Mémo sur les matrices

Soit K un corps.

1 Matrices

Soit p et q deux entiers naturels non nuls. On note $M_{pq}(K)$ l'ensemble des matrices à p lignes et q colonnes. On sait additionner deux éléments de $M_{pq}(K)$ et multiplier un tel élément par un scalaire : muni de ces deux opération $M_{pq}(K)$ devient un espace vectoriel.

Soit r un troisième entier naturel non nul. On définit alors le produit matriciel :

$$M_{pq}(K) \times M_{qr}(K) \longrightarrow M_{pr}(K)$$

par la formule suivante:

$$(AB)_{ij} = \sum_{k} A_{ik} B_{kj},$$

où $A \in M_{pq}(K)$, $B \in M_{qr}(K)$ et $AB \in M_{pr}(K)$. Nous avons volontairement omis de préciser où les indices vivent, car cela peut facilement être retrouvé en se souvenant de la taille des matrices A, B et AB. On obtient:

$$\forall 1 \le i \le p, \ 1 \le j \le r \quad (AB)_{ij} = \sum_{k=1}^{r} A_{ik} B_{kj}.$$

On remarquera que le produit AB n'est défini que si A a autant de colonnes que B a de lignes. On remarquera aussi que dans les formules

$$M_{pq}(K) \times M_{qr}(K) \longrightarrow M_{pr}(K)$$

et

$$\sum_{k} A_{ik} B_{kj} = (AB)_{ij},$$

on élimine les indices identiques consécutifs q et k respectivement. Cette règle mnémotechnique explique sans doute que l'on note toujours le nombre de (ou l'indice de la) lignes avant celui des colonnes.

On identifiera k^n et $M_{n1}(K)$. Ceci signifie que nous noterons les éléments de k^n comme des vecteurs colonnes c'est-à-dire des matrices à n lignes et 1 colonne. On pose aussi $M_n(K) = M_{nn}(K)$.

2 Matrice d'une application linéaire

2.1 Coordonnées d'un vecteur

Soit E un K-espace vectoriel de dimension finie. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

Soit x un vecteur de E. Il existe $x_1, \dots, x_n \in k$ uniques tels que

$$x = \sum_{i=1}^{n} x_i e_i.$$

Les scalaires x_i sont appelés les coordonnées de x. On pose

$$\operatorname{Mat}_{\mathcal{B}}(x) := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in k^n.$$

On obtient ainsi une correspondance bijective entre vecteurs de E et vecteurs colonnes. On dit aussi que \mathcal{B} induit un isomorphisme (ou une identification) entre E et k^n .

2.2 Matrice d'une application linéaire

Soit E et F deux K-espaces vectoriels de dimension finie. Soit $\mathcal{B} = (e_1, \dots, e_q)$ et $\mathcal{C} = (\varepsilon_1, \dots, \varepsilon_p)$ des bases de E et F respectivement.

Définition. On associe à chaque élément u de $\mathcal{L}(E, F)$ une matrice $\mathrm{Mat}_{\mathcal{C},\mathcal{B}}(u)$ à p lignes et q colonnes : la $j^{\text{lème}}$ colonne contient les coordonnées de $u(e_j)$ dans la base \mathcal{C} . Cette matrice est appelée matrice de u dans les bases \mathcal{B} et \mathcal{C} .

Attention à ne confondre $\operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u)$ et $\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)$. Dans la notation $\operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u)$, \mathcal{C} est la base de l'espace d'arrivée et \mathcal{B} de celui de départ. Pour s'en souvenir on pourra remarquer que cette notation est cohérente avec le fait que $\operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u)$ a p lignes et q colonnes.

Remarque. En fait, «l'inversion» dans la notation $Mat_{\mathcal{C},\mathcal{B}}(u)$ vient de notre notation pour la composée de deux applications. En effet, pour

calculer $f \circ g(x)$, on calcule d'abord g(x) puis f(g(x)). Ainsi, si $g: E \longrightarrow F$ et $f: F \longrightarrow G$ alors $f \circ g: E \longrightarrow F \longrightarrow G$!

À toute application linéaire u entre espaces munis de bases nous avons associé une matrice. Réciproquement, si $M \in \mathcal{M}_{pq}(K)$ on lui associe l'application linéaire

$$u_M: k^q \longrightarrow k^p, X \longmapsto MX.$$

2.3 Lien avec le produit de matrice

Le résultat suivant explique comment s'exprime u(x) en termes matriciels.

Théorème 1 Soit E et F deux K-espaces vectoriels de dimension finie. Soit $\mathcal{B} = (e_1, \dots, e_q)$ et $\mathcal{C} = (\varepsilon_1, \dots, \varepsilon_p)$ des bases de E et F respectivement. Soit $u \in \mathcal{L}(E, F)$ et $x \in E$. On a:

$$\operatorname{Mat}_{\mathcal{C}}(x) = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u)\operatorname{Mat}_{\mathcal{B}}(x).$$

On remarquera encore que les indices identiques consécutifs s'effacent.

Le théorème suivant dit que le produit matriciel correspond à la composition des applications linéaires:

Théorème 2 Soit E, F et G des K-espaces vectoriels de dimension finie et \mathcal{B}_E , \mathcal{B}_F et \mathcal{B}_G des bases de ces espaces vectoriels. Soit $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(F,G)$. On a:

$$\operatorname{Mat}_{\mathcal{B}_G,\mathcal{B}_F}(v).\operatorname{Mat}_{\mathcal{B}_F,\mathcal{B}_E}(u) = \operatorname{Mat}_{\mathcal{B}_G,\mathcal{B}_E}(v \circ u).$$

On remarque encore notre règle mnémotechnique préférée.

Remarque. Si $f \in \mathcal{L}(E)$, la matrice $\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$ est notée $\operatorname{Mat}_{\mathcal{B}}(f)$ et appelé matrice de f dans la base \mathcal{B} . Attention, il est également possible de rencontrer $\operatorname{Mat}_{\mathcal{B}_1,\mathcal{B}_2}(f)$ si \mathcal{B}_1 et \mathcal{B}_2 sont deux bases de E.

2.4 Matrices de l'identité

Soit E un K-espace vectoriel de dimension finie. Soient $\mathcal{B} = (e_1, \dots, e_n)$ et $\mathcal{C} = (\varepsilon_1, \dots, \varepsilon_n)$ deux bases de E. Soit maintenant x un vecteur de E. On peut exprimer ce vecteur dans les bases \mathcal{B} et \mathcal{C} : on obtient deux vecteurs

colonnes qui «représentent» x. On veut comprendre comment ces deux vecteurs $\operatorname{Mat}_{\mathcal{B}}(x)$ et $\operatorname{Mat}_{\mathcal{C}}(x)$ sont reliés. C'est la matrice de l'identité (!) qui va permettre de relier ces deux vecteurs colonnes.

Considérons $\operatorname{Mat}_{\mathcal{BC}}(\operatorname{Id})$ la matrice l'application linéaire $\operatorname{Id}:(E,\mathcal{C})\longrightarrow (E,\mathcal{B}), x\longmapsto x$. Les composantes de la $j^{\text{lème}}$ -colonne de $\operatorname{Mat}_{\mathcal{BC}}(\operatorname{Id})$ sont les coordonnées du vecteur ε_j dans la base \mathcal{B} .

Le théorème 1 appliqué à x = Id(x) donne:

$$\operatorname{Mat}_{\mathcal{B}}(x) = \operatorname{Mat}_{\mathcal{BC}}(\operatorname{Id}).\operatorname{Mat}_{\mathcal{C}}(x).$$
 (1)

Ainsi, la matrice $\operatorname{Mat}_{\mathcal{BC}}(\operatorname{Id})$ permet de passer des coordonnées de x dans la base \mathcal{C} à celles dans la base \mathcal{B} . On dit souvent que cette matrice est une matrice de passage.

2.5 Changements de bases et applications linéaires

Soit $u \in \mathcal{L}(E, F)$. Soit \mathcal{B}_E et \mathcal{B}'_E deux bases de E et \mathcal{B}_F et \mathcal{B}'_F deux bases de F. On veut dans cette section comparer $\mathrm{Mat}_{\mathcal{B}_F,\mathcal{B}_E}(u)$ et $\mathrm{Mat}_{\mathcal{B}'_F,\mathcal{B}'_E}(u)$.

Le théorème 2 appliqué à $u = \operatorname{Id} \circ u \circ \operatorname{Id}$ donne:

$$\operatorname{Mat}_{\mathcal{B}'_{F},\mathcal{B}'_{E}}(u) = \operatorname{Mat}_{\mathcal{B}'_{F},\mathcal{B}_{F}}(\operatorname{Id}).\operatorname{Mat}_{\mathcal{B}_{F},\mathcal{B}_{E}}(u).\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}'_{E}}(\operatorname{Id}).$$
 (2)

Le théorème 2 appliqué à $Id = Id \circ Id$ donne:

$$\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}'_{E}}(\operatorname{Id}) = (\operatorname{Mat}_{\mathcal{B}'_{E},\mathcal{B}_{E}}(\operatorname{Id}))^{-1}.$$
 (3)