
INVARIANT DEFORMATIONSOF ORBIT CLOSURES IN sl(n)S�ebastien Jansou and Niolas RessayreAbstratWe study deformations of orbit losures for the ation of a onneted semisimple group Gon its Lie algebra g, espeially when G is the speial linear group.The tools we use are on the one hand the invariant Hilbert sheme and on the other handthe sheets of g. We show that when G is the speial linear group, the onneted omponentsof the invariant Hilbert shemes we get are the geometri quotients of the sheets of g. Thesequotients were onstruted by Katsylo for a general semisimple Lie algebra g; in our ase, theyhappen to be aÆne spaes.IntrodutionLet G be a omplex redutive group, and V be a �nite dimensional G-module. A fondamentalproblem is to endow some sets of orbits of G in V with a struture of variety. The geometriinvariant theory is the lassial answer in this ontext: the set of losed orbits of G in V has anatural struture of aÆne variety. We denote by V ==G this variety, equipped with a G-invariantquotient map � : V ! V ==G.Reently, Alexeev and Brion de�ned in [AB℄ a struture of quasiprojetive sheme on somesets of G-stable losed aÆne subsheme of V . A natural question is to wonder what happenswhen one applies Alexeev-Brion's onstrution to the orbit losures of G in V . Here, we studythis onstrution in the ase of a well known G-module, namely the adjoint representation of asemisimple group G, espeially when G is the speial linear group SL(n).From now on, we assume that G is semisimple, and denote by g its Lie algebra. Let us reallthat a sheet of g is an irreduible omponent of the set of points in g whose G-orbit has a �xeddimension. Let us �x a sheet S. We show that the G-module struture on the aÆne algebraC [G � x℄ of the orbit losure G � x of x doesn't depend on x in S. This allows us to de�ne aset-theoretial appliation from S to some Alexeev-Brion's invariant Hilbert sheme of V :�S : S �! HilbGS (V )x 7�! G � x:A unique sheet is open in g: we all it the regular one, and denote it by greg.Firstly, we prove that HilbGgreg(V ) is anonially isomorphi to the ategorial quotient V ==G.Moreover, via this isomorphism, the appliation �greg identi�es with the restrition of the quotientmap � : V ! V ==G; in partiular, it is a morphism.1



In a seond part, we study any sheet S for G = SL(n). Let us denote by � : S ! S=SL(n)the geometri quotient of S, onstruted by Katsylo in [Ka℄. We show that there is a anonialmorphism � : S=SL(n) �! HilbSL(n)S (V )SL(n) � x 7�! SL(n) � xwhih is atually an isomorphism onto a onneted omponent of HilbSL(n)S (V ).Another motivation for this work is to understand examples of invariant Hilbert shemes.Indeed, the onstrution of Alexeev and Brion is indiret and only few examples are known (see[J℄, [BC℄). Here, the onneted omponents of invariant Hilbert shemes we obtain happen to beaÆne spaes, as in [J℄ and [BC℄. Note that this answers in the ase of SL(n) to a question ofKatsylo who asked if the geometri quotient S=G is normal.1 Hilbert's sheetsWe onsider shemes and aÆne algebrai groups over C . Let G be a onneted semisimple group.We hoose a Borel subgroup B, and a maximal torus T ontained in B. We denote by U theunipotent radial of B; we have B = TU .We denote by � the harater group of T . We denote by �+ the set of elements of � that aredominant weights with respet to B. The set �+ is in bijetion with the set of isomorphism lassesof simple rational G-modules. If � is an element of �+, we denote by V (�) a simple G-moduleassoiated, that is of highest weight �.If V is a rational G-module, we denote by V(�) its isotypial omponent of type �, that is thesum of its submodules isomorphi to V (�). We have the deomposition V =L�2�+ V(�).In any deomposition of V as a diret sum of simple modules, the multipliity of the simplemodule V (�) is the dimension of V U(�). We say that V has �nite multipliities if these multipliitiesare �nite (for any dominant weight �).Let us reall some de�nitions from [AB, x1℄. A family of aÆne G-shemes over some shemeS is a sheme X equipped with an ation of G and with a morphism � : X ! S that is aÆne, of�nite type and G-invariant. We have a G-equivariant morphism of OS-modules��OX ' M�2�+F� 
C V (�);where eah F� := (��OX)U(�) is equipped with the trivial ation of G. Let h : �+ ! N be afuntion. The family X is said to be of Hilbert funtion h if eah F� is an OS-module loally freeof rank h(�). (Then the morphism � is at.)Let X be an aÆne G-sheme, and h : �+ �! N a funtion. A family of G-stable losedsubshemes of X over some sheme S is a G-stable losed subsheme X � S � X. The pro-jetion S � X ! S indues a family of aÆne G-shemes X ! S. The ontravariant funtor:(Shemes)Æ �! (Sets) that assoiates to every sheme S the set of families X � S �X of Hilbert2



funtion h is represented by a quasiprojetive sheme denoted by HilbGh (X) ([AB, x1.2℄.The dimension of an aÆne G-sheme whose aÆne algebra has �nite multipliities an be readon its Hilbert funtion:Proposition 1.1. Let h : �+ �! N be a funtion. Let Y and Z be two aÆne shemes of Hilbertfuntion h. Then dimY = dimZ.Proof. Let us denote by A the aÆne ring of Y .If Y is horospherial, that is ([AB, Lemma 2.4℄) if for any dominant weights �, �, we haveA(�) � A(�) � A(�+�), it is lear that the dimension of Y an be read on its Hilbert funtion.Indeed, let us denote by �0 the linear map from �
 Q to Q whih assoiates to any fundamentalweight the value 1. We denote by � the group homomorphism from � to Z that is the restritionof �0. We assoiate to � a graduation of the algebra A by N: its homogeneous omponent ofdegree d is Ad := M�2�+; �(�)=dA(�):The dimension of Ad is �nite, and depends only on h:dimAd = X�2�+; �(�)=d h(�) dimV (�):So the Hilbert polynomial of the graded algebra A depends only on h, and so does the dimensionof Y .We an dedue the proposition. Indeed, Y admits a at degeneration over a onneted shemeto a horospherial G-sheme Y 0 that admits the same Hilbert funtion (by [AB, Theorem 2.7℄).So dimY = dimY 0 depends only on h.We will use the method of \asymptoti ones" of Borho and Kraft ([PV, x5.2℄): let V bea �nite dimensional rational G-module and F the losure of an orbit in V (or, more generally,any G-stable losed subvariety ontained in a �ber of the ategorial quotient V ! V ==G). Weembbed V into the projetive spae P(C �V ) of vetor lines of C �V by the inlusion v 7! [1�v℄:The losure of F in P(C �V ) is denoted by F . The aÆne one in C �V over F is the losed oneX generated by F .The vetor spae C � V , equipped with its natural sheme struture, is denoted by A 1 � V .The one X � A 1 �V , viewed as a redued losed subsheme, is a at family of aÆne G-shemes.Its �bers over non-zero elements are homotheti to F . Its �ber over 0 is a redued one, denotedby F̂ . It is ontained in the null-one of V (that is the �ber of the ategorial quotient V ! V ==Gontaining 0). Its dimension is the same as F .We onsider the adjoint ation of G on its Lie algebra g. If x is an element of g, the aÆnealgebra of the losure of its orbit, viewed as a redued sheme, has �nite multipliities. Let usdenote by hx its Hilbert funtion; we all it the Hilbert funtion assoiated to x. In this paper, weare interested in the onneted omponent denoted HilbGx of the sheme HilbGhx(g) that ontains3



G � x. It gives the G-invariant deformations of G � x embedded in g. We determine it when x isin greg in x2, and for any x when G is the speial linear group in x3.Let us denote by Gx the stabilizer of x in G, and gx its Lie algebra. The oadjoint ation ofGx is its natural ation on the dual vetor spae g�x.Proposition 1.2. Let us assume the orbit losure G � x to be normal. The tangent spae TG�xHilbGxto HilbGx at the point G � x is anonially isomorphi to the spae of invariants of the oadjointation of Gx.Proof. The tangent spae to G � x at the point x is g:x; it is stable under the ation of Gx. Wedenote by [g=g:x℄Gx the spae of invariants under the ation of Gx on the quotient vetor spaeg=g:x. Aording to [AB, Proposition 1.15 (iii)℄, we have a anonial isomorphismTG�xHilbGx �= [g=g:x℄Gx : (1)Indeed, the orbit losure G � x is assumed to be normal. Moreover, every orbit in g has evendimension, and has a �nite number of orbits in its losure ([PV, Corollary 3 page 198℄), so theodimension of the boundary of G � x in G � x is at least 2, and the proposition of [AB℄ an beapplied.To transform (1) into the isomorphism of the proposition, we will use the Killing form on g,denoted by �. As g is semisimple, its Killing form gives an isomorphism� : g �! g�y 7�! �(y; �):The isomorphism � is G-equivariant, thus Gx-equivariant. It sends g:x onto the spae g?x of linearforms on g that vanish on gx. Indeed, the ommon zeros of the elements of �(g:x) are the elementsy in g suh that 8z 2 g; �([z; x℄; y) = 0;that is 8z 2 g; �(z; [x; y℄) = 0;and this last ondition means that y belongs to gx sine � is non-degenerate.Thus the short exat sequene of Gx-modules0 �! g:x �! g �! g=g:x �! 0identi�es (thanks to �) with 0 �! g?x �! g� �! (gx)� �! 0;and the proposition follows from (1).A sheet of g is a maximal irreduible subset of g onsisting of G-orbits of a �xed dimension.Every sheet of g ontains a unique nilpotent orbit. A regular element of g is an element of g whoseorbit has maximal dimension. The open subset of g whose elements are the regular elements is asheet denoted by greg.Let us all Hilbert's sheet a maximal irreduible subset of g onsisting of elements admittinga �xed assoiated Hilbert funtion. 4



Proposition 1.3. The Hilbert's sheets of g oinide with its sheets.Proof. Aording to Proposition 1.1, any Hilbert's sheet is ontained in some sheet. It justremains to hek that two points of some sheet S have the same assoiated Hilbert funtion.Let F be the losure of an orbit in S. We realled that its asymptoti one F̂ is a degenerationof F . In partiular, it is ontained in the losure of S. Moreover, F̂ is ontained in the null-oneof g, and its dimension is the same as F . So F̂ is the losure of the nilpotent orbit of S.The aÆne algebra of g is the symmetri algebra of g�. Its graduation indues a G-invariant�ltration on the aÆne algebra A of F . The aÆne algebra of the asymptoti one F̂ is isomorphi,as an algebra equipped with an ation of G, to the graded algebra Â assoiated to the �lteredalgebra A. In partiular, A and Â are isomorphi as G-modules, and their multipliities are equal:the Hilbert funtion of F is equal to that of F̂ , and the proposition is proved.2 Regular aseLet us denote by hreg the Hilbert funtion assoiated to the regular elements of g (Proposition 1.3).In this setion, we prove that the invariant Hilbert sheme Hreg := HilbGhreg(g) is the ategorialquotient g==G, that is an aÆne spae whose dimension is the rank of G.2.1 A morphism from g==G to HregLet Xreg be the graph of the anonial projetion g ! g==G. It is a family of G-stable losedsubshemes of g over g==G.Proposition 2.1. The losed subsheme Xreg is a family of G-stable losed subshemes of g withHilbert funtion hreg.Proof. Let us denote by � : Xreg ! g==G the anonial projetion, and by R := ��OXreg the diretimage by � of the strutural sheaf of Xreg. We have to prove that for any dominant weight �, wehave that RU(�) is a loally free sheaf on g==G of rank h(�).Let us �rst study the ase where � = 0. The morphism �==G : Xreg==G! g==G indued by �is learly an isomorphism. So RG = RU(0) is a free module on g==G of rank 1 = hreg(0).Let � be a dominant weight. It is known (see [AB, Lemma 1.2℄) that RU(�) is a oherentRG-module. Thus it is a oherent module on g==G. To see that it is loally free, we just have tohek that its rank is onstant. The �bers of � are those of the anonial projetion g! g==G, sothey are the orbit losures of the regular elements, and all of them admit hreg as Hilbert funtion.So the rank of RU(�) at any losed point of g==G is h(�), and the proposition is proved.This gives us a anonial morphism�reg : g==G �! Hreg:We will prove in the following of x2 that �reg is an isomorphism.5



Lemma 2.2. The morphism �reg realises a bijetion from the set of losed points of g==G to theset of losed points of Hreg.Proof. We remark that �reg is injetive. Let us hek it is surjetive: in other words, that anyG-invariant losed subsheme of g of Hilbert funtion hreg is a �ber of g! g==G.Let Y be suh a subsheme. As hreg(0) = 1, it has to be ontained in some �ber F of g! g==Gover a redued losed point. But F already orresponds to a losed point of Hreg in the image of�reg. Moreover, F admits no proper losed subsheme admitting the same Hilbert funtion, soF = Y , and the lemma is proved.Let us denote by r the rank of G. The quotient g==G is an aÆne spae of dimension r. Aonsequene of Lemma 2.2 is:Corollary 2.3. The dimension of Hreg is r.2.2 Tangent spaeIn this setion, we prove:Proposition 2.4. The sheme Hreg is smooth.Proof. Let Z be a losed point of Hreg. We have to prove that the dimension of the tangent spaeTZHreg is r. We still denote by Z the losed subsheme of g orresponding to Z. By Lemma 2.2,we know that Z is a �ber of the morphism g! g==G, thus the losure of some regular element x.It is a normal variety. By Proposition 1.2, we have to prove that the dimension of(g�x)Gxis r, or simply that it is lower or equal to r (by Corollary 2.3).Let us prove that the dimension of the bigger spae(g�x)gxis r, and the proposition will be proved.A linear form on gx is gx-invariant i� it vanishes on the derived algebra [gx; gx℄, so we haveto prove that (gx=[gx; gx℄)�is r-dimensional. We will prove that gx is an r-dimensional abelian algebra, and the propositionwill be proved. This is true if x is semisimple, beause then gx is a Cartan subalgebra of g. Ifthe regular element x is not assumed to be semisimple, the dimension of gx is still r, beause thisdoesn't depend on the regular element x, by de�nition. Let us hek that gx is abelian.Let us denote by Grassr(g) the grassmannian of r-dimensional subspaes of g, endowed withits projetive variety struture. The subset of greg �Grassr(g):f(z; h) 2 greg �Grassr(g) j h � z = 0 and [h; h℄ = 0gis losed, so its image by the natural projetion into greg is losed too. As its image ontainsthe semisimple elements of greg, it is equal to greg. Thus gx is abelian for any regular x, and theproposition is proved. 6



2.3 ConlusionWe an now onlude that the family Xreg of Proposition 2.1 is the universal family:Theorem 2.5. The morphism �reg from g==G to Hreg is an isomorphism.Proof. The morphism �reg is bijetive (Lemma 2.2) and Hreg is normal. Aording to Zariski'smain theorem, �reg is an isomorphism.Remark 2.6. One knows there is a anonial morphism reg : Hreg �! g==Gthat assoiates to any losed point F of Hreg (viewed as a losed subsheme of g) its ategorialquotient F==G (viewed as a losed point of g==G). This morphism is a partiular ase of morphism� : HilbGh (V ) �! Hilbh(0)(V ==G)de�ned in [AB, x1.2℄, beause hreg(0) = 1 and thus the puntual Hilbert sheme that parameterizeslosed subshemes of length 1 in g==G identi�es with g==G itself. The morphism  reg is learlythe inverse morphism of �reg.3 Case of sl(n)We denote by t an indeterminate over C , and In the identity matrix of size n � n. If x is anelement of sl(n) and i = 1 � � � n, we denote by Qxi (t) the moni greatest ommon divisor (in thering C [t℄) of the (n+ 1� i)� (n+ 1� i)-sized minors of x� tIn, and Qxn+1(t) := 1.Then we put qxi (t) := Qxi (t)=Qxi+1(t):The polynomials qx1 (t); � � � ; qxn(t) are the invariant fators of the matrix x� tIn with oeÆientsin the eulidean ring C [t℄, ordered in suh a way that qxi+1(t) divides qxi (t).If x, y are elements of sl(n), then y is in the losure of the orbit SL(n) �x of x if and only if forany i = 1 : : : n, the polynomial Qxi (t) divides Qyi (t). In other words, i� for any i, the polynomialQxi (t) divides the (n+ 1� i)� (n+ 1� i)-sized minors of y � tIn.Aording to [W℄, when x is nilpotent, these onditions de�nes the losure of SL(n) � x as aredued sheme: to be more preise, when one divides a (n+ 1� i) � (n+ 1 � i)-sized minor ofy� tIn by Qxi (t) using Eulid algorithm, the remainder he gets is a regular funtion of y. All suhfuntions generate the ideal of the losure of SL(n) � x. We will dedue easily from this diÆultresult that the same remains true if x is no longer assumed to be nilpotent.One sees easily that the set of sheets of sl(n) is in bijetion with the set of partitions n, thatis of sequenes � = (b1 � b2 � b3 � : : : ) of nonnegative integers suh that b1 + b2 + b3 + � � � = n.Namely, if � is a partition of n, the elements of the orrespondant sheet S� are those elements x7



suh that for any i, the polynomial qxi (t) is of degree bi. We denote by b� = (1 � 2 � 3 � : : : )the onjugate partition, where j is the number of i suh that bi � j. We denote by h� the Hilbertfuntion assoiated to the points of S� (Proposition 1.3). We denote by Z� the losure of thenilpotent orbit of S�. The onneted omponent of HilbSL(n)h� (sl(n)) that ontains Z� as a losedpoint is denoted H�. We will prove in this setion that H� is an aÆne spae of dimension b1 � 1.The proof is similar to x2.We reall that the sheets of sl(n) are smooth ([Kr℄).3.1 A onstrution of the geometri quotient of S�Katslylo showed in [Ka℄ that any sheet of a semisimple Lie algebra admits a geometri quotient.Although his proof ontains an expliit onstrution, it doesn't make lear the geometri propertiesof the quotient. Here we present a simple desription of the quotient in the ase of the Lie algebrasl(n). It takes on the invariant fators theory. We get that the quotient is an aÆne spae.Lemma 3.1. Given some i, the appliation S� �! A bi that assoiates to any x the oeÆientsof qxi (t) = tbi + �xbi�1tbi�1 + � � �+ �x0t0 is regular.Proof. Up to salar multipliation, the polynomial qxi (t) is the unique nonzero polynomial ofdegree less or equal to bi suh thatdimker qxi (x) � N := biXj=1 j : (2)Thus the losed subset of S� � Pbi onsisting of elements (x; [�0 : � � � : �bi ℄) suh thatdimker( biXj=0 �jxj) � Nis the graph of the appliation  : S� �! Pbix 7�! [�x0 : � � � : �xbi�1 : 1℄Aording to [Hr, Exerise 7.8 p 76℄, this graph is also the graph of a rational map � fromS� to Pbi . On the open subset 
 of S� where � is regular, � oinides with  , so the funtionsx 7! �xj are regular funtions from 
 to A 1 . As S� is smooth, the omplementary of 
 in S� hasodimension at least 2 ([S, Thm 3 hap II.3.1℄). We onlude that the funtions extend to regularfuntions from S� to A 1 . By ontinuity, these extensions satisfy (2), so they oinide with thefuntions x 7! �xj on S�.Let us de�ne, for any x in S�, the moni polynomial of degree bi � bi+1:pxi (t) := qxi (t)=qxi+1(t)8



(where qxn+1 := 1). It follows from the previous lemma that its oeÆients, viewed as funtionsof x, are regular funtions from S� to A 1 .Given an x, the family (px1(t); : : : ; pxn(t)) an be any family of moni polynomials of degreesbi� bi+1, provided the following relation is satis�ed, where S(pxi ) denotes the sum of the roots ofpxi , ounted with multipliities (given by its �rst nondominant oeÆient):nXi=1 iS(pxi ) = 0(this relation simply means that the trae of x is zero).Thus, assoiating to any x the oeÆients of the family (px1(t); : : : ; pxn(t)), we get a regularmap � from S� to a linear hyperplane of C b1 , whih we will denote by A b1�1.Proposition 3.2. The map � : S� �! A b1�1 is the geometri quotient of S�.Proof. This map is surjetive, and its �bers are exatly the orbits of S� under the ation of SL(n).Let us denote by S�=SL(n) the geometri quotient of S� (whose existene is proved in [Ka℄). Themap � is the omposite of the anonial projetion from S� to S�=SL(n) with a regular bijetionS�=SL(n) �! A b1�1:This last map is bijetive (thus birational), and the spae A b1�1 is normal. Aording to Zariski'smain theorem, it is an isomorphism.3.2 A morphism from S�= SL(n) to H�If z = (p1(t); : : : ; pn(t)) is a losed point of A b1�1 orresponding to the orbit SL(n) � x in S�, thepolynomial Qxi (t) = pi(t) � (pi+1(t))2 � ::: � (pn(t))n�i+1only depends on z. Let us denote it by Qzi (t). Its oeÆients are regular funtions from A b1�1 toA 1 .Let us onsider the losed subsheme X� of f(z; y) 2 A b1�1 � sl(n)g de�ned by the vanishing,for i = 1 : : : n, of the remainders we get when we divide the (n + 1 � i) � (n + 1 � i)-minors ofy � tIn by Qzi (t). We denote by I� the ideal generated by these remainders. The underlying setof X� onsists of all the ouples (z; y) suh that y is in the losure of the orbit orresponding toz.Proposition 3.3. The losed subsheme X� is a family of SL(n)-stable losed subshemes ofsl(n) with Hilbert funtion h�.Proof. The proof is similar to that of Proposition 2.1. The subsheme X� is a family of SL(n)-stable losed subshemes of sl(n) over A b1�1. Let us denote by � the morphism X� �! A b1�1.As previouly, let us �rst remark that the morphism�== SL(n) : X�== SL(n) �! A b1�19



indued by � is an isomorphism. To do this, let us verify that the omorphism(�== SL(n))� : C [A b1�1℄ �! C [A b1�1℄
 C [sl(n)℄SL(n)=ISL(n)�is an isomorphism. It is injetive, as � is surjetive. Its surjetivity omes from the relationsthat de�ne X�: they give, for i = 1, that Qz1(t) divides the determinant of tIn � y, that is theharateristi polynomial of y. As their degrees are equal, Qz1(t) and the harateristi polynomialof y are equal. This gives the surjetivity.We go on as previously: let � be a dominant weight. The RSL(n)-module RU(�) is of �nitetype ([AB, Lemma 1.2℄). Thus (��OX�)U(�) is a oherent OA b1�1 -module. To see that it is loallyfree, we just have to hek that its rank is onstant. Let us assume that the origin 0 2 A b1�1orresponds to the nilpotent orbit in S�. The �ber of � over 0 is the losure of this orbit, �ttedwith its struture of redued sheme. Thus, the rank of (��OX�)U(�) at 0 is h�(�). If z is any pointof A b1�1, the �ber of � over z is as a set the losure in sl(n) of the orresponding orbit. So, byProposition 1.3 the rank of (��OX�)U(�) at z is at least h�(�). To onlude, we use the ation ofthe multipliative group on sl(n) (by homotheties) and the indued ation on A b1�1, that makes� equivariant. The orbit of z goes arbitrary lose to 0, and the rank of a oherent sheaf is uppersemiontinuous, so the rank of (��OX�)U(�) is h�(�) at z.3.3 Tangent spaeIn this setion, we ompute the dimension of the tangent spae to H� at the point Z�:Proposition 3.4. The dimension of TZ�H� is b1 � 1.Proof. Let x be an element in the open orbit in Z�. It is known that Z� is normal ([KP℄). So byProposition 1.2, we just have to prove that the dimension of(sl(n)�x)SL(n)xis b1�1. Let us onsider SL(n) as a losed subgroup of the general linear group GL(n), and sl(n)as a subalgebra of gl(n). The stabilizer GL(n)x of x in GL(n) is generated by SL(n)x and theenter of GL(n). It is learly equivalent to prove that the dimension of(gl(n)�x)GL(n)xis b1. The group GL(n)x is onneted, so the last spae is isomorphi to(gl(n)�x)gl(n)x :A linear form on gl(n)x is gl(n)x-invariant i� it vanishes on the derived algebra [gl(n)x; gl(n)x℄,so we have to prove that (gl(n)x=[gl(n)x; gl(n)x℄)�is b1-dimensional. This fat is the following elementary lemma.10



Lemma 3.5. Let E =L1i=1Ei be a graded vetor spae over C , where eah Ei is bi-dimensional.We denote by h := gl(E) the Lie algebra of endomorphisms of E. Let x be a nilpotent element ofh suh that eah subspae Ei is stabilized by x, and the restrition of x to eah Ei is yli.Let us denote by hx the stabilizer of x in h. Then the odimension of the derived algebra[hx; hx℄ in hx is b1.Proof. The graduation of E indues a graduation on the vetor spae h:h =Mi;j Hom(Ei; Ej):Let us denote by pi : E �! Ei the natural projetions. As they ommute with x, the subspaehx of h is homogeneous: hx =Mi;j Homx(Ei; Ej);where Homx(Ei; Ej) denotes the spae of homomorphisms that ommute with x. Let us hoose,for any i, an element ei of Ei suh that xbi�1ei 6= 0. We put nij := bj�bi if j < i and 0 otherwise.We denote by fij : Ei ! Ej the unique homomophism that ommutes with x and that sends eito xnijej . Then any homomorphism from Ei to Ej that ommutes with x is the omposite of fijwith a polynomial in x: Homx(Ei; Ej) = C [x℄ � fij:We notie that if i 6= j, then Homx(Ei; Ej) is ontained in [hx; hx℄. Indeed, for any u : Ei ! Ej ,we have [u; pi℄ = u:So we have to prove that the odimension inLiHomx(Ei; Ei) of[hx; hx℄ \Mi Hom(Ei; Ei)is b1. The last vetor spae is generated by its elements of the formP (x)[fji; fij℄ = P (x)xjbi�bj j(idEi � idEj );where P (x) is a polynomial in x.One heks easily that a basis of a supplementary in LiHomx(Ei; Ei) of this spae is givenby the family of elements xk idEiwhere 0 � k < bi � bi+1, and the lemma is proved.3.4 ConlusionIn this setion, we prove that the family X� of Proposition 3.3 is the universal family:Theorem 3.6. The morphism �� from S�=SL(n) to H� obtained in x3.2 is an isomorphism.11



We denote by S� the losure of S� in sl(n), equipped with its redued sheme struture.The invariant Hilbert sheme H0� := HilbSL(n)h� (S�) parametrizing the losed subshemes of S�of Hilbert funtion h� is anonially identi�ed with a losed subsheme of HilbSL(n)h� (sl(n)). Themorphism �� fatorizes by a morphism  � : S�=SL(n)! H0�.To prove the theorem, we will get that the morphism  � is an isomorphism from S�=SL(n)to H0� and that H0� is a onneted omponent of H� (Corollary 3.10).Lemma 3.7. The morphism  � indues a bijetion from the set of losed points of S�=SL(n) tothe set of losed points of H0�.Proof. We know that  � is injetive. Let us hek it is surjetive: in other words, that anySL(n)-invariant losed subsheme of S� with Hilbert funtion h� is the losure of some orbit inS�. Let X be suh a subsheme. As h�(0) = 1, it has to be ontained in some �ber F of theategorial quotient S� ! S�== SL(n) over a redued losed point. But F already orrespondsto a losed point of H0� in the image of  � . Moreover, F admits no proper losed subshemeadmitting the same Hilbert funtion, so F = X, and the lemma is proved.Corollary 3.8. The dimension of H0� is b1 � 1.The ation of the multipliative group G m on sl(n) by homotheties indues anonially anation of G m on H�, and on H0� (beause it stabilizes S�). The one Z� is a G m -�xed point ofH0�. In fat, it is in the losure of the Gm -orbit of any point of H0�:Proposition 3.9. Let F be a losed point of H0�. The morphism � : G m �! H0�, t 7�! t:Xextends to a morphism A 1 �! H0�, 0 7�! Z�.Proof. The point F orresponds to a SL(n)-invariant losed subsheme of S� admitting Hilbertfuntion h� . We still denote it by F . As h�(0) = 1, it is ontained in the �ber of the ategorialquotient sl(n) ! sl(n)==SL(n) over some losed point. Thus we an apply to it the method ofasymptoti ones: we obtain a at family over A 1 whose �ber over 0 must be Z� (as in the proofof Proposition 1.3). It gives a morphism from A 1 to H0� whose restrition outside 0 is �.From the proposition, we dedue that the dimension of the tangent spae to H� at any pointof H0� is lower or equal to that at Z�, that is b1 � 1. As the dimension of H0� is b1 � 1, we get:Corollary 3.10.� The sheme H0� is redued and smooth.� It is a onneted omponent of H�.The morphism  � is bijetive (Lemma 3.7) and H0� is normal. Aording to Zariski's maintheorem,  � is an isomorphism. So Theorem 3.6 is proved, thanks to the seond point of Corollary3.10. 12
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