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REGULAR LATTICE POLYTOPES AND ROOT SYSTEMS

PIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYRE

ABSTRACT

Consider a lattice in a real finite dimensional vector space. Here, we are interested in the lattice polytopes,
that is the convex hulls of finite subsets of the lattice. Consider the group G of the affine real transformations
which map the lattice onto itself. Replacing the group of Euclidean motions by the group G one can define the
notion of regular lattice polytopes. More precisely, a lattice polytope is said to be regular if the subgroup of G
which preserves the polytope acts transitively on the set of its complete flags. Recently, Karpenkov obtained a
classification of the regular lattice polytopes. Here we obtain this classification by using root systems.

1. Introduction

Let A be a lattice in a real finite dimensional vector space V. Here, we are interested in the
lattice polytopes, that is the convex hulls of finite subsets of A. Consider the group G of the
affine real transformations which map A onto itself. Replacing the group of Euclidean motions
by the group G in the definition of regular polytopes, one can define the notion of regular
lattice polytopes. More precisely, for a lattice polytope P, we denote by Isom(P) the subgroup
of G which preserves P and P is said to be a regular lattice polytope if the group Isom(P)
acts transitively on the set of complete flags of P.

The goal of this paper is to classify the lattice regular polytopes up to G and homotheties
(see Section 2). Since Isom(P) is finite, there exists an invariant scalar product on V', and
so P is an ordinary regular polytope. So, in a sense, there are less lattice regular polytopes
than ordinary ones. But, the lattice equivalence relation is finer than the Euclidean one. For
example, there are two non equivalent lattice regular triangles (see Figure 2). More generally,
there are 7(n + 1) lattice regular simplices of dimension n, where 7(n + 1) denotes the number
of divisors of n + 1.

The classification in question has already been obtained by Karpenkov in [Kar06]: for each
ordinary regular polytope he studies the possibilities to realize it as a lattice polytope. Our
approach is completely different. For example, we do not use the Euclidean classification of
regular polytopes but those simpler and more central in mathematics of root systems. Our
method seem to be enlightening: for example, the 7(n + 1) simplices are canonically associated
to the 7(n 4+ 1) subgroups of Z/(n+ 1)Z.

Let us explain our approach in more detail. Firstly, we associate in a very natural way a
reduced simply laced root system (not necessarily irreducible) to any regular lattice polytope
P. Then considering the faces of P, we even show that the only possible root systems are of
type An, Dy, Eg, E7, Eg and (A;)™ (later, we show that the exceptional root systems do not
occur). Conversely, we fix such a root system ® and seek all the regular lattice polytopes P
with & as associated root system. Such a polytope is characterized up to isomorphism by a
lattice between the root lattice and the weight lattice, and a dominant weight. We obtain in
this way the list presented in Table 1.

A classical tool in the study of the Euclidean regular polytopes is the notion of duality. In
our context, we also use this idea. Surprisingly, we show that there exist two different notions
of duality for the regular lattice polytopes (see Section 4).
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For the convenience of the reader we also present below the regular lattice polytopes of
dimension two in Figures 1, 2 and 3. In each figure, we have two lattices: the intersection of
the gray lines and the marked points. These lattices are the weight lattices Ap and the root
lattices Ag of of the root system A, in the two first case and A; X A; in the last one. In
Figure 1, we have drawn an hexagon which can be considered as a lattice polygon in Ap or
Apg: this gives two classes of regular hexagons. In Figure 3, the situation is similar with squares
instead hexagons. In Figure 2, we have two triangles: the dashed one in Ap and the other one
in Ar. The result in dimension 2 asserts that up to evident equivalence (see Section 2) the only
regular lattice polygons are these 2 hexagons, these 2 triangles and these 2 squares.

° ° . ' . °

° ° . ° . )

. . . . . °
Fig. 1. Two Hexagons FiG. 2. Two Triangles Fi1G. 3. Two Squares

Note that there is a more classical way to classify Euclidean regular polytopes by associating
a root system (without the cristallographic condition) to each Euclidean regular polytope (see
for example [FRO5]); in this association the Weyl group of the root system is the isometry
group of the polytope. Our construction is different; for example, the root system associated
to the square is of type Bs in the classical case, while here we associate the root system of
type A; x A; to the squares. Note that using the classification of root systems without the
cristallographic condition (see for example [Hum90]) and the method of this article, one can
obtain a new proof of the classification of Euclidean regular polytopes.

Finally we briefly mention the well-known link between convex polytopes and algebraic
geometry. We do not use this link but our inspiration for some results are of geometric origin.
To each lattice polytope P one can associate a toric variety Xp with T as torus, see for example
[Oda88]. The polytope P is regular if and only if the group of regular toric automorphisms
of Xp acts transitively on the set of the maximal chains of irreducible T-stable subvarieties
of Xp. In [Pro90], Procesi consider the toric variety X¢ associated to the decomposition in
Weyl chambers of the root system ®. Our first results(see Proposition 3.4) can be translated
in the following way: there exists an equivariant surjective morphism from Xg onto Xp if @ is
the root system associated to the regular lattice polytope P.

Convention. In this paper, we only consider non degenerated polytopes that is which span
the ambient real affine space.

2. An equivalence relation

Let A be a free abelian group of rank n. Let A be a set with a free transitive action of A
denoted by: m + z for any m € A and z € A. Such a set A is called a A-affine space. A map
f + A — A is said to be affine if there exists a group morphism ? A — A such that
f(m+2) = f(m) + T (2). )

Let GL(A) =~ GL,(7Z) denote the automorphism group of A and GA(A) be the group of
bijective affine maps of A. We have the following split exact sequence:
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1 — A— GA(A) — GL(A) — 1.

Consider Ag := A ® R and its affine space Ag := m + Ag (for any m € A) Now, A is a lattice
in Ag and GA(A) is the subgroup of the isomorphism group GA(AR) of Ag of the elements
which map A onto itself.

A lattice polytope P is the convex hull in Ag of a finite subset of A. Set

Tsom(P) = {g € GA(A) | gP = P}.

A lattice polytope P is said to be regular if Isom(P) acts transitively on the set of complete
flags of P. We want to classify the regular polytopes modulo GA(A) of course, but there is

another reduction. We note that if h is a homothety of center in A and integer ratio then h

normalize GA(A) and if P is a regular lattice polytope so is h(P). Finally we want to classify

the regular lattice polytopes up to the group generated by GA(A) and the homotheties of
center in A and integer ratio. So we define:

DEFINITION 1. We denote H the subgroup of GA(Ag) generated by GA(A) and the homo-
theties of center in A and integer ratio.

Actually, this group doesn’t acts on the set of lattice polytopes, but on those with rational
vertices. Nevertheless, this group defines a equivalence relation on the lattice polytopes. Our

first reduction is to choose a common origin for the polytopes. More precisely let us fix an
origin O in A; now, one can identify A and A, and embed GL(A) in GA(A)). Now we can define:

DEFINITION 2. We call a lattice polytope centered if its barycenter is O; it is said to be
primitive if it is not the image of another polytope by an homothety of center O and of integer
ratio bigger than one.

The following proposition reduce the classification to those of primitive centered regular
lattice polytope.

PROPOSITION 2.1.

(i) Let P be a lattice polytope. There exits g € H such that g(P) is a primitive centered
lattice polytope.

(ii) Conversely, if g € H and Py, Py are two primitive centered lattice polytopes such that
g(Py) = P, then g € GL(A).

Proof. The first point is obvious. For the second one, note that if g € H then there exists
r € Q such that r g (A) = A. Then let g € H, Py, P> be such g(P;) = Py. As Py and P, are
centered, we have g(0) = O i.e. g = . So, we deduce there exist r € Q and h € GL(A) such
that 7.h(P;) = P,. But as P; and P, are primitive, so r = 1. O

From now on, we want to classify the primitive centered regular lattice polytopes up to the
action of GL(A).
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3. Root systems

For root systems, we will use the notation of [Bou02]. Let P be a regular lattice polytope
in Ap. For each edge a of P with vertices s; and so we consider the subgroup R.5755 N A of A
and its two generators +u,. When a runs over all the edges of P, the +u, form a finite subset
®(P) of A.

ProOPOSITION 3.1. The subset ®(P) of Ag is a reduced root system.

Proof. 1t is clear that ®(7P) is finite, does not contain zero, spans Ag and Z.aN®(P) = {+a}
for any a € ®(P).

Let a € ®(P) and two vertices s1 and s2 on an edge a parallel to a. Consider a complete
flag Dy of P starting with s; and a. Let Dy be the complete flag of P with the same faces from
D except for the vertex which is s». Let o € Isom(P) such that o(D;) = D». It is clear that
@ is a reflection which maps ®(P) in ®(P) and a on —a.

Let 3 be another element of ®(P). The vector @ (3) — 3 is an element of A proportional to
a. Since a has been chosen primitive, @ (3) — 3 is an entire multiple of a. O

The root system ®(P) is said to be associated to P. We denote by A p and by Ag, respectively
the weight and root lattices of ®(P). We have:

PROPOSITION 3.2. The lattices A, Ag and Ap satisfy: Ap C A C Ap.

Proof. The inclusion Ag C A is true by definition of ®(P). Let @ € ®(P) and X € A.
We have to prove that < \,a" > belongs to Z, where " is the coroot associated to a. But,
0a(A) = A= < X,a" > a belongs to A. We can conclude since « is primitive on A. O

In the two following propositions, P is assumed to be centered in O. In this case, Isom(P)
is a subgroup of GL(A). Let Aut(®(P)) = {g € GL(Ag) | g.®(P) = ®(P)} denote the
automorphism group of ®(P) and W denote the Weyl group of ®(P). Note that Aut(®(P)) is
the semidirect product of W and the automorphisms of the Dynkin diagram of ®(P).

ProPOSITION 3.3. Let P be a centered regular lattice polytope. We have:
(i) W C Isom(P) C Aut(®(P)).

(ii) The lattice A is stable by Isom(P).

(iii) The root system ®(P) is homogeneous under Isom(P).

Proof. The inclusion W C Isom(P) is a direct consequence of the proof of Proposition 3.1.
The rest of the proposition is obvious. [l

The group Isom(P) acts transitively on the set of vertices of P; the following proposition
shows a little bit more:

ProprosITION 3.4. The regular lattice polytope P is assumed to be centered. The Weyl
group W acts transitively on the set of vertices of P.

Proof. Since any edge of P is parallel to a root of ®(P), any maximal cone of the dual fan
of P is an union of Weyl chambers. But, W acts transitively on the set of Weyl chambers. The
proposition follows. O
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A face of a regular polytope is a regular polytope. Here, one can say a little bit more:

PropPoOSITION 3.5. Let F be a face of a regular lattice polytope P and F' its direction.
Then, F is a regular lattice polytope with associated root system ®(P) N F.

Proof. We may assume that P is centered. It is clear that F is a regular lattice polytope
with root system ®(F) contained in ®(P) N F. Let a € ®(P) N F: we have to prove that « is
parallel to an edge of F.

We claim that the reflection o, of W associated to « stabilizes F. Let A be a point of F.
The vector o,(A) — A is collinear to a and so belongs to F. But, F = (A + F) N P; and so
04 (A) belongs to F.

Consider the kernel H, of o, — Id. Firstly, we assume that H, N F does not contain any
vertex. Then, there exists an edge a of F which intersects H,. Since a and o, (a) are edges of
F, we have a = 0, (a). In particular, a is parallel to a.

We now assume that s is a vertex of P in H,NF. Let b be an edge of F containing s. Let 3 be
a root parallel to b. This root [ is neither orthogonal neither collinear to «; so, Proposition 3.3
implies that ®(P) N Vect(a, 8) is a root system of type Ay. Changing eventually a by —a we
may assume that a + (3 is a root. One easily checks that o,45(b) is parallel to a. O

DEFINITION 3. If @ is a root system in the vector space E, a subsystem obtained from
® by intersecting ® with a linear subspace of E is called a Levi subsystem of ®. Note that
the Dynkin diagram of a Levi system is obtained from the first Dynkin diagram by removing
vertices and the adjacent edges.

4. Dual Polytope

In this section, we define two notions of the dual of a centered regular lattice polytope P.
Before, we recall the situation in the Euclidean case.

4.1. The real case

Let E be a finite dimensional real vector space. Let P be a convex polytope in E containing
0 in its interior. We denote by E* the dual of E and set:

P*={pec E"st. op > -1}

It is known that P* is a convex polytope, called dual of P. Moreover, P* contains 0 in its
interior and the dual P** of P* equals P modulo the natural identification between E and
E**. There is an inclusion-reversing combinatorial correspondence between the i-dimensional
faces of P and the (n — 1 —i)- dimensional faces of P*. In particular, if E is Euclidean and P
is regular, P* is regular too with an isomorphic isometry group.

Now, we assume that E is Euclidean, P is regular and the barycenter of the vertices of P is
0. Consider the convex hull PV of the barycenters of the facets of P. With the scalar product,
one may identify F and its dual: modulo this identification and under our assumptions P* are
PV are positively proportional. In particular, PV is regular with the same group as P and P"V
is positively proportional to P.

The two above constructions of the dual of a regular Euclidean polytope can be adapted to
regular lattice polytopes: but the two so obtained notions differ.
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4.2. The lattice case

The lattice A* := Hom(A,Z) is called the dual of A. Let P be a lattice polytope in E
containing 0 in its interior. Consider

Q={pe N @R st. gp > -1}

It is a convex polytope in A* ® R containing 0 in its interior. But, its vertices do not necessarily
belong to A* but only to A*®Q. We denote by P* the only primitive lattice polytope positively
proportional to ). This lattice polytope P* is called the x-dual of P.

Using the properties of P* in the real case, one deduces that if P is primitive P** = P and
that if P is centered regular so is P*.

Now, P is assumed to be a centered regular lattice polytope. There exist a unique positive
rational number & such that the barycenters of the vertices of the facets of k.P are primitive
vectors in A. We denote by PV and call V-dual of P the convex hull of these barycenters.

Since Isom(P) is finite, there exists a scalar product on Agr such that P is an Euclidean
regular polytope in Agp. Then, using the results stated in Section 4.1, one checks that if PV is
regular with the same group as P and that if moreover P is primitive then PVV = P.

The polytopes P* and PV are not equivalent. For example, in dimension two, the two
triangles are their own V-dual and the %-dual one of the other. In Table 1, we give the V-
dual and #-dual of each regular lattice polytope.

5. Classification

In this section, we will obtain the classification of the centered regular lattice polytopes.

Let us start by reducing the list of possible root systems. Let P be a primitive centered
regular lattice polytope in Ag of dimension n with associated root system ®. By Proposition 3.3
Aut(®) acts transitively on ®. This implies that & is the product of copies of an irreducible
simply laced root system ®,. Moreover, by Proposition 3.5, there exists a Levi subsystem ®' of
® of rank n—1 which is the root system of a regular lattice polytope Q with Isom(Q) contained
in the stabilizer of ®' in Isom(P). We deduce that either &5 = A; or ® is irreducible. Finally,
the type of ® is

A’?7 A’I’l7 Dn7 EG7 E7 or ES- (51)

Conversely, let ® be a root system in the above list. Let us choose a set of simple roots of
®. By Proposition 3.4, the vertices of a centered primitive lattice polytope P with associated
root system ® are the orbit by W of a unique dominant vertex sq in Ap. Such of polytope P
is also given with a sublattice A of Ap containing A . Moreover, the polytope P is completely
determined by @, so and A. Finally, the polytopes obtained from a pair (s, A) and its image
by an automorphism of ® are equivalent. In Sections 5.1 to 5.4, for each possible ® we give all
the possible pairs (sg, A) up to the action of Aut(®).

The last step consists to show that each given triple (®,s¢, A) gives really a regular lattice
polytope. One has to check that the stabilizer of A in Aut(®) acts transitively on the complete
flags of the convex hull P of W.sq and that @ is the root system of P. The first verification can
be made by checking the equality of the cardinality of Isom(P) and the set of complete flags
of P. Using the action of Isom(P) the second is equivalent to check that one root is primitive
on one edge of P. Thereafter, these verifications are left to the reader.
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5.1. Root System A}

Here, we assume that the root system ® associated to the primitive centered regular lattice
polytope P is of type A}. Let wi,...,w, be a set of fundamental weights of ®. Then, Ap =
Zwi ® ... 070w, and Ap =Z.2u1 ® ... P Z.2w,. Let k; € Z~q such that the unique dominant
vertex sp is ) kjw;. By the action of W, the vertices of P are the ) . +k;w;. In particular,
P has n!2" complete flags and Isom(P) = Aut(®). This implies that all the k;’s are equal:
so = k.>;w;. Reciprocally, Aut(P) acts transitively on the set of flags of the convex hull of
the k. 21 :i:wz-.

Now, we have to determine the possible lattices A. Necessarily, A/Ag is a subgroup of
Ap/AR ~ (Z/2Z)" stable by the action of Aut(®) acting on (Z/27Z)" by permutations. By using
for example the canonical bijection between (Z /2Z)" and the set of the subsets of {1,...,n},
one easily checks that the only possibilities for A are:

(1) A= AR:

(i) A={>, kiw; | k; all even or all odd},

(ili) A={>, kiwi | >, ki even},

(IV) A == AP.

But, the edges of the polytopes obtained with A = Ap are parallel to the w;’s; so, the root
system of P is {f+w;} which is a contradiction. Moreover, for n = 2, the second and third
lattices equals. So, we obtain two primitive squares in dimension 2, and three primitive cubes
for each dimension n > 3.

In Table 1, for each choice of A, we give a notation for the class of the corresponding cube
C, the vertex sq, the cardinalities of C N A and of the intersection of C and an edge of A. We
also give the class of the facets of C and of its V and % duals. All these results are obtained by
direct calculations and prove that these cubes are indeed non equivalent.

5.2. Root System D,

For convenience, we set D1 = Ay, Dy = A; X A7 and D3 = As. Moreover, we do not number
the vertex of the Dynkin diagram of D3 as those of A3 but as follows:
2

3

Let C™ be one of the cubes obtained in the preceding section with n > 2. Its x-dual polytope
CC" is a primitive regular centered lattice polytope with 2n vertices and Isom(CC™) isomorphic
to Aut(A7). We deduce that the root system of CC" is of type D,, and Isom(CC"™) = Aut(D,,),
for any n > 2.

Since the facets of a cube are cubes, the stabilizer of sq in Aut(D,) is isomorphic to
Aut(D,,_1); then, we may assume that sq = k.w; for a positive integer k.

The lattice A must be stable by the action of Aut(D,_1); there are three possibilities (for
n > 3 and with notation of [Bou02]):

(1) A= AR:
(i) A =@, Ze;,
(iii) A = Ap.

So, we obtain three cocubes for each n > 3 (see Table 1).
For n = 2, the two squares are *-dual one of the other; in particular, the cosquares are squares.

Now, let P be a primitive centered regular lattice polytope with root system D,, (n > 4)
which is not a cocube. Using Proposition 3.3 one obtains that the root system of PV is D,
too. The stabilizer of the dominant vertex so in W is the stabilizer in W of a facet of PV.
By Proposition 3.5 it is the Weyl group of a Levi subsystem of & which is the root system
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associated to a regular polytope of dimension n — 1. We can deduce that n > 5 and sg = k.w,
or sg = k.wn_1,0r n =4 and s¢ is the multiple of any fundamental weight.

For n > 5, the two cases are equivalent using the action of Aut(®). We claim that the
convex hull Q of W.kw,, 1 is not a regular polytope. In an adapted base (e1,...,e,) of A, the
vertices of Q are the )", §;e; with §; = £1 and IIé; = 1. Let (x,...,x,) denote the dual base
of (e1,...,en). Consider the two linear forms ¢ = xy + ...+ z,_1 — x, and ¢ = x1. The affine
hyperplane ¢ = n — 2 define a facet of Q which is a simplex. But ¢ = 1 is a facet with 272
vertices. So, Q is not regular since n > 5.

For n = 4, the three fundamental weights w;, w3 and w4 are equivalent modulo Aut(Dy)
and give the cocubes. Consider the case so = k.ws. Since wy is the longest root, £k = 1 and the
vertices of the convex hull P of W.wy are the 24 roots of Dy and Isom(P) = Aut(Dy).

Let (z1,...,z4) be the dual basis of (e1,...,e4) (with notation of [Bou02]). One easily
checks that the affine hyperplane > x; = 2 defines a facet of P which is a regular cocube. By
the action of Aut(D,), one obtains the 24 facets:

72<’I‘1+’I‘2+’I‘q+’1‘4 SQ,
1<z, <1l fori=1,...,4
*2<Z7¢T] x; <2 fori=1,...,4,
-z +z; —xp+a <2, for {i,j,k l}—{l 2,3,4Yand i <jand k <.
In particular, P is regular.

Moreover, Ap/Ag is isomorphic to Z /27 x 7 /27 and the only lattices A stable by Aut(Dy)
such that Ap C A C Ap are Ap and Ag. So, we obtain two classes of centered primitive regular
lattice polytopes called 24-cells polytopes. We denote by D} those obtained with A = Ap and
D3 those obtained with A = Ag.

The dominant weights in P are: wsy, wy, ws, w4, w1 + w3 and 0. By acting W we deduce that
PN Ap contains 24 + 6+ 6 + 6 + 32 + 1 = 81 points and P N Ag contains 24 + 1 = 25 points.
This gives the cardinality of D} N A, for i = 1 and 2.

Since the two 24-cells are the only lattice regular polytopes in dimension four with isomor-
phism group Au‘r(D4) the V-dual of Dj is either D3 or itself. But, the barycenter of the facet
Z z; = 2NP is r Z €; = wy and belongq to Ap. We deduce ‘rha‘r the dual D4 contains
strictly less points of A than D!. Finally, D} = D4 and D4’ = D1,

REMARK 1. In this section, we have considered the cocubes for any n > 2. But, the others
polytopes with associated root systems of type D,, have only be considered when n > 4. The
case n = 2 has been made in Section 5.1 and those with n = 3 will be considered in Section 5.3.

5.3. Root system A,

Consider a primitive centered regular lattice polytope P with root system ® of type A,
with n > 3. Because of the orders of the Weyl groups, the root system of PV cannot be of type
E,. So, we may assume that the root system of PV is also of type A,; if not, we have already
meet P.

By Proposition 3.5, the stabilizer of sy which is the stabilizer of a facet of PV in Isom(P)
must contains the Weyl group of a root system of type A,,_1 or A; x Ay for n = 3. This implies
that if n > 4 then s equals k.wy or k.w,, if n = 3 then s¢ is a fundamental weight and implies
no restriction on sq if n = 2.

Firstly, we assume that sq is neither proportional to wy or w,.

Let us fix n = 2. Under our assumption, P is an hexagon and Isom(P) = Aut(Az). We
deduce that sg = k.(w1 + w2): this gives two regular hexagons obtained with A equal to Ag
and Ap.
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If n = 3, our assumption implies that sy = k.w2. So, we obtain the three cocubes considered
in Section 5.2.

We now assume that sg is proportional to w;. The case when sg is proportional to w,, is
equivalent up to Aut(®). The polytope P is the convex hull of W.k.w; that is of the k.;’s. In
particular, P is a simplex and is regular with Isom(P) = W.

The lattice A can be any lattice between Ar and Ap. Since Ap/Ag ~Z/(n+ 1)Z, for each
divisor d of n + 1 we have exactly one Ay such that Ap/Ay ~ 7Z/dZ. For Ay and k =d, P is a
primitive simplex denoted by S7. Direct calculation shows that the edges of S} contain d + 1
points. In particular they are pairwise non isomorphic.

The cardinality of S N A is a little bit complicated to express. For any 7 € Z/(n+ 1)Z, we
denote by ¢(r) the cardinality of the following set

Then, one easily checks that the cardinality of S} N A is

Z e(7).

r€Z/(n+1)Z

It would be interesting to simplify this formula !

5.4. Root systems E,

By absurd, we will prove that there is no regular lattice polytope P with root system of
type Eg. We may assume that P is primitive and centered. Since the Weyl group of Fg is
contained in no automorphism group of a root system of rank 6 in List 5.1, the root system
of PV is necessarily Eg. Moreover the root system of a face of P is either D5 or As. The first
case is not possible because the regular polytopes with Dy as root systems have Aut(Dj5) as
isomorphism group. But, Aut(Ds) is not contained in the stabilizer of D5 in Aut(Eg). In the
second case, one has necessarily s = wo that is the longest root. So, the vertices of P are the
roots of Fg. By Proposition 3.5, P has a facet parallel to the Levi subsystem of type A5 that
is orthogonal to the fundamental weight w-. Moreover, the scalar product with ws of a root is
either —2, —1, 0, 1 or 2; and, the values £2 are reached once each one (see the table of Eg in
[Bou02]). This is a contradiction.

The same argument shows that there is no regular lattice polytope with root system of type
FE; and Eg.

6. Description of the regular lattice polytopes

In the following tabular, for each primitive centered regular lattice polytope P, we give
a notation, its root system, the group Isom(P) its lattice A, its dominant vertex sg, the
cardinalities of P N A, the number of points in A on an edge of P, primitive centered regular
lattice polytope equivalent to the facets of P and the duals of PV and P*. All these elements
allow us to distinguish two non isomorphic lattice polytopes.

Proofs are given in the preceding section, the others are simple calculation left to the reader.

REMARK 2. In even dimension more than four, there exist three classes of cocube. Two of
these three cocubes have the same simplex as facet and the third another one. In contradiction
in [Kar06], the three cocubes have the same simplex as facet.

3
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Type [ Tsom Not. A s0 Card. Edges Facet PV P
. A, W(®) ~ St AR CACAp ) see o1 " "
Simplex n>2 Sot for d (n+1). with #(Ap/A) = d. daoy Sect 5.3 d+1 S Si S"Tl

cr Ag 25 w;i 3" 3 eyt ces cey
m Aut(d) cy ki = kj mod 2 Ywi 2"+1 2 et CCy CCy
Cubes nA>1 9 ~ C2 for n even S wi I 2
= (Z)22)" x £, > k; even et CCY cCY
€Y for n odd 2) w; S 3
cer Ag 2wy 4n? +1 3 N oy cr
D Aut(®) cey @, Ze;i w 2 +1 2 Spt cp cr
Cocubes >"’,; ~ CCy for n even S:;/;]
ner (Z)27)" x %, Ap w M +1 2 o cx
CCy for n odd Snt
Aut (‘I)) 5 9 9
) - Hi Ar I 7 5 Hi
Hexagon Ay 5 2 Ap wi 4wy 13 2 i i
6
, A“*N(@ D! Ar 25 ccd D D!
24-cell D, ~ i Wy 2 3 1 i
(0 1 2279 55 D Ap 81 cc D! D!

T . . e . . . D 9V >
Remark: We have the following exeptional equalities in dimension two: C3 = C3 and €7 = C3.

Table 1: List of the centered primitive regular lattice polytopes
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