
Submitted exlusively to the London Mathematial Soietydoi:10.1112/0000/000000REGULAR LATTICE POLYTOPES AND ROOT SYSTEMSPIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYREAbstratConsider a lattie in a real �nite dimensional vetor spae. Here, we are interested in the lattie polytopes,that is the onvex hulls of �nite subsets of the lattie. Consider the group G of the aÆne real transformationswhih map the lattie onto itself. Replaing the group of Eulidean motions by the group G one an de�ne thenotion of regular lattie polytopes. More preisely, a lattie polytope is said to be regular if the subgroup of Gwhih preserves the polytope ats transitively on the set of its omplete ags. Reently, Karpenkov obtained alassi�ation of the regular lattie polytopes. Here we obtain this lassi�ation by using root systems.1. IntrodutionLet � be a lattie in a real �nite dimensional vetor spae V . Here, we are interested in thelattie polytopes, that is the onvex hulls of �nite subsets of �. Consider the group G of theaÆne real transformations whih map � onto itself. Replaing the group of Eulidean motionsby the group G in the de�nition of regular polytopes, one an de�ne the notion of regularlattie polytopes. More preisely, for a lattie polytope P , we denote by Isom(P) the subgroupof G whih preserves P and P is said to be a regular lattie polytope if the group Isom(P)ats transitively on the set of omplete ags of P .The goal of this paper is to lassify the lattie regular polytopes up to G and homotheties(see Setion 2). Sine Isom(P) is �nite, there exists an invariant salar produt on V , andso P is an ordinary regular polytope. So, in a sense, there are less lattie regular polytopesthan ordinary ones. But, the lattie equivalene relation is �ner than the Eulidean one. Forexample, there are two non equivalent lattie regular triangles (see Figure 2). More generally,there are �(n+1) lattie regular simplies of dimension n, where �(n+1) denotes the numberof divisors of n+ 1.The lassi�ation in question has already been obtained by Karpenkov in [Kar06℄: for eahordinary regular polytope he studies the possibilities to realize it as a lattie polytope. Ourapproah is ompletely di�erent. For example, we do not use the Eulidean lassi�ation ofregular polytopes but those simpler and more entral in mathematis of root systems. Ourmethod seem to be enlightening: for example, the �(n+1) simplies are anonially assoiatedto the �(n+ 1) subgroups of Z=(n+ 1)Z.Let us explain our approah in more detail. Firstly, we assoiate in a very natural way aredued simply laed root system (not neessarily irreduible) to any regular lattie polytopeP . Then onsidering the faes of P , we even show that the only possible root systems are oftype An, Dn, E6; E7; E8 and (A1)n (later, we show that the exeptional root systems do notour). Conversely, we �x suh a root system � and seek all the regular lattie polytopes Pwith � as assoiated root system. Suh a polytope is haraterized up to isomorphism by alattie between the root lattie and the weight lattie, and a dominant weight. We obtain inthis way the list presented in Table 1.A lassial tool in the study of the Eulidean regular polytopes is the notion of duality. Inour ontext, we also use this idea. Surprisingly, we show that there exist two di�erent notionsof duality for the regular lattie polytopes (see Setion 4).2000 Mathematis Subjet Classi�ation 00000.



2 PIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYREFor the onveniene of the reader we also present below the regular lattie polytopes ofdimension two in Figures 1, 2 and 3. In eah �gure, we have two latties: the intersetion ofthe gray lines and the marked points. These latties are the weight latties �P and the rootlatties �R of of the root system A2 in the two �rst ase and A1 � A1 in the last one. InFigure 1, we have drawn an hexagon whih an be onsidered as a lattie polygon in �P or�R: this gives two lasses of regular hexagons. In Figure 3, the situation is similar with squaresinstead hexagons. In Figure 2, we have two triangles: the dashed one in �P and the other onein �R. The result in dimension 2 asserts that up to evident equivalene (see Setion 2) the onlyregular lattie polygons are these 2 hexagons, these 2 triangles and these 2 squares.
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Fig. 1. Two Hexagons b
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Fig. 2. Two Triangles b
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bFig. 3. Two SquaresNote that there is a more lassial way to lassify Eulidean regular polytopes by assoiatinga root system (without the ristallographi ondition) to eah Eulidean regular polytope (seefor example [FR05℄); in this assoiation the Weyl group of the root system is the isometrygroup of the polytope. Our onstrution is di�erent; for example, the root system assoiatedto the square is of type B2 in the lassial ase, while here we assoiate the root system oftype A1 � A1 to the squares. Note that using the lassi�ation of root systems without theristallographi ondition (see for example [Hum90℄) and the method of this artile, one anobtain a new proof of the lassi�ation of Eulidean regular polytopes.Finally we briey mention the well-known link between onvex polytopes and algebraigeometry. We do not use this link but our inspiration for some results are of geometri origin.To eah lattie polytope P one an assoiate a tori varietyXP with T as torus, see for example[Oda88℄. The polytope P is regular if and only if the group of regular tori automorphismsof XP ats transitively on the set of the maximal hains of irreduible T -stable subvarietiesof XP . In [Pro90℄, Proesi onsider the tori variety X� assoiated to the deomposition inWeyl hambers of the root system �. Our �rst results(see Proposition 3.4) an be translatedin the following way: there exists an equivariant surjetive morphism from X� onto XP if � isthe root system assoiated to the regular lattie polytope P .Convention. In this paper, we only onsider non degenerated polytopes that is whih spanthe ambient real aÆne spae. 2. An equivalene relationLet � be a free abelian group of rank n. Let �̂ be a set with a free transitive ation of �denoted by: m + z for any m 2 �̂ and z 2 �. Suh a set �̂ is alled a �-aÆne spae. A mapf : �̂ �! �̂ is said to be aÆne if there exists a group morphism �!f : � �! � suh thatf(m+ z) = f(m) +�!f (z).Let GL(�) ' GLn(Z) denote the automorphism group of � and GA(�̂) be the group ofbijetive aÆne maps of �̂. We have the following split exat sequene:



REGULAR LATTICE POLYTOPES AND ROOT SYSTEMS 31 �! � �! GA(�̂) �! GL(�) �! 1:Consider �R := �
R and its aÆne spae �̂R := m+�R (for any m 2 �̂). Now, �̂ is a lattiein �̂R and GA(�̂) is the subgroup of the isomorphism group GA(�̂R) of �̂R of the elementswhih map �̂ onto itself.A lattie polytope P is the onvex hull in �̂R of a �nite subset of �̂. SetIsom(P) = fg 2 GA(�̂) j gP = Pg:A lattie polytope P is said to be regular if Isom(P) ats transitively on the set of ompleteags of P . We want to lassify the regular polytopes modulo GA(�̂) of ourse, but there isanother redution. We note that if h is a homothety of enter in �̂ and integer ratio then hnormalize GA(�̂) and if P is a regular lattie polytope so is h(P). Finally we want to lassifythe regular lattie polytopes up to the group generated by GA(�̂) and the homotheties ofenter in �̂ and integer ratio. So we de�ne:Definition 1. We denote H the subgroup of GA(�̂R) generated by GA(�̂) and the homo-theties of enter in �̂ and integer ratio.Atually, this group doesn't ats on the set of lattie polytopes, but on those with rationalverties. Nevertheless, this group de�nes a equivalene relation on the lattie polytopes. Our�rst redution is to hoose a ommon origin for the polytopes. More preisely let us �x anorigin O in �̂; now, one an identify � and �̂, and embed GL(�) in GA(�̂)). Now we an de�ne:Definition 2. We all a lattie polytope entered if its baryenter is O; it is said to beprimitive if it is not the image of another polytope by an homothety of enter O and of integerratio bigger than one.The following proposition redue the lassi�ation to those of primitive entered regularlattie polytope.Proposition 2.1.(i) Let P be a lattie polytope. There exits g 2 H suh that g(P) is a primitive enteredlattie polytope.(ii) Conversely, if g 2 H and P1;P2 are two primitive entered lattie polytopes suh thatg(P1) = P2, then g 2 GL(�).Proof. The �rst point is obvious. For the seond one, note that if g 2 H then there existsr 2 Q suh that r�!g (�) = �. Then let g 2 H;P1;P2 be suh g(P1) = P2. As P1 and P2 areentered, we have g(O) = O i.e. g = �!g . So, we dedue there exist r 2 Q and h 2 GL(�) suhthat r:h(P1) = P2. But as P1 and P2 are primitive, so r = 1.From now on, we want to lassify the primitive entered regular lattie polytopes up to theation of GL(�).



4 PIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYRE3. Root systemsFor root systems, we will use the notation of [Bou02℄. Let P be a regular lattie polytopein �R. For eah edge a of P with verties s1 and s2 we onsider the subgroup R:��!s1s2 \ � of �and its two generators �ua. When a runs over all the edges of P , the �ua form a �nite subset�(P) of �.Proposition 3.1. The subset �(P) of �R is a redued root system.Proof. It is lear that �(P) is �nite, does not ontain zero, spans �R and Z:�\�(P) = f��gfor any � 2 �(P).Let � 2 �(P) and two verties s1 and s2 on an edge a parallel to �. Consider a ompleteag D1 of P starting with s1 and a. Let D2 be the omplete ag of P with the same faes fromD1 exept for the vertex whih is s2. Let � 2 Isom(P) suh that �(D1) = D2. It is lear that�!� is a reetion whih maps �(P) in �(P) and � on ��.Let � be another element of �(P). The vetor �!� (�)� � is an element of � proportional to�. Sine � has been hosen primitive, �!� (�) � � is an entire multiple of �.The root system �(P) is said to be assoiated to P . We denote by �P and by �R, respetivelythe weight and root latties of �(P). We have:Proposition 3.2. The latties �, �R and �P satisfy: �R � � � �P .Proof. The inlusion �R � � is true by de�nition of �(P). Let � 2 �(P) and � 2 �.We have to prove that < �; �_ > belongs to Z, where �_ is the oroot assoiated to �. But,��(�) = �� < �; �_ > � belongs to �. We an onlude sine � is primitive on �.In the two following propositions, P is assumed to be entered in O. In this ase, Isom(P)is a subgroup of GL(�). Let Aut(�(P)) = fg 2 GL(�R) j g:�(P) = �(P)g denote theautomorphism group of �(P) and W denote the Weyl group of �(P). Note that Aut(�(P)) isthe semidiret produt of W and the automorphisms of the Dynkin diagram of �(P).Proposition 3.3. Let P be a entered regular lattie polytope. We have:(i) W � Isom(P) � Aut(�(P)).(ii) The lattie � is stable by Isom(P).(iii) The root system �(P) is homogeneous under Isom(P).Proof. The inlusion W � Isom(P) is a diret onsequene of the proof of Proposition 3.1.The rest of the proposition is obvious.The group Isom(P) ats transitively on the set of verties of P ; the following propositionshows a little bit more:Proposition 3.4. The regular lattie polytope P is assumed to be entered. The Weylgroup W ats transitively on the set of verties of P .Proof. Sine any edge of P is parallel to a root of �(P), any maximal one of the dual fanof P is an union of Weyl hambers. But, W ats transitively on the set of Weyl hambers. Theproposition follows.



REGULAR LATTICE POLYTOPES AND ROOT SYSTEMS 5A fae of a regular polytope is a regular polytope. Here, one an say a little bit more:Proposition 3.5. Let F be a fae of a regular lattie polytope P and F its diretion.Then, F is a regular lattie polytope with assoiated root system �(P) \ F .Proof. We may assume that P is entered. It is lear that F is a regular lattie polytopewith root system �(F) ontained in �(P) \ F . Let � 2 �(P) \ F : we have to prove that � isparallel to an edge of F .We laim that the reetion �� of W assoiated to � stabilizes F . Let A be a point of F .The vetor ��(A) � A is ollinear to � and so belongs to F . But, F = (A + F ) \ P ; and so��(A) belongs to F .Consider the kernel H� of �� � Id. Firstly, we assume that H� \ F does not ontain anyvertex. Then, there exists an edge a of F whih intersets H�. Sine a and ��(a) are edges ofF , we have a = ��(a). In partiular, a is parallel to �.We now assume that s is a vertex of P in H�\F . Let b be an edge of F ontaining s. Let � bea root parallel to b. This root � is neither orthogonal neither ollinear to �; so, Proposition 3.3implies that �(P) \ Vet(�; �) is a root system of type A2. Changing eventually � by �� wemay assume that �+ � is a root. One easily heks that ��+�(b) is parallel to �.Definition 3. If � is a root system in the vetor spae E, a subsystem obtained from� by interseting � with a linear subspae of E is alled a Levi subsystem of �. Note thatthe Dynkin diagram of a Levi system is obtained from the �rst Dynkin diagram by removingverties and the adjaent edges. 4. Dual PolytopeIn this setion, we de�ne two notions of the dual of a entered regular lattie polytope P .Before, we reall the situation in the Eulidean ase.4.1. The real aseLet E be a �nite dimensional real vetor spae. Let P be a onvex polytope in E ontaining0 in its interior. We denote by E� the dual of E and set:P� = f' 2 E� s:t: 'jP � �1g:It is known that P� is a onvex polytope, alled dual of P . Moreover, P� ontains 0 in itsinterior and the dual P�� of P� equals P modulo the natural identi�ation between E andE��. There is an inlusion-reversing ombinatorial orrespondene between the i-dimensionalfaes of P and the (n� 1� i)- dimensional faes of P�. In partiular, if E is Eulidean and Pis regular, P� is regular too with an isomorphi isometry group.Now, we assume that E is Eulidean, P is regular and the baryenter of the verties of P is0. Consider the onvex hull P_ of the baryenters of the faets of P . With the salar produt,one may identify E and its dual: modulo this identi�ation and under our assumptions P� areP_ are positively proportional. In partiular, P_ is regular with the same group as P and P__is positively proportional to P .The two above onstrutions of the dual of a regular Eulidean polytope an be adapted toregular lattie polytopes: but the two so obtained notions di�er.



6 PIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYRE4.2. The lattie aseThe lattie �� := Hom(�;Z) is alled the dual of �. Let P be a lattie polytope in Eontaining 0 in its interior. ConsiderQ = f' 2 �� 
 R s:t: 'jP � �1g:It is a onvex polytope in ��
R ontaining 0 in its interior. But, its verties do not neessarilybelong to �� but only to ��
Q. We denote by P� the only primitive lattie polytope positivelyproportional to Q. This lattie polytope P� is alled the �-dual of P .Using the properties of P� in the real ase, one dedues that if P is primitive P�� = P andthat if P is entered regular so is P�.Now, P is assumed to be a entered regular lattie polytope. There exist a unique positiverational number k suh that the baryenters of the verties of the faets of k:P are primitivevetors in �. We denote by P_ and all _-dual of P the onvex hull of these baryenters.Sine Isom(P) is �nite, there exists a salar produt on �R suh that P is an Eulideanregular polytope in �R. Then, using the results stated in Setion 4.1, one heks that if P_ isregular with the same group as P and that if moreover P is primitive then P__ = P .The polytopes P� and P_ are not equivalent. For example, in dimension two, the twotriangles are their own _-dual and the �-dual one of the other. In Table 1, we give the _-dual and �-dual of eah regular lattie polytope.5. Classi�ationIn this setion, we will obtain the lassi�ation of the entered regular lattie polytopes.Let us start by reduing the list of possible root systems. Let P be a primitive enteredregular lattie polytope in �R of dimension n with assoiated root system �. By Proposition 3.3Aut(�) ats transitively on �. This implies that � is the produt of opies of an irreduiblesimply laed root system �0. Moreover, by Proposition 3.5, there exists a Levi subsystem �0 of� of rank n�1 whih is the root system of a regular lattie polytope Q with Isom(Q) ontainedin the stabilizer of �0 in Isom(P). We dedue that either �0 = A1 or � is irreduible. Finally,the type of � is An1 ; An; Dn; E6; E7 or E8: (5.1)Conversely, let � be a root system in the above list. Let us hoose a set of simple roots of�. By Proposition 3.4, the verties of a entered primitive lattie polytope P with assoiatedroot system � are the orbit by W of a unique dominant vertex s0 in �P . Suh of polytope Pis also given with a sublattie � of �P ontaining �R. Moreover, the polytope P is ompletelydetermined by �, s0 and �. Finally, the polytopes obtained from a pair (s0; �) and its imageby an automorphism of � are equivalent. In Setions 5.1 to 5.4, for eah possible � we give allthe possible pairs (s0;�) up to the ation of Aut(�).The last step onsists to show that eah given triple (�; s0;�) gives really a regular lattiepolytope. One has to hek that the stabilizer of � in Aut(�) ats transitively on the ompleteags of the onvex hull P of W:s0 and that � is the root system of P . The �rst veri�ation anbe made by heking the equality of the ardinality of Isom(P) and the set of omplete agsof P . Using the ation of Isom(P) the seond is equivalent to hek that one root is primitiveon one edge of P . Thereafter, these veri�ations are left to the reader.



REGULAR LATTICE POLYTOPES AND ROOT SYSTEMS 75.1. Root System An1Here, we assume that the root system � assoiated to the primitive entered regular lattiepolytope P is of type An1 . Let !1; : : : ; !n be a set of fundamental weights of �. Then, �P =Z!1� : : :�Z!n and �R = Z:2!1� : : :�Z:2!n. Let ki 2 Z>0 suh that the unique dominantvertex s0 is P ki!i. By the ation of W , the verties of P are the Pi�ki!i. In partiular,P has n!2n omplete ags and Isom(P) = Aut(�). This implies that all the ki's are equal:s0 = k:Pi !i. Reiproally, Aut(P) ats transitively on the set of ags of the onvex hull ofthe k:Pi�!i.Now, we have to determine the possible latties �. Neessarily, �=�R is a subgroup of�P =�R ' (Z=2Z)n stable by the ation of Aut(�) ating on (Z=2Z)n by permutations. By usingfor example the anonial bijetion between (Z=2Z)n and the set of the subsets of f1; : : : ; ng,one easily heks that the only possibilities for � are:(i) � = �R,(ii) � = fPi ki!i j ki all even or all oddg,(iii) � = fPi ki!i j Pi ki eveng,(iv) � = �P .But, the edges of the polytopes obtained with � = �P are parallel to the !i's; so, the rootsystem of P is f�!ig whih is a ontradition. Moreover, for n = 2, the seond and thirdlatties equals. So, we obtain two primitive squares in dimension 2, and three primitive ubesfor eah dimension n � 3.In Table 1, for eah hoie of �, we give a notation for the lass of the orresponding ubeC, the vertex s0, the ardinalities of C \ � and of the intersetion of C and an edge of �. Wealso give the lass of the faets of C and of its _ and � duals. All these results are obtained bydiret alulations and prove that these ubes are indeed non equivalent.5.2. Root System DnFor onveniene, we set D1 = A1, D2 = A1�A1 and D3 = A3. Moreover, we do not numberthe vertex of the Dynkin diagram of D3 as those of A3 but as follows:1 23Let Cn be one of the ubes obtained in the preeding setion with n � 2. Its �-dual polytopeCCn is a primitive regular entered lattie polytope with 2n verties and Isom(CCn) isomorphito Aut(An1 ). We dedue that the root system of CCn is of type Dn and Isom(CCn) = Aut(Dn),for any n � 2.Sine the faets of a ube are ubes, the stabilizer of s0 in Aut(Dn) is isomorphi toAut(Dn�1); then, we may assume that s0 = k:!1 for a positive integer k.The lattie � must be stable by the ation of Aut(Dn�1); there are three possibilities (forn � 3 and with notation of [Bou02℄):(i) � = �R,(ii) � =Li Z"i,(iii) � = �P .So, we obtain three oubes for eah n � 3 (see Table 1).For n = 2, the two squares are �-dual one of the other; in partiular, the osquares are squares.Now, let P be a primitive entered regular lattie polytope with root system Dn (n � 4)whih is not a oube. Using Proposition 3.3 one obtains that the root system of P_ is Dntoo. The stabilizer of the dominant vertex s0 in W is the stabilizer in W of a faet of P_.By Proposition 3.5 it is the Weyl group of a Levi subsystem of � whih is the root system



8 PIERRE-LOUIS MONTAGARD AND NICOLAS RESSAYREassoiated to a regular polytope of dimension n� 1. We an dedue that n � 5 and s0 = k:!nor s0 = k:!n�1, or n = 4 and s0 is the multiple of any fundamental weight.For n � 5, the two ases are equivalent using the ation of Aut(�). We laim that theonvex hull Q of W:k!n�1 is not a regular polytope. In an adapted base (e1; : : : ; en) of �R, theverties of Q are the Pi Æiei with Æi = �1 and �Æi = 1. Let (x1; : : : ; xn) denote the dual baseof (e1; : : : ; en). Consider the two linear forms � = x1 + : : :+ xn�1 � xn and  = x1. The aÆnehyperplane � = n � 2 de�ne a faet of Q whih is a simplex. But  = 1 is a faet with 2n�2verties. So, Q is not regular sine n � 5.For n = 4, the three fundamental weights !1, !3 and !4 are equivalent modulo Aut(D4)and give the oubes. Consider the ase s0 = k:!2. Sine !2 is the longest root, k = 1 and theverties of the onvex hull P of W:!2 are the 24 roots of D4 and Isom(P) = Aut(D4).Let (x1; : : : ; x4) be the dual basis of ("1; : : : ; "4) (with notation of [Bou02℄). One easilyheks that the aÆne hyperplane Pxi = 2 de�nes a faet of P whih is a regular oube. Bythe ation of Aut(D4), one obtains the 24 faets:{ �2 � x1 + x2 + x3 + x4 � 2,{ �1 � xi � 1, for i = 1; : : : ; 4,{ �2 �Pj 6=i xj � xi � 2, for i = 1; : : : ; 4,{ xi + xj � xk + xl � 2, for fi; j; k; lg = f1; 2; 3; 4g and i < j and k < l.In partiular, P is regular.Moreover, �P =�R is isomorphi to Z=2Z�Z=2Z and the only latties � stable by Aut(D4)suh that �R � � � �P are �P and �R. So, we obtain two lasses of entered primitive regularlattie polytopes alled 24-ells polytopes. We denote by D41 those obtained with � = �P andD42 those obtained with � = �R.The dominant weights in P are: !2, !1, !3, !4, !1+!3 and 0. By ating W we dedue thatP \ �P ontains 24 + 6 + 6 + 6 + 32 + 1 = 81 points and P \ �R ontains 24 + 1 = 25 points.This gives the ardinality of D4i \ �, for i = 1 and 2.Sine the two 24-ells are the only lattie regular polytopes in dimension four with isomor-phism group Aut(D4) the _-dual of D41 is either D42 or itself. But, the baryenter of the faetPi xi = 2 \ P is 12Pi "i = !4 and belongs to �P . We dedue that the dual D41_ ontainsstritly less points of � than D41. Finally, D41_ = D42 and D42_ = D41.Remark 1. In this setion, we have onsidered the oubes for any n � 2. But, the otherspolytopes with assoiated root systems of type Dn have only be onsidered when n � 4. Thease n = 2 has been made in Setion 5.1 and those with n = 3 will be onsidered in Setion 5.3.5.3. Root system AnConsider a primitive entered regular lattie polytope P with root system � of type Anwith n � 3. Beause of the orders of the Weyl groups, the root system of P_ annot be of typeEn. So, we may assume that the root system of P_ is also of type An; if not, we have alreadymeet P .By Proposition 3.5, the stabilizer of s0 whih is the stabilizer of a faet of P_ in Isom(P)must ontains the Weyl group of a root system of type An�1 or A1�A1 for n = 3. This impliesthat if n � 4 then s0 equals k:!1 or k:!n, if n = 3 then s0 is a fundamental weight and impliesno restrition on s0 if n = 2.Firstly, we assume that s0 is neither proportional to !1 or !n.Let us �x n = 2. Under our assumption, P is an hexagon and Isom(P) = Aut(A2). Wededue that s0 = k:(!1 + !2): this gives two regular hexagons obtained with � equal to �Rand �P .



REGULAR LATTICE POLYTOPES AND ROOT SYSTEMS 9If n = 3, our assumption implies that s0 = k:!2. So, we obtain the three oubes onsideredin Setion 5.2.We now assume that s0 is proportional to !1. The ase when s0 is proportional to !n isequivalent up to Aut(�). The polytope P is the onvex hull of W:k:!1 that is of the k:"i's. Inpartiular, P is a simplex and is regular with Isom(P) =W .The lattie � an be any lattie between �R and �P . Sine �P =�R ' Z=(n+ 1)Z, for eahdivisor d of n+ 1 we have exatly one �d suh that �P =�d ' Z=dZ. For �d and k = d, P is aprimitive simplex denoted by Snd . Diret alulation shows that the edges of Snd ontain d+ 1points. In partiular they are pairwise non isomorphi.The ardinality of Snd \ � is a little bit ompliated to express. For any � 2 Z=(n+ 1)Z, wedenote by (�) the ardinality of the following setfa1; : : : ; an+1 2 � \ N s:t: X ai = d(n+ 1)g:Then, one easily heks that the ardinality of Snd \ � isX�2Z=(n+1)Z(�):It would be interesting to simplify this formula !5.4. Root systems EnBy absurd, we will prove that there is no regular lattie polytope P with root system oftype E6. We may assume that P is primitive and entered. Sine the Weyl group of E6 isontained in no automorphism group of a root system of rank 6 in List 5.1, the root systemof P_ is neessarily E6. Moreover the root system of a fae of P is either D5 or A5. The �rstase is not possible beause the regular polytopes with D5 as root systems have Aut(D5) asisomorphism group. But, Aut(D5) is not ontained in the stabilizer of D5 in Aut(E6). In theseond ase, one has neessarily s0 = !2 that is the longest root. So, the verties of P are theroots of E6. By Proposition 3.5, P has a faet parallel to the Levi subsystem of type A5 thatis orthogonal to the fundamental weight !2. Moreover, the salar produt with !2 of a root iseither �2; �1; 0; 1 or 2; and, the values �2 are reahed one eah one (see the table of E6 in[Bou02℄). This is a ontradition.The same argument shows that there is no regular lattie polytope with root system of typeE7 and E8. 6. Desription of the regular lattie polytopesIn the following tabular, for eah primitive entered regular lattie polytope P , we givea notation, its root system, the group Isom(P) its lattie �, its dominant vertex s0, theardinalities of P \ �, the number of points in � on an edge of P , primitive entered regularlattie polytope equivalent to the faets of P and the duals of P_ and P�. All these elementsallow us to distinguish two non isomorphi lattie polytopes.Proofs are given in the preeding setion, the others are simple alulation left to the reader.Remark 2. In even dimension more than four, there exist three lasses of oube. Two ofthese three oubes have the same simplex as faet and the third another one. In ontraditionin [Kar06℄, the three oubes have the same simplex as faet.
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Type � Isom Not. � s0 Card. Edges Faet P_ P�Simplex Ann � 2 W (�) '�n+1 Sndfor dj(n+ 1). �R � � � �Pwith #(�P =�) = d. d!1 seeSet 5.3 d+ 1 Sn�1n Snd Snn+1dCubes An1n � 2 Aut(�)'(Z=2Z)nn�n Cn1Cn28<: Cn3 for n evenCn3 for n odd �Rki � kj mod 2P ki even 2P!iP!iP!i2P!i 3n2n + 13n+125n�12 3223 Cn�11Cn�11Cn�13 CCn2CCn3CCn1 CCn2CCn3CCn1Coubes Dnn � 3 Aut(�)'(Z=2Z)nn�n CCn1CCn28<: CCn3 for n evenCCn3 for n odd �RLiZ"i�P 2!1!1!1 4n2 + 12n+ 12n+ 1 322 Sn�1nSn�1nSn�1n=2Sn�1n Cn3Cn1Cn2 Cn3Cn1Cn2Hexagon A2 Aut(�)'D6 H21H22 �R�P !1 + !2 713 2 H22H21 H21H2224-ell D4 Aut(�)'(�4 nZ=2Z3)n�3 D41D42 �R�P !2 2581 2 CC31CC32 D42D41 D41D42Remark: We have the following exeptional equalities in dimension two: C22 = C23 and C21_ = C22 .Table 1: List of the entered primitive regular lattie polytopes


