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tConsider a latti
e in a real �nite dimensional ve
tor spa
e. Here, we are interested in the latti
e polytopes,that is the 
onvex hulls of �nite subsets of the latti
e. Consider the group G of the aÆne real transformationswhi
h map the latti
e onto itself. Repla
ing the group of Eu
lidean motions by the group G one 
an de�ne thenotion of regular latti
e polytopes. More pre
isely, a latti
e polytope is said to be regular if the subgroup of Gwhi
h preserves the polytope a
ts transitively on the set of its 
omplete 
ags. Re
ently, Karpenkov obtained a
lassi�
ation of the regular latti
e polytopes. Here we obtain this 
lassi�
ation by using root systems.1. Introdu
tionLet � be a latti
e in a real �nite dimensional ve
tor spa
e V . Here, we are interested in thelatti
e polytopes, that is the 
onvex hulls of �nite subsets of �. Consider the group G of theaÆne real transformations whi
h map � onto itself. Repla
ing the group of Eu
lidean motionsby the group G in the de�nition of regular polytopes, one 
an de�ne the notion of regularlatti
e polytopes. More pre
isely, for a latti
e polytope P , we denote by Isom(P) the subgroupof G whi
h preserves P and P is said to be a regular latti
e polytope if the group Isom(P)a
ts transitively on the set of 
omplete 
ags of P .The goal of this paper is to 
lassify the latti
e regular polytopes up to G and homotheties(see Se
tion 2). Sin
e Isom(P) is �nite, there exists an invariant s
alar produ
t on V , andso P is an ordinary regular polytope. So, in a sense, there are less latti
e regular polytopesthan ordinary ones. But, the latti
e equivalen
e relation is �ner than the Eu
lidean one. Forexample, there are two non equivalent latti
e regular triangles (see Figure 2). More generally,there are �(n+1) latti
e regular simpli
es of dimension n, where �(n+1) denotes the numberof divisors of n+ 1.The 
lassi�
ation in question has already been obtained by Karpenkov in [Kar06℄: for ea
hordinary regular polytope he studies the possibilities to realize it as a latti
e polytope. Ourapproa
h is 
ompletely di�erent. For example, we do not use the Eu
lidean 
lassi�
ation ofregular polytopes but those simpler and more 
entral in mathemati
s of root systems. Ourmethod seem to be enlightening: for example, the �(n+1) simpli
es are 
anoni
ally asso
iatedto the �(n+ 1) subgroups of Z=(n+ 1)Z.Let us explain our approa
h in more detail. Firstly, we asso
iate in a very natural way aredu
ed simply la
ed root system (not ne
essarily irredu
ible) to any regular latti
e polytopeP . Then 
onsidering the fa
es of P , we even show that the only possible root systems are oftype An, Dn, E6; E7; E8 and (A1)n (later, we show that the ex
eptional root systems do noto

ur). Conversely, we �x su
h a root system � and seek all the regular latti
e polytopes Pwith � as asso
iated root system. Su
h a polytope is 
hara
terized up to isomorphism by alatti
e between the root latti
e and the weight latti
e, and a dominant weight. We obtain inthis way the list presented in Table 1.A 
lassi
al tool in the study of the Eu
lidean regular polytopes is the notion of duality. Inour 
ontext, we also use this idea. Surprisingly, we show that there exist two di�erent notionsof duality for the regular latti
e polytopes (see Se
tion 4).2000 Mathemati
s Subje
t Classi�
ation 00000.



2 PIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYREFor the 
onvenien
e of the reader we also present below the regular latti
e polytopes ofdimension two in Figures 1, 2 and 3. In ea
h �gure, we have two latti
es: the interse
tion ofthe gray lines and the marked points. These latti
es are the weight latti
es �P and the rootlatti
es �R of of the root system A2 in the two �rst 
ase and A1 � A1 in the last one. InFigure 1, we have drawn an hexagon whi
h 
an be 
onsidered as a latti
e polygon in �P or�R: this gives two 
lasses of regular hexagons. In Figure 3, the situation is similar with squaresinstead hexagons. In Figure 2, we have two triangles: the dashed one in �P and the other onein �R. The result in dimension 2 asserts that up to evident equivalen
e (see Se
tion 2) the onlyregular latti
e polygons are these 2 hexagons, these 2 triangles and these 2 squares.
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bFig. 3. Two SquaresNote that there is a more 
lassi
al way to 
lassify Eu
lidean regular polytopes by asso
iatinga root system (without the 
ristallographi
 
ondition) to ea
h Eu
lidean regular polytope (seefor example [FR05℄); in this asso
iation the Weyl group of the root system is the isometrygroup of the polytope. Our 
onstru
tion is di�erent; for example, the root system asso
iatedto the square is of type B2 in the 
lassi
al 
ase, while here we asso
iate the root system oftype A1 � A1 to the squares. Note that using the 
lassi�
ation of root systems without the
ristallographi
 
ondition (see for example [Hum90℄) and the method of this arti
le, one 
anobtain a new proof of the 
lassi�
ation of Eu
lidean regular polytopes.Finally we brie
y mention the well-known link between 
onvex polytopes and algebrai
geometry. We do not use this link but our inspiration for some results are of geometri
 origin.To ea
h latti
e polytope P one 
an asso
iate a tori
 varietyXP with T as torus, see for example[Oda88℄. The polytope P is regular if and only if the group of regular tori
 automorphismsof XP a
ts transitively on the set of the maximal 
hains of irredu
ible T -stable subvarietiesof XP . In [Pro90℄, Pro
esi 
onsider the tori
 variety X� asso
iated to the de
omposition inWeyl 
hambers of the root system �. Our �rst results(see Proposition 3.4) 
an be translatedin the following way: there exists an equivariant surje
tive morphism from X� onto XP if � isthe root system asso
iated to the regular latti
e polytope P .Convention. In this paper, we only 
onsider non degenerated polytopes that is whi
h spanthe ambient real aÆne spa
e. 2. An equivalen
e relationLet � be a free abelian group of rank n. Let �̂ be a set with a free transitive a
tion of �denoted by: m + z for any m 2 �̂ and z 2 �. Su
h a set �̂ is 
alled a �-aÆne spa
e. A mapf : �̂ �! �̂ is said to be aÆne if there exists a group morphism �!f : � �! � su
h thatf(m+ z) = f(m) +�!f (z).Let GL(�) ' GLn(Z) denote the automorphism group of � and GA(�̂) be the group ofbije
tive aÆne maps of �̂. We have the following split exa
t sequen
e:



REGULAR LATTICE POLYTOPES AND ROOT SYSTEMS 31 �! � �! GA(�̂) �! GL(�) �! 1:Consider �R := �
R and its aÆne spa
e �̂R := m+�R (for any m 2 �̂). Now, �̂ is a latti
ein �̂R and GA(�̂) is the subgroup of the isomorphism group GA(�̂R) of �̂R of the elementswhi
h map �̂ onto itself.A latti
e polytope P is the 
onvex hull in �̂R of a �nite subset of �̂. SetIsom(P) = fg 2 GA(�̂) j gP = Pg:A latti
e polytope P is said to be regular if Isom(P) a
ts transitively on the set of 
omplete
ags of P . We want to 
lassify the regular polytopes modulo GA(�̂) of 
ourse, but there isanother redu
tion. We note that if h is a homothety of 
enter in �̂ and integer ratio then hnormalize GA(�̂) and if P is a regular latti
e polytope so is h(P). Finally we want to 
lassifythe regular latti
e polytopes up to the group generated by GA(�̂) and the homotheties of
enter in �̂ and integer ratio. So we de�ne:Definition 1. We denote H the subgroup of GA(�̂R) generated by GA(�̂) and the homo-theties of 
enter in �̂ and integer ratio.A
tually, this group doesn't a
ts on the set of latti
e polytopes, but on those with rationalverti
es. Nevertheless, this group de�nes a equivalen
e relation on the latti
e polytopes. Our�rst redu
tion is to 
hoose a 
ommon origin for the polytopes. More pre
isely let us �x anorigin O in �̂; now, one 
an identify � and �̂, and embed GL(�) in GA(�̂)). Now we 
an de�ne:Definition 2. We 
all a latti
e polytope 
entered if its bary
enter is O; it is said to beprimitive if it is not the image of another polytope by an homothety of 
enter O and of integerratio bigger than one.The following proposition redu
e the 
lassi�
ation to those of primitive 
entered regularlatti
e polytope.Proposition 2.1.(i) Let P be a latti
e polytope. There exits g 2 H su
h that g(P) is a primitive 
enteredlatti
e polytope.(ii) Conversely, if g 2 H and P1;P2 are two primitive 
entered latti
e polytopes su
h thatg(P1) = P2, then g 2 GL(�).Proof. The �rst point is obvious. For the se
ond one, note that if g 2 H then there existsr 2 Q su
h that r�!g (�) = �. Then let g 2 H;P1;P2 be su
h g(P1) = P2. As P1 and P2 are
entered, we have g(O) = O i.e. g = �!g . So, we dedu
e there exist r 2 Q and h 2 GL(�) su
hthat r:h(P1) = P2. But as P1 and P2 are primitive, so r = 1.From now on, we want to 
lassify the primitive 
entered regular latti
e polytopes up to thea
tion of GL(�).



4 PIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYRE3. Root systemsFor root systems, we will use the notation of [Bou02℄. Let P be a regular latti
e polytopein �R. For ea
h edge a of P with verti
es s1 and s2 we 
onsider the subgroup R:��!s1s2 \ � of �and its two generators �ua. When a runs over all the edges of P , the �ua form a �nite subset�(P) of �.Proposition 3.1. The subset �(P) of �R is a redu
ed root system.Proof. It is 
lear that �(P) is �nite, does not 
ontain zero, spans �R and Z:�\�(P) = f��gfor any � 2 �(P).Let � 2 �(P) and two verti
es s1 and s2 on an edge a parallel to �. Consider a 
omplete
ag D1 of P starting with s1 and a. Let D2 be the 
omplete 
ag of P with the same fa
es fromD1 ex
ept for the vertex whi
h is s2. Let � 2 Isom(P) su
h that �(D1) = D2. It is 
lear that�!� is a re
e
tion whi
h maps �(P) in �(P) and � on ��.Let � be another element of �(P). The ve
tor �!� (�)� � is an element of � proportional to�. Sin
e � has been 
hosen primitive, �!� (�) � � is an entire multiple of �.The root system �(P) is said to be asso
iated to P . We denote by �P and by �R, respe
tivelythe weight and root latti
es of �(P). We have:Proposition 3.2. The latti
es �, �R and �P satisfy: �R � � � �P .Proof. The in
lusion �R � � is true by de�nition of �(P). Let � 2 �(P) and � 2 �.We have to prove that < �; �_ > belongs to Z, where �_ is the 
oroot asso
iated to �. But,��(�) = �� < �; �_ > � belongs to �. We 
an 
on
lude sin
e � is primitive on �.In the two following propositions, P is assumed to be 
entered in O. In this 
ase, Isom(P)is a subgroup of GL(�). Let Aut(�(P)) = fg 2 GL(�R) j g:�(P) = �(P)g denote theautomorphism group of �(P) and W denote the Weyl group of �(P). Note that Aut(�(P)) isthe semidire
t produ
t of W and the automorphisms of the Dynkin diagram of �(P).Proposition 3.3. Let P be a 
entered regular latti
e polytope. We have:(i) W � Isom(P) � Aut(�(P)).(ii) The latti
e � is stable by Isom(P).(iii) The root system �(P) is homogeneous under Isom(P).Proof. The in
lusion W � Isom(P) is a dire
t 
onsequen
e of the proof of Proposition 3.1.The rest of the proposition is obvious.The group Isom(P) a
ts transitively on the set of verti
es of P ; the following propositionshows a little bit more:Proposition 3.4. The regular latti
e polytope P is assumed to be 
entered. The Weylgroup W a
ts transitively on the set of verti
es of P .Proof. Sin
e any edge of P is parallel to a root of �(P), any maximal 
one of the dual fanof P is an union of Weyl 
hambers. But, W a
ts transitively on the set of Weyl 
hambers. Theproposition follows.



REGULAR LATTICE POLYTOPES AND ROOT SYSTEMS 5A fa
e of a regular polytope is a regular polytope. Here, one 
an say a little bit more:Proposition 3.5. Let F be a fa
e of a regular latti
e polytope P and F its dire
tion.Then, F is a regular latti
e polytope with asso
iated root system �(P) \ F .Proof. We may assume that P is 
entered. It is 
lear that F is a regular latti
e polytopewith root system �(F) 
ontained in �(P) \ F . Let � 2 �(P) \ F : we have to prove that � isparallel to an edge of F .We 
laim that the re
e
tion �� of W asso
iated to � stabilizes F . Let A be a point of F .The ve
tor ��(A) � A is 
ollinear to � and so belongs to F . But, F = (A + F ) \ P ; and so��(A) belongs to F .Consider the kernel H� of �� � Id. Firstly, we assume that H� \ F does not 
ontain anyvertex. Then, there exists an edge a of F whi
h interse
ts H�. Sin
e a and ��(a) are edges ofF , we have a = ��(a). In parti
ular, a is parallel to �.We now assume that s is a vertex of P in H�\F . Let b be an edge of F 
ontaining s. Let � bea root parallel to b. This root � is neither orthogonal neither 
ollinear to �; so, Proposition 3.3implies that �(P) \ Ve
t(�; �) is a root system of type A2. Changing eventually � by �� wemay assume that �+ � is a root. One easily 
he
ks that ��+�(b) is parallel to �.Definition 3. If � is a root system in the ve
tor spa
e E, a subsystem obtained from� by interse
ting � with a linear subspa
e of E is 
alled a Levi subsystem of �. Note thatthe Dynkin diagram of a Levi system is obtained from the �rst Dynkin diagram by removingverti
es and the adja
ent edges. 4. Dual PolytopeIn this se
tion, we de�ne two notions of the dual of a 
entered regular latti
e polytope P .Before, we re
all the situation in the Eu
lidean 
ase.4.1. The real 
aseLet E be a �nite dimensional real ve
tor spa
e. Let P be a 
onvex polytope in E 
ontaining0 in its interior. We denote by E� the dual of E and set:P� = f' 2 E� s:t: 'jP � �1g:It is known that P� is a 
onvex polytope, 
alled dual of P . Moreover, P� 
ontains 0 in itsinterior and the dual P�� of P� equals P modulo the natural identi�
ation between E andE��. There is an in
lusion-reversing 
ombinatorial 
orresponden
e between the i-dimensionalfa
es of P and the (n� 1� i)- dimensional fa
es of P�. In parti
ular, if E is Eu
lidean and Pis regular, P� is regular too with an isomorphi
 isometry group.Now, we assume that E is Eu
lidean, P is regular and the bary
enter of the verti
es of P is0. Consider the 
onvex hull P_ of the bary
enters of the fa
ets of P . With the s
alar produ
t,one may identify E and its dual: modulo this identi�
ation and under our assumptions P� areP_ are positively proportional. In parti
ular, P_ is regular with the same group as P and P__is positively proportional to P .The two above 
onstru
tions of the dual of a regular Eu
lidean polytope 
an be adapted toregular latti
e polytopes: but the two so obtained notions di�er.



6 PIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYRE4.2. The latti
e 
aseThe latti
e �� := Hom(�;Z) is 
alled the dual of �. Let P be a latti
e polytope in E
ontaining 0 in its interior. ConsiderQ = f' 2 �� 
 R s:t: 'jP � �1g:It is a 
onvex polytope in ��
R 
ontaining 0 in its interior. But, its verti
es do not ne
essarilybelong to �� but only to ��
Q. We denote by P� the only primitive latti
e polytope positivelyproportional to Q. This latti
e polytope P� is 
alled the �-dual of P .Using the properties of P� in the real 
ase, one dedu
es that if P is primitive P�� = P andthat if P is 
entered regular so is P�.Now, P is assumed to be a 
entered regular latti
e polytope. There exist a unique positiverational number k su
h that the bary
enters of the verti
es of the fa
ets of k:P are primitiveve
tors in �. We denote by P_ and 
all _-dual of P the 
onvex hull of these bary
enters.Sin
e Isom(P) is �nite, there exists a s
alar produ
t on �R su
h that P is an Eu
lideanregular polytope in �R. Then, using the results stated in Se
tion 4.1, one 
he
ks that if P_ isregular with the same group as P and that if moreover P is primitive then P__ = P .The polytopes P� and P_ are not equivalent. For example, in dimension two, the twotriangles are their own _-dual and the �-dual one of the other. In Table 1, we give the _-dual and �-dual of ea
h regular latti
e polytope.5. Classi�
ationIn this se
tion, we will obtain the 
lassi�
ation of the 
entered regular latti
e polytopes.Let us start by redu
ing the list of possible root systems. Let P be a primitive 
enteredregular latti
e polytope in �R of dimension n with asso
iated root system �. By Proposition 3.3Aut(�) a
ts transitively on �. This implies that � is the produ
t of 
opies of an irredu
iblesimply la
ed root system �0. Moreover, by Proposition 3.5, there exists a Levi subsystem �0 of� of rank n�1 whi
h is the root system of a regular latti
e polytope Q with Isom(Q) 
ontainedin the stabilizer of �0 in Isom(P). We dedu
e that either �0 = A1 or � is irredu
ible. Finally,the type of � is An1 ; An; Dn; E6; E7 or E8: (5.1)Conversely, let � be a root system in the above list. Let us 
hoose a set of simple roots of�. By Proposition 3.4, the verti
es of a 
entered primitive latti
e polytope P with asso
iatedroot system � are the orbit by W of a unique dominant vertex s0 in �P . Su
h of polytope Pis also given with a sublatti
e � of �P 
ontaining �R. Moreover, the polytope P is 
ompletelydetermined by �, s0 and �. Finally, the polytopes obtained from a pair (s0; �) and its imageby an automorphism of � are equivalent. In Se
tions 5.1 to 5.4, for ea
h possible � we give allthe possible pairs (s0;�) up to the a
tion of Aut(�).The last step 
onsists to show that ea
h given triple (�; s0;�) gives really a regular latti
epolytope. One has to 
he
k that the stabilizer of � in Aut(�) a
ts transitively on the 
omplete
ags of the 
onvex hull P of W:s0 and that � is the root system of P . The �rst veri�
ation 
anbe made by 
he
king the equality of the 
ardinality of Isom(P) and the set of 
omplete 
agsof P . Using the a
tion of Isom(P) the se
ond is equivalent to 
he
k that one root is primitiveon one edge of P . Thereafter, these veri�
ations are left to the reader.



REGULAR LATTICE POLYTOPES AND ROOT SYSTEMS 75.1. Root System An1Here, we assume that the root system � asso
iated to the primitive 
entered regular latti
epolytope P is of type An1 . Let !1; : : : ; !n be a set of fundamental weights of �. Then, �P =Z!1� : : :�Z!n and �R = Z:2!1� : : :�Z:2!n. Let ki 2 Z>0 su
h that the unique dominantvertex s0 is P ki!i. By the a
tion of W , the verti
es of P are the Pi�ki!i. In parti
ular,P has n!2n 
omplete 
ags and Isom(P) = Aut(�). This implies that all the ki's are equal:s0 = k:Pi !i. Re
ipro
ally, Aut(P) a
ts transitively on the set of 
ags of the 
onvex hull ofthe k:Pi�!i.Now, we have to determine the possible latti
es �. Ne
essarily, �=�R is a subgroup of�P =�R ' (Z=2Z)n stable by the a
tion of Aut(�) a
ting on (Z=2Z)n by permutations. By usingfor example the 
anoni
al bije
tion between (Z=2Z)n and the set of the subsets of f1; : : : ; ng,one easily 
he
ks that the only possibilities for � are:(i) � = �R,(ii) � = fPi ki!i j ki all even or all oddg,(iii) � = fPi ki!i j Pi ki eveng,(iv) � = �P .But, the edges of the polytopes obtained with � = �P are parallel to the !i's; so, the rootsystem of P is f�!ig whi
h is a 
ontradi
tion. Moreover, for n = 2, the se
ond and thirdlatti
es equals. So, we obtain two primitive squares in dimension 2, and three primitive 
ubesfor ea
h dimension n � 3.In Table 1, for ea
h 
hoi
e of �, we give a notation for the 
lass of the 
orresponding 
ubeC, the vertex s0, the 
ardinalities of C \ � and of the interse
tion of C and an edge of �. Wealso give the 
lass of the fa
ets of C and of its _ and � duals. All these results are obtained bydire
t 
al
ulations and prove that these 
ubes are indeed non equivalent.5.2. Root System DnFor 
onvenien
e, we set D1 = A1, D2 = A1�A1 and D3 = A3. Moreover, we do not numberthe vertex of the Dynkin diagram of D3 as those of A3 but as follows:1 23Let Cn be one of the 
ubes obtained in the pre
eding se
tion with n � 2. Its �-dual polytopeCCn is a primitive regular 
entered latti
e polytope with 2n verti
es and Isom(CCn) isomorphi
to Aut(An1 ). We dedu
e that the root system of CCn is of type Dn and Isom(CCn) = Aut(Dn),for any n � 2.Sin
e the fa
ets of a 
ube are 
ubes, the stabilizer of s0 in Aut(Dn) is isomorphi
 toAut(Dn�1); then, we may assume that s0 = k:!1 for a positive integer k.The latti
e � must be stable by the a
tion of Aut(Dn�1); there are three possibilities (forn � 3 and with notation of [Bou02℄):(i) � = �R,(ii) � =Li Z"i,(iii) � = �P .So, we obtain three 
o
ubes for ea
h n � 3 (see Table 1).For n = 2, the two squares are �-dual one of the other; in parti
ular, the 
osquares are squares.Now, let P be a primitive 
entered regular latti
e polytope with root system Dn (n � 4)whi
h is not a 
o
ube. Using Proposition 3.3 one obtains that the root system of P_ is Dntoo. The stabilizer of the dominant vertex s0 in W is the stabilizer in W of a fa
et of P_.By Proposition 3.5 it is the Weyl group of a Levi subsystem of � whi
h is the root system



8 PIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYREasso
iated to a regular polytope of dimension n� 1. We 
an dedu
e that n � 5 and s0 = k:!nor s0 = k:!n�1, or n = 4 and s0 is the multiple of any fundamental weight.For n � 5, the two 
ases are equivalent using the a
tion of Aut(�). We 
laim that the
onvex hull Q of W:k!n�1 is not a regular polytope. In an adapted base (e1; : : : ; en) of �R, theverti
es of Q are the Pi Æiei with Æi = �1 and �Æi = 1. Let (x1; : : : ; xn) denote the dual baseof (e1; : : : ; en). Consider the two linear forms � = x1 + : : :+ xn�1 � xn and  = x1. The aÆnehyperplane � = n � 2 de�ne a fa
et of Q whi
h is a simplex. But  = 1 is a fa
et with 2n�2verti
es. So, Q is not regular sin
e n � 5.For n = 4, the three fundamental weights !1, !3 and !4 are equivalent modulo Aut(D4)and give the 
o
ubes. Consider the 
ase s0 = k:!2. Sin
e !2 is the longest root, k = 1 and theverti
es of the 
onvex hull P of W:!2 are the 24 roots of D4 and Isom(P) = Aut(D4).Let (x1; : : : ; x4) be the dual basis of ("1; : : : ; "4) (with notation of [Bou02℄). One easily
he
ks that the aÆne hyperplane Pxi = 2 de�nes a fa
et of P whi
h is a regular 
o
ube. Bythe a
tion of Aut(D4), one obtains the 24 fa
ets:{ �2 � x1 + x2 + x3 + x4 � 2,{ �1 � xi � 1, for i = 1; : : : ; 4,{ �2 �Pj 6=i xj � xi � 2, for i = 1; : : : ; 4,{ xi + xj � xk + xl � 2, for fi; j; k; lg = f1; 2; 3; 4g and i < j and k < l.In parti
ular, P is regular.Moreover, �P =�R is isomorphi
 to Z=2Z�Z=2Z and the only latti
es � stable by Aut(D4)su
h that �R � � � �P are �P and �R. So, we obtain two 
lasses of 
entered primitive regularlatti
e polytopes 
alled 24-
ells polytopes. We denote by D41 those obtained with � = �P andD42 those obtained with � = �R.The dominant weights in P are: !2, !1, !3, !4, !1+!3 and 0. By a
ting W we dedu
e thatP \ �P 
ontains 24 + 6 + 6 + 6 + 32 + 1 = 81 points and P \ �R 
ontains 24 + 1 = 25 points.This gives the 
ardinality of D4i \ �, for i = 1 and 2.Sin
e the two 24-
ells are the only latti
e regular polytopes in dimension four with isomor-phism group Aut(D4) the _-dual of D41 is either D42 or itself. But, the bary
enter of the fa
etPi xi = 2 \ P is 12Pi "i = !4 and belongs to �P . We dedu
e that the dual D41_ 
ontainsstri
tly less points of � than D41. Finally, D41_ = D42 and D42_ = D41.Remark 1. In this se
tion, we have 
onsidered the 
o
ubes for any n � 2. But, the otherspolytopes with asso
iated root systems of type Dn have only be 
onsidered when n � 4. The
ase n = 2 has been made in Se
tion 5.1 and those with n = 3 will be 
onsidered in Se
tion 5.3.5.3. Root system AnConsider a primitive 
entered regular latti
e polytope P with root system � of type Anwith n � 3. Be
ause of the orders of the Weyl groups, the root system of P_ 
annot be of typeEn. So, we may assume that the root system of P_ is also of type An; if not, we have alreadymeet P .By Proposition 3.5, the stabilizer of s0 whi
h is the stabilizer of a fa
et of P_ in Isom(P)must 
ontains the Weyl group of a root system of type An�1 or A1�A1 for n = 3. This impliesthat if n � 4 then s0 equals k:!1 or k:!n, if n = 3 then s0 is a fundamental weight and impliesno restri
tion on s0 if n = 2.Firstly, we assume that s0 is neither proportional to !1 or !n.Let us �x n = 2. Under our assumption, P is an hexagon and Isom(P) = Aut(A2). Wededu
e that s0 = k:(!1 + !2): this gives two regular hexagons obtained with � equal to �Rand �P .



REGULAR LATTICE POLYTOPES AND ROOT SYSTEMS 9If n = 3, our assumption implies that s0 = k:!2. So, we obtain the three 
o
ubes 
onsideredin Se
tion 5.2.We now assume that s0 is proportional to !1. The 
ase when s0 is proportional to !n isequivalent up to Aut(�). The polytope P is the 
onvex hull of W:k:!1 that is of the k:"i's. Inparti
ular, P is a simplex and is regular with Isom(P) =W .The latti
e � 
an be any latti
e between �R and �P . Sin
e �P =�R ' Z=(n+ 1)Z, for ea
hdivisor d of n+ 1 we have exa
tly one �d su
h that �P =�d ' Z=dZ. For �d and k = d, P is aprimitive simplex denoted by Snd . Dire
t 
al
ulation shows that the edges of Snd 
ontain d+ 1points. In parti
ular they are pairwise non isomorphi
.The 
ardinality of Snd \ � is a little bit 
ompli
ated to express. For any � 2 Z=(n+ 1)Z, wedenote by 
(�) the 
ardinality of the following setfa1; : : : ; an+1 2 � \ N s:t: X ai = d(n+ 1)g:Then, one easily 
he
ks that the 
ardinality of Snd \ � isX�2Z=(n+1)Z
(�):It would be interesting to simplify this formula !5.4. Root systems EnBy absurd, we will prove that there is no regular latti
e polytope P with root system oftype E6. We may assume that P is primitive and 
entered. Sin
e the Weyl group of E6 is
ontained in no automorphism group of a root system of rank 6 in List 5.1, the root systemof P_ is ne
essarily E6. Moreover the root system of a fa
e of P is either D5 or A5. The �rst
ase is not possible be
ause the regular polytopes with D5 as root systems have Aut(D5) asisomorphism group. But, Aut(D5) is not 
ontained in the stabilizer of D5 in Aut(E6). In these
ond 
ase, one has ne
essarily s0 = !2 that is the longest root. So, the verti
es of P are theroots of E6. By Proposition 3.5, P has a fa
et parallel to the Levi subsystem of type A5 thatis orthogonal to the fundamental weight !2. Moreover, the s
alar produ
t with !2 of a root iseither �2; �1; 0; 1 or 2; and, the values �2 are rea
hed on
e ea
h one (see the table of E6 in[Bou02℄). This is a 
ontradi
tion.The same argument shows that there is no regular latti
e polytope with root system of typeE7 and E8. 6. Des
ription of the regular latti
e polytopesIn the following tabular, for ea
h primitive 
entered regular latti
e polytope P , we givea notation, its root system, the group Isom(P) its latti
e �, its dominant vertex s0, the
ardinalities of P \ �, the number of points in � on an edge of P , primitive 
entered regularlatti
e polytope equivalent to the fa
ets of P and the duals of P_ and P�. All these elementsallow us to distinguish two non isomorphi
 latti
e polytopes.Proofs are given in the pre
eding se
tion, the others are simple 
al
ulation left to the reader.Remark 2. In even dimension more than four, there exist three 
lasses of 
o
ube. Two ofthese three 
o
ubes have the same simplex as fa
et and the third another one. In 
ontradi
tionin [Kar06℄, the three 
o
ubes have the same simplex as fa
et.
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Type � Isom Not. � s0 Card. Edges Fa
et P_ P�Simplex Ann � 2 W (�) '�n+1 Sndfor dj(n+ 1). �R � � � �Pwith #(�P =�) = d. d!1 seeSe
t 5.3 d+ 1 Sn�1n Snd Snn+1dCubes An1n � 2 Aut(�)'(Z=2Z)nn�n Cn1Cn28<: Cn3 for n evenCn3 for n odd �Rki � kj mod 2P ki even 2P!iP!iP!i2P!i 3n2n + 13n+125n�12 3223 Cn�11Cn�11Cn�13 CCn2CCn3CCn1 CCn2CCn3CCn1Co
ubes Dnn � 3 Aut(�)'(Z=2Z)nn�n CCn1CCn28<: CCn3 for n evenCCn3 for n odd �RLiZ"i�P 2!1!1!1 4n2 + 12n+ 12n+ 1 322 Sn�1nSn�1nSn�1n=2Sn�1n Cn3Cn1Cn2 Cn3Cn1Cn2Hexagon A2 Aut(�)'D6 H21H22 �R�P !1 + !2 713 2 H22H21 H21H2224-
ell D4 Aut(�)'(�4 nZ=2Z3)n�3 D41D42 �R�P !2 2581 2 CC31CC32 D42D41 D41D42Remark: We have the following exeptional equalities in dimension two: C22 = C23 and C21_ = C22 .Table 1: List of the 
entered primitive regular latti
e polytopes


