
INVARIANT DEFORMATIONSOF ORBIT CLOSURES IN sl(n)S�ebastien Jansou and Ni
olas RessayreAbstra
tWe study deformations of orbit 
losures for the a
tion of a 
onne
ted semisimple group Gon its Lie algebra g, espe
ially when G is the spe
ial linear group.The tools we use are on the one hand the invariant Hilbert s
heme and on the other handthe sheets of g. We show that when G is the spe
ial linear group, the 
onne
ted 
omponentsof the invariant Hilbert s
hemes we get are the geometri
 quotients of the sheets of g. Thesequotients were 
onstru
ted by Katsylo for a general semisimple Lie algebra g; in our 
ase, theyhappen to be aÆne spa
es.Introdu
tionLet G be a 
omplex redu
tive group, and V be a �nite dimensional G-module. A fondamentalproblem is to endow some sets of orbits of G in V with a stru
ture of variety. The geometri
invariant theory is the 
lassi
al answer in this 
ontext: the set of 
losed orbits of G in V has anatural stru
ture of aÆne variety. We denote by V ==G this variety, equipped with a G-invariantquotient map � : V ! V ==G.Re
ently, Alexeev and Brion de�ned in [AB℄ a stru
ture of quasiproje
tive s
heme on somesets of G-stable 
losed aÆne subs
heme of V . A natural question is to wonder what happenswhen one applies Alexeev-Brion's 
onstru
tion to the orbit 
losures of G in V . Here, we studythis 
onstru
tion in the 
ase of a well known G-module, namely the adjoint representation of asemisimple group G, espe
ially when G is the spe
ial linear group SL(n).From now on, we assume that G is semisimple, and denote by g its Lie algebra. Let us re
allthat a sheet of g is an irredu
ible 
omponent of the set of points in g whose G-orbit has a �xeddimension. Let us �x a sheet S. We show that the G-module stru
ture on the aÆne algebraC [G � x℄ of the orbit 
losure G � x of x doesn't depend on x in S. This allows us to de�ne aset-theoreti
al appli
ation from S to some Alexeev-Brion's invariant Hilbert s
heme of V :�S : S �! HilbGS (V )x 7�! G � x:A unique sheet is open in g: we 
all it the regular one, and denote it by greg.Firstly, we prove that HilbGgreg(V ) is 
anoni
ally isomorphi
 to the 
ategori
al quotient V ==G.Moreover, via this isomorphism, the appli
ation �greg identi�es with the restri
tion of the quotientmap � : V ! V ==G; in parti
ular, it is a morphism.1



In a se
ond part, we study any sheet S for G = SL(n). Let us denote by � : S ! S=SL(n)the geometri
 quotient of S, 
onstru
ted by Katsylo in [Ka℄. We show that there is a 
anoni
almorphism � : S=SL(n) �! HilbSL(n)S (V )SL(n) � x 7�! SL(n) � xwhi
h is a
tually an isomorphism onto a 
onne
ted 
omponent of HilbSL(n)S (V ).Another motivation for this work is to understand examples of invariant Hilbert s
hemes.Indeed, the 
onstru
tion of Alexeev and Brion is indire
t and only few examples are known (see[J℄, [BC℄). Here, the 
onne
ted 
omponents of invariant Hilbert s
hemes we obtain happen to beaÆne spa
es, as in [J℄ and [BC℄. Note that this answers in the 
ase of SL(n) to a question ofKatsylo who asked if the geometri
 quotient S=G is normal.1 Hilbert's sheetsWe 
onsider s
hemes and aÆne algebrai
 groups over C . Let G be a 
onne
ted semisimple group.We 
hoose a Borel subgroup B, and a maximal torus T 
ontained in B. We denote by U theunipotent radi
al of B; we have B = TU .We denote by � the 
hara
ter group of T . We denote by �+ the set of elements of � that aredominant weights with respe
t to B. The set �+ is in bije
tion with the set of isomorphism 
lassesof simple rational G-modules. If � is an element of �+, we denote by V (�) a simple G-moduleasso
iated, that is of highest weight �.If V is a rational G-module, we denote by V(�) its isotypi
al 
omponent of type �, that is thesum of its submodules isomorphi
 to V (�). We have the de
omposition V =L�2�+ V(�).In any de
omposition of V as a dire
t sum of simple modules, the multipli
ity of the simplemodule V (�) is the dimension of V U(�). We say that V has �nite multipli
ities if these multipli
itiesare �nite (for any dominant weight �).Let us re
all some de�nitions from [AB, x1℄. A family of aÆne G-s
hemes over some s
hemeS is a s
heme X equipped with an a
tion of G and with a morphism � : X ! S that is aÆne, of�nite type and G-invariant. We have a G-equivariant morphism of OS-modules��OX ' M�2�+F� 
C V (�);where ea
h F� := (��OX)U(�) is equipped with the trivial a
tion of G. Let h : �+ ! N be afun
tion. The family X is said to be of Hilbert fun
tion h if ea
h F� is an OS-module lo
ally freeof rank h(�). (Then the morphism � is 
at.)Let X be an aÆne G-s
heme, and h : �+ �! N a fun
tion. A family of G-stable 
losedsubs
hemes of X over some s
heme S is a G-stable 
losed subs
heme X � S � X. The pro-je
tion S � X ! S indu
es a family of aÆne G-s
hemes X ! S. The 
ontravariant fun
tor:(S
hemes)Æ �! (Sets) that asso
iates to every s
heme S the set of families X � S �X of Hilbert2



fun
tion h is represented by a quasiproje
tive s
heme denoted by HilbGh (X) ([AB, x1.2℄.The dimension of an aÆne G-s
heme whose aÆne algebra has �nite multipli
ities 
an be readon its Hilbert fun
tion:Proposition 1.1. Let h : �+ �! N be a fun
tion. Let Y and Z be two aÆne s
hemes of Hilbertfun
tion h. Then dimY = dimZ.Proof. Let us denote by A the aÆne ring of Y .If Y is horospheri
al, that is ([AB, Lemma 2.4℄) if for any dominant weights �, �, we haveA(�) � A(�) � A(�+�), it is 
lear that the dimension of Y 
an be read on its Hilbert fun
tion.Indeed, let us denote by �0 the linear map from �
 Q to Q whi
h asso
iates to any fundamentalweight the value 1. We denote by � the group homomorphism from � to Z that is the restri
tionof �0. We asso
iate to � a graduation of the algebra A by N: its homogeneous 
omponent ofdegree d is Ad := M�2�+; �(�)=dA(�):The dimension of Ad is �nite, and depends only on h:dimAd = X�2�+; �(�)=d h(�) dimV (�):So the Hilbert polynomial of the graded algebra A depends only on h, and so does the dimensionof Y .We 
an dedu
e the proposition. Indeed, Y admits a 
at degeneration over a 
onne
ted s
hemeto a horospheri
al G-s
heme Y 0 that admits the same Hilbert fun
tion (by [AB, Theorem 2.7℄).So dimY = dimY 0 depends only on h.We will use the method of \asymptoti
 
ones" of Borho and Kraft ([PV, x5.2℄): let V bea �nite dimensional rational G-module and F the 
losure of an orbit in V (or, more generally,any G-stable 
losed subvariety 
ontained in a �ber of the 
ategori
al quotient V ! V ==G). Weembbed V into the proje
tive spa
e P(C �V ) of ve
tor lines of C �V by the in
lusion v 7! [1�v℄:The 
losure of F in P(C �V ) is denoted by F . The aÆne 
one in C �V over F is the 
losed 
oneX generated by F .The ve
tor spa
e C � V , equipped with its natural s
heme stru
ture, is denoted by A 1 � V .The 
one X � A 1 �V , viewed as a redu
ed 
losed subs
heme, is a 
at family of aÆne G-s
hemes.Its �bers over non-zero elements are homotheti
 to F . Its �ber over 0 is a redu
ed 
one, denotedby F̂ . It is 
ontained in the null-
one of V (that is the �ber of the 
ategori
al quotient V ! V ==G
ontaining 0). Its dimension is the same as F .We 
onsider the adjoint a
tion of G on its Lie algebra g. If x is an element of g, the aÆnealgebra of the 
losure of its orbit, viewed as a redu
ed s
heme, has �nite multipli
ities. Let usdenote by hx its Hilbert fun
tion; we 
all it the Hilbert fun
tion asso
iated to x. In this paper, weare interested in the 
onne
ted 
omponent denoted HilbGx of the s
heme HilbGhx(g) that 
ontains3



G � x. It gives the G-invariant deformations of G � x embedded in g. We determine it when x isin greg in x2, and for any x when G is the spe
ial linear group in x3.Let us denote by Gx the stabilizer of x in G, and gx its Lie algebra. The 
oadjoint a
tion ofGx is its natural a
tion on the dual ve
tor spa
e g�x.Proposition 1.2. Let us assume the orbit 
losure G � x to be normal. The tangent spa
e TG�xHilbGxto HilbGx at the point G � x is 
anoni
ally isomorphi
 to the spa
e of invariants of the 
oadjointa
tion of Gx.Proof. The tangent spa
e to G � x at the point x is g:x; it is stable under the a
tion of Gx. Wedenote by [g=g:x℄Gx the spa
e of invariants under the a
tion of Gx on the quotient ve
tor spa
eg=g:x. A

ording to [AB, Proposition 1.15 (iii)℄, we have a 
anoni
al isomorphismTG�xHilbGx �= [g=g:x℄Gx : (1)Indeed, the orbit 
losure G � x is assumed to be normal. Moreover, every orbit in g has evendimension, and has a �nite number of orbits in its 
losure ([PV, Corollary 3 page 198℄), so the
odimension of the boundary of G � x in G � x is at least 2, and the proposition of [AB℄ 
an beapplied.To transform (1) into the isomorphism of the proposition, we will use the Killing form on g,denoted by �. As g is semisimple, its Killing form gives an isomorphism� : g �! g�y 7�! �(y; �):The isomorphism � is G-equivariant, thus Gx-equivariant. It sends g:x onto the spa
e g?x of linearforms on g that vanish on gx. Indeed, the 
ommon zeros of the elements of �(g:x) are the elementsy in g su
h that 8z 2 g; �([z; x℄; y) = 0;that is 8z 2 g; �(z; [x; y℄) = 0;and this last 
ondition means that y belongs to gx sin
e � is non-degenerate.Thus the short exa
t sequen
e of Gx-modules0 �! g:x �! g �! g=g:x �! 0identi�es (thanks to �) with 0 �! g?x �! g� �! (gx)� �! 0;and the proposition follows from (1).A sheet of g is a maximal irredu
ible subset of g 
onsisting of G-orbits of a �xed dimension.Every sheet of g 
ontains a unique nilpotent orbit. A regular element of g is an element of g whoseorbit has maximal dimension. The open subset of g whose elements are the regular elements is asheet denoted by greg.Let us 
all Hilbert's sheet a maximal irredu
ible subset of g 
onsisting of elements admittinga �xed asso
iated Hilbert fun
tion. 4



Proposition 1.3. The Hilbert's sheets of g 
oin
ide with its sheets.Proof. A

ording to Proposition 1.1, any Hilbert's sheet is 
ontained in some sheet. It justremains to 
he
k that two points of some sheet S have the same asso
iated Hilbert fun
tion.Let F be the 
losure of an orbit in S. We re
alled that its asymptoti
 
one F̂ is a degenerationof F . In parti
ular, it is 
ontained in the 
losure of S. Moreover, F̂ is 
ontained in the null-
oneof g, and its dimension is the same as F . So F̂ is the 
losure of the nilpotent orbit of S.The aÆne algebra of g is the symmetri
 algebra of g�. Its graduation indu
es a G-invariant�ltration on the aÆne algebra A of F . The aÆne algebra of the asymptoti
 
one F̂ is isomorphi
,as an algebra equipped with an a
tion of G, to the graded algebra Â asso
iated to the �lteredalgebra A. In parti
ular, A and Â are isomorphi
 as G-modules, and their multipli
ities are equal:the Hilbert fun
tion of F is equal to that of F̂ , and the proposition is proved.2 Regular 
aseLet us denote by hreg the Hilbert fun
tion asso
iated to the regular elements of g (Proposition 1.3).In this se
tion, we prove that the invariant Hilbert s
heme Hreg := HilbGhreg(g) is the 
ategori
alquotient g==G, that is an aÆne spa
e whose dimension is the rank of G.2.1 A morphism from g==G to HregLet Xreg be the graph of the 
anoni
al proje
tion g ! g==G. It is a family of G-stable 
losedsubs
hemes of g over g==G.Proposition 2.1. The 
losed subs
heme Xreg is a family of G-stable 
losed subs
hemes of g withHilbert fun
tion hreg.Proof. Let us denote by � : Xreg ! g==G the 
anoni
al proje
tion, and by R := ��OXreg the dire
timage by � of the stru
tural sheaf of Xreg. We have to prove that for any dominant weight �, wehave that RU(�) is a lo
ally free sheaf on g==G of rank h(�).Let us �rst study the 
ase where � = 0. The morphism �==G : Xreg==G! g==G indu
ed by �is 
learly an isomorphism. So RG = RU(0) is a free module on g==G of rank 1 = hreg(0).Let � be a dominant weight. It is known (see [AB, Lemma 1.2℄) that RU(�) is a 
oherentRG-module. Thus it is a 
oherent module on g==G. To see that it is lo
ally free, we just have to
he
k that its rank is 
onstant. The �bers of � are those of the 
anoni
al proje
tion g! g==G, sothey are the orbit 
losures of the regular elements, and all of them admit hreg as Hilbert fun
tion.So the rank of RU(�) at any 
losed point of g==G is h(�), and the proposition is proved.This gives us a 
anoni
al morphism�reg : g==G �! Hreg:We will prove in the following of x2 that �reg is an isomorphism.5



Lemma 2.2. The morphism �reg realises a bije
tion from the set of 
losed points of g==G to theset of 
losed points of Hreg.Proof. We remark that �reg is inje
tive. Let us 
he
k it is surje
tive: in other words, that anyG-invariant 
losed subs
heme of g of Hilbert fun
tion hreg is a �ber of g! g==G.Let Y be su
h a subs
heme. As hreg(0) = 1, it has to be 
ontained in some �ber F of g! g==Gover a redu
ed 
losed point. But F already 
orresponds to a 
losed point of Hreg in the image of�reg. Moreover, F admits no proper 
losed subs
heme admitting the same Hilbert fun
tion, soF = Y , and the lemma is proved.Let us denote by r the rank of G. The quotient g==G is an aÆne spa
e of dimension r. A
onsequen
e of Lemma 2.2 is:Corollary 2.3. The dimension of Hreg is r.2.2 Tangent spa
eIn this se
tion, we prove:Proposition 2.4. The s
heme Hreg is smooth.Proof. Let Z be a 
losed point of Hreg. We have to prove that the dimension of the tangent spa
eTZHreg is r. We still denote by Z the 
losed subs
heme of g 
orresponding to Z. By Lemma 2.2,we know that Z is a �ber of the morphism g! g==G, thus the 
losure of some regular element x.It is a normal variety. By Proposition 1.2, we have to prove that the dimension of(g�x)Gxis r, or simply that it is lower or equal to r (by Corollary 2.3).Let us prove that the dimension of the bigger spa
e(g�x)gxis r, and the proposition will be proved.A linear form on gx is gx-invariant i� it vanishes on the derived algebra [gx; gx℄, so we haveto prove that (gx=[gx; gx℄)�is r-dimensional. We will prove that gx is an r-dimensional abelian algebra, and the propositionwill be proved. This is true if x is semisimple, be
ause then gx is a Cartan subalgebra of g. Ifthe regular element x is not assumed to be semisimple, the dimension of gx is still r, be
ause thisdoesn't depend on the regular element x, by de�nition. Let us 
he
k that gx is abelian.Let us denote by Grassr(g) the grassmannian of r-dimensional subspa
es of g, endowed withits proje
tive variety stru
ture. The subset of greg �Grassr(g):f(z; h) 2 greg �Grassr(g) j h � z = 0 and [h; h℄ = 0gis 
losed, so its image by the natural proje
tion into greg is 
losed too. As its image 
ontainsthe semisimple elements of greg, it is equal to greg. Thus gx is abelian for any regular x, and theproposition is proved. 6



2.3 Con
lusionWe 
an now 
on
lude that the family Xreg of Proposition 2.1 is the universal family:Theorem 2.5. The morphism �reg from g==G to Hreg is an isomorphism.Proof. The morphism �reg is bije
tive (Lemma 2.2) and Hreg is normal. A

ording to Zariski'smain theorem, �reg is an isomorphism.Remark 2.6. One knows there is a 
anoni
al morphism reg : Hreg �! g==Gthat asso
iates to any 
losed point F of Hreg (viewed as a 
losed subs
heme of g) its 
ategori
alquotient F==G (viewed as a 
losed point of g==G). This morphism is a parti
ular 
ase of morphism� : HilbGh (V ) �! Hilbh(0)(V ==G)de�ned in [AB, x1.2℄, be
ause hreg(0) = 1 and thus the pun
tual Hilbert s
heme that parameterizes
losed subs
hemes of length 1 in g==G identi�es with g==G itself. The morphism  reg is 
learlythe inverse morphism of �reg.3 Case of sl(n)We denote by t an indeterminate over C , and In the identity matrix of size n � n. If x is anelement of sl(n) and i = 1 � � � n, we denote by Qxi (t) the moni
 greatest 
ommon divisor (in thering C [t℄) of the (n+ 1� i)� (n+ 1� i)-sized minors of x� tIn, and Qxn+1(t) := 1.Then we put qxi (t) := Qxi (t)=Qxi+1(t):The polynomials qx1 (t); � � � ; qxn(t) are the invariant fa
tors of the matrix x� tIn with 
oeÆ
ientsin the eu
lidean ring C [t℄, ordered in su
h a way that qxi+1(t) divides qxi (t).If x, y are elements of sl(n), then y is in the 
losure of the orbit SL(n) �x of x if and only if forany i = 1 : : : n, the polynomial Qxi (t) divides Qyi (t). In other words, i� for any i, the polynomialQxi (t) divides the (n+ 1� i)� (n+ 1� i)-sized minors of y � tIn.A

ording to [W℄, when x is nilpotent, these 
onditions de�nes the 
losure of SL(n) � x as aredu
ed s
heme: to be more pre
ise, when one divides a (n+ 1� i) � (n+ 1 � i)-sized minor ofy� tIn by Qxi (t) using Eu
lid algorithm, the remainder he gets is a regular fun
tion of y. All su
hfun
tions generate the ideal of the 
losure of SL(n) � x. We will dedu
e easily from this diÆ
ultresult that the same remains true if x is no longer assumed to be nilpotent.One sees easily that the set of sheets of sl(n) is in bije
tion with the set of partitions n, thatis of sequen
es � = (b1 � b2 � b3 � : : : ) of nonnegative integers su
h that b1 + b2 + b3 + � � � = n.Namely, if � is a partition of n, the elements of the 
orrespondant sheet S� are those elements x7



su
h that for any i, the polynomial qxi (t) is of degree bi. We denote by b� = (
1 � 
2 � 
3 � : : : )the 
onjugate partition, where 
j is the number of i su
h that bi � j. We denote by h� the Hilbertfun
tion asso
iated to the points of S� (Proposition 1.3). We denote by Z� the 
losure of thenilpotent orbit of S�. The 
onne
ted 
omponent of HilbSL(n)h� (sl(n)) that 
ontains Z� as a 
losedpoint is denoted H�. We will prove in this se
tion that H� is an aÆne spa
e of dimension b1 � 1.The proof is similar to x2.We re
all that the sheets of sl(n) are smooth ([Kr℄).3.1 A 
onstru
tion of the geometri
 quotient of S�Katslylo showed in [Ka℄ that any sheet of a semisimple Lie algebra admits a geometri
 quotient.Although his proof 
ontains an expli
it 
onstru
tion, it doesn't make 
lear the geometri
 propertiesof the quotient. Here we present a simple des
ription of the quotient in the 
ase of the Lie algebrasl(n). It takes on the invariant fa
tors theory. We get that the quotient is an aÆne spa
e.Lemma 3.1. Given some i, the appli
ation S� �! A bi that asso
iates to any x the 
oeÆ
ientsof qxi (t) = tbi + �xbi�1tbi�1 + � � �+ �x0t0 is regular.Proof. Up to s
alar multipli
ation, the polynomial qxi (t) is the unique nonzero polynomial ofdegree less or equal to bi su
h thatdimker qxi (x) � N := biXj=1 
j : (2)Thus the 
losed subset of S� � Pbi 
onsisting of elements (x; [�0 : � � � : �bi ℄) su
h thatdimker( biXj=0 �jxj) � Nis the graph of the appli
ation  : S� �! Pbix 7�! [�x0 : � � � : �xbi�1 : 1℄A

ording to [Hr, Exer
ise 7.8 p 76℄, this graph is also the graph of a rational map � fromS� to Pbi . On the open subset 
 of S� where � is regular, � 
oin
ides with  , so the fun
tionsx 7! �xj are regular fun
tions from 
 to A 1 . As S� is smooth, the 
omplementary of 
 in S� has
odimension at least 2 ([S, Thm 3 
hap II.3.1℄). We 
on
lude that the fun
tions extend to regularfun
tions from S� to A 1 . By 
ontinuity, these extensions satisfy (2), so they 
oin
ide with thefun
tions x 7! �xj on S�.Let us de�ne, for any x in S�, the moni
 polynomial of degree bi � bi+1:pxi (t) := qxi (t)=qxi+1(t)8



(where qxn+1 := 1). It follows from the previous lemma that its 
oeÆ
ients, viewed as fun
tionsof x, are regular fun
tions from S� to A 1 .Given an x, the family (px1(t); : : : ; pxn(t)) 
an be any family of moni
 polynomials of degreesbi� bi+1, provided the following relation is satis�ed, where S(pxi ) denotes the sum of the roots ofpxi , 
ounted with multipli
ities (given by its �rst nondominant 
oeÆ
ient):nXi=1 iS(pxi ) = 0(this relation simply means that the tra
e of x is zero).Thus, asso
iating to any x the 
oeÆ
ients of the family (px1(t); : : : ; pxn(t)), we get a regularmap � from S� to a linear hyperplane of C b1 , whi
h we will denote by A b1�1.Proposition 3.2. The map � : S� �! A b1�1 is the geometri
 quotient of S�.Proof. This map is surje
tive, and its �bers are exa
tly the orbits of S� under the a
tion of SL(n).Let us denote by S�=SL(n) the geometri
 quotient of S� (whose existen
e is proved in [Ka℄). Themap � is the 
omposite of the 
anoni
al proje
tion from S� to S�=SL(n) with a regular bije
tionS�=SL(n) �! A b1�1:This last map is bije
tive (thus birational), and the spa
e A b1�1 is normal. A

ording to Zariski'smain theorem, it is an isomorphism.3.2 A morphism from S�= SL(n) to H�If z = (p1(t); : : : ; pn(t)) is a 
losed point of A b1�1 
orresponding to the orbit SL(n) � x in S�, thepolynomial Qxi (t) = pi(t) � (pi+1(t))2 � ::: � (pn(t))n�i+1only depends on z. Let us denote it by Qzi (t). Its 
oeÆ
ients are regular fun
tions from A b1�1 toA 1 .Let us 
onsider the 
losed subs
heme X� of f(z; y) 2 A b1�1 � sl(n)g de�ned by the vanishing,for i = 1 : : : n, of the remainders we get when we divide the (n + 1 � i) � (n + 1 � i)-minors ofy � tIn by Qzi (t). We denote by I� the ideal generated by these remainders. The underlying setof X� 
onsists of all the 
ouples (z; y) su
h that y is in the 
losure of the orbit 
orresponding toz.Proposition 3.3. The 
losed subs
heme X� is a family of SL(n)-stable 
losed subs
hemes ofsl(n) with Hilbert fun
tion h�.Proof. The proof is similar to that of Proposition 2.1. The subs
heme X� is a family of SL(n)-stable 
losed subs
hemes of sl(n) over A b1�1. Let us denote by � the morphism X� �! A b1�1.As previouly, let us �rst remark that the morphism�== SL(n) : X�== SL(n) �! A b1�19



indu
ed by � is an isomorphism. To do this, let us verify that the 
omorphism(�== SL(n))� : C [A b1�1℄ �! C [A b1�1℄
 C [sl(n)℄SL(n)=ISL(n)�is an isomorphism. It is inje
tive, as � is surje
tive. Its surje
tivity 
omes from the relationsthat de�ne X�: they give, for i = 1, that Qz1(t) divides the determinant of tIn � y, that is the
hara
teristi
 polynomial of y. As their degrees are equal, Qz1(t) and the 
hara
teristi
 polynomialof y are equal. This gives the surje
tivity.We go on as previously: let � be a dominant weight. The RSL(n)-module RU(�) is of �nitetype ([AB, Lemma 1.2℄). Thus (��OX�)U(�) is a 
oherent OA b1�1 -module. To see that it is lo
allyfree, we just have to 
he
k that its rank is 
onstant. Let us assume that the origin 0 2 A b1�1
orresponds to the nilpotent orbit in S�. The �ber of � over 0 is the 
losure of this orbit, �ttedwith its stru
ture of redu
ed s
heme. Thus, the rank of (��OX�)U(�) at 0 is h�(�). If z is any pointof A b1�1, the �ber of � over z is as a set the 
losure in sl(n) of the 
orresponding orbit. So, byProposition 1.3 the rank of (��OX�)U(�) at z is at least h�(�). To 
on
lude, we use the a
tion ofthe multipli
ative group on sl(n) (by homotheties) and the indu
ed a
tion on A b1�1, that makes� equivariant. The orbit of z goes arbitrary 
lose to 0, and the rank of a 
oherent sheaf is uppersemi
ontinuous, so the rank of (��OX�)U(�) is h�(�) at z.3.3 Tangent spa
eIn this se
tion, we 
ompute the dimension of the tangent spa
e to H� at the point Z�:Proposition 3.4. The dimension of TZ�H� is b1 � 1.Proof. Let x be an element in the open orbit in Z�. It is known that Z� is normal ([KP℄). So byProposition 1.2, we just have to prove that the dimension of(sl(n)�x)SL(n)xis b1�1. Let us 
onsider SL(n) as a 
losed subgroup of the general linear group GL(n), and sl(n)as a subalgebra of gl(n). The stabilizer GL(n)x of x in GL(n) is generated by SL(n)x and the
enter of GL(n). It is 
learly equivalent to prove that the dimension of(gl(n)�x)GL(n)xis b1. The group GL(n)x is 
onne
ted, so the last spa
e is isomorphi
 to(gl(n)�x)gl(n)x :A linear form on gl(n)x is gl(n)x-invariant i� it vanishes on the derived algebra [gl(n)x; gl(n)x℄,so we have to prove that (gl(n)x=[gl(n)x; gl(n)x℄)�is b1-dimensional. This fa
t is the following elementary lemma.10



Lemma 3.5. Let E =L
1i=1Ei be a graded ve
tor spa
e over C , where ea
h Ei is bi-dimensional.We denote by h := gl(E) the Lie algebra of endomorphisms of E. Let x be a nilpotent element ofh su
h that ea
h subspa
e Ei is stabilized by x, and the restri
tion of x to ea
h Ei is 
y
li
.Let us denote by hx the stabilizer of x in h. Then the 
odimension of the derived algebra[hx; hx℄ in hx is b1.Proof. The graduation of E indu
es a graduation on the ve
tor spa
e h:h =Mi;j Hom(Ei; Ej):Let us denote by pi : E �! Ei the natural proje
tions. As they 
ommute with x, the subspa
ehx of h is homogeneous: hx =Mi;j Homx(Ei; Ej);where Homx(Ei; Ej) denotes the spa
e of homomorphisms that 
ommute with x. Let us 
hoose,for any i, an element ei of Ei su
h that xbi�1ei 6= 0. We put nij := bj�bi if j < i and 0 otherwise.We denote by fij : Ei ! Ej the unique homomophism that 
ommutes with x and that sends eito xnijej . Then any homomorphism from Ei to Ej that 
ommutes with x is the 
omposite of fijwith a polynomial in x: Homx(Ei; Ej) = C [x℄ � fij:We noti
e that if i 6= j, then Homx(Ei; Ej) is 
ontained in [hx; hx℄. Indeed, for any u : Ei ! Ej ,we have [u; pi℄ = u:So we have to prove that the 
odimension inLiHomx(Ei; Ei) of[hx; hx℄ \Mi Hom(Ei; Ei)is b1. The last ve
tor spa
e is generated by its elements of the formP (x)[fji; fij℄ = P (x)xjbi�bj j(idEi � idEj );where P (x) is a polynomial in x.One 
he
ks easily that a basis of a supplementary in LiHomx(Ei; Ei) of this spa
e is givenby the family of elements xk idEiwhere 0 � k < bi � bi+1, and the lemma is proved.3.4 Con
lusionIn this se
tion, we prove that the family X� of Proposition 3.3 is the universal family:Theorem 3.6. The morphism �� from S�=SL(n) to H� obtained in x3.2 is an isomorphism.11



We denote by S� the 
losure of S� in sl(n), equipped with its redu
ed s
heme stru
ture.The invariant Hilbert s
heme H0� := HilbSL(n)h� (S�) parametrizing the 
losed subs
hemes of S�of Hilbert fun
tion h� is 
anoni
ally identi�ed with a 
losed subs
heme of HilbSL(n)h� (sl(n)). Themorphism �� fa
torizes by a morphism  � : S�=SL(n)! H0�.To prove the theorem, we will get that the morphism  � is an isomorphism from S�=SL(n)to H0� and that H0� is a 
onne
ted 
omponent of H� (Corollary 3.10).Lemma 3.7. The morphism  � indu
es a bije
tion from the set of 
losed points of S�=SL(n) tothe set of 
losed points of H0�.Proof. We know that  � is inje
tive. Let us 
he
k it is surje
tive: in other words, that anySL(n)-invariant 
losed subs
heme of S� with Hilbert fun
tion h� is the 
losure of some orbit inS�. Let X be su
h a subs
heme. As h�(0) = 1, it has to be 
ontained in some �ber F of the
ategori
al quotient S� ! S�== SL(n) over a redu
ed 
losed point. But F already 
orrespondsto a 
losed point of H0� in the image of  � . Moreover, F admits no proper 
losed subs
hemeadmitting the same Hilbert fun
tion, so F = X, and the lemma is proved.Corollary 3.8. The dimension of H0� is b1 � 1.The a
tion of the multipli
ative group G m on sl(n) by homotheties indu
es 
anoni
ally ana
tion of G m on H�, and on H0� (be
ause it stabilizes S�). The 
one Z� is a G m -�xed point ofH0�. In fa
t, it is in the 
losure of the Gm -orbit of any point of H0�:Proposition 3.9. Let F be a 
losed point of H0�. The morphism � : G m �! H0�, t 7�! t:Xextends to a morphism A 1 �! H0�, 0 7�! Z�.Proof. The point F 
orresponds to a SL(n)-invariant 
losed subs
heme of S� admitting Hilbertfun
tion h� . We still denote it by F . As h�(0) = 1, it is 
ontained in the �ber of the 
ategori
alquotient sl(n) ! sl(n)==SL(n) over some 
losed point. Thus we 
an apply to it the method ofasymptoti
 
ones: we obtain a 
at family over A 1 whose �ber over 0 must be Z� (as in the proofof Proposition 1.3). It gives a morphism from A 1 to H0� whose restri
tion outside 0 is �.From the proposition, we dedu
e that the dimension of the tangent spa
e to H� at any pointof H0� is lower or equal to that at Z�, that is b1 � 1. As the dimension of H0� is b1 � 1, we get:Corollary 3.10.� The s
heme H0� is redu
ed and smooth.� It is a 
onne
ted 
omponent of H�.The morphism  � is bije
tive (Lemma 3.7) and H0� is normal. A

ording to Zariski's maintheorem,  � is an isomorphism. So Theorem 3.6 is proved, thanks to the se
ond point of Corollary3.10. 12
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