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Abstract

Consider a flag variety X and its cohomology ring H∗(X,Z) endowed with the
Schubert basis. In [Ric09], E. Richmond showed that some structure coefficients
of the cup product in H∗(X,Z) are products of two such coefficients for smaller
flag varieties. Consider a quiver without oriented cycle. If α and β are two
dimension vectors, α◦β denotes the number of α-dimensional subrepresentations
of a general α + β-dimensional representation. In [DW10], H. Derksen and J.
Weyman expressed some numbers α ◦ β as products of two such numbers for
smaller dimension vectors. The aim of this work is to prove two generalizations
of the two above results by the same method.
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1. Introduction

We work over an algebraically closed field K of characteristic zero. Let G be
a semi-simple group, let T ⊂ B ⊂ Q ⊂ G be a maximal torus, a Borel subgroup
and a parabolic subgroup respectively. In [BK06], P. Belkale and S. Kumar
defined a new product �0 (associative and commutative) on the cohomology
group H∗(G/Q,Z). Any structure coefficient of �0 in the Schubert basis is
either zero or the corresponding structure coefficient for the cup product. An
important motivation to study this product is its relations with the eigencone
of G (see [Res10b]).

Let now P ⊃ Q be a second parabolic subgroup of G and let L denote the
Levi subgroup of P containing T .
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Theorem A. Any structure coefficient of (H∗(G/Q,Z),�0) in the Schubert ba-
sis is the product of such two coefficients for (H∗(G/P,Z),�0) and (H∗(L/(L∩
Q),Z),�0) respectively.

Actually Theorem 2, stated in Section 3, is more explicit than Theorem A.
This result was already obtained in [Ric09] when G = SLn, Q is any parabolic
subgroup and P is the maximal parabolic subgroup corresponding to the linear
subspace in G/Q of minimal dimension. Note that E. Richmond obtained The-
orem A in [Ric11] independently.

Let Q be a quiver. Given two dimension vectors α and β, α ◦ β denotes
the number of α-dimensional subrepresentations of a general α+β-dimensional
representation. The Ringel form (see Section 4.1) is denoted by 〈·, ·〉.

Theorem B. Let α, β, and γ be three dimension vectors. Assume that 〈α, β〉 =
〈α, γ〉 = 〈β, γ〉 = 0. Then

(α+ β ◦ γ).(α ◦ β) = (α ◦ β + γ).(β ◦ γ).

Note that Theorem 3, stated in Section 4, is more general than Theorem B,
since s dimension vectors occur. We obtain the following result as a corollary
of Theorem B.

Theorem C. Assume that Q has no oriented cycle. Let α, β, and γ be three
dimension vectors such that 〈α, β〉 = 〈α, γ〉 = 0 and β ◦ γ = 1.

Then α ◦ (β + γ) = (α ◦ β).(α ◦ γ).

This result is not readily stated in [DW10]. However the proof of [DW10,
Theorem 7.14] implies it. Note that the proof of Theorem B is really different
from that of [DW10, Theorem 7.14]. Indeed the numbers α◦β have two nontriv-
ially equivalent interpretations (see [DSW07]): the number of points in a general
fiber of a morphism or the dimension of the subspace of invariant vectors in a
representation. Here we use the first characterization while Derksen-Weyman
used the second one. A consequence is that in our Theorem B, it is not useful
to assume that Q has no oriented cycle.

We consider more generally a semi-simple group G acting on a varietyX. Fix
a one parameter subgroup λ ofG. Let C be an irreducible component of the fixed
point set of λ in X. In Section 2, we define and study the integers d(G,X,C, λ).
These numbers generalize both the structure coefficients of the Schubert calculus
and the numbers α ◦ β. Theorem 1 below provides a multiplicative formula for
some d(G,X,C, λ) and then it is applied to the two situations.

2. Degree of dominant pairs

2.1. Definitions
Let G be a reductive group acting on a smooth irreducible variety X. Let

λ be a one parameter subgroup of G. Let L denote the centralizer of λ in G.
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Consider the usual parabolic subgroup P (λ) associated to λ with Levi subgroup
L;

P (λ) =
{
g ∈ G : lim

t→0
λ(t).g.λ(t)−1 exists in G

}
.

Let C be an irreducible component of the fixed point set Xλ of λ in X.
Consider also the Białynicki-Birula cell C+ associated to C:

C+ = {x ∈ X | lim
t→0

λ(t)x exists and belongs to C}.

Then C is stable by the action of L and C+ is stable by the action of P (λ).
Consider over G×C+ the action of G×P (λ) given by the formula (with obvious
notation): (g, p).(g′, y) = (gg′p−1, py). Consider the quotient G ×P (λ) C

+ of
G × C+ by the action of {e} × P (λ). The class of a pair (g, y) ∈ G × C+ in
G ×P (λ) C

+ is denoted by [g : y]. The action of G × {e} induces an action of
G on G ×P (λ) C

+. Moreover the first projection G × C+ −→ G induces a G-
equivariant map π : G×P (λ)C

+ −→ G/P (λ) which is a locally trivial fibration
with fiber C+. In particular

dim(G×P (λ) C
+) = dim(G/P (λ)) + dim(C+).

Consider also the G-equivariant map η : G ×P (λ) C
+ −→ X, [g : y] 7→ gy.

We finally obtain

G×P (λ) C
+ X

G/P (λ).

η

π

It is well known that the map

(π, η) : G×P (λ) C
+ −→ G/P (λ)×X

[g : y] 7−→ (gP (λ), gy)
(1)

is an immersion; its image is the set of the (gP (λ), x) ∈ G/P (λ)×X such that
g−1x ∈ C+. Note that this fact can be used to endow G×P (λ)C

+ with a struc-
ture of variety.

Definition 1. Set
δ(G,X,C, λ) = dim(X)− dim(G/P (λ))− dim(C+)

= codim(C+, X)− codim(P (λ), G),

where codim(Z, Y ) denotes the codimension of Z in Y . If δ(G,X,C, λ) = 0 and
η is dominant, it induces a finite field extension: K(X) ⊂ K(G×P (λ) C

+). The
degree of this extension is denoted by d(G,X,C, λ). If δ(G,X,C, λ) 6= 0 or η is
not dominant, we set d(G,X,C, λ) = 0. More generally, we define the degree of
any morphism to be the degree of the induced extension if it is finite and zero
otherwise.
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2.2. A product formula for d(G,X,C, λ)

Let T be a maximal torus of G and let x0 be a T -fixed point in X. We keep
notation of Section 2.1 and we assume that the image of λ is contained in T
and that x0 ∈ C. Set P = P (λ).

Let λε be another one parameter subgroup of T . Set Pε = P (λε). Consider
the irreducible component Cε of Xλε which contains x0 and the set C+

ε of points
x ∈ X such that limt→0 λε(t)x exists and belongs to Cε. Assume that

(i) Pε ⊂ P ,
(ii) C+

ε ⊂ C+, and
(iii) Cε ⊂ C.

Remark 1. Let Y (T ) denote the group of one parameter subgroups of T . Set
Y (T )Q = Y (T ) ⊗Z Q. Notice that the set of one parameter subgroups λε that
satisfy these three assumptions generated an open convex cone in Y (T )Q con-
taining λ.

To compare η and ηε, we introduce the morphism

ηL : L×Pε∩L (C+
ε ∩ C) −→ C,

[l : x] 7−→ lx.

This morphism is a map η like in Section 2.1 with G = L, X = C, C = Cε and
λ = λε. In particular we have defined δ(L,C,Cε, λε) and d(L,C,Cε, λε).

Theorem 1. With above notation

(i) δ(G,X,Cε, λε) = δ(L,C,Cε, λε) + δ(G,X,C, λ);
(ii) if δ(L,C,Cε, λε) = δ(G,X,C, λ) = 0 then

d(G,X,Cε, λε) = d(L,C,Cε, λε) · d(G,X,C, λ).

2.3. Proof of Theorem 1
2.3.1— Consider the two auxiliary varieties

YL = L×Pε∩L (C+
ε ∩ C) and YP = P ×Pε

C+
ε ,

and the two auxiliary morphisms

ηP : YP −→ C+, [p : x] 7−→ px,

and
[Id : ηP ] : G×P YP −→ G×P C+, [g : [p : x]] 7−→ [g : px].

Lemma 1. The map G ×P YP −→ G ×Pε C
+
ε , [g : [p : x]] 7−→ [gp : x] is an

isomorphism denoted by ι. Moreover ηε ◦ ι = η ◦ ([Id : ηP ]).
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Proof. The morphism ι commutes with the two projections on G/P . Moreover
the restriction of ι over P/P is the closed immersion P ×Pε C

+
ε −→ G×Pε C

+
ε .

It follows (see for example [Res04, Appendix]) that ι is an isomorphism.
The morphisms ηε ◦ ι and η ◦ ([Id : ηP ]) are G-equivariant and extend the

immersion of C+
ε in X. They have to be equal.

2.3.2— To study ηP , consider the two following limit morphisms:

ΛP : P −→ L
p 7→ limt→0 λ(t)pλ(t−1)

and Λ+ : C+ −→ C
x 7→ limt→0 λ(t)x.

Lemma 2. For any p in P and x in C+, we have Λ+(px) = ΛP (p)Λ+(x).

Proof. The lemma is obtained by taking the limit in the identity λ(t)px =
λ(t)pλ(t−1)λ(t)x.

2.3.3— Recall that Λ+ : C+ −→ C is an affine bundle with fibers iso-
morphic to affine spaces (see [BB73]). The pullback of this affine bundle by ηL
is

η∗L(C+) = {([l : x], y) ∈ YL × C+ | lx = Λ+(y)},

endowed with the first projection p1 on YL. Consider the following diagram

YP η∗L(C+)

YL

L/(Pε ∩ L).

Θ : [p : x] 7→ ([ΛP (p) : Λ+(x)], px)

[p : x] 7→
[Λ
P (p) : Λ+

(x)]

p1

(2)

Lemma 3. Diagram (2) is commutative, and the top horizontal map Θ is an
isomorphism.

Proof. Lemma 2 shows that the map YP −→ YL in diagram (2) is well defined.
Diagram (2) is obviously commutative.

Since all the morphisms in diagram (2) are L-equivariant, [Res04, Appendix]
implies that it is sufficient to prove that Θ is an isomorphism when restricted
over the class of e in L/(Pε ∩ L). The fiber in YL over this point is C ∩ C+

ε .
Since the unipotent radical Pu of P is contained in that Puε of Pε, the fiber in

5



YP identify with C+
ε , by x ∈ C+

ε 7→ [e : x]. Note that C+
ε is the set of points

y in C+ such that Λ+(y) belongs to Cε ∩ C. Then the map C+
ε −→ η∗L(C+),

y 7−→ ([e : Λ+(y)], y) identifies the fiber in η∗L(C+) with C+
ε . Moreover the

restriction of Θ to these fibers is the identity. It follows that Θ is an isomorphism.

2.3.4— We can now prove Theorem 1.

Proof of Theorem 1. Lemma 3 allows to consider the following commuta-
tive diagram

YP C+

η∗L(C+)

YL C.

ηP

Θ

ηL

Λ+

p1

Since Θ is an isomorphism, dim(C+)−dim(YP ) = δ(L,C,Cε, λε) and d(L,C,Cε, λε)
equals the degree of ηP . Moreover Lemma 1 shows that the following diagram

G×Pε
C+
ε G×P YP

G×P C+

X

∼

η

[id : ηP ]
ηε

is commutative. The first assertion of the theorem follows immediately. Let d
denote the degree of [id : ηP ] that is the degree of ηP . Since d = d(L,C,Cε, λε),
it remains to prove that d(G,X,Cε, λε) = d.d(G,X,C, λ). Assume firstly that
d(G,X,Cε, λε) = 0. Since δ(G,X,Cε, λε) = 0, ηε is not dominant. Hence η or
[id : ηP ] is not dominant. It follows that either d(G,X,C, λ) or d is zero.

Assume now that d(G,X,Cε, λε) 6= 0, and so that ηε is dominant. Since the
image of ηε is contained in the image of η, η is dominant. Since ηε is dominant,
the dimension of the closure of the image of [id : ηP ] is at least those of X. Since
δ(L,C,Cε, λε) = δ(G,X,C, λ) = 0, this implies that ηP is dominant. Now, the
second assertion is a consequence of the multiplicative formula for the degree of
a double extension field.
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2.4. Well generically finite pairs
2.4.1— Given a smooth variety Y of dimension n, T Y denotes its tangent

bundle. The line bundle
∧n T Y over Y is called the determinant bundle and

denoted by DetY . If ϕ : Y −→ Y ′ is a morphism between smooth varieties,
Tϕ : T Y −→ T Y ′ denotes its tangent map, and Detϕ : DetY −→ DetY ′
denotes its determinant. If y ∈ Y , we denote by Tyϕ : TyY −→ Tϕ(y)Y ′ the
specialization over y; and similarly, Detyϕ, DetyY, Detϕ(y)Y ′.

2.4.2— Consider the morphism η : G×P (λ) C
+ −→ X like in Section 2.1.

Definition 2. The quadruplet (G,X,C, λ) is said to be generically finite if
d(G,X,C, λ) 6= 0. The quadruplet (G,X,C, λ) is said to be well generically
finite if it is generically finite and there exists x ∈ C such that T[e:x]η is invertible.

2.4.3— The map x 7→ [e : x] embeds C+ in G ×P C+. Consider the
restriction of Tη and Detη to C+:

Tη|C+ : T (G×P C+)|C+ −→ T (X)|C+ ,

Detη|C+ : Det(G×P C+)|C+ −→ Det(X)|C+ .

Since η is G-equivariant, the morphism Detη|C+ is P -equivariant; it can be
thought as a P -invariant section of the line bundle D := Det(G ×P C+)∗|C+ ⊗
Det(X)|C+ over C+. For any x ∈ C, K∗ acts linearly via λ on the fiber Dx over
x in D: this action is given by a character of K∗, that is an integer m. Moreover
this integer does not depend on x in C: it is denoted by µD(C, λ).

Lemma 4. Recall that X is smooth. The following are equivalent:

(i) (G,X,C, λ) is well generically finite;
(ii) (G,X,C, λ) is generically finite and µD(C, λ) = 0.

Proof. Assume that (G,X,C, λ) is well generically finite and choose x ∈ C
such that T[e:x]η is invertible. Then Detη[e:x] is a nonzero K∗-fixed point in Dx:
the action of K∗ on the line Dx has to be trivial.

Assume conversely that (G,X,C, λ) is generically finite and that µD(C, λ) =
0. Since the base field is assumed to have characteristic zero, the exists a point
y in G ×P (λ) C

+ such that Tyη is invertible. Since η is G-equivariant, one can
find such a point y in C+. In particular Detη|C+ is a nonzero P (λ)-invariant
section of D. Since µD(C, λ) = 0, [Res10a, Lemma 6] implies that Detη|C is not
identically zero.

2.4.4— Let g, b, p, and pε denote respectively the Lie algebras of G, B, P ,
and Pε. The well generically finite pairs provide a nice standing to apply The-
orem 1.
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Proposition 1. With notation of Theorem 1, assume that (G,X,Cε, λε) is well
generically finite.

Then (G,X,C, λ) and (L,C,Cε, λε) are well generically finite.

Proof. Given a vector space V endowed with a linear action of a one parameter
subgroup λ, we denote by V λ<0 the set of v ∈ V such that limt→0 λ(t−1)v = 0.

Let x be a point in Cε such that Tηε is invertible at [e : x]. Consider the
subtorus S of dimension two containing the images of λ and λε. It fixes x. The
tangent map of ηε at the point [e : x] induces a S-equivariant linear isomorphism
θ : g/pε ' gλε

<0 −→ (TxX)λε
<0. By assumption gλ<0 ⊂ gλε

<0 and (TxX)λ<0 ⊂
(TxX)λε

<0. Since θ is S-equivariant, it induces an isomorphism between gλ<0 and
(TxX)λ<0. In particular δ(G,X,C, λ) = 0.

The second assertion of Lemma 1 implies that T[e:x]η is invertible. It follows
that (G,X,C, λ) is well generically finite.

Since δ(G,X,Cε, λε) = 0, Theorem 1 implies that δ(L,C,Cε, λε) = 0. Hence
Lemma 1 implies that T[e:x]ηP is invertible. By Lemma 3, it follows that T[e:x]ηL
is invertible. Then (L,C,Cε, λε) is well generically finite.

Remark 2. Note that the converse of Proposition 1 does not hold. Indeed, it
would imply that the converse of assertion (ii) of Theorem 2, stated in Section 3
holds. For G = SLn, we would get that any nonzero Littlewood-Richardson
coefficient is a product of such coefficients for (H∗(SLr/B,Z),�0) for some
integers r. By Corollary 1 for G = SLn, this would imply that each nonzero
Littlewood-Richardson coefficient is equal to one. Contradiction.

3. Application to the Belkale-Kumar product

3.1. An interpretation of structure coefficients
3.1.1— Let P be a parabolic subgroup of the semisimple group G. Let

T ⊂ B ⊂ P be a maximal torus and a Borel subgroup of G. The Weyl group
of T and G is denoted by W . Given w ∈W , we set X(w) = BwP/P , X(w)◦ =
BwP/P and we denote by [X(w)] ∈ H∗(G/P,Z) the Poincaré dual class ofX(w)
in cohomology. Let w1, · · · , ws ∈ W be such that

∑
i codimX(wi) = dimG/P .

Then there exists a nonnegative integer c such that

[X(w1)]. · · · .[X(ws)] = c[pt].

Let λ be a one parameter subgroup of T such that P = P (λ). Consider
X = (G/B)s and the T -fixed point x = (w−11 B/B, · · · , w−1s B/B) in X. Let C
be the irreducible component of Xλ containing x. Then

C = Lw−11 B/B × · · · × Lw−1s B/B

and
C+ = Pw−11 B/B × · · · × Pw−1s B/B.

An easy consequence of Kleiman’s transversality theorem (see [Kle76]) is the
following lemma which express c has a degree.
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Lemma 5. We have δ(G,X,C, λ) = 0 and c = d(G,X,C, λ).

Proof. See [Res10a, proof of Lemma 14].

3.1.2— The notion of Levi-movability was introduced in [BK06].

Definition 3. Recall that
∑
i dim(X(wi)) = (s − 1) dim(G/P ). We say that

(X(w1), · · · , X(ws)) is Levi-movable if there exist l1, · · · , ls in L such that the
intersection l1w−11 X(w1)◦ ∩ · · · ∩ lsw−1s X(ws)

◦ is transverse at P/P .

Given a point z in a locally closed subvariety Z of a variety Y , setNz(Z, Y ) =
TzY/TzZ.

Lemma 6. The following are equivalent:

(i) (X(w1), · · · , X(ws)) is Levi-movable;
(ii) (G,X,C, λ) is well generically finite.

Proof. Let y ∈ C and l1, · · · , ls ∈ L such that y = (l1w
−1
1 B/B, · · · , lsw−1s B/B).

Since η extends the immersion of C+ in X, the tangent map T[e:y]η induces a
linear map

T[e:y]η : N[e:y](C
+, G×P C+) −→ Ny(C+, X).

Moreover T[e:y]η is an isomorphism if and only if T[e:y]η is. Using π, N[e:y](C
+, G×P

C+) identifies with TeG/P that is with g/p. Moreover Ny(C+, X) is equal to⊕
iNw−1

i B/B(Pliw
−1
i B/B,G/B) which identifies with ⊕ig/(p + liw

−1
i bwil

−1
i ).

Moreover, after composing by these isomorphisms, T[e:y]η is the canonical map
g/p −→ ⊕ig/(p + liw

−1
i bwil

−1
i ). The lemma follows.

3.2. A multiplicative formula for structure coefficients of �0

3.2.1— Let Q ⊂ P be two parabolic subgroups of G. Let T ⊂ B ⊂ Q be
a maximal torus and a Borel subgroup of G. Let L denote the Levi subgroup
of P containing T and let WP denote its Weyl group. Consider the following
G-equivariant fibration

L/(L ∩Q) G/Q

G/P.
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There exists a natural bijection between the Schubert classes of G/Q and
the pairs of Schubert classes in L/(L ∩Q) and G/P . Let w ∈W . Consider the
associated Schubert varieties in G/P and G/Q:

XG/P (w) = BwP/P and XG/Q(w) = BwQ/Q.

The intersection w−1Bw ∩ L is a Borel subgroup of L containing T and there
exists a unique w ∈WP such that

w−1(B ∩ L)w = w−1Bw ∩ L. (3)

Consider the Schubert variety in L/L ∩Q associated to w:

XL/L∩Q(w) = (L ∩B)w(L ∩Q/L ∩Q).

The three Schubert cells associated w are related by the following fibration

w−1XL/L∩Q(w)◦ w−1XG/Q(w)◦

w−1XG/P (w)◦.

3.2.2—We can now state our main result about the Belkale-Kumar product.

Theorem 2. Let w1, · · · , ws ∈ W . Assume that
∑
i dimXG/Q(wi) = (s −

1) dimG/Q and that (XG/Q(w1), · · · , XG/Q(ws)) is Levi-movable. Then

(i)
∑
i dimXG/P (wi) = (s − 1) dimG/P and

∑
i dimXL/L∩Q(wi) = (s −

1) dimL/(L ∩Q);
(ii) (XG/P (w1), · · · , XG/P (ws)) and (XL/L∩Q(w1), · · · , XL/L∩Q(ws)) are Levi-

movable.

Assertion (i) allows to define three integers by

[XG/Q(w1)]. · · · .[XG/Q(ws)] = c
G/Q
w1,···,ws [pt],

[XG/P (w1)]. · · · .[XG/P (ws)] = c
G/P
w1,···,ws [pt], and

[XL/L∩Q(w1)]. · · · .[XL/L∩Q(ws)] = c
L/L∩Q
w1,···,ws [pt].

Then
c
G/Q
w1,···,ws = c

G/P
w1,···,ws .c

L/L∩Q
w1,···,ws .
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Proof. Recall that X is the variety (G/B)s and x = (w−11 B/B, · · · , w−1s B/B).
Let λ and λε be two one parameter subgroups of T such that P (λ) and P (λε)
are equal to P and Q. Let C (resp. Cε) denote the irreducible component of
Xλ (resp. Xλε) containing x. Since Q = P (λε) ⊂ P (λ) = P , the assumptions
of Section 2.2 are fulfilled. By Lemma 6, (G,X,Cε, λε) is well generically fi-
nite. Now, Proposition 1 implies that (G,X,C, λ) and (L,C,Cε, λε) are well
generically finite. In particular, Lemma 6 implies Assertions (i) and (ii).

Since Assertion (i) means that δ(G,X,C, λ) = δ(L,C,Cε, λε) = 0, Theo-
rem 1 implies that d(G,X,Cε, λε) = d(G,X,C, λ).d(L,C,Cε, λε). Lemma 5
allows to conclude.

Remark 3. In the case when G = SLn, Theorem 2 was already obtained in
[Ric09] for some pairs Q ⊂ P . E. Richmond also obtained Theorem 2 indepen-
dently in [Ric11].

3.2.3— Assuming that one knows how to compute in (H∗(G/P,Z),�0) for
any maximal P and any G, Theorem 2 allows him to compute the structure
coefficients of (H∗(G/Q,Z),�0) for any parabolic subgroup Q. To illustrate
this principle, we state an analogue to [Ric09, Corollary 23].

Corollary 1. Let G = Sp2n. The nonzero structure coefficients of the ring
(H∗(G/B,Z),�0) are equal to 1.

Proof. The proof proceeds by induction on n. Let c be a nonzero structure
coefficient of (H∗(G/B,Z),�0). Let w1, w2, w3 be elements of W such that

[X(w1)].[X(w2)].[X(w3)] = c[pt].

Since c is nonzero, (X(w1), X(w2), X(w3)) is Levi-movable.
Consider the stabilizer P in G of the line in K2n fixed by B. Theorem 2

applied with B ⊂ P shows that c is the product of a structure coefficient of
(H∗(G/P,Z),�0) and one of (H∗(Sp2n−2/B,Z),�0). The fact that G/P is a
projective space and the induction allow to conclude.

Remark 4. Since T stabilizes all the Schubert cells, Levi-movability is very
easy to check for G/B. In particular, one can easily decide if a given struc-
ture coefficient of (H∗(G/B,Z),�0) is zero or not. Now, Corollary 1 allows to
compute the structure coefficients of (H∗(G/B,Z),�0).
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3.3. Some questions
3.3.1— Corollary 1 is also true (and the proof is the same) for G = SLn.

Is Corollary 1 true for any simple group ?

3.3.2— Let G = SLn and P be a maximal parabolic subgroup of G.
Then G/P is a Grassmannian variety and the structure coefficients of groups
H∗(G/P,Z) are the Littlewood-Richardson coefficients (LR-coefficients for short).
Let cw1w2w3 be a nonzero structure coefficient of (H∗(G/B,Z),�0). By consid-
ering the projection G/B −→ G/P , Theorem 2 and Corollary 1 for SLn give a
LR-coefficient equals to one.

How the so obtained LR-coefficients equal to one are distributed among the
LR-coefficients equal to one?

One can prove that the set of LR-coefficients equals to one is an union of
some faces of Klyachko cones. Is it also true for this subset ?

4. Application to quiver representations

4.1. Definitions
Let Q be a quiver (that is, a finite oriented graph) with vertexes Q0 and

arrows Q1. An arrow a ∈ Q1 has initial vertex ia and terminal one ta. A
representation R of Q is a family (V (s))s∈Q0 of finite dimensional vector spaces
and a family of linear maps u(a) ∈ Hom(V (ia), V (ta)) indexed by a ∈ Q1. The
dimension vector of R is (dim(V (s)))s∈Q0

∈ NQ0 .
Fix α ∈ NQ0 and a vector space V (s) of dimension α(s) for each α ∈ Q0.

Set
Rep(Q,α) =

⊕
a∈Q1

Hom(V (ia), V (ta)).

Consider also the group

GL(α) =
∏
s∈Q0

GL(V (s)).

The group GL(α) acts on Rep(Q,α) in such a way the orbits are the isomor-
phism classes of representations of Q.

Let α, β ∈ ZQ0 . The Ringel form is defined by

〈α, β〉 =
∑
s∈Q0

α(s)β(s)−
∑
a∈Q1

α(ia)β(ta).

Assume that α, β ∈ NQ0 . Following Derksen-Schofield-Weyman (see [DSW07]),
we define α◦β to be the number of α-dimensional subrepresentations of a general
representation of dimension α+ β if it is finite, and 0 otherwise.
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4.2. Dominant pairs
4.2.1— Let λ be a one parameter subgroup of GL(α). For any i ∈ Z and

for any s ∈ Q0, set Vi(s) = {v ∈ V (s) |λ(t)v = tiv} and αi(s) = dimVi(s).
Obviously almost all αi are zero, and α =

∑
i∈Z αi. Moreover, λ is determined

up to conjugacy by the dimension vectors αi.
The parabolic subgroup P (λ) of GL(α) associated to λ is the set of (g(s))s∈Q0

such that for all i ∈ Z, g(s)(Vi(s)) ⊂ ⊕j≤iVj(s).
The subspace Rep(Q,α)λ is the set of tuples (u(a))a∈Q1 such that for any

a ∈ Q1 and for any i ∈ Z, u(a)(Vi(ia)) ⊂ Vi(ta). Hence

Rep(Q,α)λ =
⊕
i

Rep(Q,αi).

In particular it is irreducible and denoted by C from now on. Moreover C+

is the set of tuples (u(a))a∈Q1 such that for any a ∈ Q1 and for any i ∈ Z,
u(a)(Vi(ia)) ⊂ ⊕j≤iVj(ta). Consider the morphism ηλ : G ×P (λ) C

+ −→
Rep(Q,α).

The conjugacy class of λ is uniquely determined by the tuples (αi)i∈Z of
dimension vectors. The isomorphism class of C only depends on the underlying
multiset of dimension vectors. The classes of C+ and P (λ) only depend on the
ordered multiset of dimension vectors. This observation makes the following
definition natural.

Definition 4. A decomposition of the dimension vector α is a family (β1, · · · , βs)
of nonzero dimension vectors such that α = β1 + · · ·+βs. The decomposition is
denoted by α = β1+̃ · · · +̃βs. The tilda means that we keep the order in mind.

We can now define the map ηβ1+̃···+̃βs
associated to a decomposition of α.

4.2.2— Consider a decomposition α = β1+̃β2 with two dimension vectors
and the associated morphism η = ηβ1+̃β2

. In this section, we collect some
properties of η. For each vertex s inQ0, fix a decomposition V (s) = V1(s)⊕V2(s)
where dim(V1(s)) = β1(s) and dim(V2(s)) = β2(s). This allows to embed C :=
Rep(Q, β1) ⊕ Rep(Q, β2) in X := Rep(Q,α). Let (R1, R2) ∈ Rep(Q, β1) ⊕
Rep(Q, β2) ⊂ X. Since η extends the immersion of C+ in X, the tangent map
T[e:(R1,R2)]η induces a linear map

T [e:(R1,R2)]η : N[e:(R1,R2)](C
+, G×P C+) −→ N(R1,R2)(C

+,Rep(Q,α)).

Moreover N[e:(R1,R2)](C
+, G×PC+) identifies with ⊕s∈Q0

Hom(V1(s), V2(s)) and
N(R1,R2)(C

+,Rep(Q,α)) identifies with ⊕a∈Q1
Hom(V1(ia), V2(ta)). The follow-

ing lemma is the consequence of a direct computation.

Lemma 7. For i = 1, 2 and a ∈ Q1, let ui(a) denote the linear map of Ri
corresponding to a. Then

T [e:(R1,R2)]η(
∑
s∈Q0

ϕ(s)) =
∑
a∈Q1

u2(a)ϕ(ta)− ϕ(ha)u1(a).

13



In particular the Kernel of T [e:(R1,R2)]η is Hom(R1, R2) and its image is Ext(R1, R2).

The quantities δ(η) and d(η) are classic objects in the representation theory
of quivers.

Lemma 8. We have:

(i) δ(η) = −〈β1, β2〉, and
(ii) d(η) = β1 ◦ β2.

Proof. By the discussion preceding Lemma 7, δ(η) equals the difference be-
tween the dimension of⊕a∈Q1

Hom(V1(ia), V2(ta)) and that of⊕s∈Q0
Hom(V1(s), V2(s)).

The first assertion follows.
Let R ∈ Rep(Q,α). Using immersion (1), one identifies the fiber η−1(R) with

the set of β1-dimensional subrepresentations of R. Thus when R is general, the
cardinality |η−1(R)| = β1 ◦ β2 = d(η).

Consider the one parameter subgroup λ of GL(α) defined by λ(s)(t) stabilizes
the decomposition V1(s) ⊕ V2(s), is equal to Id when restricted to V1(s) and
equal to tId when restricted to V2(s). Consider P (λ) = P , Rep(Q,α)λ = C and
C+(λ) = C+. Recall that D denote the determinant bundle of η restricted to
C+.

Lemma 9. Assume that 〈β1, β2〉 = 0. Then the one parameter subgroup λ acts
trivially on D|C .

Proof. Since C is an affine space, λ acts by the same character on each fiber of
D|C . Since η extends the identity on C+, its character is the difference between
the weights of λ acting on

N0(C+, X) ' ⊕a∈Q1
Hom(V1(ia), V2(ta))

and acting on

N0(C+, G×P C+) ' TeG/P ' ⊕s∈Q0Hom(V1(s), V2(s)).

Hence this character is equal to∑
a∈Q1

β1(ia)β2(ta)−
∑
s∈Q0

β1(s)β2(s);

that is, it is equal to −〈β1, β2〉. The lemma follows.

Remark 5. Lemma 9 is an analogue of the fact that the Grassmannian varieties
are cominuscule SLn-homogeneous spaces.
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4.3. A formula for d(ηβ1+̃···+̃βs
)

4.3.1— Applying Theorem 1 in the context of quivers, we get the following
result.

Theorem 3. Let α = β1+̃ · · · +̃βs be a decomposition of α such that for all
i < j, 〈βi, βj〉 = 0.

Then δ(ηβ1+̃···+̃βs
) = 0 and

d(ηβ1+̃···+̃βs
) = (β1 ◦ α− β1).(β2 ◦ α− β1 − β2). · · · .(βs−1 ◦ βs).

Proof. By Section 4.2.1, the codimension of C+ in G×P C+ is∑
i<j

∑
s∈Q0

βi(s)βj(s);

and the codimension of C+ in Rep(Q,α) is∑
i<j

∑
a∈Q1

βi(ia)βj(ta).

Since ∀i < j 〈βi, βj〉 = 0, this implies that δ(ηβ1+̃···+̃βs
) = 0.

If s = 2, the theorem follows from Lemma 8. Assume that s = 3. A direct
application of Theorem 1 with ηε = ηβ1+̃β2+̃β3

and η = ηβ1+̃(α−β1)
gives

d(ηβ1+̃β2+̃β3
) = (β1 ◦ α− β1).d(ηβ2+̃β3

)
= (β1 ◦ α− β1).(β2 ◦ β3).

One can easily ends the proof by an induction on s.

Remark 6. In the proof of Theorem 3, the induction was made using the brack-
eting β1+̃ · · · +̃βs = β1+̃(β2(+̃ · · · +̃βs)). Any other bracketing gives a similar
formula. For example using the bracketing β1+̃ · · · +̃βs = (β1+̃ · · · +̃βs−1)+̃βs,
we get d(ηβ1+̃···+̃βs

) = (α − βs ◦ βs).(β − βs − βs−1 ◦ βs−1). · · · .(β1 ◦ β2). It is
natural to ask for a more symmetric formula.

4.3.2— The assumption “∀i < j 〈βi, βj〉 = 0” in Theorem 3 is similar to
Levi-movability. Indeed the following lemma is closed to Lemma 6.

Lemma 10. Let α = β1+̃ · · · +̃βs be a decomposition of α such that δ(ηβ1+̃···+̃βs
) =

0. Then the following are equivalent:

(i) for all i < j, 〈βi, βj〉 = 0 and d(ηβ1+̃···+̃βs
) 6= 0;

(ii) the map ηβ1+̃···+̃βs
is well generically finite.
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Proof. For each s ∈ Q0, fix a decomposition V (s) = ⊕iVi(s) of V (s) such
that dimVi(s) = βi(s). Consider the linear action of the torus Z = (K∗)s on
⊕s∈Q0

V (s) given by (t1, · · · , ts).v = tiv for all ti ∈ K∗ and v ∈ Vi(s) for any
s ∈ Q0. Since Z is embedded in GL(α), it also acts on G×P C+.

Assuming that assertion (ii) holds, there exists a point y in C such that
T[e:y]ηβ1+̃···+̃βs

is invertible. Since Z fixes [e : y] and η isG-equivariant, T[e:y]ηβ1+̃···+̃βs

is Z-equivariant for the tangent action of Z. It follows that for all i < j,
T[e:y]ηβ1+̃···+̃βs

induces an isomorphism between the eigenspaces of T[e:y]G×PC+

and TyRep(Q,α) of weight tjt−1i . In particular, these two eigenspaces have the
same dimension. But a direct computation shows that the difference between
these two dimensions is precisely 〈βi, βj〉. Assertion (i) follows.

Conversely, assume that assertion (i) holds. Since d(ηβ1+̃···+̃βs
) 6= 0, there

exists a point of G ×P C+ where the tangent map of ηβ1+̃···+̃βs
is invertible.

Since η is G-equivariant, its determinant is not identically zero on C+. Using
the fact for all i < j 〈βi, βj〉 = 0, a direct computation (like in the proof of
Lemma 9) shows that Z acts trivially on D|C . Lemma 4 allows to conclude.

4.3.3— The dimension of Ext(R1, R2) for general α and β dimensional
representations R1 and R2 is denoted by ext(α, β).

Corollary 2. The quiver Q is assumed to have no oriented cycle. Let α, β, and
γ be three dimension vectors. Assume that 〈α, β〉 = 〈α, γ〉 = 0 and β ◦ γ = 1.

Then α ◦ (β + γ) = (α ◦ β).(α ◦ γ).

Proof. Theorem 3 applied to the decomposition α+̃β+̃γ gives (α+β ◦ γ).(α ◦
β) = (α ◦ β + γ).(β ◦ γ). But (β ◦ γ) = 1. Hence

(α+ β ◦ γ).(α ◦ β) = α ◦ (β + γ).

If α◦β = 0 then the corollary follows. Assume that α◦β 6= 0. Lemma 10 implies
that the determinant of ηα+̃β is not identically zero on C. But Lemma 7 implies
that ext(α, β) = 0. Now, the corollary is a direct consequence of Lemma 11
below.

The proof of the following Lemma 11 uses Derksen-Schofield-Weyman’s the-
orem that shows that α◦β is the dimension of some space of invariant functions.

Lemma 11. The quiver Q is assumed to have no oriented cycle. Let α, β, and
γ be three dimension vectors. Assume that β ◦ γ = 1 and ext(α, β) = 0.

Then (α+ β) ◦ γ = α ◦ γ.

Proof. The map

ZQ0 −→ Hom(GL(γ),K∗)

β 7−→
(

(g(s)s∈Q0
) 7−→

∏
s∈Q0

det(g(s))β(s)
)
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identifies ZQ0 with the group of characters of GL(γ). Moreover the pairing
(α, β) =

∑
s∈Q0

α(s)β(s) identifies ZQ0 with its dual. Using these identifica-
tions, for any dimension vector θ, 〈θ, ·〉 corresponds to a character of GL(γ).
The corresponding eigenspace in K[Rep(Q, γ)] is denoted by K[Rep(Q, γ)]〈θ,·〉.

In [DSW07], Derksen-Schofield-Weyman proved that α ◦ γ is equal to the
dimension of K[Rep(Q, γ)]〈α,·〉. Consider the multiplication morphism

m : K[Rep(Q, γ)]〈α,·〉 ⊗K[Rep(Q, γ)]〈β,·〉 −→ K[Rep(Q, γ)]〈α+β,·〉.

We claim that m is an isomorphism. The lemma follows directly from the
claim. Since dim(K[Rep(Q, γ)]〈β,·〉) = 1 and K[Rep(Q, γ)] has no zero-divisor,
m is injective.

In [DW00], Derksen-Weyman proved that K[Rep(Q, γ)]〈α+β,·〉 is spanned by
functions cR associated to various α + β-dimensional representations R (see
also [DZ01]). This vector space is also spanned by the functions cR for general
R. Indeed, if a = dim(K[Rep(Q, γ)]〈α+β,·〉), the set of points (Ri)1≤i≤a in
(Rep(Q,α+ β))a such that K[Rep(Q, γ)]〈α+β,·〉 is spanned by the functions cRi

is open.
Since ext(α, β) = 0, ηα+̃β is dominant. In particular, for R general, there

exists an α-dimensional subrepresentation R′ of R. By [DW00, Lemma 1],
cR = cR

′
.cR/R

′
. It follows that m is surjective.
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