INVARIANT DEFORMATIONS OF ORBIT CLOSURES IN $\mathfrak{sl}(n)$

Sébastien Jansou and Nicolas Ressayre

Abstract

We study deformations of orbit closures for the action of a connected semisimple group G on its Lie algebra \mathfrak{g} , especially when G is the special linear group.

The tools we use are on the one hand the invariant Hilbert scheme and on the other hand the sheets of \mathfrak{g} . We show that when G is the special linear group, the connected components of the invariant Hilbert schemes we get are the geometric quotients of the sheets of \mathfrak{g} . These quotients were constructed by Katsylo for a general semisimple Lie algebra \mathfrak{g} ; in our case, they happen to be affine spaces.

Introduction

Let G be a complex reductive group, and V be a finite dimensional G-module. A fondamental problem is to endow some sets of orbits of G in V with a structure of variety. The geometric invariant theory is the classical answer in this context: the set of closed orbits of G in V has a natural structure of affine variety. We denote by V//G this variety, equipped with a G-invariant quotient map $\pi: V \to V//G$.

Recently, Alexeev and Brion defined in [AB] a structure of quasiprojective scheme on some sets of G-stable closed affine subscheme of V. A natural question is to wonder what happens when one applies Alexeev-Brion's construction to the orbit closures of G in V. Here, we study this construction in the case of a well known G-module, namely the adjoint representation of a semisimple group G, especially when G is the special linear group SL(n).

From now on, we assume that G is semisimple, and denote by \mathfrak{g} its Lie algebra. Let us recall that a sheet of \mathfrak{g} is an irreducible component of the set of points in \mathfrak{g} whose G-orbit has a fixed dimension. Let us fix a sheet S. We show that the G-module structure on the affine algebra $\mathbb{C}[\overline{G \cdot x}]$ of the orbit closure $\overline{G \cdot x}$ of x doesn't depend on x in S. This allows us to define a set-theoretical application from S to some Alexeev-Brion's invariant Hilbert scheme of V:

$$\begin{array}{rccc} \pi_{\mathcal{S}} : & \mathcal{S} & \longrightarrow & \mathrm{Hilb}_{\mathcal{S}}^{G}(V) \\ & x & \longmapsto & \overline{G \cdot x}. \end{array}$$

A unique sheet is open in \mathfrak{g} : we call it the *regular* one, and denote it by \mathfrak{g}_{reg} .

Firstly, we prove that $\operatorname{Hilb}_{\mathfrak{g}_{reg}}^G(V)$ is canonically isomorphic to the categorical quotient $V/\!/G$. Moreover, via this isomorphism, the application $\pi_{\mathfrak{g}_{reg}}$ identifies with the restriction of the quotient map $\pi: V \to V/\!/G$; in particular, it is a morphism. In a second part, we study any sheet S for G = SL(n). Let us denote by $\pi : S \to S/SL(n)$ the geometric quotient of S, constructed by Katsylo in [Ka]. We show that there is a canonical morphism

$$\begin{array}{rcl} \theta : & \mathcal{S}/\operatorname{SL}(n) & \longrightarrow & \operatorname{Hilb}_{\mathcal{S}}^{\operatorname{SL}(n)}(V) \\ & \operatorname{SL}(n) \cdot x & \longmapsto & \overline{\operatorname{SL}(n) \cdot x} \end{array}$$

which is actually an isomorphism onto a connected component of $\operatorname{Hilb}_{\mathcal{S}}^{\operatorname{SL}(n)}(V)$.

Another motivation for this work is to understand examples of invariant Hilbert schemes. Indeed, the construction of Alexeev and Brion is indirect and only few examples are known (see [J], [BC]). Here, the connected components of invariant Hilbert schemes we obtain happen to be affine spaces, as in [J] and [BC]. Note that this answers in the case of SL(n) to a question of Katsylo who asked if the geometric quotient S/G is normal.

1 Hilbert's sheets

We consider schemes and affine algebraic groups over \mathbb{C} . Let G be a connected semisimple group. We choose a Borel subgroup B, and a maximal torus T contained in B. We denote by U the unipotent radical of B; we have B = TU.

We denote by Λ the character group of T. We denote by Λ^+ the set of elements of Λ that are dominant weights with respect to B. The set Λ^+ is in bijection with the set of isomorphism classes of simple rational G-modules. If λ is an element of Λ^+ , we denote by $V(\lambda)$ a simple G-module associated, that is of highest weight λ .

If V is a rational G-module, we denote by $V_{(\lambda)}$ its isotypical component of type λ , that is the sum of its submodules isomorphic to $V(\lambda)$. We have the decomposition $V = \bigoplus_{\lambda \in \Lambda^+} V_{(\lambda)}$.

In any decomposition of V as a direct sum of simple modules, the multiplicity of the simple module $V(\lambda)$ is the dimension of $V_{(\lambda)}^U$. We say that V has finite multiplicities if these multiplicities are finite (for any dominant weight λ).

Let us recall some definitions from [AB, §1]. A family of affine G-schemes over some scheme S is a scheme \mathfrak{X} equipped with an action of G and with a morphism $\pi : \mathfrak{X} \to S$ that is affine, of finite type and G-invariant. We have a G-equivariant morphism of \mathcal{O}_S -modules

$$\pi_*\mathcal{O}_{\mathfrak{X}} \simeq \bigoplus_{\lambda \in \Lambda^+} \mathcal{F}_{\lambda} \otimes_{\mathbb{C}} V(\lambda),$$

where each $\mathcal{F}_{\lambda} := (\pi_* \mathcal{O}_{\mathfrak{X}})^U_{(\lambda)}$ is equipped with the trivial action of G. Let $h : \Lambda^+ \to \mathbb{N}$ be a function. The family \mathfrak{X} is said to be of Hilbert function h if each \mathcal{F}_{λ} is an \mathcal{O}_S -module locally free of rank $h(\lambda)$. (Then the morphism π is flat.)

Let X be an affine G-scheme, and $h : \Lambda^+ \longrightarrow \mathbb{N}$ a function. A family of G-stable closed subschemes of X over some scheme S is a G-stable closed subscheme $\mathfrak{X} \subseteq S \times X$. The projection $S \times X \to S$ induces a family of affine G-schemes $\mathfrak{X} \to S$. The contravariant functor: $(\text{Schemes})^{\circ} \longrightarrow (\text{Sets})$ that associates to every scheme S the set of families $\mathfrak{X} \subseteq S \times X$ of Hilbert function h is represented by a quasiprojective scheme denoted by $Hilb_h^G(X)$ ([AB, §1.2].

The dimension of an affine G-scheme whose affine algebra has finite multiplicities can be read on its Hilbert function:

Proposition 1.1. Let $h : \Lambda^+ \longrightarrow \mathbb{N}$ be a function. Let Y and Z be two affine schemes of Hilbert function h. Then dim $Y = \dim Z$.

Proof. Let us denote by A the affine ring of Y.

If Y is horospherical, that is ([AB, Lemma 2.4]) if for any dominant weights λ , μ , we have $A_{(\lambda)} \cdot A_{(\mu)} \subseteq A_{(\lambda+\mu)}$, it is clear that the dimension of Y can be read on its Hilbert function. Indeed, let us denote by θ_0 the linear map from $\Lambda \otimes \mathbb{Q}$ to \mathbb{Q} which associates to any fundamental weight the value 1. We denote by θ the group homomorphism from Λ to \mathbb{Z} that is the restriction of θ_0 . We associate to θ a graduation of the algebra A by \mathbb{N} : its homogeneous component of degree d is

$$A_d := \bigoplus_{\lambda \in \Lambda^+, \ \theta(\lambda) = d} A_{(\lambda)}.$$

The dimension of A_d is finite, and depends only on h:

$$\dim A_d = \sum_{\lambda \in \Lambda^+, \ \theta(\lambda) = d} h(\lambda) \dim V(\lambda).$$

So the Hilbert polynomial of the graded algebra A depends only on h, and so does the dimension of Y.

We can deduce the proposition. Indeed, Y admits a flat degeneration over a connected scheme to a horospherical G-scheme Y' that admits the same Hilbert function (by [AB, Theorem 2.7]). So dim $Y = \dim Y'$ depends only on h.

We will use the method of "asymptotic cones" of Borho and Kraft ([PV, §5.2]): let V be a finite dimensional rational G-module and F the closure of an orbit in V (or, more generally, any G-stable closed subvariety contained in a fiber of the categorical quotient $V \to V//G$). We embbed V into the projective space $\mathbb{P}(\mathbb{C} \oplus V)$ of vector lines of $\mathbb{C} \oplus V$ by the inclusion $v \mapsto [1 \oplus v]$. The closure of F in $\mathbb{P}(\mathbb{C} \oplus V)$ is denoted by \overline{F} . The affine cone in $\mathbb{C} \oplus V$ over \overline{F} is the closed cone \mathfrak{X} generated by F.

The vector space $\mathbb{C} \oplus V$, equipped with its natural scheme structure, is denoted by $\mathbb{A}^1 \times V$. The cone $\mathfrak{X} \subseteq \mathbb{A}^1 \times V$, viewed as a reduced closed subscheme, is a flat family of affine *G*-schemes. Its fibers over non-zero elements are homothetic to *F*. Its fiber over 0 is a reduced cone, denoted by \hat{F} . It is contained in the null-cone of *V* (that is the fiber of the categorical quotient $V \to V/\!/G$ containing 0). Its dimension is the same as *F*.

We consider the adjoint action of G on its Lie algebra \mathfrak{g} . If x is an element of \mathfrak{g} , the affine algebra of the closure of its orbit, viewed as a reduced scheme, has finite multiplicities. Let us denote by h_x its Hilbert function; we call it the Hilbert function associated to x. In this paper, we are interested in the connected component denoted Hilb_x^G of the scheme $\operatorname{Hilb}_{h_x}^G(\mathfrak{g})$ that contains $\overline{G \cdot x}$. It gives the *G*-invariant deformations of $\overline{G \cdot x}$ embedded in \mathfrak{g} . We determine it when *x* is in \mathfrak{g}_{reg} in §2, and for any *x* when *G* is the special linear group in §3.

Let us denote by G_x the stabilizer of x in G, and \mathfrak{g}_x its Lie algebra. The coadjoint action of G_x is its natural action on the dual vector space \mathfrak{g}_x^* .

Proposition 1.2. Let us assume the orbit closure $\overline{G \cdot x}$ to be normal. The tangent space $T_{\overline{G \cdot x}}$ Hilb^G_x to Hilb^G_x at the point $\overline{G \cdot x}$ is canonically isomorphic to the space of invariants of the coadjoint action of G_x .

Proof. The tangent space to $\overline{G \cdot x}$ at the point x is $\mathfrak{g}.x$; it is stable under the action of G_x . We denote by $[\mathfrak{g}/\mathfrak{g}.x]^{G_x}$ the space of invariants under the action of G_x on the quotient vector space $\mathfrak{g}/\mathfrak{g}.x$. According to [AB, Proposition 1.15 (iii)], we have a canonical isomorphism

$$T_{\overline{G\cdot x}}\operatorname{Hilb}_{x}^{G} \cong [\mathfrak{g}/\mathfrak{g}.x]^{G_{x}}.$$
(1)

Indeed, the orbit closure $\overline{G \cdot x}$ is assumed to be normal. Moreover, every orbit in \mathfrak{g} has even dimension, and has a finite number of orbits in its closure ([PV, Corollary 3 page 198]), so the codimension of the boundary of $G \cdot x$ in $\overline{G \cdot x}$ is at least 2, and the proposition of [AB] can be applied.

To transform (1) into the isomorphism of the proposition, we will use the Killing form on \mathfrak{g} , denoted by κ . As \mathfrak{g} is semisimple, its Killing form gives an isomorphism

$$\begin{array}{rccc} \phi: & \mathfrak{g} & \longrightarrow & \mathfrak{g}^* \\ & y & \longmapsto & \kappa(y,\cdot). \end{array}$$

The isomorphism ϕ is *G*-equivariant, thus G_x -equivariant. It sends $\mathfrak{g}.x$ onto the space \mathfrak{g}_x^{\perp} of linear forms on \mathfrak{g} that vanish on \mathfrak{g}_x . Indeed, the common zeros of the elements of $\phi(\mathfrak{g}.x)$ are the elements y in \mathfrak{g} such that

$$\forall z \in \mathfrak{g}, \ \kappa([z, x], y) = 0,$$

that is

$$\forall z \in \mathfrak{g}, \ \kappa(z, [x, y]) = 0,$$

and this last condition means that y belongs to \mathfrak{g}_x since κ is non-degenerate.

Thus the short exact sequence of G_x -modules

$$0 \longrightarrow \mathfrak{g}.x \longrightarrow \mathfrak{g} \longrightarrow \mathfrak{g}/\mathfrak{g}.x \longrightarrow 0$$

identifies (thanks to ϕ) with

$$0 \longrightarrow \mathfrak{g}_x^{\perp} \longrightarrow \mathfrak{g}^* \longrightarrow (\mathfrak{g}_x)^* \longrightarrow 0,$$

and the proposition follows from (1).

A sheet of \mathfrak{g} is a maximal irreducible subset of \mathfrak{g} consisting of *G*-orbits of a fixed dimension. Every sheet of \mathfrak{g} contains a unique nilpotent orbit. A regular element of \mathfrak{g} is an element of \mathfrak{g} whose orbit has maximal dimension. The open subset of \mathfrak{g} whose elements are the regular elements is a sheet denoted by \mathfrak{g}_{reg} .

Let us call *Hilbert's sheet* a maximal irreducible subset of \mathfrak{g} consisting of elements admitting a fixed associated Hilbert function.

Proposition 1.3. The Hilbert's sheets of \mathfrak{g} coincide with its sheets.

Proof. According to Proposition 1.1, any Hilbert's sheet is contained in some sheet. It just remains to check that two points of some sheet S have the same associated Hilbert function.

Let F be the closure of an orbit in S. We recalled that its asymptotic cone F is a degeneration of F. In particular, it is contained in the closure of S. Moreover, \hat{F} is contained in the null-cone of \mathfrak{g} , and its dimension is the same as F. So \hat{F} is the closure of the nilpotent orbit of S.

The affine algebra of \mathfrak{g} is the symmetric algebra of \mathfrak{g}^* . Its graduation induces a *G*-invariant filtration on the affine algebra *A* of *F*. The affine algebra of the asymptotic cone \hat{F} is isomorphic, as an algebra equipped with an action of *G*, to the graded algebra \hat{A} associated to the filtered algebra *A*. In particular, *A* and \hat{A} are isomorphic as *G*-modules, and their multiplicities are equal: the Hilbert function of *F* is equal to that of \hat{F} , and the proposition is proved.

2 Regular case

Let us denote by h_{reg} the Hilbert function associated to the regular elements of \mathfrak{g} (Proposition 1.3). In this section, we prove that the invariant Hilbert scheme $\mathrm{H}_{\text{reg}} := \mathrm{Hilb}_{h_{\text{reg}}}^{G}(\mathfrak{g})$ is the categorical quotient $\mathfrak{g}/\!/G$, that is an affine space whose dimension is the rank of G.

2.1 A morphism from $\mathfrak{g}/\!/G$ to H_{reg}

Let \mathfrak{X}_{reg} be the graph of the canonical projection $\mathfrak{g} \to \mathfrak{g}/\!/G$. It is a family of *G*-stable closed subschemes of \mathfrak{g} over $\mathfrak{g}/\!/G$.

Proposition 2.1. The closed subscheme \mathfrak{X}_{reg} is a family of *G*-stable closed subschemes of \mathfrak{g} with Hilbert function h_{reg} .

Proof. Let us denote by $\pi : \mathfrak{X}_{reg} \to \mathfrak{g}/\!/G$ the canonical projection, and by $\mathcal{R} := \pi_* \mathcal{O}_{\mathfrak{X}_{reg}}$ the direct image by π of the structural sheaf of \mathfrak{X}_{reg} . We have to prove that for any dominant weight λ , we have that $\mathcal{R}^U_{(\lambda)}$ is a locally free sheaf on $\mathfrak{g}/\!/G$ of rank $h(\lambda)$.

Let us first study the case where $\lambda = 0$. The morphism $\pi//G : \mathfrak{X}_{reg}//G \to \mathfrak{g}//G$ induced by π is clearly an isomorphism. So $\mathcal{R}^G = \mathcal{R}^U_{(0)}$ is a free module on $\mathfrak{g}//G$ of rank $1 = h_{reg}(0)$.

Let λ be a dominant weight. It is known (see [AB, Lemma 1.2]) that $\mathcal{R}^{U}_{(\lambda)}$ is a coherent \mathcal{R}^{G} -module. Thus it is a coherent module on $\mathfrak{g}/\!/G$. To see that it is locally free, we just have to check that its rank is constant. The fibers of π are those of the canonical projection $\mathfrak{g} \to \mathfrak{g}/\!/G$, so they are the orbit closures of the regular elements, and all of them admit h_{reg} as Hilbert function. So the rank of $\mathcal{R}^{U}_{(\lambda)}$ at any closed point of $\mathfrak{g}/\!/G$ is $h(\lambda)$, and the proposition is proved.

This gives us a canonical morphism

$$\phi_{\mathrm{reg}}:\mathfrak{g}/\!/G\longrightarrow \mathrm{H}_{\mathrm{reg}}.$$

We will prove in the following of §2 that ϕ_{reg} is an isomorphism.

Lemma 2.2. The morphism ϕ_{reg} realises a bijection from the set of closed points of $\mathfrak{g}/\!/G$ to the set of closed points of H_{reg} .

Proof. We remark that ϕ_{reg} is injective. Let us check it is surjective: in other words, that any *G*-invariant closed subscheme of \mathfrak{g} of Hilbert function h_{reg} is a fiber of $\mathfrak{g} \to \mathfrak{g}/\!/G$.

Let Y be such a subscheme. As $h_{\text{reg}}(0) = 1$, it has to be contained in some fiber F of $\mathfrak{g} \to \mathfrak{g}//G$ over a reduced closed point. But F already corresponds to a closed point of H_{reg} in the image of ϕ_{reg} . Moreover, F admits no proper closed subscheme admitting the same Hilbert function, so F = Y, and the lemma is proved.

Let us denote by r the rank of G. The quotient $\mathfrak{g}//G$ is an affine space of dimension r. A consequence of Lemma 2.2 is:

Corollary 2.3. The dimension of H_{reg} is r.

2.2 Tangent space

In this section, we prove:

Proposition 2.4. The scheme H_{reg} is smooth.

Proof. Let Z be a closed point of H_{reg} . We have to prove that the dimension of the tangent space $T_Z H_{reg}$ is r. We still denote by Z the closed subscheme of \mathfrak{g} corresponding to Z. By Lemma 2.2, we know that Z is a fiber of the morphism $\mathfrak{g} \to \mathfrak{g}/\!/G$, thus the closure of some regular element x. It is a normal variety. By Proposition 1.2, we have to prove that the dimension of

 $(\mathfrak{g}_x^*)^{G_x}$

is r, or simply that it is lower or equal to r (by Corollary 2.3).

Let us prove that the dimension of the bigger space

 $(\mathfrak{g}_x^*)^{\mathfrak{g}_x}$

is r, and the proposition will be proved.

A linear form on \mathfrak{g}_x is \mathfrak{g}_x -invariant iff it vanishes on the derived algebra $[\mathfrak{g}_x, \mathfrak{g}_x]$, so we have to prove that

$$(\mathfrak{g}_x/[\mathfrak{g}_x,\mathfrak{g}_x])^*$$

is r-dimensional. We will prove that \mathfrak{g}_x is an r-dimensional abelian algebra, and the proposition will be proved. This is true if x is semisimple, because then \mathfrak{g}_x is a Cartan subalgebra of \mathfrak{g} . If the regular element x is not assumed to be semisimple, the dimension of \mathfrak{g}_x is still r, because this doesn't depend on the regular element x, by definition. Let us check that \mathfrak{g}_x is abelian.

Let us denote by $\operatorname{Grass}_r(\mathfrak{g})$ the grassmannian of r-dimensional subspaces of \mathfrak{g} , endowed with its projective variety structure. The subset of $\mathfrak{g}_{\operatorname{reg}} \times \operatorname{Grass}_r(\mathfrak{g})$:

$$\{(z,\mathfrak{h})\in\mathfrak{g}_{\mathrm{reg}} imes\mathrm{Grass}_r(\mathfrak{g})\mid\mathfrak{h}\cdot z=0 ext{ and } [\mathfrak{h},\mathfrak{h}]=0\}$$

is closed, so its image by the natural projection into \mathfrak{g}_{reg} is closed too. As its image contains the semisimple elements of \mathfrak{g}_{reg} , it is equal to \mathfrak{g}_{reg} . Thus \mathfrak{g}_x is abelian for any regular x, and the proposition is proved.

2.3 Conclusion

We can now conclude that the family \mathfrak{X}_{reg} of Proposition 2.1 is the universal family:

Theorem 2.5. The morphism ϕ_{reg} from $\mathfrak{g}//G$ to H_{reg} is an isomorphism.

Proof. The morphism ϕ_{reg} is bijective (Lemma 2.2) and H_{reg} is normal. According to Zariski's main theorem, ϕ_{reg} is an isomorphism.

Remark 2.6. One knows there is a canonical morphism

$$\psi_{\mathrm{reg}} : \mathrm{H}_{\mathrm{reg}} \longrightarrow \mathfrak{g} /\!/ G$$

that associates to any closed point F of H_{reg} (viewed as a closed subscheme of \mathfrak{g}) its categorical quotient F//G (viewed as a closed point of $\mathfrak{g}//G$). This morphism is a particular case of morphism

$$\eta: \operatorname{Hilb}_{h}^{G}(V) \longrightarrow \operatorname{Hilb}_{h(0)}(V/\!/G)$$

defined in [AB, §1.2], because $h_{\text{reg}}(0) = 1$ and thus the punctual Hilbert scheme that parameterizes closed subschemes of length 1 in $\mathfrak{g}//G$ identifies with $\mathfrak{g}//G$ itself. The morphism ψ_{reg} is clearly the inverse morphism of ϕ_{reg} .

3 Case of $\mathfrak{sl}(n)$

We denote by t an indeterminate over \mathbb{C} , and I_n the identity matrix of size $n \times n$. If x is an element of $\mathfrak{sl}(n)$ and $i = 1 \cdots n$, we denote by $Q_i^x(t)$ the monic greatest common divisor (in the ring $\mathbb{C}[t]$) of the $(n + 1 - i) \times (n + 1 - i)$ -sized minors of $x - tI_n$, and $Q_{n+1}^x(t) := 1$.

Then we put

$$q_i^x(t) := Q_i^x(t) / Q_{i+1}^x(t).$$

The polynomials $q_1^x(t), \dots, q_n^x(t)$ are the invariant factors of the matrix $x - tI_n$ with coefficients in the euclidean ring $\mathbb{C}[t]$, ordered in such a way that $q_{i+1}^x(t)$ divides $q_i^x(t)$.

If x, y are elements of $\mathfrak{sl}(n)$, then y is in the closure of the orbit $SL(n) \cdot x$ of x if and only if for any $i = 1 \dots n$, the polynomial $Q_i^x(t)$ divides $Q_i^y(t)$. In other words, iff for any i, the polynomial $Q_i^x(t)$ divides the $(n + 1 - i) \times (n + 1 - i)$ -sized minors of $y - tI_n$.

According to [W], when x is nilpotent, these conditions defines the closure of $SL(n) \cdot x$ as a reduced scheme: to be more precise, when one divides a $(n + 1 - i) \times (n + 1 - i)$ -sized minor of $y - tI_n$ by $Q_i^x(t)$ using Euclid algorithm, the remainder he gets is a regular function of y. All such functions generate the ideal of the closure of $SL(n) \cdot x$. We will deduce easily from this difficult result that the same remains true if x is no longer assumed to be nilpotent.

One sees easily that the set of sheets of $\mathfrak{sl}(n)$ is in bijection with the set of partitions n, that is of sequences $\sigma = (b_1 \ge b_2 \ge b_3 \ge ...)$ of nonnegative integers such that $b_1 + b_2 + b_3 + \cdots = n$. Namely, if σ is a partition of n, the elements of the correspondant sheet S_{σ} are those elements x such that for any *i*, the polynomial $q_i^x(t)$ is of degree b_i . We denote by $\hat{\sigma} = (c_1 \ge c_2 \ge c_3 \ge ...)$ the conjugate partition, where c_j is the number of *i* such that $b_i \ge j$. We denote by h_{σ} the Hilbert function associated to the points of \mathcal{S}_{σ} (Proposition 1.3). We denote by Z_{σ} the closure of the nilpotent orbit of \mathcal{S}_{σ} . The connected component of $\operatorname{Hilb}_{h_{\sigma}}^{\operatorname{SL}(n)}(\mathfrak{sl}(n))$ that contains Z_{σ} as a closed point is denoted H_{σ} . We will prove in this section that H_{σ} is an affine space of dimension $b_1 - 1$. The proof is similar to §2.

We recall that the sheets of $\mathfrak{sl}(n)$ are smooth ([Kr]).

3.1 A construction of the geometric quotient of S_{σ}

Katslylo showed in [Ka] that any sheet of a semisimple Lie algebra admits a geometric quotient. Although his proof contains an explicit construction, it doesn't make clear the geometric properties of the quotient. Here we present a simple description of the quotient in the case of the Lie algebra $\mathfrak{sl}(n)$. It takes on the invariant factors theory. We get that the quotient is an affine space.

Lemma 3.1. Given some *i*, the application $S_{\sigma} \longrightarrow \mathbb{A}^{b_i}$ that associates to any *x* the coefficients of $q_i^x(t) = t^{b_i} + \lambda_{b_i-1}^x t^{b_i-1} + \cdots + \lambda_0^x t^0$ is regular.

Proof. Up to scalar multiplication, the polynomial $q_i^x(t)$ is the unique nonzero polynomial of degree less or equal to b_i such that

$$\dim \ker q_i^x(x) \ge N := \sum_{j=1}^{b_i} c_j.$$
(2)

Thus the closed subset of $\mathcal{S}_{\sigma} \times \mathbb{P}^{b_i}$ consisting of elements $(x, [\mu_0 : \cdots : \mu_{b_i}])$ such that

$$\dim \ker(\sum_{j=0}^{b_i} \mu_j x^j) \ge N$$

is the graph of the application

$$\begin{array}{cccc} \psi: & \mathcal{S}_{\sigma} & \longrightarrow & \mathbb{P}^{b_i} \\ & x & \longmapsto & [\lambda_0^x: \cdots: \lambda_{b_i-1}^x: 1] \end{array}$$

According to [Hr, Exercise 7.8 p 76], this graph is also the graph of a rational map ϕ from S_{σ} to \mathbb{P}^{b_i} . On the open subset Ω of S_{σ} where ϕ is regular, ϕ coincides with ψ , so the functions $x \mapsto \lambda_j^x$ are regular functions from Ω to \mathbb{A}^1 . As S_{σ} is smooth, the complementary of Ω in S_{σ} has codimension at least 2 ([S, Thm 3 chap II.3.1]). We conclude that the functions extend to regular functions from S_{σ} to \mathbb{A}^1 . By continuity, these extensions satisfy (2), so they coincide with the functions $x \mapsto \lambda_j^x$ on S_{σ} .

Let us define, for any x in S_{σ} , the monic polynomial of degree $b_i - b_{i+1}$:

$$p_i^x(t) := q_i^x(t)/q_{i+1}^x(t)$$

(where $q_{n+1}^x := 1$). It follows from the previous lemma that its coefficients, viewed as functions of x, are regular functions from S_{σ} to \mathbb{A}^1 .

Given an x, the family $(p_1^x(t), \ldots, p_n^x(t))$ can be any family of monic polynomials of degrees $b_i - b_{i+1}$, provided the following relation is satisfied, where $S(p_i^x)$ denotes the sum of the roots of p_i^x , counted with multiplicities (given by its first nondominant coefficient):

$$\sum_{i=1}^{n} iS(p_i^x) = 0$$

(this relation simply means that the trace of x is zero).

Thus, associating to any x the coefficients of the family $(p_1^x(t), \ldots, p_n^x(t))$, we get a regular map π from S_{σ} to a linear hyperplane of \mathbb{C}^{b_1} , which we will denote by \mathbb{A}^{b_1-1} .

Proposition 3.2. The map $\pi: S_{\sigma} \longrightarrow \mathbb{A}^{b_1-1}$ is the geometric quotient of S_{σ} .

Proof. This map is surjective, and its fibers are exactly the orbits of S_{σ} under the action of SL(n). Let us denote by $S_{\sigma}/SL(n)$ the geometric quotient of S_{σ} (whose existence is proved in [Ka]). The map π is the composite of the canonical projection from S_{σ} to $S_{\sigma}/SL(n)$ with a regular bijection

$$\mathcal{S}_{\sigma}/\operatorname{SL}(n) \longrightarrow \mathbb{A}^{b_1-1}.$$

This last map is bijective (thus birational), and the space \mathbb{A}^{b_1-1} is normal. According to Zariski's main theorem, it is an isomorphism.

3.2 A morphism from $S_{\sigma} / SL(n)$ to H_{σ}

If $z = (p_1(t), \ldots, p_n(t))$ is a closed point of \mathbb{A}^{b_1-1} corresponding to the orbit $SL(n) \cdot x$ in \mathcal{S}_{σ} , the polynomial

$$Q_i^x(t) = p_i(t) \cdot (p_{i+1}(t))^2 \cdot \dots \cdot (p_n(t))^{n-i+1}$$

only depends on z. Let us denote it by $Q_i^z(t)$. Its coefficients are regular functions from \mathbb{A}^{b_1-1} to \mathbb{A}^1 .

Let us consider the closed subscheme \mathfrak{X}_{σ} of $\{(z, y) \in \mathbb{A}^{b_1 - 1} \times \mathfrak{sl}(n)\}$ defined by the vanishing, for $i = 1 \dots n$, of the remainders we get when we divide the $(n + 1 - i) \times (n + 1 - i)$ -minors of $y - tI_n$ by $Q_i^z(t)$. We denote by I_{σ} the ideal generated by these remainders. The underlying set of \mathfrak{X}_{σ} consists of all the couples (z, y) such that y is in the closure of the orbit corresponding to z.

Proposition 3.3. The closed subscheme \mathfrak{X}_{σ} is a family of SL(n)-stable closed subschemes of $\mathfrak{sl}(n)$ with Hilbert function h_{σ} .

Proof. The proof is similar to that of Proposition 2.1. The subscheme \mathfrak{X}_{σ} is a family of SL(n)-stable closed subschemes of $\mathfrak{sl}(n)$ over \mathbb{A}^{b_1-1} . Let us denote by π the morphism $\mathfrak{X}_{\sigma} \longrightarrow \mathbb{A}^{b_1-1}$.

As previouly, let us first remark that the morphism

$$\pi / / \operatorname{SL}(n) : \mathfrak{X}_{\sigma} / / \operatorname{SL}(n) \longrightarrow \mathbb{A}^{b_1 - 1}$$

induced by π is an isomorphism. To do this, let us verify that the comorphism

$$(\pi/\!/\operatorname{SL}(n))^* : \mathbb{C}[\mathbb{A}^{b_1-1}] \longrightarrow \mathbb{C}[\mathbb{A}^{b_1-1}] \otimes \mathbb{C}[\mathfrak{sl}(n)]^{\operatorname{SL}(n)}/I_{\sigma}^{\operatorname{SL}(n)}$$

is an isomorphism. It is injective, as π is surjective. Its surjectivity comes from the relations that define \mathfrak{X}_{σ} : they give, for i = 1, that $Q_1^z(t)$ divides the determinant of $tI_n - y$, that is the characteristic polynomial of y. As their degrees are equal, $Q_1^z(t)$ and the characteristic polynomial of y are equal. This gives the surjectivity.

We go on as previously: let λ be a dominant weight. The $R^{\mathrm{SL}(n)}$ -module $R_{(\lambda)}^U$ is of finite type ([AB, Lemma 1.2]). Thus $(\pi_* \mathcal{O}_{\mathfrak{X}_{\sigma}})_{(\lambda)}^U$ is a coherent $\mathcal{O}_{\mathbb{A}^{b_1-1}}$ -module. To see that it is locally free, we just have to check that its rank is constant. Let us assume that the origin $0 \in \mathbb{A}^{b_1-1}$ corresponds to the nilpotent orbit in \mathcal{S}_{σ} . The fiber of π over 0 is the closure of this orbit, fitted with its structure of reduced scheme. Thus, the rank of $(\pi_* \mathcal{O}_{\mathfrak{X}_{\sigma}})_{(\lambda)}^U$ at 0 is $h_{\sigma}(\lambda)$. If z is any point of \mathbb{A}^{b_1-1} , the fiber of π over z is as a set the closure in $\mathfrak{sl}(n)$ of the corresponding orbit. So, by Proposition 1.3 the rank of $(\pi_* \mathcal{O}_{\mathfrak{X}_{\sigma}})_{(\lambda)}^U$ at z is at least $h_{\sigma}(\lambda)$. To conclude, we use the action of the multiplicative group on $\mathfrak{sl}(n)$ (by homotheties) and the induced action on \mathbb{A}^{b_1-1} , that makes π equivariant. The orbit of z goes arbitrary close to 0, and the rank of a coherent sheaf is upper semicontinuous, so the rank of $(\pi_* \mathcal{O}_{\mathfrak{X}_{\sigma}})_{(\lambda)}^U$ is $h_{\sigma}(\lambda)$ at z.

3.3 Tangent space

In this section, we compute the dimension of the tangent space to H_{σ} at the point Z_{σ} :

Proposition 3.4. The dimension of $T_{Z_{\sigma}}H_{\sigma}$ is $b_1 - 1$.

Proof. Let x be an element in the open orbit in Z_{σ} . It is known that Z_{σ} is normal ([KP]). So by Proposition 1.2, we just have to prove that the dimension of

$$(\mathfrak{sl}(n)_x^*)^{\mathrm{SL}(n)_x}$$

is $b_1 - 1$. Let us consider SL(n) as a closed subgroup of the general linear group GL(n), and $\mathfrak{sl}(n)$ as a subalgebra of $\mathfrak{gl}(n)$. The stabilizer $GL(n)_x$ of x in GL(n) is generated by $SL(n)_x$ and the center of GL(n). It is clearly equivalent to prove that the dimension of

$$(\mathfrak{gl}(n)_x^*)^{\operatorname{GL}(n)_x}$$

is b_1 . The group $GL(n)_x$ is connected, so the last space is isomorphic to

$$(\mathfrak{gl}(n)_x^*)^{\mathfrak{gl}(n)_x}$$

A linear form on $\mathfrak{gl}(n)_x$ is $\mathfrak{gl}(n)_x$ -invariant iff it vanishes on the derived algebra $[\mathfrak{gl}(n)_x, \mathfrak{gl}(n)_x]$, so we have to prove that

$$(\mathfrak{gl}(n)_x/[\mathfrak{gl}(n)_x,\mathfrak{gl}(n)_x])^*$$

is b_1 -dimensional. This fact is the following elementary lemma.

Lemma 3.5. Let $E = \bigoplus_{i=1}^{c_1} E_i$ be a graded vector space over \mathbb{C} , where each E_i is b_i -dimensional. We denote by $\mathfrak{h} := \mathfrak{gl}(E)$ the Lie algebra of endomorphisms of E. Let x be a nilpotent element of \mathfrak{h} such that each subspace E_i is stabilized by x, and the restriction of x to each E_i is cyclic.

Let us denote by \mathfrak{h}_x the stabilizer of x in \mathfrak{h} . Then the codimension of the derived algebra $[\mathfrak{h}_x, \mathfrak{h}_x]$ in \mathfrak{h}_x is b_1 .

Proof. The graduation of E induces a graduation on the vector space \mathfrak{h} :

$$\mathfrak{h} = \bigoplus_{i,j} \operatorname{Hom}(E_i, E_j).$$

Let us denote by $p_i : E \longrightarrow E_i$ the natural projections. As they commute with x, the subspace \mathfrak{h}_x of \mathfrak{h} is homogeneous:

$$\mathfrak{h}_x = \bigoplus_{i,j} \operatorname{Hom}_x(E_i, E_j),$$

where $\operatorname{Hom}_x(E_i, E_j)$ denotes the space of homomorphisms that commute with x. Let us choose, for any i, an element e_i of E_i such that $x^{b_i-1}e_i \neq 0$. We put $n_{ij} := b_j - b_i$ if j < i and 0 otherwise. We denote by $f_{ij} : E_i \to E_j$ the unique homomorphism that commutes with x and that sends e_i to $x^{n_{ij}}e_j$. Then any homomorphism from E_i to E_j that commutes with x is the composite of f_{ij} with a polynomial in x:

$$\operatorname{Hom}_{x}(E_{i}, E_{j}) = \mathbb{C}[x] \cdot f_{ij}.$$

We notice that if $i \neq j$, then $\operatorname{Hom}_x(E_i, E_j)$ is contained in $[\mathfrak{h}_x, \mathfrak{h}_x]$. Indeed, for any $u: E_i \to E_j$, we have $[u, p_i] = u$.

So we have to prove that the codimension in $\bigoplus_i \operatorname{Hom}_x(E_i, E_i)$ of

$$[\mathfrak{h}_x,\mathfrak{h}_x]\cap \bigoplus_i \operatorname{Hom}(E_i,E_i)$$

is b_1 . The last vector space is generated by its elements of the form

$$P(x)[f_{ji}, f_{ij}] = P(x)x^{|b_i - b_j|}(\mathrm{id}_{E_i} - \mathrm{id}_{E_j}),$$

where P(x) is a polynomial in x.

One checks easily that a basis of a supplementary in $\bigoplus_i \operatorname{Hom}_x(E_i, E_i)$ of this space is given by the family of elements

 $x^k \operatorname{id}_{E_i}$

where $0 \leq k < b_i - b_{i+1}$, and the lemma is proved.

3.4 Conclusion

In this section, we prove that the family \mathfrak{X}_{σ} of Proposition 3.3 is the universal family:

Theorem 3.6. The morphism ϕ_{σ} from $S_{\sigma}/SL(n)$ to H_{σ} obtained in §3.2 is an isomorphism.

We denote by $\overline{\mathcal{S}_{\sigma}}$ the closure of \mathcal{S}_{σ} in $\mathfrak{sl}(n)$, equipped with its reduced scheme structure. The invariant Hilbert scheme $\mathrm{H}'_{\sigma} := \mathrm{Hilb}_{h_{\sigma}}^{\mathrm{SL}(n)}(\overline{\mathcal{S}_{\sigma}})$ parametrizing the closed subschemes of $\overline{\mathcal{S}_{\sigma}}$ of Hilbert function h_{σ} is canonically identified with a closed subscheme of $\mathrm{Hilb}_{h_{\sigma}}^{\mathrm{SL}(n)}(\mathfrak{sl}(n))$. The morphism ϕ_{σ} factorizes by a morphism $\psi_{\sigma} : \mathcal{S}_{\sigma}/\mathrm{SL}(n) \to \mathrm{H}'_{\sigma}$.

To prove the theorem, we will get that the morphism ψ_{σ} is an isomorphism from $S_{\sigma}/SL(n)$ to H'_{σ} and that H'_{σ} is a connected component of H_{σ} (Corollary 3.10).

Lemma 3.7. The morphism ψ_{σ} induces a bijection from the set of closed points of $S_{\sigma}/\operatorname{SL}(n)$ to the set of closed points of H'_{σ} .

Proof. We know that ψ_{σ} is injective. Let us check it is surjective: in other words, that any SL(n)-invariant closed subscheme of $\overline{\mathcal{S}_{\sigma}}$ with Hilbert function h_{σ} is the closure of some orbit in \mathcal{S}_{σ} .

Let X be such a subscheme. As $h_{\sigma}(0) = 1$, it has to be contained in some fiber F of the categorical quotient $\overline{\mathcal{S}_{\sigma}} \to \overline{\mathcal{S}_{\sigma}} // \operatorname{SL}(n)$ over a reduced closed point. But F already corresponds to a closed point of $\operatorname{H}'_{\sigma}$ in the image of ψ_{σ} . Moreover, F admits no proper closed subscheme admitting the same Hilbert function, so F = X, and the lemma is proved.

Corollary 3.8. The dimension of H'_{σ} is $b_1 - 1$.

The action of the multiplicative group \mathbb{G}_m on $\mathfrak{sl}(n)$ by homotheties induces canonically an action of \mathbb{G}_m on \mathcal{H}_{σ} , and on \mathcal{H}'_{σ} (because it stabilizes $\overline{\mathcal{S}_{\sigma}}$). The cone \mathbb{Z}_{σ} is a \mathbb{G}_m -fixed point of \mathcal{H}'_{σ} . In fact, it is in the closure of the \mathbb{G}_m -orbit of any point of \mathcal{H}'_{σ} :

Proposition 3.9. Let F be a closed point of H'_{σ} . The morphism $\eta : \mathbb{G}_m \longrightarrow H'_{\sigma}, t \longmapsto t.X$ extends to a morphism $\mathbb{A}^1 \longrightarrow H'_{\sigma}, 0 \longmapsto Z_{\sigma}$.

Proof. The point F corresponds to a $\mathrm{SL}(n)$ -invariant closed subscheme of $\overline{\mathcal{S}_{\sigma}}$ admitting Hilbert function h_{σ} . We still denote it by F. As $h_{\sigma}(0) = 1$, it is contained in the fiber of the categorical quotient $\mathfrak{sl}(n) \to \mathfrak{sl}(n)//\mathrm{SL}(n)$ over some closed point. Thus we can apply to it the method of asymptotic cones: we obtain a flat family over \mathbb{A}^1 whose fiber over 0 must be \mathbb{Z}_{σ} (as in the proof of Proposition 1.3). It gives a morphism from \mathbb{A}^1 to H'_{σ} whose restriction outside 0 is η .

From the proposition, we deduce that the dimension of the tangent space to H_{σ} at any point of H'_{σ} is lower or equal to that at Z_{σ} , that is $b_1 - 1$. As the dimension of H'_{σ} is $b_1 - 1$, we get:

Corollary 3.10.

- The scheme H'_{σ} is reduced and smooth.
- It is a connected component of H_{σ} .

The morphism ψ_{σ} is bijective (Lemma 3.7) and H'_{σ} is normal. According to Zariski's main theorem, ψ_{σ} is an isomorphism. So Theorem 3.6 is proved, thanks to the second point of Corollary 3.10.

References

- [AB] V. Alexeev and M. Brion Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14, p 83-117, 2005.
- [BC] P. Bravi and S. Cupit-Foutou Equivariant deformations of the affine multicone over a flag variety, preprint available on math.AG/0603690.
- [Hr] J. Harris Algebraic geometry: a first course, GTM 133, Springer Verlag, 1992.
- [J] S. Jansou
 Déformations des cônes de vecteurs primitifs, Math. Ann. 338, no 3, p 627-667, 2007.
- [Ka] P.I. Katsylo Sections of sheets in a reductive algebraic Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 46 no. 3, p 477-486, 1982.
- [Kr] H. Kraft Parametrisierung von Konjugationsklassen in $\mathfrak{sl}(n)$, Math. Ann. **234** no. 3, p 209-220, 1978.
- [KP] H. Kraft and C. Procesi Closures of conjugacy classes of matrices are normal, Invent. Math. 53 no. 3, p 227-247, 1979.
- [PV] V. Popov and E. Vinberg Invariant Theory. Encyclopaedia of Mathematical Sciences, vol 55, p 123-278, Springer Verlag 1994.
- [S] I.R. Shafarevich Basic algebraic geometry. 1. Varieties in projective space, Springer Verlag, 1994.
- [W] J. Weyman The equations of conjugacy classes of nilpotent matrices, Invent. Math. 98 no. 2, p 229-245, 1989.