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Abstract

We study deformations of orbit closures for the action of a connected semisimple group G
on its Lie algebra g, especially when G is the special linear group.

The tools we use are on the one hand the invariant Hilbert scheme and on the other hand
the sheets of g. We show that when G is the special linear group, the connected components
of the invariant Hilbert schemes we get are the geometric quotients of the sheets of g. These
quotients were constructed by Katsylo for a general semisimple Lie algebra g; in our case, they
happen to be affine spaces.

Introduction

Let G be a complex reductive group, and V be a finite dimensional G-module. A fondamental
problem is to endow some sets of orbits of G in V' with a structure of variety. The geometric
invariant theory is the classical answer in this context: the set of closed orbits of G in V has a
natural structure of affine variety. We denote by V' //G this variety, equipped with a G-invariant
quotient map 7 : V — V//G.

Recently, Alexeev and Brion defined in [AB] a structure of quasiprojective scheme on some
sets of G-stable closed affine subscheme of V. A natural question is to wonder what happens
when one applies Alexeev-Brion’s construction to the orbit closures of G in V. Here, we study
this construction in the case of a well known G-module, namely the adjoint representation of a
semisimple group G, especially when G is the special linear group SL(n).

From now on, we assume that G is semisimple, and denote by g its Lie algebra. Let us recall
that a sheet of g is an irreducible component of the set of points in g whose G-orbit has a fixed
dimension. Let us fix a sheet S. We show that the G-module structure on the affine algebra
C[G - z] of the orbit closure G -z of z doesn’t depend on x in S. This allows us to define a
set-theoretical application from S to some Alexeev-Brion’s invariant Hilbert scheme of V:

1s: S — Hilbg(V)
r — G-x.

A unique sheet is open in g: we call it the regular one, and denote it by greg.

Firstly, we prove that Hilbgeg(V) is canonically isomorphic to the categorical quotient V' //G.
Moreover, via this isomorphism, the application 7g,,, identifies with the restriction of the quotient
map 7 : V — V //G; in particular, it is a morphism.



In a second part, we study any sheet S for G = SL(n). Let us denote by 7w : S — §/SL(n)
the geometric quotient of S, constructed by Katsylo in [Ka]. We show that there is a canonical
morphism

6. S/SL(n) — HibI™ (V)
SL(n) -z — SL(n) -z

which is actually an isomorphism onto a connected component of HilbiL(")(V).

Another motivation for this work is to understand examples of invariant Hilbert schemes.
Indeed, the construction of Alexeev and Brion is indirect and only few examples are known (see
[J], [BC]). Here, the connected components of invariant Hilbert schemes we obtain happen to be
affine spaces, as in [J] and [BC]. Note that this answers in the case of SL(n) to a question of
Katsylo who asked if the geometric quotient §/G is normal.

1 Hilbert’s sheets

We consider schemes and affine algebraic groups over C. Let G be a connected semisimple group.
We choose a Borel subgroup B, and a maximal torus 7' contained in B. We denote by U the
unipotent radical of B; we have B =TU.

We denote by A the character group of T. We denote by A™ the set of elements of A that are
dominant weights with respect to B. The set A is in bijection with the set of isomorphism classes
of simple rational G-modules. If X is an element of A*, we denote by V(A) a simple G-module
associated, that is of highest weight .

If V' is a rational G-module, we denote by V() its isotypical component of type A, that is the
sum of its submodules isomorphic to V/(A). We have the decomposition V = @, cx+ V(n)-

In any decomposition of V' as a direct sum of simple modules, the multiplicity of the simple
module V() is the dimension of V(e\’) We say that V' has finite multiplicities if these multiplicities

are finite (for any dominant weight \).

Let us recall some definitions from [AB, §1]. A family of affine G-schemes over some scheme
S is a scheme X equipped with an action of G and with a morphism 7 : X — S that is affine, of
finite type and G-invariant. We have a G-equivariant morphism of Og-modules

m0x ~ @ FrecV(y),
AeAt

where each F) := (W*Ox)g\) is equipped with the trivial action of G. Let h : At — N be a
function. The family X is said to be of Hilbert function h if each F) is an Og-module locally free
of rank h(\). (Then the morphism 7 is flat.)

Let X be an affine G-scheme, and h : AT — N a function. A family of G-stable closed
subschemes of X over some scheme S is a G-stable closed subscheme X C S x X. The pro-
jection S x X — § induces a family of affine G-schemes X — S. The contravariant functor:
(Schemes)® — (Sets) that associates to every scheme S the set of families ¥ C S x X of Hilbert



function h is represented by a quasiprojective scheme denoted by Hilb{' (X) ([AB, §1.2].

The dimension of an affine G-scheme whose affine algebra has finite multiplicities can be read
on its Hilbert function:

Proposition 1.1. Let h: AT — N be a function. Let Y and Z be two affine schemes of Hilbert
function h. Then dimY = dim 7.

Proof. Let us denote by A the affine ring of Y.

If Y is horospherical, that is ([AB, Lemma 2.4]) if for any dominant weights A, u, we have
Aoy A € Apvgp), 1t is clear that the dimension of Y can be read on its Hilbert function.
Indeed, let us denote by 6y the linear map from A ® Q to Q which associates to any fundamental
weight the value 1. We denote by 0 the group homomorphism from A to Z that is the restriction
of 6y. We associate to 6 a graduation of the algebra A by N: its homogeneous component of

degree d is
A= D Aw
AeAt, 0(N)=d

The dimension of A, is finite, and depends only on h:

dimAgs= > k(A dim V().
AEA+, 0(N)=d

So the Hilbert polynomial of the graded algebra A depends only on h, and so does the dimension
of Y.

We can deduce the proposition. Indeed, Y admits a flat degeneration over a connected scheme
to a horospherical G-scheme Y’ that admits the same Hilbert function (by [AB, Theorem 2.7]).
So dimY = dimY” depends only on h. O

We will use the method of “asymptotic cones” of Borho and Kraft ([PV, §5.2]): let V be
a finite dimensional rational G-module and F' the closure of an orbit in V' (or, more generally,
any G-stable closed subvariety contained in a fiber of the categorical quotient V' — V //G). We
embbed V' into the projective space P(C® V') of vector lines of C® V' by the inclusion v — [1 D).
The closure of F in P(C® V') is denoted by F. The affine cone in C® V over F is the closed cone
X generated by F.

The vector space C @ V, equipped with its natural scheme structure, is denoted by A' x V.
The cone X C Al x V, viewed as a reduced closed subscheme, is a flat family of affine G-schemes.
Its fibers over non-zero elements are homothetic to F'. Its fiber over 0 is a reduced cone, denoted
by F. Tt is contained in the null-cone of V' (that is the fiber of the categorical quotient V — V //G
containing 0). Its dimension is the same as F'.

We consider the adjoint action of G on its Lie algebra g. If x is an element of g, the affine
algebra of the closure of its orbit, viewed as a reduced scheme, has finite multiplicities. Let us
denote by h, its Hilbert function; we call it the Hilbert function associated to x. In this paper, we
are interested in the connected component denoted Hilb¥ of the scheme Hilb,?m (g) that contains



G - z. Tt gives the G-invariant deformations of G - z embedded in g. We determine it when z is
in greg in §2, and for any = when G is the special linear group in §3.

Let us denote by G, the stabilizer of z in G, and g, its Lie algebra. The coadjoint action of
G is its natural action on the dual vector space g.

Proposition 1.2. Let us assume the orbit closure G - x to be normal. The tangent space T Hilbf
to Hilbf at the point G - x is canonically isomorphic to the space of invariants of the coadjoint
action of Gy.

Proof. The tangent space to G - x at the point z is g.x; it is stable under the action of G,. We
denote by [g/g.z]% the space of invariants under the action of G, on the quotient vector space
g/g.z. According to [AB, Proposition 1.15 (iii)], we have a canonical isomorphism

Ty HilbY = [g/g.2]%. (1)

Indeed, the orbit closure G -z is assumed to be normal. Moreover, every orbit in g has even
dimension, and has a finite number of orbits in its closure ([PV, Corollary 3 page 198]), so the
codimension of the boundary of G -z in G - z is at least 2, and the proposition of [AB] can be
applied.

To transform (1) into the isomorphism of the proposition, we will use the Killing form on g,
denoted by k. As g is semisimple, its Killing form gives an isomorphism

*

¢: 8 — @
y — K(y,-)

The isomorphism ¢ is G-equivariant, thus G -equivariant. It sends g.z onto the space gé of linear
forms on g that vanish on g,. Indeed, the common zeros of the elements of ¢(g.x) are the elements
y in g such that
Vz € g, k([z,z],y) =0,
that is
Vz €9, k(2 [z,y]) =0,
and this last condition means that y belongs to g, since k is non-degenerate.
Thus the short exact sequence of G-modules

0 —gz—g—g/gx—0
identifies (thanks to ¢) with
0— gy — " — (8)" — 0,
and the proposition follows from (1). O

A sheet of g is a maximal irreducible subset of g consisting of G-orbits of a fixed dimension.
Every sheet of g contains a unique nilpotent orbit. A regular element of g is an element of g whose
orbit has maximal dimension. The open subset of g whose elements are the regular elements is a
sheet denoted by greg.

Let us call Hilbert’s sheet a maximal irreducible subset of g consisting of elements admitting
a fixed associated Hilbert function.



Proposition 1.3. The Hilbert’s sheets of g coincide with its sheets.

Proof. According to Proposition 1.1, any Hilbert’s sheet is contained in some sheet. It just
remains to check that two points of some sheet S have the same associated Hilbert function.

Let F be the closure of an orbit in S. We recalled that its asymptotic cone F is a degeneration
of F. In particular, it is contained in the closure of S. Moreover, F' is contained in the null-cone
of g, and its dimension is the same as F. So F' is the closure of the nilpotent orbit of S.

The affine algebra of g is the symmetric algebra of g*. Its graduation induces a G-invariant
filtration on the affine algebra A of F. The affine algebra of the asymptotic cone Fis isomorphic,
as an algebra equipped with an action of G, to the graded algebra A associated to the filtered
algebra A. In particular, A and A are isomorphic as G-modules, and their multiplicities are equal:
the Hilbert function of F' is equal to that of F', and the proposition is proved. O

2 Regular case

Let us denote by hyeg the Hilbert function associated to the regular elements of g (Proposition 1.3).
In this section, we prove that the invariant Hilbert scheme H,eg := Hilb,?reg (g) is the categorical
quotient g//G, that is an affine space whose dimension is the rank of G.

2.1 A morphism from g//G to H,,

Let X,e be the graph of the canonical projection g — g//G. It is a family of G-stable closed
subschemes of g over g//G.

Proposition 2.1. The closed subscheme X.eg is a family of G-stable closed subschemes of g with
Hilbert function hyeg.

Proof. Let us denote by 7 : X, — g//G the canonical projection, and by R := m,Ox,,, the direct
image by 7 of the structural sheaf of X;c;. We have to prove that for any dominant weight X, we
have that Rg\) is a locally free sheaf on g//G of rank h()).

Let us first study the case where A = 0. The morphism 7//G : X,¢s//G — g//G induced by =

is clearly an isomorphism. So R¢ = R%) is a free module on g//G of rank 1 = hyeg(0).

Let A be a dominant weight. It is known (see [AB, Lemma 1.2]) that Rg\) is a coherent

R%-module. Thus it is a coherent module on g//G. To see that it is locally free, we just have to
check that its rank is constant. The fibers of 7 are those of the canonical projection g — g//G, so
they are the orbit closures of the regular elements, and all of them admit A as Hilbert function.
So the rank of Rg\) at any closed point of g//G is h()), and the proposition is proved. O

This gives us a canonical morphism

Qbreg : 9//G — Hreg-

We will prove in the following of §2 that ¢reg is an isomorphism.



Lemma 2.2. The morphism ¢reg realises a bijection from the set of closed points of g//G to the
set of closed points of Hyeg.

Proof. We remark that ¢re is injective. Let us check it is surjective: in other words, that any
G-invariant closed subscheme of g of Hilbert function h.es is a fiber of g — g//G.

Let Y be such a subscheme. As hyeg(0) = 1, it has to be contained in some fiber F' of g — g//G
over a reduced closed point. But F' already corresponds to a closed point of Hye, in the image of
¢reg- Moreover, F' admits no proper closed subscheme admitting the same Hilbert function, so
F =Y, and the lemma is proved. O

Let us denote by r the rank of G. The quotient g//G is an affine space of dimension r. A
consequence of Lemma 2.2 is:

Corollary 2.3. The dimension of Hyeg is 7.

2.2 Tangent space

In this section, we prove:
Proposition 2.4. The scheme Hyeq is smooth.

Proof. Let Z be a closed point of Hyeg. We have to prove that the dimension of the tangent space
TzH,eg is r. We still denote by Z the closed subscheme of g corresponding to Z. By Lemma 2.2,
we know that Z is a fiber of the morphism g — g//G, thus the closure of some regular element z.
It is a normal variety. By Proposition 1.2, we have to prove that the dimension of

(g7)%

is r, or simply that it is lower or equal to r (by Corollary 2.3).
Let us prove that the dimension of the bigger space

(g2)%
is r, and the proposition will be proved.

A linear form on g, is gz-invariant iff it vanishes on the derived algebra [g,, gz], so we have
to prove that

(92/[82, 92])"

is r-dimensional. We will prove that g, is an r-dimensional abelian algebra, and the proposition
will be proved. This is true if x is semisimple, because then g, is a Cartan subalgebra of g. If
the regular element x is not assumed to be semisimple, the dimension of g, is still r, because this
doesn’t depend on the regular element z, by definition. Let us check that g, is abelian.

Let us denote by Grass,(g) the grassmannian of r-dimensional subspaces of g, endowed with
its projective variety structure. The subset of greg x Grass,(g):

{(2,h) € Greg x Grass,(g) [ -z =0 and [h, b] = 0}

is closed, so its image by the natural projection into greg is closed too. As its image contains
the semisimple elements of greg, it is equal to greg. Thus g, is abelian for any regular x, and the
proposition is proved. O



2.3 Conclusion

We can now conclude that the family X,¢; of Proposition 2.1 is the universal family:
Theorem 2.5. The morphism ¢reg from g//G to Hyeg is an isomorphism.

Proof. The morphism ¢.e, is bijective (Lemma 2.2) and H,eg is normal. According to Zariski’s
main theorem, ¢reg is an isomorphism. U

Remark 2.6. One knows there is a canonical morphism

Q,breg : Hreg — g//G

that associates to any closed point F' of Hyeg (viewed as a closed subscheme of g) its categorical
quotient F'//G (viewed as a closed point of g//G). This morphism is a particular case of morphism

n : Hilbf (V') — Hilby,)(V //G)

defined in [AB, §1.2], because hreg(0) = 1 and thus the punctual Hilbert scheme that parameterizes
closed subschemes of length 1 in g//G identifies with g//G itself. The morphism e, is clearly
the inverse morphism of ¢reg.

3 Case of sl(n)

We denote by ¢ an indeterminate over C, and I,, the identity matrix of size n x n. If x is an
element of sl(n) and ¢ = 1---n, we denote by Q7 (¢) the monic greatest common divisor (in the
ring C[t]) of the (n + 1 — i) x (n + 1 — 7)-sized minors of z — t1,,, and Q5 (t) := 1.
Then we put
(1) = QE(1)/QE, (1),

The polynomials ¢f(t),--- ,¢*(¢) are the invariant factors of the matrix = — tI,, with coefficients
in the euclidean ring C[t], ordered in such a way that ¢ ,(¢) divides ¢} (t).

If z, y are elements of sl(n), then y is in the closure of the orbit SL(n) -z of x if and only if for
any i = 1...n, the polynomial Q¥(¢) divides QY(t). In other words, iff for any ¢, the polynomial
Q7 (t) divides the (n+ 1 — i) x (n + 1 — 4)-sized minors of y — ¢1,,.

According to [W], when =z is nilpotent, these conditions defines the closure of SL(n) -z as a
reduced scheme: to be more precise, when one divides a (n + 1 —4) X (n + 1 — 4)-sized minor of
y —tl, by Q7 (t) using Euclid algorithm, the remainder he gets is a regular function of y. All such
functions generate the ideal of the closure of SL(n) - . We will deduce easily from this difficult
result that the same remains true if = is no longer assumed to be nilpotent.

One sees easily that the set of sheets of s[(n) is in bijection with the set of partitions n, that
is of sequences o = (by > by > bg > ...) of nonnegative integers such that b; + by + b3 +--- = n.
Namely, if o is a partition of n, the elements of the correspondant sheet S, are those elements z



such that for any 4, the polynomial ¢ (¢) is of degree b;. We denote by o0 = (¢1 > ¢c2 > ¢3>...)
the conjugate partition, where ¢; is the number of 7 such that b; > j. We denote by h, the Hilbert
function associated to the points of S, (Proposition 1.3). We denote by Z, the closure of the
nilpotent orbit of S,. The connected component of Hilbi{:(") (sl(n)) that contains Z, as a closed
point is denoted H,. We will prove in this section that H, is an affine space of dimension b; — 1.
The proof is similar to §2.

We recall that the sheets of sl(n) are smooth ([Kr]).

3.1 A construction of the geometric quotient of S,

Katslylo showed in [Ka] that any sheet of a semisimple Lie algebra admits a geometric quotient.
Although his proof contains an explicit construction, it doesn’t make clear the geometric properties
of the quotient. Here we present a simple description of the quotient in the case of the Lie algebra
sl(n). It takes on the invariant factors theory. We get that the quotient is an affine space.

Lemma 3.1. Given some i, the application S, — AY that associates to any = the coefficients
of gf (t) =% + N _yt" 1+ - + X§t is regular.

Proof. Up to scalar multiplication, the polynomial ¢7(¢) is the unique nonzero polynomial of
degree less or equal to b; such that

b;
dimker ¢f(z) > N := Z cj. (2)
i=1
Thus the closed subset of S, x P’ consisting of elements (z, [uo : - - - : ip;]) such that
b; .
dimker(z piz’) > N
j=0
is the graph of the application
v: S — Pb:
r o [A§ i nAp ]

According to [Hr, Exercise 7.8 p 76|, this graph is also the graph of a rational map ¢ from
S, to P¥%. On the open subset Q of S, where ¢ is regular, ¢ coincides with 1, so the functions
z — A7 are regular functions from 2 to Al'. As S, is smooth, the complementary of € in S, has
codimension at least 2 ([S, Thm 3 chap I1.3.1]). We conclude that the functions extend to regular
functions from S, to A'. By continuity, these extensions satisfy (2), so they coincide with the
functions = — A}” on S,. O

Let us define, for any = in S, the monic polynomial of degree b; — b;1:

pi (t) := qf (1)/ g4 (1)



(where ¢, := 1). It follows from the previous lemma that its coefficients, viewed as functions
of z, are regular functions from S, to Al.

Given an z, the family (p(¢),...,pr(t)) can be any family of monic polynomials of degrees
b; — bi+1, provided the following relation is satisfied, where S(p{) denotes the sum of the roots of
p?, counted with multiplicities (given by its first nondominant coefficient):

n

S iS(p!) =0

=1

(this relation simply means that the trace of x is zero).
Thus, associating to any x the coefficients of the family (p{(¢),...,p}(t)), we get a regular
map 7 from S, to a linear hyperplane of C*, which we will denote by A1~

Proposition 3.2. The map 7 : Sy — AP 1 is the geometric quotient of S,.

Proof. This map is surjective, and its fibers are exactly the orbits of S, under the action of SL(n).
Let us denote by S,/ SL(n) the geometric quotient of S, (whose existence is proved in [Ka]). The
map 7 is the composite of the canonical projection from S, to S,/ SL(n) with a regular bijection

S,/ SL(n) — A1,

This last map is bijective (thus birational), and the space A’ ~1 is normal. According to Zariski’s
main theorem, it is an isomorphism. O

3.2 A morphism from S,/SL(n) to H,

If 2 = (p1(t),...,pn(t)) is a closed point of A’ ~! corresponding to the orbit SL(n) -z in S,, the
polynomial

QI =pi(t) - (pis1 ()2 oo (pu(t))" !

only depends on z. Let us denote it by Q7 (). Its coefficients are regular functions from Ab1—1 o
Al

Let us consider the closed subscheme X, of {(z,y) € A” ! x sl(n)} defined by the vanishing,
for i = 1...n, of the remainders we get when we divide the (n + 1 — i) x (n + 1 — ¢)-minors of
y — tI, by Q7(t). We denote by I, the ideal generated by these remainders. The underlying set
of X, consists of all the couples (z,y) such that y is in the closure of the orbit corresponding to
z.

Proposition 3.3. The closed subscheme X, is a family of SL(n)-stable closed subschemes of
sl(n) with Hilbert function h, .

Proof. The proof is similar to that of Proposition 2.1. The subscheme X, is a family of SL(n)-
stable closed subschemes of sl(n) over A’ ~!. Let us denote by m the morphism X, — A" 1,
As previouly, let us first remark that the morphism

7// SL(n) : X5// SL(n) — Ab1—1



induced by 7 is an isomorphism. To do this, let us verify that the comorphism
(m// SL(n))* : C[A" 1] — C[A” 1] ® C[ﬁ[(n)]SL(”)/IEL(”)

is an isomorphism. It is injective, as 7 is surjective. Its surjectivity comes from the relations
that define X,: they give, for ¢ = 1, that Q7(¢) divides the determinant of ¢I,, — y, that is the
characteristic polynomial of y. As their degrees are equal, Q7 (¢) and the characteristic polynomial
of y are equal. This gives the surjectivity.

We go on as previously: let A be a dominant weight. The RS“(™)-module R(L;) is of finite

type ([AB, Lemma 1.2]). Thus (W*Oxa)g\) is a coherent O, —1-module. To see that it is locally

free, we just have to check that its rank is constant. Let us assume that the origin 0 € AP 1
corresponds to the nilpotent orbit in S,. The fiber of 7 over 0 is the closure of this orbit, fitted
with its structure of reduced scheme. Thus, the rank of (W*Oxa)g\) at 0is hy(N). If z is any point

of A~ the fiber of 7 over z is as a set the closure in sl(n) of the corresponding orbit. So, by
Proposition 1.3 the rank of (m(’)xa)g\) at z is at least h,(A). To conclude, we use the action of

the multiplicative group on sl(n) (by homotheties) and the induced action on A’ ~!  that makes
7 equivariant. The orbit of z goes arbitrary close to 0, and the rank of a coherent sheaf is upper
semicontinuous, so the rank of (W*Oxg)g\) is hy(A) at z. O

3.3 Tangent space

In this section, we compute the dimension of the tangent space to H, at the point Z,:
Proposition 3.4. The dimension of Ty H, is by — 1.

Proof. Let = be an element in the open orbit in Z,. It is known that Z, is normal ([KP]). So by
Proposition 1.2, we just have to prove that the dimension of

(s1(n);)3H:

is by — 1. Let us consider SL(n) as a closed subgroup of the general linear group GL(n), and sl(n)
as a subalgebra of gl(n). The stabilizer GL(n); of z in GL(n) is generated by SL(n), and the
center of GL(n). It is clearly equivalent to prove that the dimension of

(gl(n);) M=
is b;. The group GL(n), is connected, so the last space is isomorphic to
(gl(n))o .

A linear form on gl(n), is gl(n), -invariant iff it vanishes on the derived algebra [gl(n),, gl(n),],
so we have to prove that

(9l(n),/[gH(n),, g(n),])"

is bi-dimensional. This fact is the following elementary lemma. O

10



Lemma 3.5. Let E = @flzl E; be a graded vector space over C, where each E; is b;-dimensional.
We denote by b := gl(E) the Lie algebra of endomorphisms of E. Let x be a nilpotent element of
b such that each subspace E; is stabilized by x, and the restriction of x to each E; is cyclic.

Let us denote by b, the stabilizer of © in h. Then the codimension of the derived algebra

[bxa ba:] mn bx 18 bl.

Proof. The graduation of F induces a graduation on the vector space b:

b = @) Hom(E;, E;).

i7j

Let us denote by p; : E — FE; the natural projections. As they commute with z, the subspace
bz of b is homogeneous:

by = @ Hom, (E;, E])7
0J
where Hom, (E;, Ej) denotes the space of homomorphisms that commute with 2. Let us choose,
for any i, an element e; of F; such that z%~'e; # 0. We put n;j :=bj —b; if j < ¢ and 0 otherwise.
We denote by f;; : E; — E; the unique homomophism that commutes with z and that sends e;
to z"7e;. Then any homomorphism from F; to E; that commutes with x is the composite of f;;

with a polynomial in z:
Homw(E'i,Ej) = C[ZE] . fzg

We notice that if 7 # 7, then Hom, (E;, E;) is contained in [h;, b;]. Indeed, for any u : E; — Ej,
we have [u,p;] = u.
So we have to prove that the codimension in @, Hom, (E;, E;) of

[, b] N @D Hom(E;, E;)

is b;. The last vector space is generated by its elements of the form
P(2)[fji, fij] = P(x)z" " (idp, - idg,),

where P(z) is a polynomial in z.
One checks easily that a basis of a supplementary in @, Hom, (E;, E;) of this space is given
by the family of elements
" idg,

where 0 < k < b; — b;+1, and the lemma is proved. ]

3.4 Conclusion

In this section, we prove that the family X, of Proposition 3.3 is the universal family:

Theorem 3.6. The morphism ¢, from Sy/SL(n) to H, obtained in §3.2 is an isomorphism.

11



We denote by S, the closure of S, in sl(n), equipped with its reduced scheme structure.
The invariant Hilbert scheme H! := Hilbi{:(") (S,) parametrizing the closed subschemes of S,

of Hilbert function h, is canonically identified with a closed subscheme of Hilbi{:(") (sl(n)). The
morphism ¢, factorizes by a morphism v, : S,/ SL(n) — H..

To prove the theorem, we will get that the morphism v, is an isomorphism from S,/ SL(n)
to H/ and that H is a connected component of H, (Corollary 3.10).

Lemma 3.7. The morphism 1, induces a bijection from the set of closed points of S,/ SL(n) to
the set of closed points of HY.

Proof. We know that 1, is injective. Let us check it is surjective: in other words, that any
SL(n)-invariant closed subscheme of S, with Hilbert function h, is the closure of some orbit in
S,

Let X be such a subscheme. As h,(0) = 1, it has to be contained in some fiber F' of the
categorical quotient S, — S,// SL(n) over a reduced closed point. But F already corresponds
to a closed point of H. in the image of 1,. Moreover, F' admits no proper closed subscheme
admitting the same Hilbert function, so /' = X, and the lemma is proved. O

Corollary 3.8. The dimension of H is by — 1.

The action of the multiplicative group G, on sl(n) by homotheties induces canonically an
action of G, on H,, and on H! (because it stabilizes S,). The cone Z, is a G,,-fixed point of
H! . In fact, it is in the closure of the G,,-orbit of any point of H.:

Proposition 3.9. Let F be a closed point of H.. The morphism n : G,, — H., t — t.X
extends to a morphism A' —s H', 0 +— Z,.

Proof. The point F corresponds to a SL(n)-invariant closed subscheme of S, admitting Hilbert
function h,. We still denote it by F. As h,(0) = 1, it is contained in the fiber of the categorical
quotient sl(n) — sl(n)//SL(n) over some closed point. Thus we can apply to it the method of
asymptotic cones: we obtain a flat family over A! whose fiber over 0 must be Z, (as in the proof
of Proposition 1.3). It gives a morphism from Al to H/ whose restriction outside 0 is 7. O

From the proposition, we deduce that the dimension of the tangent space to H, at any point
of H is lower or equal to that at Z,, that is by — 1. As the dimension of H] is b; — 1, we get:

Corollary 3.10.

e The scheme H. is reduced and smooth.

e [t is a connected component of H,.
The morphism 1, is bijective (Lemma 3.7) and H/ is normal. According to Zariski’s main

theorem, 1, is an isomorphism. So Theorem 3.6 is proved, thanks to the second point of Corollary
3.10.
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