.

The varieties Yw give us the link to invariant theory (see Proposition 6.2). The difference Zw \Yw
turns out to be quite subtle. A key result in the paper is that, in the setting of Proposition 1.6,
the intersection ∩igiZwi

of translates is non-transverse ‘essentially’ at any point which lies in(
∩i 6=jgiZwi

)
∩ gj(Zwj

\ Ywj
) for some j (cf. Proposition 8.1 for a precise statement). This re-

veals the significance of Qw in the intersection theory of G/P and, in particular, to the deformed
product �0. The “complexity” of the varieties Zw \ Yw can therefore be expected to relate to the
deformed product�0. Note that by a result of Brion-Polo [BP], if P is a cominuscule maximal par-
abolic subgroup, then Yw = Zw, and in this case the deformed cohomology product �0 coincides
with the standard intersection product as well (cf. [BK, Lemma 19]).

As mentioned above, for any cominuscule flag variety G/P (in particular, for the Grassmanni-
ans Gr(r, r + k)), the deformed product �0 in H∗(G/P ) coincides with the standard intersection
product. In the case of G = GL(r + k) and G/P = Gr(r, r + k), the set W P can be identified
with Pk(r). For any λ ∈ W P , the corresponding irreducible representation of the Levi subgroup
L = GL(r)×GL(k) with the highest weight χλ coincides with V (λ)∗�V (λ̃) (cf. [B1]), where V (λ)

is the irreducible representation of GL(r) as defined in Section 1.1 and λ̃ is the conjugate partition
giving rise to the irreducible representation V (λ̃) of GL(k). Thus, if we specialize Theorem 1.4 to
G = GL(r + k), we get Theorem 1.3.

Observe that in the case G = GL(r + k) and G/P = Gr(r, r + k), under the assumption of
Proposition 1.6, from the above discussion and the discussion in Section 1.1, we get the stronger
relation m = d2. In general, however, there are no known numerical relations between m and d (cf.
Examples 8.3).

We remark that if we replace the condition (1) in Theorem 1.4 by the standard cohomology
product, then the conclusion of the theorem is false in general (see Example 8.3(4)). Also, the
converse to Theorem 1.4 is not true in general (cf. Example 8.3(1)).
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2. NOTATION

Let G be a connected reductive complex algebraic group. We choose a Borel subgroup B and
a maximal torus H ⊂ B and let W = WG := NG(H)/H be the associated Weyl group, where
NG(H) is the normalizer of H in G. Let P ⊇ B be a (standard) parabolic subgroup of G and
let U = UP be its unipotent radical. Consider the Levi subgroup L = LP of P containing H , so
that P is the semi-direct product of U and L. Then, BL := B ∩ L is a Borel subgroup of L. Let
X(H) denote the character group of H , i.e., the group of all the algebraic group morphisms H →
Gm. Then, BL being the semidirect product of its commutator [BL, BL] and H , any λ ∈ X(H)
extends uniquely to a character of BL. We denote the Lie algebras of G,B,H, P, U, L,BL by the
corresponding Gothic characters: g, b, h, p, u, l, bL respectively. Let R = Rg be the set of roots of g
with respect to the Cartan subalgebra h and let R+ be the set of positive roots (i.e., the set of roots
of b). Similarly, let Rl be the set of roots of l with respect to h and R+

l be the set of roots of bL. Let
∆ = {α1, . . . , α`} ⊂ R+ be the set of simple roots, where ` is the semisimple rank of G (i.e., the
dimension of h′ := h ∩ [g, g]). We denote by ∆(P ) the set of simple roots contained in Rl. For any
1 ≤ j ≤ `, define the element xj ∈ h′ by

(3) αi(xj) = δi,j, ∀ 1 ≤ i ≤ `.

Recall that if WP is the Weyl group of P (which is, by definition, the Weyl Group WL of L; thus
WP := WL), then in each coset of W/WP we have a unique member w of minimal length. This
satisfies (cf. [K, Exercise 1.3.E]):

(4) wBLw
−1 ⊆ B.

Let W P be the set of minimal length representatives in the cosets of W/WP .
For any w ∈ W P , define the Schubert cell:

Cw = CP
w := BwP/P ⊂ G/P.

Then, it is a locally-closed subvariety of G/P isomorphic to the affine space A`(w), `(w) being the
length of w (cf. [J, Part II, Chapter 13]). Its closure is denoted byXw = XP

w , which is an irreducible
(projective) subvariety of G/P of dimension `(w). We denote the point wP ∈ Cw by ẇ.

We also need the shifted Schubert cell:

Λw = ΛP
w := w−1BwP/P ⊂ G/P.

Let µ(Xw) denote the fundamental class of Xw considered as an element of the singular ho-
mology with integral coefficients H2`(w)(G/P,Z) of G/P . Then, from the Bruhat decomposition,
the elements {µ(Xw)}w∈WP form a Z-basis of H∗(G/P,Z). Let {[Xw]}w∈WP be the Poincaré
dual basis of the singular cohomology with integral coefficients H∗(G/P,Z). Thus, [Xw] ∈
H2(dimG/P−`(w))(G/P,Z).

The tangent space T P = Tė(G/P ) of G/P at e ∈ G/P carries a canonical action of P induced
from the left multiplication of P on G/P .

We recall the following definition from [BK, Definition 4].

Definition 2.1. Fix a positive integer s ≥ 1. Let w1, . . . , ws ∈ W P be such that

(5)
s∑
j=1

codim Λwj
= dimG/P.
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This of course is equivalent to the condition:

(6)
s∑
j=1

`(wj) = (s− 1) dimG/P.

We then call the s-tuple (w1, . . . , ws) Levi-movable (for shortL-movable) if, for generic (l1, . . . , ls) ∈
Ls, the intersection l1Λw1 ∩ · · · ∩ lsΛws is transverse at ė.

All the schemes are considered over the base field of complex numbers C. The varieties are
reduced (but not necessarily irreducible) schemes.

3. A CRUCIAL GEOMETRIC RESULT

Let π : X → Y be a regular birational morphism of smooth irreducible varieties with Y projec-
tive. Assume that we have a (not necessarily smooth) irreducible projective scheme X̄ containing
X as an open subscheme such that

(1) the codimension of each irreducible component of X̄ \X in X̄ is at least two,
(2) π extends to a regular map π̄ : X̄ → Y .

LetR be the ramification divisor of π inX . It is, by definition, the effective Cartier divisor obtained
as the zero scheme of the section of the line bundle L induced by the derivative mapDπx : Tx(X)→
Tπ(x)(Y ), where the line bundle L has base X and fiber Lx at any x ∈ X is given by:

Lx = ∧top(Tx(X)∗)⊗ ∧top(Tπ(x)(Y )).

In the above set up, one has the following crucial result.

Proposition 3.1. For every n ≥ 1, h0(X,O(nR)) = 1, where h0 denotes the dimension of H0.

Proof. Clearly π|X\R : X \R→ Y is an étale (and hence quasi-finite) birational morphism between
smooth varieties. Hence, by the original form of Zariski’s main theorem [M, Chap. III, §9], it is an
open immersion, i.e., π(X \ R) is open in Y and π : X \ R → π(X \ R) is an isomorphism. We
will show that V := Y \ π(X \R) is of codimension at least two in Y . This will then imply that

H0(X,O(nR)) ⊆ H0(X \R,O) = H0(Y \ V,O) = H0(Y,O) = C.

Since π̄ is surjective, a point v ∈ V is either in π̄(X̄ \X), or in π(R), i.e., V ⊆ π̄(X̄ \X)∪π(R).
We show that π(R) is of codimension at least two in Y and thus conclude the proof (by assumption
(1)).

To do this let Z be the smallest closed subset of Y so that there exists a morphism σ : Y \Z → X̄
representing the birational inverse to π̄. It is known that the codimension of Z in Y is at least two
(follow [H, Proof of Theorem 8.19 on page 181]). Clearly, π̄ ◦σ = I on Y \Z and similarly σ ◦ π̄ is
identity on π̄−1(Y \Z) (for the last, note that σ ◦ π̄ is well defined as a morphism π̄−1(Y \Z)→ X̄
which on an open subset is the identity). We therefore find that π̄ : π̄−1(Y \ Z) → Y \ Z is an
isomorphism.

This tells us that π̄−1(Y \Z) is smooth and π̄−1(Y \Z)∩R = ∅. Hence, R is a subset of π−1(Z),
or that π(R) ⊆ Z. �
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4. SOME REMARKS ON RAMIFICATION DIVISORS

Consider a linear map p : V → W between vector spaces of the same dimension. Let

Det(p) := (∧topV )∗ ⊗ ∧topW = Hom(∧topV,∧topW ).

Denote by θ(p) the canonical element of Det(p) induced by p, i.e., θ(p) is the top exterior power of
p. The following lemma is immediate.

Lemma 4.1. Let p : V → W be as above and α : W ′ → W a surjective map. Let V ′ ⊂ V ⊕W ′

consist of (v, w′) such that p(v) = α(w′) (i.e., V ′ is the fiber product of p and α). Let p′ : V ′ → W ′

be the projection. Then, the kernel of p′ is identified with the kernel of p via the surjective projection
π : V ′ → V . Further, there is a canonical isomorphism of the vector spaces Det(p) and Det(p′)
(defined below), which carries θ(p) to θ(p′). (Observe that V ′ and W ′ have the same dimension.)

Hence, for any fiber diagram of irreducible smooth varieties:

X ′

π′

��

f̂ // X

π
��

Y ′
f // Y,

where f is a smooth morphism and X, Y are of the same dimension with π a dominant morphism,
we have the following identity between the ramification divisors:

(7) f̂ ∗(R(π)) = R(π′).

The isomorphism ξ : Det(p)→ Det(p′) is given by:

ξ(θ)(e1 ∧ · · · ∧ ed ∧ ed+1 ∧ · · · ∧ en) = p′(e1) ∧ · · · ∧ p′(ed) ∧ θ̄(π(ed+1) ∧ · · · ∧ π(en)),

for any θ ∈ Det(p) = Hom(∧topV,∧topW ), where {e1, . . . , en} is any basis of V ′ such that
{e1, . . . , ed} is a basis of Ker(π) and θ̄ := σ ◦ θ (σ being any section of the map ∧n−d(W ′) →
∧n−d(W ) induced from α). It is easy to see that ξ does not depend upon the choice of the basis and
the section σ.

Let X be an irreducible smooth variety and Y1, . . . , Ys irreducible smooth locally-closed subva-
rieties of X . Assume that X has a transitive action by a connected linear algebraic group G and let
Gi be algebraic subgroups which keep Yi stable. Assume further that

∑s
i=1 codim(Yi) = dimX .

Let Yi = G ×Gi
Yi be the total space of the fiber bundle with fiber Yi associated to the principal

Gi-bundle G → G/Gi. Then, we have the morphism mi : Yi → X, [g, yi] 7→ gyi, where [g, yi]
denotes the equivalence class of (g, yi) ∈ G × Yi. Since Yi is smooth and G acts transitively on
X , by the G-equivariance, mi is a smooth morphism (cf. [H, Corollary 10.7, Chap. III]). Taking
their Cartesian product, we get the smooth morphism m : Y1 × · · · ×Ys → Xs. Let Y be the fiber
product of m with the diagonal map δ : X → Xs. We get a smooth morphism m̂ : Y → X by
restricting m to Y . Hence, Y is a smooth and irreducible variety (cf. the proof of Lemma 5.2). We
also have the morphism π : Y → G/G1 × · · · ×G/Gs obtained coordinatewise from the canonical
projections πi : Yi → G/Gi. For any gi ∈ G and yi ∈ Yi, the map eyi

: G → X, g 7→ gyi,
induces the tangent map Ψ(gi,yi) : Tgi

(G) → Tgiyi
(X). Since Yi is Gi-stable, this map induces the

map Ψ̄(gi,yi) : Tḡi
(G/Gi)→ Tgiyi

(X)/Tgiyi
(giYi), where ḡi = giGi. Moreover, for any hi ∈ Gi,

(8) Ψ̄(gi,yi) = Ψ̄(gihi,h
−1
i yi)

.
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To see this, observe that the following diagram is commutative for any gi ∈ G and hi ∈ Gi.

Tgi
(G)

&&LLLLLLLLLL

DRhi // Tgihi
(G)

xxqqqqqqqqqqq

Tḡi
(G/Gi),

where Rhi
: G → G is the right multiplication by hi. Thus, Ψ̄(gi,yi) depends only upon the equiv-

alence class [gi, yi] ∈ G ×Gi
Yi and we denote Ψ̄(gi,yi) by Ψ[gi,yi]. Since G acts transitively on X ,

Ψ[gi,yi] is surjective.
For any a = ([g1, y1], . . . , [gs, ys]) ∈ Y , we have the following diagram (for x = m̂(a)):

(9) TaY
πa //

Dm̂

��

Tḡ1(G/G1)⊕ · · · ⊕ Tḡs(G/Gs)

��

TxX //
⊕s

i=1
TxX

Tx(giYi)
,

where ḡi := giGi, the bottom horizontal map is the canonical projection in each factor, Dm̂ is
surjective since m̂ is a smooth morphism and the right vertical map is the coordinatewise surjective
map Ψ[gi,yi].

Lemma 4.2. The above diagram is commutative. In fact, Ta(Y) is the fiber product of Tx(X) and
Tḡ1(G/G1)⊕ · · · ⊕ Tḡs(G/Gs) via the above diagram.

Proof. Let F be the fiber product of Tx(X) and Tḡ1(G/G1)⊕· · ·⊕Tḡs(G/Gs). It is easy to see that
the above diagram is commutative. Moreover, since yi = g−1

i x for any a = ([g1, y1], . . . , [gs, ys]) ∈
Y with m̂(a) = x, Ta(Y) is a subspace of the fiber product F . Further,

dimY = dimX +
s∑
i=1

(dim Yi − dimX)(10)

= dimX +
s∑
i=1

(dimG/Gi + dimYi − dimX)(11)

= dimX +
s∑
i=1

(dimG/Gi − codimYi).(12)

From this we see that dimF = dimTa(Y). This proves the lemma. �

5. INTERSECTION OF GENERAL TRANSLATES OF SCHUBERT VARIETIES

We follow the notation from Section 2. For w ∈ W P , let Qw be the stabilizer of the Schubert
variety Xw inside G/P under the left multiplication of G on G/P . Then, clearly, Qw is a standard
parabolic subgroup of G. Let

Yw := Qwẇ ⊂ Xw,

and let Zw denote the smooth locus of Xw. Clearly

Xw ⊃ Zw ⊃ Yw ⊃ Cw,
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and each of Zw, Yw, Cw is an open subset of Xw.

Remark 5.1. It is instructive to look at the example of G/P = Gr(r, n). Let

F• : 0 ( F1 ( F2 ( · · · ( Fn = Cn

be the standard flag in Cn, and let I = {i1 < · · · < ir} be a subset of {1, . . . , n} of cardinality r.
Consider the (closed) Schubert variety ΩI(F•) = {V ∈ Gr(r, n) | dimV ∩ Fik ≥ k, k = 1, . . . , r}.
Let J = {i ∈ I : i + 1 6∈ I}. It is easy to see that ΩI(F•) = {V ∈ Gr(r, n) | dimV ∩ Fik ≥
k,∀ik ∈ J}. So I \ J is “redundant” for the definition of the closed Schubert variety ΩI(F•).

It is easy to see that the stabilizer of the Schubert variety ΩI(F•) is QI := {g ∈ SL(n) : gFj ⊂
Fj,∀j ∈ J}. We may think of QI as the set of elements of SL(n) that preserve the parts of F•
“essential” for the definition of the closed Schubert variety ΩI(F•).

It may be remarked that if P is a minuscule or cominuscule maximal parabloic, then Zw = Yw
(cf. [BP]).

Fix a positive integer s ≥ 1 and fix w1, . . . , ws ∈ W P , so that

(13) [Xw1 ] · . . . · [Xws ] = d[Xe] ∈ H∗(G/P ), for some d > 0.

There are four universal intersections that will be relevant here. Let δ : G/P → (G/P )s be the
diagonal embedding. We denote its image by δ(G/P ) and identify it with G/P . For a locally-
closed B-subvariety A ⊂ G/P , let A := G ×B A be the total space of the fiber bundle with
fiber A associated to the principal B-bundle G → G/B. Then, there is a G-equivariant morphism
mA : A → G/P defined by [g, x] 7→ gx, which is a smooth morphism if A is smooth. Now,
consider the product

X := Xw1 × · · · × Xws ,

where Xwi
= G ×B Xwi

, and similarly define Y,Z,C by replacing Xwi
with Ywi

, Zwi
, Cwi

re-
spectively. Let mX : X → (G/P )s be the G-equivariant morphism mXw1

× · · · × mXws
acting

componentwise. We similarly define mY ,mZ ,mC .
Finally, we define the (universal intersection) G-scheme X as the fiber product of δ with mX .

We similarly define the G-schemes Y ,Z, C by replacing mX with mY ,mZ ,mC respectively. Since
δ is a closed embedding, X ,Y ,Z, C are the scheme theoretic inverse images of δ(G/P ) under
mX ,mY ,mZ ,mC respectively. Moreover, since mY ,mZ ,mC are smooth morphisms, Y ,Z, C are
reduced closed subschemes of Y,Z,C respectively.

It is easy to see that (due to the assumption (13))

(14) dimX = s× dim(G/B).

Observe that, set theoretically,

X = {(g1B, . . . , gsB, x) ∈ (G/B)s ×G/P : x ∈ ∩si=1 giXwi
}.

There is a similar description for Y,Z,C.
The open embeddings

Cwi
⊂ Ywi

⊂ Zwi
⊂ Xwi

give rise to G-equivariant open embeddings:

C ⊂ Y ⊂ Z ⊂ X ,
and X is projective.
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Lemma 5.2. (1) X is irreducible and so is Y , Z and C.
(2) Z is a smooth variety (and hence so is Y and C).
(3) The complement of Z in X is of codimension ≥ 2.

Proof. (1) It is easy to see that each fiber of mXw : Xw → G/P is irreducible. Thus, each fiber of
mX : X → (G/P )s is also irreducible. Now, take an irreducible component X1 of X such that X1

contains the full fiber of mX over the base point in δ(G/P ). Since X1 is G stable, X1 must contain
the full fiber over any point in δ(G/P ). Thus, X1 = X , proving that X is irreducible. Since Y , Z
and C are open subsets of X , they must be irreducible too.

(2) For the second part, observe that the canonical map Z → δ(G/P ) is a smooth morphism.
Since G/P is smooth, we get the smoothness of Z .

(3) Since the Schubert varieties Xw are normal, the complement of Zw in Xw is of codimension
≥ 2 and is covered by Schubert cells. Thus, the complement of Z in X is of codimension≥ 2. From
this it is easy to see that the complement of Z in X is of codimension ≥ 2. �

We have a natural G-equivariant projection π : X → (G/B)s obtained coordinatewise from the
projections Xwi

→ G/B. As observed in the identity (14), the domain and the range of π have the
same dimension. The following lemma follows from Lemma 4.2.

Lemma 5.3. For any point a = ([g1, x1], . . . , [gs, xs]) ∈ Z , the derivative (Dπ)a of π at a has

Ker(Dπ)a ' ∩si=1Tx(giZwi
),

where x = g1x1 = · · · = gsxs.
In particular, π is regular at a if and only if the intersection ∩si=1giZwi

in G/P is transverse at x.

Using Kleiman’s transversality theorem [BK, Proposition 3] and our assumption (13), the map
π|Z : Z → (G/B)s is generically finite. LetR be the ramification divisor for the map π|Z (equipped
with the scheme structure described in Section 3). Under the assumption of the following corollary,
the hypotheses of Proposition 3.1 are in place here and allow us to conclude the following:

Corollary 5.4. Assume that d = 1 in equation (13). Then, for every n ≥ 1,

(15) h0(Z,O(nR)) = 1.

Proof. By Lemma 5.2, all the hypotheses of Proposition 3.1 are satisfied except the hypothesis that
π|Z is birational, which we now prove.

By [BK, Proposition 3], there exists a nonempty open subset U ⊂ (G/B)s such that for each
x = (g1B, . . . , gsB) ∈ U , the intersection ∩si=1 giZwi

is transverse at each point of the intersection
and ∩si=1 giZwi

is dense in ∩si=1 giXwi
. Moreover, since d = 1 (by assumption), the intersection

∩si=1 giZwi
consists of a single point. From this we see that (π|Z)−1(x) consists of exactly one

point for each x ∈ U and, moreover, by Lemma 5.3, (π|Z)−1(x) ⊂ Z \ R. Thus, π|(π|Z)−1(U) :

(π|Z)−1(U)→ U is an isomorphism, proving that π|Z is birational. Now applying Proposition 3.1,
we get the corollary. �

The aim now is to have equation (15) bear representation theoretic consequences. However, it is
the space H0(Y ,O(nR)) which has clear relations to invariant theory.
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6. CONNECTING h0(Y ,O(nR)) TO INVARIANT THEORY

We first prove that Y and R ∩ Y are obtained from a base change with connected fibers. To do
this, define

Y′ := (G×Qw1
Yw1)× · · · × (G×Qws

Yws).

Similar to the map mY , we define the map m′Y : Y′ → (G/P )s obtained from the coordinatewise
maps G ×Qwi

Ywi
→ G/P, [g, x] 7→ gx. Again, m′Y is a smooth morphism. Now, let Y ′ be the

fiber product of m′Y with δ. Then, Y ′ is an irreducible smooth variety of the same dimension as
that of (G/Qw1) × · · · × (G/Qws) (by virtue of the same proof given in the last section for the
corresponding results for Y). Similar to the map π|Y : Y → (G/B)s, we have the map

π′ : Y ′ → (G/Qw1)× · · · × (G/Qws).

It is easy to see that the following diagram is Cartesian:

Y
π

��

// Y ′

π′

��
(G/B)s // (G/Qw1)× · · · × (G/Qws),

where the two horizontal maps are the canonical projections. (To prove this, observe that the above
diagram is clearly Cartesian with Y ,Y ′ in the above diagram replaced by Y,Y′ respectively.)

Since π is a dominant morphism, so is π′. Thus, by Lemma 4.1, the ramification divisor S :=
R ∩ Y of π|Y is the pull-back of the ramification divisor R′ of π′. In particular, the line bundle

O(nR)|Y = O(nS).

We therefore conclude that under the G-equivariant pull-back map,

Lemma 6.1. For any n ∈ Z, H0(Y ,O(nR)|Y) ' H0(Y ′,O(nR′)), as G-modules.

Define the P -variety (under the diagonal action of P ):

P = (P/(w−1
1 Qw1w1 ∩ P ))× · · · × (P/(w−1

s Qwsws ∩ P )),

and define the G-equivariant morphism of G-varieties:

φ : G×P P → Y ′, [g, (p̄1, . . . , p̄s)] 7→ ([gp1w
−1
1 , ẇ1], . . . , [gpsw

−1
s , ẇs]),

where p̄i = pi(w
−1
i Qwi

wi ∩ P ).
It is easy to see that it is bijective. Since Y ′ is smooth and irreducible, φ is an isomorphism by

[K, Theorem A.11].
For any w ∈ W P , it is easy to see that the Borel BL of the Levi subgroup L of P is contained in

w−1Qww ∩ L (in fact, it is contained in w−1Bw by equation (4)).
For any λ ∈ X(H), we have a P -equivariant line bundle LP (λ) on P/BL associated to the

principal BL-bundle P → P/BL via the one dimensional BL-module λ−1. (As observed in Section
2, any λ ∈ X(H) extends uniquely to a character of BL.) The twist in the definition of L(λ) is
introduced so that the dominant characters correspond to the dominant line bundles.

For w ∈ W P , define the character χw ∈ h∗ by

χw =
∑

β∈(R+\R+
l )∩w−1R+

β .
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Then, from [K, 1.3.22.3] and equation (4),

(16) χw = ρ− 2ρL + w−1ρ,

where ρ (resp. ρL) is half the sum of roots in R+ (resp. in R+
l ). It is easy to see that χw extends as

a character of w−1Qww ∩ P .

Proposition 6.2. Assume that the s-tuple (w1, . . . , ws) satisfying the condition (13) is Levi-movable.
Then, for any n ≥ 1,

H0(Y ,O(nR)|Y)G '
[
VL(n(χw1 − χ1))∗ ⊗ VL(nχw2)

∗ ⊗ · · · ⊗ VL(nχws)
∗]L,

where VL(χ) is the irreducible L-module with highest weight χ. (Observe that for w ∈ W P , χw is
a L-dominant weight and so is χw − χ1.)

Proof. Applying Lemma 4.2 to the case when X = G/P, Yi = Ywi
, Gi = Qwi

, and using the
isomorphism φ : G ×P P → Y ′ as above, we get the following Cartesian diagram (for any g ∈ G
and p = (p̄1, . . . , p̄s) ∈ P):

T[g,p](G×P P)

��

// ⊕si=1Tgpiw
−1
i Qwi

(G/Qwi
)

π′

��

TgP (G/P ) // ⊕si=1
TgP (G/P )

TgP (gpiw
−1
i Ywi )

,

where the top horizontal map is induced from the G-equivariant composite map π′ ◦φ : G×P P →∏s
i=1(G/Qwi

) and the bottom horizontal map is the canonical projection in each factor. Thus, by
Lemma 4.1, the ramification divisor φ−1(R′) is the same as the ramification divisor associated to
the bundle map (between the vector bundles of the same rank over the base space G×P P):

G×P (P × T P )→
s⊕
i=1

G×P
(
P ×(w−1

i Qwiwi∩P ) (T P/T Pwi
)
)
,

where T P is the tangent space Tė(G/P ), T Pw is the tangent space Tė(Λw), P acts diagonally on
P × T P and the map in the i-th factor is induced from the composite map

P × T P → (P/(w−1
i Qwi

wi ∩ P ))× T P ' P ×(w−1
i Qwiwi∩P ) T

P → P ×(w−1
i Qwiwi∩P ) (T P/T Pwi

).

Thus, by [BK, Lemma 6 and the discussion following it] and Lemma 4.1, the line bundle corre-
sponding to the divisor φ−1(R′) is G-equivariantly isomorphic to the line bundle G×P M over the
base space G×P P , where

M = LP (χw1 − χ1) � LP (χw2) � · · ·� LP (χws).

Observe that, for any w ∈ W P , the line bundle LP (χw), though defined on P/BL, descends to a
line bundle on P/(w−1Qww ∩ P ) since the character χw extends to a character of w−1Qww ∩ P .
Thus,

H0(Y,O(nR)|Y )G ' H0(Y ′,O(nR′))G, by Lemma 6.1

' H0(G×P P , G×P M⊗n)G

' H0(P ,M⊗n)P

' H0(L,M⊗n
|L )L,
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where
L := (L/(w−1

1 Qw1w1 ∩ L))× · · · × (L/(w−1
s Qwsws ∩ L))

and the last isomorphism follows from [BK, Theorem 15 and Remark 31(a)].
Thus, the proposition follows from the Borel-Weil theorem. �

7. STUDY OF CODIMENSION ONE CELLS IN THE SCHUBERT VARIETIES

We continue to follow the notation and assumptions from Section 2. The following lemma can
be found in [BP, §2.6]. However, we include its proof for completeness.

Lemma 7.1. For any w ∈ W P , the stabilizer Qw of Xw satisfies

(17) ∆(Qw) = ∆w,

where ∆w := ∆ ∩ w(R+
l tR−) and R− is the set of negative roots of g.

Thus,

(18) ∆(Qw) = ∆ ∩ (wwPo )R−,

where wPo is the longest element of the Weyl group WL of L. (Observe that wwPo is the longest
element ŵ in the coset wWL.)

Proof. We first prove equation (17). Observe that

w
(
R+

l tR
−
)

= w
(
R+

l tR
−
l t (R−\R−l )

)
= ŵ

(
Rl t (R−\R−l )

)
.

Thus,

∆w = ∆ ∩ ŵ
(
Rl t (R−\R−l )

)
= ∆ ∩ ŵR−, since ŵ(R+

l ) ⊂ R−.(19)

Take αi ∈ ∆w = ∆ ∩ ŵR−. Then,

siBwP/P ⊂ (BwP/P ) ∪ (BsiwP/P )

= (BwP/P ) ∪ (BsiŵP/P ).

But siŵ < ŵ since (ŵ)−1 αi ∈ R−. Hence,

siXw ⊂ Xw.

This proves the inclusion ∆(Qw) ⊃ ∆w = ∆ ∩ ŵR−.
Conversely, take αi ∈ ∆(Qw), i.e., siXw ⊂ Xw. Thus, siŵ < ŵ and hence ŵ−1αi ∈ R−. This

proves the inclusion ∆(Qw) ⊂ ∆w and hence equation (17) is proved. The equation (18) follows
by combining equations (17) and (19). �

Proposition 7.2. Let v
β→ w ∈ W P (i.e., v, w ∈ W P , β ∈ R+ such that w = sβv and `(w) =

`(v) + 1). Then, the (codimension one) cell Cv of Xw is contained in QwwP/P if and only if
β ∈ ∆w.

In particular, β is a simple root in this case.
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Proof. We first prove the implication ‘⇐’: If β ∈ ∆w, then β ∈ ∆(Qw), by Lemma 7.1. Thus,
v̇ = sβwP ∈ QwwP/P .

Conversely, we prove the implication ‘⇒’: Assume, if possible, that v̇ ∈ QwwP/P but β /∈ ∆w.
We first show that Xv is stable under Qw (assuming β /∈ ∆w). By Lemma 7.1, it suffices to show
that for any αj ∈ ∆w = ∆ ∩ ŵR−, we have αj ∈ ∆v. Since ŵ−1αj ∈ R−, we get sjŵ < ŵ. Take

a reduced decomposition ŵ = sjsi1 · · · sid . Since v
β→ w, then so is v̂

β→ ŵ. Hence, there exists a
(unique) 1 ≤ p ≤ d such that v̂ = sjsi1 · · · ŝip · · · sid and, of course, it is a reduced decomposition.
(Here we have used the assumption that β /∈ ∆w.)

Thus, sj v̂ < v̂, i.e., v̂−1αj ∈ R− and hence αj ∈ ∆v. This proves the assertion that Xv is stable
under Qw.

By assumption, v̇ ∈ QwwP/P , i.e., v̇ = qẇ for some q ∈ Qw. Thus, q−1v̇ = ẇ and hence
ẇ ∈ QwXv = Xv, which is a contradiction. This contradiction shows that β ∈ ∆w and hence
completes the proof of the proposition. �

For w ∈ W P , it is easy to see that the tangent space, as an H-module (induced from the left
multiplication of H on Xw), is given by:

(20) Tẇ(Xw) '
⊕

γ∈R+∩wR−
gγ,

where gγ is the root space of g corresponding to the root γ. Hence,

(21) Tė
(
w−1Xw

)
'

⊕
γ∈R−∩w−1R+

gγ.

The following lemma determines the tangent space along codimension one cells.

Lemma 7.3. For v
β→ w ∈ W P , the tangent space, as an H-module, is given by:

Tv̇(Xw) '

( ⊕
γ∈R+∩vR−

gγ

)⊕
g−β.

Thus, as an H-module,

Tė(v
−1Xw) '

( ⊕
γ∈R−∩v−1R+

gγ

)⊕
g−v−1β.

(Observe that v̇ is a smooth point of Xw since Xw is normal; in particular, its singular locus is
of codimension at least two.)

Proof. Since v̇ ∈ Xv ⊂ Xw, by (20),

(22)
⊕

γ∈R+∩vR−
gγ ⊂ Tv̇(Xw).

For any root α ∈ R, let Uα := Exp(gα) ⊂ G be the corresponding 1-dimensional unipotent
group. Then,

UβU−βẇ = UβwU−w−1β ė = Uβẇ ⊂ Xw (since w−1β ∈ R−).

Hence, UβHU−βẇ ⊂ Xw. But, from the SL(2)-theory, UβHU−β ⊃ U−βsβH . In particular,

U−βsβHẇ ⊂ Xw, i.e., U−β v̇ ⊂ Xw.
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This proves that

(23) g−β ⊂ Tv̇(Xw).

Combining (22)–(23), we get( ⊕
γ∈R+∩vR−

gγ
)⊕

g−β ⊂ Tv̇(Xw).

But, both the sides are of the same dimension `(v) + 1, proving the lemma. �

As above, let P be any standard parabolic subgroup of G and let xP ∈ h′ = h ∩ [g, g] be the
element defined by

αi(xP ) = 0, for all the simple roots αi ∈ ∆(P )

= 1, for all the simple roots αi /∈ ∆(P ).

Then, xP is in the center of the Lie algebra l.
Set mo = θ(xP ), where θ is the highest root of g. (Observe that mo ≤ 2 for any maximal

parabolic subgroup P of a classical group G.) Define a decomposition of Tė(G/P ) as a direct sum
of L-submodules as follows. First decompose Tė(G/P ) as a direct sum of H-eigenspaces (induced
from the canonical action of H on G/P ):

Tė(G/P ) =
⊕

β∈R+\R+
l

Tė(G/P )−β.

For any 1 ≤ j ≤ mo, define
Vj =

⊕
β∈R+\R+

l :
β(xP )=j

Tė(G/P )−β.

Clearly, each Vj is a L-submodule of Tė(G/P ) and we have the decomposition (as L-modules)

Tė(G/P ) =
mo⊕
j=1

Vj.

Define an increasing filtration of Tė(G/P ) by P -submodules given by

F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ Fmo = Tė(G/P ),

where

Fd =
d⊕
j=1

Vj.

For any subvariety Z ⊂ G/P such that ė is a smooth point of Z, define

Vj(Z) := Vj ∩ Tė(Z).

Also, we get the increasing filtration Fj(Z) of Tė(Z) given by

Fj(Z) := Fj ∩ Tė(Z).

We set, for 1 ≤ j ≤ mo,
dj(Z) = dimension of Vj(Z).

(Observe that d0(Z) = 0 since Tė(Z) ⊂ Tė(G/P ) '
⊕

α∈R+\R+
l

g−α.)
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Let z(L) be the center of L. If Z, as above, is z(L)-stable, we get the decomposition (as z(L)-
modules)

Tė(Z) =
mo⊕
j=1

Vj(Z).

Theorem 7.4. For any v
β→ w inW P such that v̇ is not in theQw-orbit of ẇ, there exists 1 ≤ j ≤ mo

such that

(24) dj(w
−1Xw) 6= dj(v

−1Xw).

Proof. Let us set α := v−1β ∈ R+. For any 1 ≤ j ≤ mo, we get (by Lemma 7.3 and equation (21)
applied to v)

(25) dj(v
−1Xw) = dj(v

−1Xv) + δj,α(xP ).

By the equation (21), the roots in Tė(w
−1Xw) are precisely R− ∩ w−1R+

(
i.e., Tė(w−1Xw) '⊕

γ∈R−∩w−1R+ gγ

)
. Set

Φw−1 := R+ ∩ w−1R−.

Then, as is well known, ∑
δ∈Φw−1

δ = ρ− w−1ρ,

where ρ is half the sum of all the positive roots.
Thus (abbreviating dj(w−1Xw) by dj and dj(v−1Xv) by d′j),

(26) (ρ− w−1ρ)(xP ) = d1 + 2d2 + · · ·+modmo .

Similarly,

(27) (ρ− v−1ρ)(xP ) = d′1 + 2d′2 + · · ·+mod
′
mo
.

Of course,

(28) d1 + d2 + · · ·+ dmo = `(w),

and

(29) d′1 + d′2 + · · ·+ d′mo
= `(v) = `(w)− 1.

Now,

(ρ− w−1ρ)(xP )− (ρ− v−1ρ)(xP ) = (v−1ρ− w−1ρ)(xP )

= (v−1ρ− sαv−1ρ)(xP ), since w = vsα

= 〈v−1ρ, α∨〉α(xP )

= 〈ρ, (vα)∨〉α(xP )

= 〈ρ, β∨〉α(xP ).(30)
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On the other hand, by (26)–(29),

(ρ− w−1ρ)(xP )− (ρ− v−1ρ)(xP )

= (d1 − d′1) + 2(d2 − d′2) + · · ·+mo(dmo − d′mo
)

= 1 + (d2 − d′2) + 2(d3 − d′3) + · · ·+ (mo − 1)(dmo − d′mo
).(31)

Combining (30)–(31), we get

(32) 1 + (d2 − d′2) + 2(d3 − d′3) + · · ·+ (mo − 1)(dmo − d′mo
) = 〈ρ, β∨〉α(xP ).

If (24) were false, we would get

dj = dj(v
−1Xw), for all 1 ≤ j ≤ mo,

i.e., by the identity (25), we would get

dj = d′j for all j 6= α(xP ) and dα(xP ) = d′α(xP ) + 1.

Combining this with the identity (32), we would get

1 + α(xP )− 1 = 〈ρ, β∨〉α(xP ), i.e.,

α(xP ) = 〈ρ, β∨〉α(xP ).(33)

But, by the definition of β, it is easy to see that if β were a simple root, then β ∈ ∆w. Since,
by assumption, v̇ is not in the Qw-orbit of ẇ, this contradicts Proposition 7.2. Hence, β is not a
simple root and this contradicts the identity (33). (Observe that α(xP ) 6= 0, since v, w ∈ W P and
w = vsα.) This contradiction arose because we assumed that (24) is false. This proves (24) and
hence the theorem is proved. �

8. MAIN THEOREM AND ITS PROOF

We follow the notation and assumptions from Section 5. In particular, let w1, . . . , ws ∈ W P be
such that identity (13) is satisfied for some d > 0. We assume further that the s-tuple (w1, . . . , ws)
is Levi-movable. This will be our assumption through this section.

Proposition 8.1. Under the above assumption, there exists a closed subset A of Z such that

(34) Z \ Y ⊆ R ∪ A, codim(A,Z) ≥ 2.

Proof. Let Zo := Z \ R. It suffices to show that for u1, . . . , us ∈ W P such that ui = wi for all
i 6= io and uio → wio for some 1 ≤ io ≤ s and u̇io /∈ Ywio

,

Zo ∩ (Cu1 × · · · × Cus) = ∅.
Since the s-tuple (w1, . . . , ws) is Levi-movable, there exist l1, . . . , ls ∈ L such that the standard

quotient map

Tė(G/P )→
s⊕
i=1

Tė(G/P )/Tė(liΛwi
)

is an isomorphism. Hence, the eigenspaces corresponding to any eigenvalue 1 ≤ j ≤ mo under the
action of xP also are isomorphic, i.e.,

Vj(G/P ) '
s⊕
i=1

Vj(G/P )/Vj(liΛwi
),
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where Vj is as in Section 7. (Here we have used the fact that liΛwi
is z(L)-stable.) In particular,

since the filtration Fj of Tė(G/P ) is P -stable, for any p1, . . . , ps ∈ P ,

(35) dimFj =
s∑
i=1

(dimFj − dim(Fj(liΛwi
)) =

s∑
i=1

(dimFj − dim(Fj(piΛwi
)).

If nonempty, take a = ([g1, x1], . . . , [gs, xs]) ∈ Zo∩(Cu1×· · ·×Cus), for gi ∈ G and xi ∈ Cui
. In

particular, g1x1 = · · · = gsxs. Let us denote this common element by gP . From theG-equivariance,
we can assume that g = e. By Lemma 5.3, the quotient map

Tė(G/P )→
s⊕
i=1

Tė(G/P )/Tė(piu
−1
i Zwi

)

is an isomorphism, where pi ∈ P is any element chosen such that gi ∈ piu−1
i B. In particular, for

any j, the quotient map

Fj →
s⊕
i=1

Fj/(Tė(piu−1
i Zwi

) ∩ Fj)

is injective. Thus, for any j,

(36) dimFj ≤
s∑
i=1

(dimFj − dim(Fj(piu−1
i Zwi

)) =
s∑
i=1

(dimFj − dim(Fj(u−1
i Zwi

)).

Considering the image of Tė(g−1Zw) in Tė(G/P )/Fj, for gP ∈ Zw, it is easy to see that, for any
u,w ∈ W P such that u̇ ∈ Zw and any j, we have

(37) dimFj(w−1Zw) ≤ dimFj(u−1Zw).

Now, let jo be an integer such that

(38) dimFjo(w−1
i Zwi

) 6= dimFjo(u−1
i Zwi

) for i = io.

This is possible by virtue of Theorem 7.4. This contradicts the inequality (36) for j = jo (by
using (35), (37)–(38)). Hence the proposition is proved. �

Recall the definition of the deformed product �0 in the singular cohomology H∗(G/P,Z) from
[BK, Definition 18]. We now come to our main theorem.

Theorem 8.2. Let G be any connected reductive group and let P be any standard parabolic sub-
group. Then, for any w1, . . . , ws ∈ W P such that

[Xw1 ]�0 · · · �0 [Xws ] = [Xe] ∈ H∗(G/P ),

we have (for any n ≥ 1)

(39) dim HomL(VL(nχ1), VL(nχw1)⊗ · · · ⊗ VL(nχws)) = 1,

where χw is defined by identity (16). Equivalently, we have (for the commutator subgroup Lss :=
[L,L]):

(40) dim
([
VL(nχw1)⊗ · · · ⊗ VL(nχws)

]Lss)
= 1, ∀n ≥ 1.
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Proof. By [BK, Theorem 15 and Proposition 17], the s-tuple (w1, . . . , ws) is L-movable. Hence,
by Proposition 6.2, we have

H0(Y ,O(nR)|Y)G '
[
VL(n(χw1 − χ1))∗ ⊗ VL(nχw2)

∗ ⊗ · · · ⊗ VL(nχws)
∗]L.

Moreover, by Proposition 8.1,

H0(Y ,O(nR)|Y) ↪→ H0(Z,O(m(n)R)), for some m(n) > 0.

Finally, by Corollary 5.4, for any m ≥ 1,

h0(Z,O(mR)) = 1.

But, since the constants belong to H0(Y ,O(nR)|Y), we have

dim(H0(Y ,O(nR)|Y)G) ≥ 1.

This proves the identity (39) since (χ1 being a trivial character on the maximal torus of Lss)[
VL(n(χw1−χ1))∗⊗VL(nχw2)

∗⊗· · ·⊗VL(nχws)
∗]L ' HomL(VL(nχ1), VL(nχw1)⊗· · ·⊗VL(nχws)).

The equivalence of (39) with (40) follows from [BK, Theorem 15]. �

Example 8.3. (1) The converse to the above theorem is false in general. For example, consider
G = Sp(2`), G/P the Lagrangian Grassmannian LG(`, 2`). It is cominuscule, so the structure
constants for the singular cohomology and the deformed cohomology �0 are the same. The cells in
LG(`, 2`) are parametrized by the strict partitions a : (a1 > a2 > · · · > ar > 0) and a1 ≤ `, r ≤ `
(cf. [FP, Page 29]).

The corresponding Levi subgroup is GL(`), so the Fulton conjecture (Theorem 1.1) holds. Now,
take ` = 3 and consider the cells in LG(3, 6) corresponding to the strict partitions (1), (2 > 1), (2).
The corresponding intersection number is 2. The corresponding representations of the Levi sub-
group have Young diagrams (2 ≥ 0 ≥ 0), (3 ≥ 3 ≥ 0) and (3 ≥ 1 ≥ 0) respectively. Hence, the
dimension of the invariant subspace for the corresponding tensor product of the Levi is 1.

(2) In the above example, the intersection number is strictly larger than the dimension of the
invariant subspace for the corresponding tensor product. We also have examples where the in-
tersection number is strictly smaller than the dimension of the invariant subspace for the cor-
responding tensor product. Take, for G/P the Lagrangian Grassmannian LG(5, 10) and con-
sider the cells corresponding to the strict partitions (3 > 1), (3 > 2), (4 > 2). The intersec-
tion number is 4. The corresponding representations of the Levi subgroup have Young diagrams
(4 ≥ 3 ≥ 1 ≥ 0 ≥ 0), (4 ≥ 4 ≥ 2 ≥ 0 ≥ 0) and (5 ≥ 4 ≥ 2 ≥ 1 ≥ 0) respectively. Hence, the
dimension of the invariant subspace for the corresponding tensor product of the Levi is 5.

(3) Following the convention in [Bo], for L of type G2, [V (6ω1)⊗ V (6ω2)⊗ V (7ω2)]L = 1, and
[V (12ω1)⊗ V (12ω2)⊗ V (14ω2)]L = 2. Similarly, [V (6ω1)⊗ V (6ω2)⊗ V (10ω1 + ω2)]L = 1 and
[V (12ω1)⊗ V (12ω2)⊗ V (20ω1 + 2ω2)]L = 3, where {ω1, ω2} are the fundamental weights. Thus,
the direct generalization of the Fulton’s conjecture is false for general semisimple L.

(4) There are examples of w1, w2, w3 ∈ W P such that

(41) [Xw1 ] · [Xw2 ] · [Xw3 ] = [Xe] ∈ H∗(G/P ),

but (40) is false. Take, for example, G = Sp(6) and P to be the maximal parabolic with ∆ \
∆(P ) = {α2} (following the convention in [Bo]). Now, take w1 = w2 = s1s3s2s1s3s2, w3 = s3s2.
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Then, (41) is satisfied (cf. [KLM, Theorem 4.6]). In this case, restricted to the Cartan of Lss, we
have χw1 = χw2 = ω1 + ω3, χw3 = 3ω1 + ω3. Thus, for any n ≥ 1,

dim
([
VL(nχw1)⊗ VL(nχw2)⊗ VL(nχw3)

]Lss)
= 0.

Remark 8.4. (1) If we specialize Theorem 8.2 to G = GL(m) and P any maximal parabolic
subgroup, then (as explained in the introduction) we readily obtain a proof of Fulton’s conjecture
proved by Knutson-Tao-Woodward [KTW] (Belkale [B2] and Ressayre [R2] gave other geometric
proofs) asserting the following:

Let VL(λ1), . . . , VL(λs) be finite dimensional irreducible representations of L = GL(r) with
highest weights λ1, . . . , λs respectively. Assume that

[
VL(λ1)⊗· · ·⊗VL(λs)

]Lss

is one dimensional.
Then, for any n ≥ 1,

[
VL(nλ1)⊗ · · · ⊗ VL(nλs)

]Lss

again is one dimensional.
In fact, since any maximal parabolic subgroup in GL(m) is cominuscule, by a result of Brion-

Polo [BP], we have Z = Y . Hence, Proposition 8.1 and the results from Section 7 are not needed
in this case.

(2) We now specialize Theorem 8.2 to G = Sp(2`) and G/P = LG(`, 2`) the Lagrangian
Grassmannian. Under the assumption that some structure coefficient of (H∗(LG(`, 2`)),�0) in the
Schubert basis is equal to one, the conclusion of the theorem is that some Littlewood-Richardson
coefficient is equal to one. In [R3], it is shown that this assumption is fulfilled if and only if some
Littlewood-Richardson coefficient is equal to one. Hence by combining Theorem 8.2 and [R3], we
obtain the following result on Littlewwod-Richardson coefficients.

Let λ, µ and ν be three partitions. We assume that the Young diagrams of λ, µ and ν are con-
tained in the square of size ` and are symmetric relative to the diagonal. Then, for the Littlewood-
Richardson coeffcients for GL(`),

cνλ, µ = 1 ⇒ cν
′

λ′, µ′ = 1,

where λ′ and µ′ are obtained from λ and µ by adding one to some initial parts (for the details, see
[R3]), and ν ′ is defined by dualizing the rule.
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