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Abstract

Consider the complete flag variety X of any complex semi-simple algebraic group
G. We show that the structure coefficients of the Belkale-Kumar product ⊙0, on the
cohomology H∗(X,Z), are all either 0 or 1. We also derive some consequences. The
proof contains a geometric part and uses a combinatorial result on root systems. The
geometric method is uniform whereas the combinatorial one is proved by reduction to
small ranks and then, by direct checkings.
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1 Introduction
Let G be a complex semisimple group and let B be a Borel subgroup of G. In this paper, we
are interested in the Belkale-Kumar product ⊙0 on the cohomology group of the complete
flag variety G/B.

Fix a maximal torus T of B. Let W denote the Weyl group of G. For any w ∈ W ,
let Xw = BwB/B be the corresponding Schubert variety and let [Xw] ∈ H∗(G/B,C) be its
cohomology cycle. Then, ([Xw])w∈W is a basis for the cohomology group H∗(G/B,Z). The
structure coefficients cwuv of the cup product are written as

[Xu] · [Xv] =
∑
w∈W

cwuv[Xw]. (1)

Let Φ denote the set of roots of G, Φ+ and Φ− denote respectively the set of positive
and negative roots corresponding to B. For w ∈ W , denote by Φ(w) = Φ+ ∩ w−1Φ− the
set of inversions of w. For its applications to the geometry of the eigencone, Belkale-Kumar
defined in [BK06] a new product ⊙0 on H∗(G/P,C), for any parabolic subgroup P . When
P = B, the structure constants c̃wuv of the Belkale-Kumar product,

[Xu]⊙0[Xv] =
∑
w∈W

c̃wuv[Xw] (2)

can be defined as follows (see [BK06, Corollary 44]):

c̃wuv =

{
cwuv if Φ(u) ∩ Φ(v) = Φ(w) and Φ(u) ∪ Φ(v) = Φ+,
0 otherwise. (3)

The product ⊙0 is associative and satisfies Poincaré duality.
Our main result can be stated as follows.

Theorem 1. Let u, v and w in W be such that Φ(u)∩Φ(v) = Φ(w) and Φ(u)∪Φ(v) = Φ+.
Then

cwuv = 1.

Theorem 1 was conjectured by Belkale-Kumar in oral discussions since 2006 and is stated
as a question in [DR09a, Question 1]. A lot of special cases were known before. In [Ric12,
Corollary 4], E. Richmond proved it in type A. As noticed in [Ric09] or [Res11, Corollary 1],
Richmond’s proof also works in type C. Type B is proved in [Res18, Proposition 16]. In
[DR19], all the classical types are solved. The cases G2, F4 and E6 can be checked using
a computer. Note finally that, in [Res18, Conjecture 1], a conjecture for any homogeneous
space G/P is formulated to extend Theorem 1 to any homogeneous space G/P .

Our proof of Theorem 1 has a geometric part and a combinatorial one on root systems.
The first part is uniform on the type and it is based on the fact that the complete flag
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varieties are simply connected (see Section 4). The second one is stated as Theorem 3 in
Section 2. The proof is based on reductions to root systems of small ranks.

In Section 3, we state some consequences of Theorem 1 on the Bruhat order in W , on
the number of descents in W , on the geometry of the eigencone and on the cohomological
components of the tensor product decomposition.

Acknowledgements. Thanks to Stephane Druel and Christoph Olweg for useful dis-
cussions.

2 On the combinatorics of root systems
In this section, Φ denotes a crystallographic root system with a fixed choice Φ+ of positive
roots and associated simple roots ∆.

A subset Φ1 of Φ+ is said to be convex if, for any φ, ψ ∈ Φ1 such that φ + ψ ∈ Φ, we
have φ + ψ ∈ Φ1. It is said to be coconvex if its complementary Φ+\Φ1 is convex; and it is
said to be biconvex if it is convex and coconvex.

By [Kos61, Proposition 5.10], a subset Φ1 ⊂ Φ+ is biconvex if and only if it is equal to
Φ(w) for some w in the Weyl group. In particular we have the following consequence.

Lemma 2. If Φ1 ⊆ Φ+ is biconvex and Φc
1 = Φ+\Φ1, then Q≥0Φ1 ∩Q≥0Φ

c
1 = {0}.

Given three subsets Φ1, Φ2 and Φ3 in Φ+, we write Φ1 ⊓ Φ2 = Φ3 if Φ1 ∩ Φ2 = Φ3 and
Φ1 ∪ Φ2 = Φ+. Similarly, we write Φ3 = Φ1 ⊔ Φ2 if Φ3 = Φ1 ∪ Φ2 and Φ1 ∩ Φ2 = ∅.

For φ and ψ in Φ, we write φ < ψ if ψ − φ ∈
∑

α∈∆ Nα and φ ̸= ψ. As usually, we
also denote φ ≤ ψ if φ = ψ is allowed. We set [φ;ψ] = {γ ∈ Φ : φ ≤ γ ≤ ψ} and
]φ;ψ[= {γ ∈ Φ : φ < γ < ψ}.

We can now state our combinatorial theorem.

Theorem 3. Let Φ1,Φ2 and Φ3 be three biconvex subsets of Φ+ such that Φ3 = Φ1⊔Φ2. Let
β and γ be two positive roots such that

1. β ∈ Φ1;

2. γ ̸∈ Φ3;

3. γ + β ∈ Φ3.

Then Φ2 ∩ [β; γ] is empty.

The theorem is proved in Section 8.
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3 Some consequences of Theorem 1
From now on, we are in the setting of the introduction. Most of the results stated in this
section are proved in Section 7. We denote by w0 the longest element of W and, for any
w ∈ W , we set w∨ = w0w the Poincaré dual of w, so that Φ(w∨) = Φ+ \ Φ(w).

Let u, v and w as in Theorem 1. To emphasize the symmetry in u, v and w∨, we set

w1 = w∨ w2 = u w3 = v.

The assumption Φ(u) ∩ Φ(v) = Φ(w) and Φ(u) ∪ Φ(v) = Φ+ can be translated as

Φ+ = Φ(w∨
1 ) ⊔ Φ(w∨

2 ) ⊔ Φ(w∨
3 ). (4)

We denote by ≤ the Bruhat order on W : for v, w ∈ W , v ≤ w if and only if Xv ⊂ Xw.

3.1 On the Bruhat order

Corollary 4. Let w1, w2 and w3 in W . If Condition (4) holds, then the only element x ∈ W
such that wix ≤ wi, for i = 1, 2 and 3 is the neutral element x = e.

3.2 The number of descents

For w ∈ W , denote by ℓ(w) the cardinality of Φ(w); it is the length of w when W is thought
as a Coxeter group. For w ∈ W , we consider the set of left descents:

D(w) = {α ∈ ∆ : ℓ(sαu) < ℓ(u)}

and denote by d(w) the cardinality of D(w).

Corollary 5. Let w1, w2 and w3 in W satisfying (4), then

d(w1) + d(w2) + d(w3) = 2rk(G) and d(w∨
1 ) + d(w∨

2 ) + d(w∨
3 ) = rk(G).

Based on some computations with a computer we ask the following question: under the
assumptions of Corollary 5, do we have

d(w∨
1 ) + d(w∨

2 ) = d(w1w
−1
2 ) or d(w2w

−1
1 )?

This have been checked for any root system of rank at most 5 (see the source code on
[Res23]).
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3.3 Using a Belkale-Kumar expression of cwuv
Let B− be the opposite Borel subgroup of B, so that B ∩ B− = T . Let U (also denoted
by U+) and U− be respectively the unipotent radical of B and B−. In [BK06, Theorem 43]
Belkale and Kumar give an isomorphism of graded rings:

ϕ : (H∗(G/B,C),⊙0) ∼=
[
H∗(u+)⊗ H∗(u−)

]t
,

where u± = Lie(U±), t = Lie(T ) and H∗(u±) denotes the Lie algebra cohomology of the nilpo-
tent algebras u±. They derive in [BK06, Corollary 44-(ii)] an expression for the coefficients
c̃wuv. Using it, we get:

Corollary 6. If Φ(w) = Φ(w1) ⊔ Φ(w2), then

∏
α∈Φ(w−1)

⟨ρ, α⟩ =

 ∏
α∈Φ(w−1

1 )

⟨ρ, α⟩

 ∏
α∈Φ(w−1

2 )

⟨ρ, α⟩

 ,

where ρ is one-half the sum of the positive roots and ⟨·, ·⟩ the Killing form.

3.4 Minimal regular faces of the eigencone

Let X(T )+ (resp. X(T )++) denote the set of dominant (resp. strictly dominant) characters
of T (relatively to B). For λ ∈ X(T )+, we denote by V (λ) the irreducible G-module of
highest weight λ. If V is any G-module, we denote by V G the set of G-invariant vectors. Set

LR(G) = {(λ1, λ2, λ3) ∈ (X(T )+)3 : (V (λ1)⊗ V (λ2)⊗ V (λ3))
G ̸= {0} }.

This set is known to be a finitely generated semigroup (see e.g. [Kum15]). The convex cone
LR(G) generated by LR(G) in (X(T ) ⊗ Q)3 is closed and polyhedral. A face of LR(G) is
said to be regular if it intersects (X(T )++)3. By [Res10], the regular faces are controlled by
the Belkale-Kumar product on H∗(G/P,Z) for various standard parabolic subgroups P of
G.

Corollary 7. Let w1, w2 and w3 in W satisfying Condition (4). Then

F(w1,w2,w3) = {(λ1, λ2, λ3) ∈ (X(T )+)3 : w1
−1λ1 + w2

−1λ2 + w2
−1λ3 = 0}

is the set of points in LR(G) that belong to a regular face of LR(G). Moreover, any codi-
mension rk(G) regular face is obtained in such a way. As a semigroup, F(w1,w2,w3) is freely
generated by 2rk(G) elements.

Remarks.

1. A significant part of Corollary 7 (which is even equivalent to Theorem 1) is that there
exists regular weights λ1, λ2 and λ3 in X(T )+ such that w1

−1λ1+w2
−1λ2+w2

−1λ3 = 0.

2. The 2rk(G) generators of the semigroup F(w1,w2,w3) are described geometrically in the
proof of the corollary (see Section 7), to be the line bundle O(Di) associated to some
explicit divisors Di. The triple of weights (λ1, λ2, λ3) corresponding to O(Di) can be
derived from [BK20, Theorem 8].
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3.5 Cohomological components of tensor products

For λ ∈ X(T ), we denote by L(λ) the G-linearized line bundle on G/B such that B acts on
the fiber over B/B by the character −λ. If λ is dominant, the Borel-Weil theorem asserts
that the space of sections H0(G/B,L(λ)) is isomorphic to V (λ)∗, as a representation of G.
We also set

λ∗ = −w0λ.

The points (λ1, λ2, λ
∗
1 + λ∗2) (for λ1, λ2 ∈ X(T )+) of LR(G) have the following geometric

property: the morphism

H0(G/B,L(λ1))⊗ H0(G/B,L(λ2))−→H0(G/B,L(λ1 + λ2)), (5)

given by the product of sections is nonzero.
Following Dimitrov-Roth (see [DR09b, DR17]), we introduce a natural generalization of

these points of LR(G) coming from the Borel-Weil-Bott theorem. For w ∈ W and λ ∈ X(T ),
set:

w · λ = w(λ+ ρ)− ρ. (6)

The Borel-Weil-Bott theorem asserts that, for any dominant weight λ and any w ∈ W ,
Hℓ(w)(G/B,L(w ·λ)) is isomorphic to V (λ)∗. Let (λ1, λ2, λ3) be a triple of dominant weights.
We say that (λ1, λ2, λ

∗
3) is a cohomological point of LR(G) if the cup product:

Hℓ(w1)(G/B,L(w1 · λ1))⊗ Hℓ(w2)(G/B,L(w2 · λ2))−→Hℓ(w∨
3 )(G/B,L(w∨

3 · λ3)) (7)

is nonzero for some w1, w2, w3 ∈ W . This implies in particular that ℓ(w∨
3 ) = ℓ(w1) + ℓ(w2)

and w1 · λ1 + w2 · λ2 = w∨
3 · λ3.

Theorem 8 (Dimitrov-Roth). Let w1, w2, w3 in W and (µ1, µ2, µ3) ∈ (X(T )+)3 such that

1. ℓ(w3) = ℓ(w1) + ℓ(w2);

2. µ3 = µ1 + µ2;

3. wi · µi is dominant for i = 1, 2, 3.

Then the cup product map

Hℓ(w1)(G/B,L(µ1))⊗ Hℓ(w2)(G/B,L(µ2))−→Hℓ(w3)(G/B,L(µ3)), (8)

is nonzero if and only if Φ(w3) = Φ(w1) ⊔ Φ(w2).

Under the assumption of Theorem 8 and Φ(w3) = Φ(w1) ⊔ Φ(w2), set λi = wi · µi for
i = 1, 2, 3. By the Borel-Weil-Bott theorem, Theorem 8 gives a surjective map

V (λ1)
∗ ⊗ V (λ2)

∗−→V (λ3)
∗.

In particular the point (λ1, λ2, λ
∗
3) belongs to LR(G).
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On the other hand, the condition µ3 = µ1 + µ2 is equivalent to

w1
−1 · λ1 + w2

−1 · λ2 = w3
−1 · λ3,

which is also equivalent to.
w1

−1λ1 + w2
−1λ2 = w3

−1λ3. (9)

Indeed, using that Φ(w3) = Φ(w1) ⊔ Φ(w2) and ρ = 1
2

∑
β∈Φ+ β, one easily deduces

ρ = w1
−1ρ+ w2

−1ρ− w3
−1ρ.

In particular, from Theorem 1, equation (9) and Corollary 7 we deduce the following Corol-
lary.

Corollary 9. The point (λ1, λ2, λ∗3) ∈ X(T )3 is a cohomological point of LR(G) if and only
if it belongs to a regular face of codimension rk(G) of LR(G).

4 The geometric strategy
We now start the proof of Theorem 1.

4.1 Incidence variety

Recall that for any w ∈ W , [Xw∨ ] is the Poincaré dual of [Xw].
Since H∗(G/B,C) is graded, if cwuv ̸= 0 then

ℓ(u) + ℓ(v) = ℓ(w) + ℓ(w0). (10)

Assuming (10), by Kleiman’s theorem, cwuv is the cardinality of the intersection

guXu ∩ gvXv ∩ gwXw∨

for general (gu, gv, gw) ∈ G3.
Let (w1, w2, w3) ∈ W 3 as in Section 3 and consider the incidence variety

Y = Y (w1, w2, w3) = {p = (z, g1B/B, g2B/B, g3B/B) ∈ (G/B)4 : z ∈ g1Xw1∩g2Xw2∩g3Xw3},
(11)

endowed with its projections π : Y−→G/B and η : Y−→(G/B)3 mapping p respectively
to z and to (g1B/B, g2B/B, g3B/B). Then, cwuv is interpreted as the cardinality of a general
fiber of η. In particular, to prove Theorem 1, it remains to prove the following proposition
(recall that we are working over the complex numbers).

Proposition 10. The map η is birational.
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4.2 About birational maps

Let f : Y−→X be a dominant morphism between irreducible varieties of the same dimen-
sion. We say that f is generically finite. The degree of f is defined to be deg(f) = [C(Y ) :
C(X)]. The degree of f is one, if and only if f is birational. We use the following consequence
of the main Zariski theorem (see [Mum99, Chap III, Section 9, Proposition 1]).

Proposition 11. Assume that f is birational and that X is normal. Let D be a primitive
divisor in Y . Assume that the closure of f(D) is of codimension one.

Then, the restriction of f to D is still birational. Moreover, if D and D′ are two divisor
as in the statement such that f(D) = f(D′) then D = D′.

Come back to generically finite morphism f : Y−→X. Assume in addition that Y is
normal and X is smooth. Let Y reg denote the open set of smooth points in Y . The deter-
minant of the tangent map of f defines a Cartier divisor Rf in Y reg, called the ramification
divisor. Taking the closure we get a Weyl divisor of Y , still denoted by Rf . Recall that
Y − Y reg has codimension at least 2. Let Supp(Rf ) denote the reduced support of Rf .

Proposition 12. Let f : Y−→X be a generically finite morphism. Assume, in addition,
that

1. X is smooth and projective;

2. Y is normal and projective;

3. the closure of f(Supp(Rf )) has codimension at least two in X;

4. π1(X) = {0}.

Then, f is birational.

Proof. Using the Stein factorisation [Har77, Corollary 11.5], we may assume that f is finite.
Then f is a covering from Y \Rf onto X\f(Supp(Rf )). Since f(Supp(Rf )) has codimen-
sion at least two in X, the fundamental groups of X and X\f(Supp(Rf )) coincide, and
X\f(Supp(Rf )) is simply connected. The proposition follows.

5 First properties of the map η

5.1 Bruhat order

For later use, we fix some notation on the Bruhat order. The Bruhat order is generated by
the covering relations: v ≤1 w is equivalent to Xv ⊂ Xw and dim(Xw) = dim(Xv) + 1.

We denote by ≤L the weak Bruhat order, which can be defined by v ≤L w if and only if
Φ(v) ⊂ Φ(w). It is generated by the covering relations: v ≤1

L w is equivalent to Φ(v) ⊂ Φ(w)
and ♯Φ(w) = ♯Φ(v) + 1. Equivalently, v ≤1

L w if and only if v ≤ w and there exists a simple
root α ∈ ∆ such that w = sαv.
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5.2 An open subset of the incidence variety

Fix w1, w2 and w3 in W satisfying (4). Consider the incidence variety Y = Y (w1, w2, w3)
and the two maps π and η defined in (11).

We now present an alternative description of Y . Set X = (G/B)3 and

z0 = (w1
−1B/B,w2

−1B/B,w3
−1B/B) ∈ X.

Note that G3 acts on X, and set C+ = B3 · z0. Denote by C̄+ the closure of C+ in X. The
group B acts on G× C̄+ by the formula b · (g, z) = (gb

−1
, bz). The quotient of G× C̄+ under

this action is a projective variety denoted by G ×B C̄
+. The class of (g, z) is denoted by

[g : z]. The map
ϕ : G×B C̄

+ −→ Y
[g : (z1, z2, z3)] 7−→ (gB/B, gz1, gz2, gz3)

is an isomorphism.
Observe that, modulo ϕ, η identifies with [g : (z1, z2, z3)] 7−→ (gz1, gz2, gz3), and π with

[g : (z1, z2, z3)] 7−→ gB/B.

We now consider G×BC
+ as an open subset of G×B C̄

+ and denote by η◦ the restriction
of η to this open set. Then, G×B C

+ identifies (once more, via ϕ) with

Y ◦ = {(z, g1B/B, g2B/B, g3B/B) ∈ (G/B)4 : z ∈ g1X
◦
w1

∩ g2X◦
w2

∩ g3X◦
w3
},

where X◦
w = BwB/B, for any w ∈ W .

In W 3 (which is the Weyl group of G3), we have (w′
1, w

′
2, w

′
3) ≤1 (w1, w2, w3) if and only

if two of the wi are equal to the corresponding w′
i and the last one is a covering relation in

the Bruhat order of W . Whenever (w′
1, w

′
2, w

′
3) ≤1 (w1, w2, w3) is fixed, we set

z′0 = (w′
1
−1B/B,w′

2
−1B/B,w′

3
−1B/B) ∈ (G/B)3

and

D(w′
1,w

′
2,w

′
3)

= {p = (z, g1B/B, g2B/B, g3B/B) ∈ (G/B)4 : z ∈ g1Xw′
1
∩ g2Xw′

2
∩ g3Xw′

3
},

= G×B (B3 · z′0),

Then
G×B C̄

+ = G×B C
+ ⊔

⋃
D(w′

1,w
′
2,w

′
3)

(12)

where the union runs over the set of (w′
1, w

′
2, w

′
3) ≤1 (w1, w2, w3).

5.3 The differential of η

Given φ ∈ Φ, denote by gφ the corresponding weight space in the Lie algebra g of G. For
w ∈ W , set Tw = ⊕φ∈Φ(w)g−φ. The projection g−→g/b gives an isomorphism between Tw
and the tangent space TB/Bw

−1BwB/B of w−1X◦
w at the point B/B. From now on we

identify these two spaces.
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Lemma 13. Let (w′
1, w

′
2, w

′
3) such that (w′

1, w
′
2, w

′
3) ≤1 (w1, w2, w3) and D = D(w′

1,w
′
2,w

′
3)
.

Then

1. Ker(T[e:z0]η) ≃ Tw1 ∩ Tw2 ∩ Tw3;

2. Ker(T[e:(g1,g2,g3)z′0]η|D) ≃ g1Tw′
1
∩ g2Tw′

2
∩ g3Tw′

3
, for any g1, g2, g3 in B;

3. Ker(T[e:z′0]η) ≃ Tw1 ∩ Tw2 ∩ Tw3, if (w′
1, w

′
2, w

′
3) ≤L (w1, w2, w3).

We need a preparatory lemma.

Lemma 14. Let w ∈ W , h ∈ B and z := w−1B/B ∈ G/B. Consider the maps

G×B Xw−1

G/B G/B

ϕπ

defined by ϕ([g : x]) = gx and π([g : x]) = gB/B. The restriction of T[e:hz]π to kerT[e:hz]ϕ is
an isomorphism with image hTw.

Proof. We have a commutative diagram

G×Xw−1

G G×B Xw−1

G/B G/B

ϕ̃

π̃

π

ϕ

Where ϕ̃((g, x)) = gx, π̃((g, x)) = g and the vertical maps are the quotient maps. We claim
that the restriction of T(e,hz)π̃ to kerT(e,hz)ϕ̃ is an isomorphism with image hTe(w−1BwB).
The lemma follows easily from the fact that G × Xw−1−→G ×B Xw−1 and G−→G/B are
locally-trivial B-bundles and that Te(w−1BwB) = Tw ⊕ b.

We prove the claim. Note that T(e,hz)π̃ = p1, where p1 : g × ThzXw−1−→g is the first
projection. Let w̄ ∈ NG(T ) be a representative of w. Multiplication for hw̄−1 is an auto-
morphism of G/B that restrict to an isomorphism between wBw−1B/B and Xw−1 . Since it
sends B/B to hz, from now on we can identify ThzXw−1 with Tw−1 and ThzG/B with g/b
using the differential of these isomorphisms. For (v, ζ) ∈ g × Tw−1 , a standard calculation
provides that

T(e,hz)ϕ̃(v, ζ) = Ad(w̄h−1)(v) + ζ + b.

11



It follows immediately that the restriction of p1 to Ker(T(e,hz)ϕ̃) is an isomorphism with
image Ad(hw̄−1)(Tw−1 + b). But

Ad(w̄−1)(Tw−1 + b) = Tew
−1(wBw−1B)w

= −Te(Bw−1Bw)−1

= Te(w
−1BwB)

Moreover, since w−1BwB is stable by right multiplication of B, Ad(h)(Te(w
−1BwB)) =

hTe(w
−1BwB).

Proof of Lemma 13. As a direct application of Lemma 14, the isomorphisms of the first two
statements are induced by the differential of π.

In the last case, set w′
1 = sαw1. Then Xw1 is stable by the minimal parabolic subgroup

associated to α. In particular sαXw1 = Xw1 .
Let w ∈ W and α ∈ ∆ such that w′ = sαw ≤L w. Set β = w′−1α. For the last assertion,

we first prove the following equality.
Claim: TB/Bw′−1Xw = TB/Bw

−1Xw.
Since TB/BG/B ≃ u− is multiplicity free as T -module, it is sufficient to compare the sets

of weights. Recall that Φ(w) = Φ(w′) ∪ {β}. Since Xw′ ⊂ Xw, −Φ(w′) are weights of both
TB/Bw

′−1Xw and TB/Bw
−1Xw. Since Xw is normal, w′B/B is smooth in Xw and the two

tangent spaces have the same dimension. Hence, to prove the claim it is sufficient to prove
that −β is a weight of TB/Bw′−1Xw.

Consider now the action of the additive one parameter subgroup of U− associated to −β
on the point B/B. The closure C of the orbit is isomorphic to P1 and contains the T -fixed
points B/B and sβB/B. Moreover, T acts with weight β on TsβB/BC. Since β ∈ Φ(w), C
is contained in w−1Xw and β is a weight of TsβB/Bw

−1Xw, because w′−1Xw = sβw
−1Xw.

Applying sβ we get that −β is a weight of TB/Bw′−1Xw.

By symmetry, assume that w′
1 = sαw1, w′

2 = w2 and w′
3 = w3. As for the two first

assertions, one can check that

Ker(T[e:z′0]η) ≃ TB/Bw
′
1
−1Xw1 ∩ Tw2 ∩ Tw3 .

It is clear that the claim implies the last assertion of the lemma.

Lemma 15. The map η◦ is smooth.

Proof. Since G×B C
+ and X are smooth, it remains to prove that Tpη is invertible for any

p ∈ G×B C
+. Consider the set Z of such points p such that Tpη is not invertible.

Our assumption on (w1, w2, w3) and Lemma 13 imply that T[e:z0]η is invertible.
Let τ be a dominant regular one parameter subgroup of T . It is well known that for any

z ∈ C+, limt→0 τ(t)z = z0. Since Z is closed and stable by the action of τ , this implies that
Z ∩ C+ = ∅ (here C+ identified to a subvariety of G×B C

+ by the map x 7→ [e : x]).
The map η being G-equivariant, Z is empty.

12



Lemma 15 implies that Ω = η(G ×B C
+) is open in X. Moreover, we can prove the

following proposition.

Proposition 16. If Proposition 10 holds, then η◦ : G×B C
+−→Ω is an isomorphism.

Proof. Let Z = G×B C
+. Fix q ∈ Ω and denote by Zq its schematic fiber for η◦. Since η◦ is

smooth of relative dimension zero and Z is of finite type, Zq is a variety of dimension zero,
hence affine. Moreover, by flatness of η◦, dimC[Zq] = deg η◦ = 1. Hence Zq is a single point.
The proposition follows from the Zariski main theorem.

Lemma 17. Set z′0 = (w′
1
−1B/B,w′

2
−1B/B,w′

3
−1B/B) ∈ C̄+. If (w′

1, w
′
2, w

′
3) ≤1

L (w1, w2, w3)
then T[e:z′0]η is an isomorphism.

Proof. The statement follows easily from Condition (4) and Lemma 13.

5.4 The case of Poincaré duality

Let w ∈ W . Keep the notation of the previous section assuming in addition that (w1, w2, w3) =
(w,w∨, w0). Then, by Poincaré duality η is birational. We now describe the behaviour of
the divisors on the boundary of Y ◦ using Proposition 11.

Proposition 18. Let w′
1, w

′
2 and w′

3 in W such that (w′
1, w

′
2, w

′
3) ≤1 (w,w∨, w0) in W 3.

Then

1. the restriction of η to D(w′
1,w

′
2,w

′
3)

is birational if and only if (w′
1, w

′
2, w

′
3) ≤L (w,w∨, w0).

Moreover, there are exactly 2rk(G) such divisors.

2. If (w′
1, w

′
2, w

′
3) ≤L (w,w∨, w0) does not hold, η(D(w′

1,w
′
2,w

′
3)
) has codimension at least

two.

Proof. By Proposition 11, the first assertion implies the second one. The proof of the first
one proceeds in three steps.
Step 1. If (w′

1, w
′
2, w

′
3) ≤L (w,w∨, w0) then η(D) is a divisor in X = (G/B)3.

Observe that, by normality of the Schubert varieties, [e : z′0] is a smooth point. Lemma 17
shows that T[e:z′0]η is injective. In particular, the fiber η−1(η([e : z′0])) is finite. Hence
dim(η(D(w′

1,w
′
2,w

′
3)
)) = dimX − 1. Now, Proposition 11 allows to conclude.

Step 2. Let (w′
1, w

′
2, w

′
3) ∈ W 3 such that (w′

1, w
′
2, w

′
3) ≤1

L (w,w∨, w0). We claim that there
are exactly 2rk(G) triples. We have three possibilities.

1. w′
1 = w and w′

2 = w∨. Then w′
3 = sαw0 some α ∈ ∆ and any such w′

3 works. We get
rk(G) such cases.

2. w′
3 = w0 and w′

2 = w∨. Then w′
1 = sαw for some descent α of w and any such w′

1

works.
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3. w′
3 = w0 and w′

1 = w. Then w′
2 = sαw

∨ for some descent α of w∨ and any such w′
2

works.

The count is correct since, for any α ∈ ∆, either α is a descent of w or (exclusively) −w0α
is a descent of w∨.

Step 3. The closed subset X − Ω has 2rk(G) irreducible components of codimesion one in
X.

Note that G×BC
+ contains U−×C+ as an open subset. The latter being an affine space,

it follows that C[G ×B C
+]∗ = C∗. By Proposition 16, C[Ω]∗ = C∗. Let E1, . . . , Es be the

irreducible components of X −Ω of codimension one in X. The previous discussion and the
fact that X is smooth imply that we have an exact sequence (see e.g. [Har77, Proposition
6.5]):

0−→⊕s
i=1 ZEs−→Pic(X)−→Pic(Ω)−→0. (13)

Observe first that Pic(X) ≃ X(T )3 is a free abelian group of rank 3rk(G). Then, the
irreducible components of the complement of U− × C+ in G×B C

+ are the pullbacks by π
of the divisors B−sαB/B. There are rk(G) of them. Using the exact sequence analogue to
(13) and Proposition 16 we deduce that Pic(Ω) ≃ Pic(G ×B C

+) is a free abelian group of
rank rk(G).

Now, the exactness of sequence (13) implies that s = 2rk(G).

Step 3 and the last statment of Proposition 11 imply that 2rk(G) irreducible divisors are
not contracted by η. At Steps 1 and 2, we found 2rk(G) of them. This ends the proof.

6 The kernel of the differential map
Fix (w1, w2, w3) ∈ W 3 satisfying Assumption (4) and consider the map η : Y−→X defined
in Section 4.1. Lemma 15 shows that the restriction η◦ of η to G×BC

+ is smooth. Let D be
an irreducible component of Y \(G×BC

+). By (12), there exists (w′
1, w

′
2, w

′
3) ≤1 (w1, w2, w3)

such that D = D(w′
1,w

′
2,w

′
3)

. Lemma 17 shows that D is not contained in the ramification
divisor Rη if (w′

1, w
′
2, w

′
3) ≤1

L (w1, w2, w3) holds. Otherwise, one can apply the following
proposition.

Proposition 19. Assume that (w′
1, w

′
2, w

′
3) ≤1

L (w1, w2, w3) does not holds. Then D(w′
1,w

′
2,w

′
3)

is contracted by η.

The previous proposition allows to prove Proposition 10.

Proof of Proposition 10. Let Rη be the ramification divisor of η. Lemmas 17, 15 and Propo-
sition 19 imply that any irreducible component of Rη of codimension one in Y is contracted
by η. The statement follows from Proposition 12.
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The rest of the section is a proof of Proposition 19. Observe first that it is sufficient to
prove the following assertion.
Claim: For any x ∈ D = D(w′

1,w
′
2,w

′
3)

the linear map Txη|D is not injective.

Indeed, since we work over C, η is separated. Moreover, by G-equivariance and semicon-
tinuity, it is sufficient to prove the claim for x ∈ B3z′0 = U3z′0.

6.1 A description as the kernel of a matrix

Up to S3-symmetry, assume that w′
1 ̸= w1. It is convenient to set

w = w1 x = w∨
2 y = w∨

3 v = w′
1.

Then, the assumptions are equivalent to

Φ(w) = Φ(x) ⊔ Φ(y), v ≤1 w and Φ(v) ̸⊂ Φ(w). (14)

For any φ ∈ Φ, fix nonzero elements ξφ and ξφ in g−φ and (g∗)φ respectively.
Fix gx and gy in U . To this data, we attach a matrix M = M(v, w, x, y, gx, gy) whose

rows are indexed by Φ(w) and columns by Φ(v). The entry at row β ∈ Φ(w) and column
γ ∈ Φ(v) is

Mβγ =

{
ξβ(gx

−1ξγ) if β ∈ Φ(x)
ξβ(gy

−1ξγ) if β ∈ Φ(y)

Lemma 20. The Kernel of M is isomorphic to the intersection

Tv ∩ gxTx∨ ∩ gyTy∨ ≃ Tpη|D,

where p = [e : (B/B, gxx
−1B/B, gyy

−1B/B)].

Hence, by Lemma 13 and B-invariance, to prove Proposition 19 it is sufficient to prove
the following.

Proposition 21. The Kernel of M =M(v, w, x, y, gx, gy) is nonzero.

Example. In the root system D4, consider w = s2s3s1s2s4s2 and v = ws2. Then

Φ(w) = {α2, α2 + α4, α4, α1 + α2 + α4, α2 + α3 + α4, α1 + 2α2 + α3 + α4}

and
Φ(v) = {α4, α2 + α4, α1 + α2 + α4, α2 + α3 + α4, α1 + α2 + α3 + α4}.

Consider a generic matrix

ξ =



0 x0 x1 x2 x6 x7 x8 0
0 0 x3 x4 x9 x10 0 −x8
0 0 0 x5 x11 0 −x10 −x7
0 0 0 0 0 −x11 −x9 −x6
0 0 0 0 0 −x5 −x4 −x2
0 0 0 0 0 0 −x3 −x1
0 0 0 0 0 0 0 −x0
0 0 0 0 0 0 0 0
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in Lie(U) and set u = exp(ξ). The matrix M(v, w, w, e, u, e) is

α4 α2 + α4 α1 + α2 + α4 α2 + α3 + α4 α1 + α2 + α3 + α4

α4 1 −x3 1
2
x0x3 − x1

1
2
x3x5 + x4 −1

3
x0x3x5 − 1

2
x0x4 +

1
2
x1x5 + x2

α2 0 −x11 x0x11 x5x11 −x0x5x11
α2 + α4 0 1 −x0 −x5 x0x5

α1 + α2 + α4 0 0 1 0 −x5
α2 + α3 + α4 0 0 0 1 −x0

α1 + 2α2 + α3 + α4 0 0 0 0 0


Its kernel is nontrivial since two rows are proportional. The authors did not find such a

general raison to prove that the kernel of any M is nontrivial. Instead, we use the fact the
result is known in the case of Poincaré duality and we reduce to it.

6.2 The case when a submatrix is strictly triangular

Define the height h : Φ−→Z, by h(
∑

α∈∆ nαα) =
∑

α∈∆ nα. For h ∈ Z, we set Φ(w)h =
{φ ∈ Φ(w) : h(φ) = h} and Φ(w)≤h = {φ ∈ Φ(w) : h(φ) ≤ h}. Note that if φ ≤ ψ, then
h(φ) ≤ h(ψ).

The following lemma is well-known:

Lemma 22. Let γ ∈ Φ. For any g ∈ U and ξ ∈ g−γ, we have

gξ ∈ ξ +
∑
ψ<γ

g−ψ.

As an immediate consequence of Lemma 22, we get that

Mβγ = 1 if β = γ,
Mβγ ̸= 0 implies β ≤ γ.

We improve this fact as follows.

Lemma 23. If at least one of the following assertions holds:

1. ∃h ∈ N∗ such that ♯Φ(v)≤h > ♯Φ(w)≤h;

2. ∃h ∈ N∗ such that ♯Φ(v)≤h = ♯Φ(w)≤h and Φ(v)h+1 ̸⊂ Φ(w);

then KerM ̸= {0}.

Proof. First, number the elements of Φ(w) (and independently Φ(v)) in such a way that the
map β 7→ h(β) is nondecreasing. Let N be the submatrix of M with rows and columns in
Φ(w)≤h and Φ(v)≤h respectively. Lemma 22 implies that M has the following form(

N ⋆
0 ⋆

)
(15)
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With the first assumption of the lemma, N has more columns than rows; hence its kernel
is not reduced to zero. By (15), that of M too.

Assume now that we are in the second case. Then, N is a square matrix and we can fix
γ ∈ Φ(v)h+1 and γ ̸∈ Φ(w). Up to renumbering, assume that γ is the first root in Φ(v)h+1.

Let Ñ be the submatrix of M with rows and columns in Φ(w)≤h and Φ(v)≤h ∪ {γ}
respectively. Lemma 22 implies that M is block triangular as in (15) with Ñ in place of N .
Hence the kernel M is not reduced to zero.

6.3 The case when no submatrix is strictly triangular

We now assume that Lemma 23 does not apply; that is that:

(H1) ∀h ∈ N∗ ♯Φ(v)≤h ≤ ♯Φ(w)≤h; and

(H2) ∀h ∈ N∗ such that ♯Φ(v)≤h = ♯Φ(w)≤h we have Φ(v)h+1 ⊂ Φ(w).

Observe that (H2) can be re-written as

(H2’) ∀h ∈ N∗ ♯Φ(v)<h = ♯Φ(w)<h =⇒ Φ(v)h ⊂ Φ(w).

Set
Φ(w)− Φ(v) = {β0, β1, . . . , βs}
Φ(v)− Φ(w) = {γ0, γ1, . . . , γt}

by labeling the elements by nondecreasing height.
A key result to understand the matrix M is the following

Proposition 24. With above notation and assuming (H1) and (H2), we have

1. w = vsβ0;

2. s = t+ 1;

3. h(β0) < h(γ0) < h(β1) < h(γ1) < · · · < h(βs);

4. for any i = 0, . . . , t, there exists ki ∈ N∗ such that βi+1 = γi + kiβ0.

Proof. Since v ≤1 w, there exists β ∈ Φ+ such that w = vsβ. By an immediate induction, it
is sufficient to prove the following three assertions:

(P0) Φ(w)≤h(β) = Φ(v)≤h(β) ⊔ {β}, and β0 = β.

(P1) If

(a) h(β0) < h(γ0) < · · · < h(βi),

(b) Φ(w)≤h(βi) − Φ(v) = {β0, β1, . . . , βi},
(c) Φ(v)≤h(βi) − Φ(w) = {γ0, γ1, . . . , γi−1},
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(d) ∀0 ≤ j < i ∃k ∈ N βj+1 − kβ0 = γj, and

(e) Φ(w)>h(βi) ̸= Φ(v)>h(βi)

then

(f) h(γi) > h(βi),

(g) Φ(w)≤h(γi) − Φ(v) = {β0, β1, . . . , βi}, and

(h) Φ(v)≤h(γi) − Φ(w) = {γ0, γ1, . . . , γi}.

(P2) If

(a) h(β0) < h(γ0) < · · · < h(γi),

(b) Φ(w)≤h(γi) − Φ(v) = {β0, β1, . . . , βi},
(c) Φ(v)≤h(γi) − Φ(w) = {γ0, γ1, . . . , γi}, and

(d) ∀0 ≤ j < i ∃k ∈ N βj+1 − kβ0 = γj

then

(e) h(βi+1) > h(γi),

(f) Φ(w)≤h(βi+1) − Φ(v) = {β0, β1, . . . , βi+1},
(g) Φ(v)≤h(βi+1) − Φ(w) = {γ0, γ1, . . . , γi}, and

(h) ∃k ∈ N βi+1 − kβ0 = γi.

Proof of (P0). Fix a positive root θ ̸= β. It is well known that there exist integers p ≤ q
such that

(θ + Zβ) ∩ Φ+ = {θ + kβ : k ∈ [p; q] ∩ Z}.

Since β ∈ Φ(w), the convexity of Φ(w) implies that

(θ + Zβ) ∩ Φ(w) = {θ + kβ : k ∈ [r; q] ∩ Z},

for some integer p ≤ r ≤ q + 1. Then

(θ + Zβ) ∩ Φ(v) = {θ + kβ : k ∈ [p; s] ∩ Z}, where s = p+ q − r. (16)

In other words, (θ + Zβ) ∩ Φ(w) consists in the q − r + 1 last elements of (θ + Zβ) ∩ Φ+,
whereas (θ+Zβ)∩Φ(v) consists in the q−r+1 first elements. In [Res18], there is a geometric
proof of equality (16). For completeness, we include a combinatorial one. By coconvexity of
Φ(v) it is sufficient to prove the following lemma.

Lemma 25. Let w ∈ W , β ∈ Φ+ and v = wsβ ≤1 w. For any θ ∈ Φ+ \ {β} we have:

♯((θ + Zβ) ∩ Φ(w)) = ♯((θ + Zβ) ∩ Φ(v)).
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Proof. Enumerate the simple roots, that is ∆ = {α1, . . . αr}. Let w = sim . . . si1 , for some
integers 1 ≤ ij ≤ r, be a reduced expression of w. Then there exists a unique 1 ≤ k ≤ m
such that

β =

{
si1 . . . sik−1

αik if 1 < k

αi1 otherwise.

Moreover v = sim . . . sik+1
sik−1

. . . si1 . If k = m, the statement is obvious since v ≤1
L w, hence

Φ(w) = Φ(v) ∪ {β}. Otherwise, let w′ = simw and v′ = simv. We have that v′ ≤1 w′ and

Φ(w) = Φ(w′) ⊔ {(w′)−1αim} and Φ(v) = Φ(v′) ⊔ {(v′)−1αim}.

But, paying attention if k = 1,

(w′)−1αim =si1 . . . sim−1αim

=s11 . . . sik−1
siksik−1

. . . si1(v
′)

−1

αim

=sβ(v
′)

−1

αim ∈ (v′)
−1

αim + Zβ.

The statement follows easily by induction on m− k.

Going back to the proof, we have that Φ(w)<h(β) ⊂ Φ(v) and Φ(w)h(β) − {β} ⊂ Φ(v).
Using (H1), we get Φ(w)<h(β) = Φ(v)<h(β). Now, (H2) implies that Φ(v)h(β) ⊂ Φ(w). Hence
Φ(w)≤h(β) = Φ(v)≤h(β) ⊔ {β}.

Then, β is the unique element of minimal height in (Φ(v) ∪ Φ(w))− (Φ(v) ∩ Φ(w)) and
it belongs to Φ(w). Hence β0 = β.

Proof of (P1). Let θ ∈ (Φ(v)∪Φ(w))−(Φ(v)∩Φ(w)) such that h(θ) > h(βi) and of minimal
height with these properties. Such a θ exists by Hypothesis (P1e). Roughly speaking θ is
the next difference.

Consider θ + Zβ. By Hypothesis (P1d), for any 0 ≤ j < i, γj ∈ θ + Zβ if and only if
βj+1 ∈ θ+Zβ. Hence, by (16), θ, that is the next difference in θ+Zβ, belongs to Φ(v)−Φ(w).

The assumptions imply that ♯Φ(v)<h(βi) = ♯Φ(w)<h(βi). Hence (H2) gives Φ(v)h(βi) ⊂
Φ(w). Thus h(θ) ̸= h(βi) and h(θ) > h(βi).

The set {γ0, . . . , γi−1, θ} ⊔ Φ(w)≤h(θ) is contained in {β0, . . . , βi} ⊔ Φ(v)≤h(θ), and even
equal by (H1). Then γi = θ. This ends the proof of (P1).

Proof of (P2). Let θ ∈ (Φ(v) ∪ Φ(w)) − (Φ(v) ∩ Φ(w)) such that h(θ) > h(γi) and of
minimal height with these properties. Such a θ exists since ♯Φ(w) = ♯Φ(v) + 1.

The assumptions imply that ♯Φ(v)<h(θ) = ♯Φ(w)<h(θ). Then (H2) gives Φ(v)h(θ) ⊂ Φ(w)
and θ ∈ Φ(w).

Consider θ+Zβ and recall (16). For any j < i, γj ∈ θ+Zβ if and only if βj+1 ∈ θ+Zβ.
We deduce that there exists k ∈ N such that θ − kβ0 belongs to Φ(v) − {γ0, . . . , γi−1} and
not in Φ(w). But γi is the only such element of height less than h(θ). Hence θ − kβ0 = γi.

What we have just proved also implies that θ + Zβ0 = γi + Zβ0 and that θ is the only
element in Φ(w)−Φ(v) of its height. It follows that θ = βi+1 and Φ(v)h(θ) ⊔ {θ} = Φ(w)h(θ).
This ends the proof of (P2).
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To emphasise the structure of M in blocks, let us set, for any i = 0, . . . , s

Φ−
i = {θ ∈ Φ(v)− {γ0, . . . , γs−1} | h(γi−1) ≤ h(θ) ≤ h(βi)}

Φ+
i = {θ ∈ Φ(v)− {γ0, . . . , γs−1} | h(βi) < h(θ) < h(γi)},

where, by convention h(γ−1) = 0 and h(γs) = +∞.
For i = 0, . . . , s, denote by M−

i the submatrix of M whose rows and columns indices of its
entries belong to Φ−

i . For i = 0, . . . , s− 1, denote by M+
i the submatrix of M corresponding

to the rows Φ+
i ⊔ {βi} and columns Φ+

i ⊔ {γi}. Finaly, denote by M+
s the submatrix of M

corresponding to the rows Φ+
s ⊔ {βs} and columns Φ+

s .
Observe that all the M±

i are square matrices except M+
s . Recall that the elements of

Φ(v) and Φ(w) are numbered by nondecreasing height. Then, Lemma 22 implies easily that
M is upper triangular by blocs with M−

0 ,M
+
0 ,M

−
1 , . . . ,M

+
s as diagonal blocks. The same

lemma also implies that each M−
i is upper triangular with 1’s on the diagonal and that

M+
s =


∗ · · · ∗ · · · ∗
1 ∗

. . .
0 1

 .

On the example in Section 6.1, s = 1, M−
0 is the identity matrix of size 1, M+

0 is the
(4 × 4)-submatrix with rows in {2, 3, 4, 5} and columns in {2, 3, 4, 5}. The matrix M+

0 is
empty in this case since Φ+

1 is.

Then, elementary linear algebra gives

Lemma 26. With above notation, we have KerM ̸= {0} if and only if there exists i ∈
{0, . . . , s− 1} such that M+

i is not invertible.

6.4 The trick using Poincaré duality

Recall that the matrix M depends on the choice of a pair (gx, gy) of elements in the unipotent
group U , nevertheless the sets Φ±

i , and the existence of a corresponding block subdivision of
M , only depend on v and w.

Proof of Proposition 21. First consider the case of Poincaré duality: M(v, w, w, e, g, g′) for
g, g′ in U . Since Φ(e) = ∅, the matrix is independent of g′.

By Proposition 18, the divisor associated to (v, w∨, w0) is contacted by η. Then the
Kernel of M(v, w, w, e, g, g′) is nonzero for any g ∈ U . By Lemma 26 this implies that∏

i detM
+
i (v, w, w, e, g, g

′) = 0 for any g ∈ U . Since U is irreducible as a variety, this implies
that there exists i0 such that detM+

i0
(v, w, w, e, g, g′) = 0 for any g, g′ ∈ U .

Consider now the matrix M(v, w, x, y, gx, gy).

20



By Proposition 56 of Section 9, the only coefficients occurring in detM+
i0
(v, w, x, y, gx, gy)

are indexed by roots in the interval [βi0 ; γi0 ]. By Proposition 24 there exists a nonnegative
integer k such that γi0 + kβ0 ̸∈ Φ(w) and γi0 + (k + 1)β0 ∈ Φ(w). Moreover [βi0 , γi0 ] ⊆
[β0; γi0 + kβ0] by Statement 4 of Proposition 24.

Then we can apply Theorem 3 with β = β0 and γ = γi0 + kβ0, and we deduce that
detM+

i0
(v, w, x, y, gx, gy) is equal to either detM+

i0
(v, w, w, e, gx, gx) or detM+

i0
(v, w, e, w, gy, gy).

By the first part of the proof, detM+
i0
(v, w, w, e, g, g′) = 0 for any g, g′ ∈ U .

But detM+
i0
(v, w, e, w, g′, g) = detM+

i0
(v, w, w, e, g, g′). Thus detM+

i0
(v, w, x, y, gx, gy) =

0. Since M+
i0
(v, w, x, y, gx, gy) is one of the diagonal blocks of M(v, w, x, y, gx, gy), this com-

pletes the proof.

7 The proofs of the corollaries
Proof of Corollary 4. Theorem 1 implies that [Xw1 ] · [Xw2 ] · [Xw3 ] = [pt]. On the other hand
w1

−1Xw1 , w2
−1Xw2 and w3

−1Xw3 intersect transversally at the point B/B. It follows that

w1
−1Xw1 ∩ w2

−1Xw2 ∩ w3
−1Xw3 = {B/B}. (17)

Given x ∈ W , we have x ∈ w1
−1Xw1 if and only if w1x ≤ w1. Then the statement

translates the fact that eB/B is the only point in the intersection (17).

Proof of Corollary 5. Let E1, . . . , Es be the irreducible components of X−Ω of codimension
one in X. The same argument of Step 3 of the proof of Proposition 18 implies that s =
2rk(G). By Propositions 10, 11 and the fact that η is proper, it follows that any of the Ei is
dominated by exactly one irreducible components of Y −Y ◦ of codimension one in Y . Hence,
2rk(G) is the number of divisors contained in Y − Y ◦ and not contracted by η. Because of
Lemma 17 and Proposition 19 there are exactly

∑
i d(w

∨
i ) such divisors.

Proof of Corollary 7. The fact that F(w1,w2,w3) is a regular face of the cone LR(G) is a direct
application of [Res10, Theorem D]. Idem for the fact that any regular face of dimension
2rk(G) is obtained in such a way. The fact that any integral point in F(w1,w2,w3) belongs
to the semigroup LR(G) is a consequence of the PRV conjecture (see [Kum88, Mat89] or
[MPR11]).

Let E1, . . . , E2rk(G) be the irreducible components ofX−Ω of codimension one inX. Each
Ei gives a line bundle O(Ei) on X and a section σi ∈ H0(X,O(Ei)) such that div(σi) = Ei.
Since G is semisimple and simply connected, O(Ei) admits a unique G-linearisation. Thus,
there exists (λi1, λ

i
2, λ

i
3) ∈ X(T )3 such that O(Ei) = L(λi1, λi2, λi3). Since Ei is G-stable and

G has no character, σi is G-invariant. Then, (λi1, λi2, λi3) belongs to LR(G).
By construction σi([e : x0]) ̸= 0, where x0 = (w1

−1B/B,w2
−1B/B,w3

−1B/B). Since
[e : x0] is fixed by the maximal torus T and σi is G-invariant, T has to act trivially on the
fiber in O(Ei) over [e : x0]. Thus, w1

−1λi1 +w2
−1λi2 +w2

−1λi3 = 0 and (λi1, λ
i
2, λ

i
3) belongs to

F(w1,w2,w3).
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Conversely, let (λ1, λ2, λ3) in F(w1,w2,w3). Set L = L(λ1, λ2, λ3). By e.g. [Res21, Theo-
rem 1.2], the rectriction map induces an isomorphism from H(X,L)G onto H0({x0},L)T ≃ C.
Fix a nonzero element σ in H(X,L)G. From σ(x0) ̸= 0, one easily deduces that σ does not
vanish on Ω = η(G×B C

+) using G-invariance and continuity. Then there exist nonnegative
integers ni such that div(σ) =

∑2rk(G)
i=1 niEi. In particular L =

∑
i niO(Ei) and (λ1, λ2, λ3)

belongs to the semigroup generated by the triples (λi1, λ
i
2, λ

i
3).

8 Proof of Theorem 3

8.1 Some reductions

Let us start with this simple observation.

Lemma 27. If Theorem 3 holds for any irreducible root system, then it holds for any root
system.

Proof. Suppose that Φ = Φ1 ⊔ Φ2 is a reducible root system, let ∆i be a set of simple roots
for Φi, i = 1, 2 and ∆ = ∆1 ⊔ ∆2 be the set of simple roots of Φ. The key observation is
that if, for β, γ ∈ Φ+ we have that β < γ and β ∈ Φ1, then γ ∈ Φ1. Then, noticing that
Φi
j := Φi ∩ Φj (for i = 1, 2 and j = 1, 2, 3) are biconvex in Φi and satisfy Φi

3 = Φi
1 ⊔ Φi

2 the
lemma follows by a straightforward argument.

Strat with a root φ such that β < φ < γ. It remains to prove that φ ̸∈ Φ2. We intensively
use the following reduction lemma:

Lemma 28. Assume that there exists a linear subspace F of RΦ such that β ∈ F and φ−β,
γ − φ can be expressed as a positive linear combinaison of roots in F ∩ Φ+.

If Theorem 3 holds in the root system F ∩ Φ, then φ ̸∈ Φ2.

Proof. Observe that, for i = 1, 2, 3, Φi ∩ F is biconvex in F ∩ Φ. Hence, the assumption
Φ3 = Φ1∪Φ2 can be transfered in F∩Φ. The assumptions of the lemma imply that β < φ < γ
holds in F ∩ Φ. So, Theorem 3 in F ∩ Φ implies that φ ̸∈ F ∩ Φ2; and φ ̸∈ Φ2.

For later use, notice that if Φ is irreducible and simply laced, then any irreducible com-
ponent of F ∩ Φ is simply laced.

A triple β < φ < γ in Φ is said to be irreducible if there exists no strict F as in Lemma 28.
In particular, for any irreducible triple, the support of γ is ∆.

Lemma 29. In the setting of Theorem 3, γ + β ∈ Φ1.

Proof. If γ + β ̸∈ Φ1 then γ + β ∈ Φ2. But β ̸∈ Φ2 and γ ̸∈ Φ2. Contradiction with the
coconvexity of Φ2.
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8.2 Type ADE

In this section, we prove Theorem 3 for irreducible root systems of type ADE. Notice that
if Φ is of type ADE, then any irreducible component of F ∩ Φ is also of type ADE.

Start with an observation excluding type A:

Lemma 30. In type A, for any pair of positive roots β ≤ γ, β + γ is not a root.

Proof. It suffices to observe that the coefficients of the positive roots in the basis of simple
roots are 0 or 1.

8.2.1 Reduction through quiver theory

For quiver theory we follow the notation and conventions of [DW11]. The contents and
definitions not given here can be found in [DW11][Sections 2.1 to 2.4]. Let Q = (Q0, Q1, h, t)
be a quiver whose underlying unoriented graph is a Dynkin diagram of type ADE. Let NQ0

be the space of dimension vectors. For i ∈ Q0, ei denotes the i-th element of the canonical
basis of Γ = ZQ0 .
Let ∆ = {αi : i ∈ Q0} be a basis of the root system Φ corresponding to the graph underlying
Q. By the well known Gabriel’s Theorem, the Z-linear map Γ−→R = ZΦ that sends ei to
αi is an isomorphism which restricts to a bijection between the set of Schur roots of Q and
Φ+. From now on we identify Γ with R as described above.
Let ⟨−,−⟩ : Γ × Γ−→Z denote the Euler form of the quiver. In particular, if α, β are
dimension vectors, then

⟨α, β⟩ = hom(α, β)− ext(α, β).

Let (−,−) : R × R−→Z be the Killing form, recall that for any α, β ∈ Γ = R, (α, β) =
⟨α, β⟩+ ⟨β, α⟩.

Our reduction strategy exploits the Kac canonical decomposition [Kac80, DW11]. A
dimension vector α can be written uniquely (up to reordering) as α = α1 + · · · + αs where
the αi are Schur roots such that a generic representation of Q of dimension α decomposes
into a direct sum of indecomposable representations of dimension αi. In this case, we write
α = α1 ⊕ · · · ⊕ αs and we call this expression the canonical decomposition of α. It’s known
that α = α1 + · · · + αs is the canonical decomposition of α if and only if α1, . . . , αs are
Schur roots such that ext(αi, αj) = 0 for any i ̸= j. Since the identification between Γ and
R gives a bijection between the space of dimension vectors and NΦ+, we will freely refer to
the canonical decomposition of any γ ∈ R such that γ > 0. Note also that the canonical
decomposition of such a γ gives an explicit way of writing it as a sum of elements of Φ+.

Lemma 31. Let γ, β ∈ Φ+ such that β ≤ γ. If γ − β = α1 ⊕ · · · ⊕ αs is the canonical
decomposition of γ − β, then s ≤ 2− (γ, β).
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Proof. Since Q is an orientation of a Dynkin diagram, the quadratic form ⟨−,−⟩ is positive
definite on Γ. Moreover, a dimension vector α is a Schur root if and only if ⟨α, α⟩ = 1. In
particular ext(α, α) = 0 for any Schur root (see e.g. [Bri12]). Hence

⟨γ − β, γ − β⟩ = ⟨γ, γ⟩+ ⟨β, β⟩ − (γ, β) = 2− (γ, β)

Then, by using the properties of the canonical decomposition we have that

⟨γ − β, γ − β⟩ =
s∑
i=1

⟨αi, αi⟩+
∑
i ̸=j

⟨αi, αj⟩ = s+
∑
i ̸=j

hom(αi, αj)

In particular
s = 2− (γ, β)−

∑
i ̸=j

hom(αi, αj) ≤ 2− (γ, β).

We prove the following easy lemma by lack of a precise reference.

Lemma 32. Let α, β ∈ Φ with α ̸= β, then

1. (β, α) = 1 ⇐⇒ β − α ∈ Φ.

2. (β, α) = 0 ⇐⇒ β − α and β + α are not roots.

3. (β, α) = −1 ⇐⇒ β + α ∈ Φ.

Proof. [Hum72, Section 9.4] Recall that we are in type ADE, hence (β, α) ∈ {−1, 0, 1}. Let
r, q ∈ N be the greatest integers such that β − rα ∈ Φ and β + qα ∈ Φ. It’s a classical
fact that r − q = (β, α). Moreover we know that if (β, α) = 1, then β − α ∈ Φ and that if
(β, α) = −1 then β+α ∈ Φ. Since (β+qα, α) ≤ 1 we deduce that 2q ≤ 1−(β, α), while using
that −1 ≤ (β − rα, α) we get that 2r ≤ 1 + (β, α). In particular, we deduce that r + q ≤ 1,
hence the pair (r, q) belongs to {(0, 0), (0, 1), (1, 0)}. If β −α ∈ Φ, then (r, q) = (1, 0), hence
1 = r − q = (β, α). Similarly if β + α ∈ Φ we deduce that (β, α) = −1. We have proved 1
and 3, then 2 follows.

Corollary 33. In type ADE, for any triple of positive roots β < φ < γ such that β+γ ∈ Φ,
there exist a linear space F as in Lemma 28 satisfying one of the following statment:

1. dim(F ) = 6 or 7 and φ+ β ∈ Φ and γ + φ ∈ Φ; or

2. dim(F ) = 6 and φ+ β ∈ Φ and γ ± φ are not roots; or

3. dim(F ) = 6 and γ + φ ∈ Φ and φ± β are not roots; or

4. dimF = 4 or 5.
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Proof. If γ −φ = α1 ⊕ · · · ⊕ αs and φ− β = β1 ⊕ · · · ⊕ βr are the canonical decompositions,
it’s clear that the space F generated by {β, β1, . . . , βr, α1, . . . αs} works. In particular using
Lemma 31 we get

dimF ≤ 1 + r + s ≤ 5− (φ, β)− (γ, φ).

Since the Killing form evaluated on two different roots takes values in {−1, 0, 1}, it follows
that dimF ≤ 7.

If dimF = 7, (φ, β) = (γ, φ) = −1. By Lemma 32, we are in the first case.
If dimF = 6, at least one of (φ, β) and (γ, φ) is −1 and the other one is −1 or 0. By

Lemma 32, we are in one of the three first cases.
By Lemma 30, F ∩ Φ cannot be of type A. In particular, its rank is at least 4.

We now improve Corollary 33 excluding the rank 7.

Lemma 34. There is no irreducible triple β < φ < γ in the root system Φ such that:

1. Φ is an irreducible root sytem of type ADE of rank 7;

2. β < φ < γ in Φ+ and β + γ ∈ Φ;

3. φ+ β and φ+ γ belong to Φ.

Proof. Assume, for contradiction that such a situation exists. By Lemma 30, the type of Φ
is either D7 or E7.

Case D7. Let us number the simple roots of D7 like in [Bou68]:

D7

1 2 3 4 5

7

6

A root φ = aα1 + bα2 + cα3 + dα4 + eα5 + fα6 + gα7 is denoted by
g

a b c d e
f

.

We also write a(φ) = a. . .
The longest root of D7 is

α0 =
1

1 2 2 2 2
1

Since β < γ, φ < γ and γ+β and γ+φ are roots, β and φ are supported on the root system
generated by α2, . . . , α5; hence they lie in a root subsystem of type A4. In particular φ+ β
cannot be a root.
Case E7. Let us number the simple roots of E7 like in [Bou68]:
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E7

1 3 4 5 6 7

2

A root φ = aα1 + bα2 + cα3 + dα4 + eα5 + fα6 + gα7 is pictured by a c d e f
b

.

Since β < φ, φ + β ∈ Φ has at least one 2 and b(φ) ≥ 1. Similarly, using φ < γ and
φ+ γ ∈ Φ, we get b(φ) = b(γ) = 1.

In Φ the coefficient g is 0 or 1. Thus g(φ) = 0 and g(γ) = 1. Similarly, b(γ) = 1 implies
a(γ) = 0 or 1. But, the condition on the support implies a(γ) = 1. Similarly a(φ) ≤ 1.

Case a(φ) = 1. We have a(γ) = 1 and γ + φ is the only root with a = 2: γ + φ =

2 3 4 3 2 1
2

the highest root.

Since the support of φ is connected, c(φ) ̸= 0. Using c(φ) ≤ c(γ) , we get c(φ) = 1 and
c(γ) = 2. If e(φ) = 0, then the support of φ is of type A4, but in this case there is no β < φ
such that β + φ ∈ Φ. Thus, e(φ) ≥ 1 from which we deduce e(φ) = 1 and e(γ) = 2. Hence

φ =
1 1 1/2 1 0/1 0

1
and γ =

1 2 3/2 2 2/1 1
1

Suppose that, (d(φ), f(φ)) = (2, 0). In D5, we see that β = α3 since β + φ ∈ Φ, but
γ + α3 ̸∈ Φ (see [Bou68]). Contradiction.

Suppose that, (d(φ), f(φ)) = (1, 0). In D5, we see that β = α4 or α3 + α4. Hence in
γ + β, b = 1 and d = 4. Contradiction (see [Bou68]).

We just proved that f(φ) = 1. If d(φ) = 1, then by [Bou68]

φ =
1 1 1 1 1 0

1
and γ =

1 2 3 2 1 1
1

Since β+φ ∈ Φ, then d(β) = 1, hence d(β+γ) = 4, which implies b(β) = 1. Since d(φ) = 1,
β + φ is not a root. This implies that d(φ) = 2, and hence d(γ) = 2. Expecting the table of
E6 in [Bou68], φ+ β ∈ Φ implies that β = α3, α5, α3 +α4 +α5 or α2 +α3 +α4 +α5. In each
case γ + β is not a root of E7.

Case a(φ) = 0. Since the support of φ is not of type A, c(φ) ≥ 1. But in E7, c ≤ 3, moreover
φ < γ and φ + γ ∈ Φ, hence c(φ) = 1. Similarly e(φ) = 1. Using the connectness of the
support, we get d(φ) = 1 or 2. Now

φ =
0 1 1/2 1 0/1 0

1
and γ =

1 · · · · 1
1

Working in D5, one can see that (d(φ), f(φ), β) belongs to

{(2, 1, α5), (1, 1, α4), (1, 1, α4 + α5), (1, 0, α4)}.
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If β = α5, d(φ) = d(γ) = 2. Hence, for φ + γ, we have d e f g = 4 3 2 1. Hence, for γ, we
have d e f g = 2 2 1 1. In γ + β, d e f g = 2 3 1 1, which is a contradiction.

By [Bou68], the possibilities for (c(γ), d(γ), e(γ), f(γ), β) with β ∈ {α4, α4+α5} with the
contraints that γ + β ∈ Φ are

{(2, 2, 1, 1, α4 + α5), (2, 2, 2, 1, α4), (2, 2, 2, 2, α4), (2, 2, 2, 2, α4 + α5)}.

Indeed, notice that since b(γ+β) = 1, d(γ) ≤ 2, hence d(γ) = 2, and with similar arguments
we can obtain the above list. Then, in each case, d(φ+ γ) ≤ 3. But the difference between
two consecutive entries is at most one. One easily checks that this is impossible.

From now on, to complete the proof of Theorem 3 in type ADE, using Corollary 33,
Lemma 34, Lemma 27 and an immediate induction on the rank we assume that the follow-
ing assumptions hold.

Assumptions: the triple β < φ < γ is irreduible. In particular γ is full supported. And,
one of the following property holds:

1. Φ has rank 6 and φ+ β and γ + φ are roots.

2. Φ has rank 6 and φ+ β ∈ Φ but γ ± φ are not roots.

3. Φ has rank 6 and γ + φ ∈ Φ but φ± β are not roots.

4. Φ has rank 4 or 5.

8.2.2 Notation

In the sequel, we often consider an irreducible triple (β, φ, γ) in some root system and we want
to prove that φ belongs to Φ1. Then, we assume, for the sake of contradiction, that φ ∈ Φ2

and we use extensively the biconvexity of the sets Φ1, Φ2 and Φ3 to get a contradiction.
It will be convenient, given θ1, θ2 and θ3 in Φ, to use notations as

θ1 = θ2 + θ3 7−→ θ1 ∈ Φ2

θ1 = θ2 + θ3 7−→ θ2 ∈ Φ1

θ1 = θ2 + θ3 7−→ θ2 ̸∈ Φ3

This means that the belonging (or not belonging) of two of the three roots θi to the concerned
Φj is known and that we can deduce the right hand side by convexity or coconvexity. Namely,
in the first case if θ2, θ3 ∈ Φ2 we can deduce by convexity of Φ2 that θ1 ∈ Φ2. In the second
case, if θ1 ∈ Φ1 and θ3 ̸∈ Φ1, the coconvexity of Φ1 implies that θ2 ∈ Φ1. In the last case, if
we know that θ1 ̸∈ Φ3 and θ3 ∈ Φ3 then θ2 ̸∈ Φ3.

We sometimes add a comment like “by Case 3” or “by lower rank” to explain how to
recover the information used on the θi. The sentence “by lower rank” often implicitly means
that Theorem 3 has been applied in a root system as in Lemma 28, to deduce information
on a reducible triple.
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8.2.3 A proof in type D4

D4

1 2

4

3

The value of each coefficient of γ+ β along a simple simple root in the support of β is at
least 2. Hence β = α2 and γ =

∑4
i=1 αi.

The group Aut(D4) has two orbits in ]β; γ[: those of α1 + α2 and α1 + α2 + α3.

Case 1. φ = α1 + α2.
Assume, for contradiction, that φ ∈ Φ2. We have

φ = α1 + β 7−→ α1 ∈ Φ2,
γ = α1 + (α2 + α3 + α4) 7−→ α2 + α3 + α4 ̸∈ Φ3,
γ + β = φ+ (α2 + α3 + α4) 7−→ φ ∈ Φ1.

Contradiction.

Case 2. φ = α1 + α2 + α3 ∈ Φ2.
By Case 1, Φ2, and hence Φ2 ∩ (Zα1 + Zα2 + Zα3) contains no root of height 2. By

direct verification in type A3, there is no biconvex subset of the positive roots containing the
longest root and no root of height 2. Contradiction.

8.2.4 A proof in type D5

D5

1 2 3

5

4

Lemma 35. Up to Aut(D5), there are three irreducible triples β < φ < γ in D5 such that
γ + φ ∈ Φ. They are β = α3, γ =

∑5
i=1 αi and φ in

{α2 + α3, α2 + α3 + α4, α2 + α3 + α4 + α5}.

Proof. The longest root being
1

1 2 2
1

, it is easy to check that the only pairs (β, γ) such

that β < γ, β + γ ∈ Φ and γ has full support are

a. β = α2 + α3 γ =
∑5

i=1 αi
b. β = α2 γ = α3 +

∑5
i=1 αi

c. β = α3 γ =
∑5

i=1 αi

In Case a, for any φ ∈]β; γ[, the relations β < φ < γ still hold in the span of β, α1, α4, α5.
Hence there is no irreducible triple.

28



In Case b, let φ ∈]β; γ[. If n3(φ) = 2 or 0, the relations β < φ < γ still hold in the span
F1 of α1, β, α3, α3 + α4 + α5. If n3(φ) = 1, the relations β < φ < γ still hold either in F1 or
in the span of α1, β, α3 + α4, α3 + α5. Hence there is no irreducible triple.

Consider Case c. Let φ ∈]β; γ[. If n4(φ) = n5(φ) = 1, φ is either α3 + α4 + α5 or
α2 + α3 + α4 + α5. In the first case, the relations β < φ < γ still hold in the span of
α1 + α2, β, α4, α5. The second case is in the statement of the lemma.

If n4(φ) = n5(φ) = 0, φ is either α2 + α3 or α1 + α2 + α3. The first case appears
in the lemma. The second one is not irreducible since β < φ < γ holds in the span of
α1 + α2, β, α4, α5.

Otherwise, up to symmetry, n4(φ) = 1 and n5(φ) = 0. Then, φ = α3 + α4, α2 + α3 + α4

or α1 + α2 + α3 + α4. Only, the second one is irreducible.

Lemma 36. Theorem 3 holds for the three triples (β, φ, γ) in Lemma 35.

Proof. Fix one of the three triples and assume by contradiction that φ ∈ Φ2.
Case 1: φ = α2 + α3. Set η = α2 + α3 + α4 + α5 and η′ = η + α3. We have

φ = α2 + β 7−→ α2 ∈ Φ2

α0 = (γ + β) + α2 7−→ α0 ∈ Φ3

α0 = γ + φ 7−→ α0 ̸∈ Φ1

Hence

α0 ∈ Φ2. (18)

Moreover, by lower rank, α1 + α2 + α3 ̸∈ Φ3. Now

α0 = (α1 + α2 + α3) + η 7−→ η ∈ Φ2

γ = α1 + η 7−→ α1 ̸∈ Φ3

γ + β = α1 + η′ 7−→ η′ ∈ Φ1

η′ = φ+ (α3 + α4 + α5) 7−→ α3 + α4 + α5 ∈ Φ1

α0 = (α1 + α2) + η′ 7−→ α1 + α2 ∈ Φ2.

Now
γ = (α1 + α2) + (α3 + α4 + α5)

contradicts the convexity of Φ3.
Case 2: φ = α2 + α3 + α5.
In ⟨α2, α3, α5⟩ ∩ Φ, which is of type A3, the condition α2 + α3 + α5 ∈ Φ2 implies

♯(⟨α2, α3, α5⟩ ∩ Φ2) ≥ 3. We deduce that ⟨α2, α3, α5⟩ ∩ Φ2 = {φ, α2, α5}. Indeed: β ̸∈ Φ2,
α2 + α3 ̸∈ Φ2 by Case 1 and α3 + α5 ̸∈ Φ2 because the triple β < α3 + α5 < γ is reducible.

Now

γ = (α1 + α2 + α3 + α4) + α5 7−→ α1 + α2 + α3 + α4 ̸∈ Φ3

α0 = φ+ (α1 + α2 + α3 + α4) 7−→ α0 ̸∈ Φ1

α0 = (γ + β) + α2 7−→ α0 ∈ Φ3

α0 = γ + (α2 + α3) 7−→ α0 ̸∈ Φ2 by Case 1.
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Contradiction.

Case 3. φ = α2 + α3 + α4 + α5. Now

φ = α5 + (α2 + α3 + α4) 7−→ α5 ∈ Φ2 by Case 2
φ = α4 + (α2 + α3 + α5) 7−→ α4 ∈ Φ2 by Case 2
α0 = γ + (α2 + α3) 7−→ α0 ̸∈ Φ2 by Case 1
φ = α2 + (α3 + α4 + α5) 7−→ α2 ∈ Φ2 by lower rank
α0 = (β + γ) + α2 7−→ α0 ∈ Φ3

Hence α0 ∈ Φ1. And

α0 = φ+ (α1 + α2 + α3) 7−→ α1 + α2 + α3 ∈ Φ1

γ = (α1 + α2 + α3) + (α4 + α5) 7−→ α4 + α5 ̸∈ Φ3

Contradiction since α4, α5 ∈ Φ3.

8.2.5 A proof in type D6

D6

1 2 3 4

6

5

Lemma 37. There is no irreducible triple β < φ < γ in D6 such that γ + φ ∈ Φ.

Proof. Since γ+β ∈ Φ, the support of β is contained in {α2, α3, α4}. If φ+ γ ∈ Φ, the same
property holds for φ. Hence φ+ β ̸∈ Φ (we are in type A3). Finaly, φ+ γ ̸∈ Φ or φ+ β ̸∈ Φ.

Combining with Corollary 33, one gets two cases to consider:
Case 1: φ+ γ ∈ Φ and φ± β ̸∈ Φ.

Here, φ and β are supported by α2, α3 and α4. Now the assumption φ − β ̸∈ Φ implies
β = α3 and φ = α2+α3+α4. But, γ+β ∈ Φ implies n4(γ+β) = n4(γ) = 2. This contradicts
γ + φ ∈ Φ.

Case 2: φ+ β ∈ Φ and γ ± φ ̸∈ Φ.
Since φ+ β ∈ Φ and γ + β ∈ Φ, we have

φ, γ ∈
1

0 \ 1 · · ·
1

β ∈
0

0 · · ·
0

Now φ < γ and γ − φ ̸∈ Φ, thus n4(γ) = 2. Then n4(β) = 0 and the condition β < φ < γ
holds in the span of α1, α2, α3, α4, α4 + α5 + α6.

This proves that there is no irreducible triple in D6.

The only remaining case in type ADE is E6.
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8.3 The case E6

Let us number the simple roots of E6 like in [Bou68]:

E6

1 3 4 5 6

2

A root aα1 + bα2 + cα3 + dα4 + eα5 + fα6 is denoted by a c d e f
b

. The highest

root is
α0 =

1 2 3 2 1
2

.

Lemma 38. There are only two irreducible triples β < φ < γ in E6 such that γ + β ∈ Φ.
They are

β = α4 φ =
0 1 1 1 0

0
γ =

1 1 1 1 1
1

β = α4 φ =
0 1 1 1 0

1
γ =

1 1 1 1 1
1

Proof. Let β < φ < γ in E6 be an irreducible triple.
Then the support of γ is ∆. Moreover, γ + β ∈ Φ implies that γ is not the highest root.

Hence a(γ) = f(γ) = b(γ) = 1 and a(β) = f(β) = 0, b(β) ≤ 1.

Case A: b(β) = 1.
Then b(φ) = 1. Moreover γ + β is the only root with b = 2: γ + β = α0. Since

γ + β ̸= γ + φ, then γ + φ ̸∈ Φ. Similarly, β + φ ̸∈ Φ. Now, Corollary 33 contradicts the
irreducibility of β < φ < γ.

Case B: b(β) = 0.
Let us distinguish two cases on γ + φ:
Case B-I: γ + φ ∈ Φ.
Corollary 33 and the irreducibility of the triple of rootsimplies that φ±β ̸∈ Φ. Moreover,

a(φ) = f(φ) = 0 and the entries of φ are 0 or 1, otherwise γ + β should have a coefficient
equal to 4. Since φ − β ̸∈ Φ, we deduce that ♯Supp(φ) ≥ 3. Up to Aut(E6), we have 3
possibilities for φ:

0 1 1 1 0
1

0 1 1 0 0
1

0 1 1 1 0
0

In the first case we have γ + φ = α0 (the only root with b = 2) and γ =
1 1 2 1 1

1
.

One easily checks that there is no β < φ such that γ + β ∈ Φ and φ− β ̸∈ Φ.
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In the second case, we still have γ + φ = α0. Moreover, the only root β < φ such that
φ− β ̸∈ Φ is β = α4. And γ + β ̸∈ Φ. Contradiction.

Assume now, φ is the third. Since φ− β ̸∈ Φ, β = α4. Since γ + φ ∈ Φ,

γ =
1 1 1 1 1

1
or γ =

1 1 2 1 1
1

In the second case γ+β ̸∈ Φ, while in the first case we recover the first of the two irreducible
triples of the statement.

Case B-II: γ + φ ̸∈ Φ.
Corollary 33 and the irreducibility implies that φ+ β ∈ Φ and γ − φ ̸∈ Φ.
Up to Aut(E6), using that a(β) = b(β) = f(β) = 0, we have three possibilities for β < φ:

0 1 1 0 0
0

0 1 0 0 0
0

0 0 1 0 0
0

that we consider successively below.
Case B-II-1: β = α3 + α4.
Let ψ ∈ Φ such that β < ψ, b(ψ) = 1 and ψ + β ∈ Φ. This implies a(ψ) = c(ψ) = 1,

d(ψ) = e(ψ) ≥ 1. And, ψ is in the following list

1 1 1 1 0
1

1 1 1 1 1
1

1 1 2 2 1
1

Both φ and γ belong to this list and φ < γ. But for any such pair, γ − φ ∈ Φ.
Contradiction.

Case B-II-2: β = α3.
Like in Case B-II-1, the roots ψ such that β < ψ, b(ψ) = 1 and ψ + β ∈ Φ are:

1 1 2 1 0
1

1 1 2 1 1
1

1 1 2 2 1
1

Thus, γ − φ ̸∈ Φ is not possible.
Case B-II-3: β = α4.
There are still four possibilities for ψ:

0 1 1 1 0
1

1 1 1 1 0
1

1 1 1 1 1
1

1 2 2 2 1
1

Since γ−φ ̸∈ Φ, φ is the first one and γ is the third one. Thus we get the second irreducible
triple of the statement.

We now study the two irreducible triples for E6.

Lemma 39. Theorem 3 holds for the two triples (β, φ, γ) in Lemma 38.
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Proof. Fix one of the two triples (β, φ, γ) and assume by contradiction that φ ̸∈ Φ2.
Case 1: φ = α3 + α4 + α5 ∈ Φ2.
Set η = α1 + α2 + 2α3 + 2α4 + 2α5 + α6. We have

η = (α3 + α4 + α5 + α6) + (α1 + α2 + α3 + α4 + α5) 7−→ η ̸∈ Φ2 by lower rank
φ = (α3 + α4) + α5 7−→ α5 ∈ Φ2 by lower rank

α3 ∈ Φ2 by symmetry
η = (γ + β) + α3 + α5 7−→ η ∈ Φ3

η = γ + φ 7−→ η ̸∈ Φ1.

Contradiction.

Case 2: φ = α2 + α3 + α4 + α5 ∈ Φ2.
Here,

φ = (φ− α2) + α2 7−→ α2 ∈ Φ2 by Case 1
φ = (φ− α3) + α3 7−→ α3 ∈ Φ2 by lower rank

α5 ∈ Φ2 by symmetry

Since α2, . . . , α5 ∈ Φ3 and γ + β ∈ Φ3, by convexity η ∈ Φ3. As in Case 1, η ̸∈ Φ2. Now,

γ = (γ − α2) + α2 7−→ γ − α2 ̸∈ Φ3

η = φ+ (γ − α2) 7−→ η ̸∈ Φ1.

We proved that η ∈ Φ3, η ̸∈ Φ1 and η ̸∈ Φ2. Contradiction.

8.4 Type B

Bn

1 2 n− 2 n− 1 n

We use the same notation of [Bou68] for the associated root system. In Φ+ we distinguish
3 types of positive roots according to the following list. On the rightmost part we picture
the writing of the root as a combinaison of simple roots.

Type 1 εi − εj : 1 ≤ i < j ≤ n
0 . . . 0 1 . . . 1 0 . . . 0

i j − 1

Type 2 εi : 1 ≤ i ≤ n
0 . . . 0 1 . . . 1

i n

Type 3 εi + εj : 1 ≤ i < j ≤ n
0 . . . 0 1 . . . 1 2 . . . 2

i j − 1 j n
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8.4.1 Reduction

Lemma 40. There is no irreducible triple β < φ < γ such that β + γ ∈ Φ, in Bℓ, for any
ℓ ≥ 6.

Proof. Since Supp(γ) = ∆, γ = ε1 or γ = ε1 + εj for 1 < j ≤ n. We treat the two cases
separately. In each case, we find a subspace F of dimension at most 5 that reduces the triple.

Case 1: γ = ε1.
Since γ+β ∈ Φ, β = εj for a certain 1 < j ≤ n. But β < φ and φ < γ, thus φ = εi for some
1 < i < j. Then γ − φ ∈ Φ+ and φ− β ∈ Φ+. Hence F = ⟨β, φ− β, γ − φ⟩ works.

Case 2: γ = ε1 + εj for a certain 1 < j ≤ n.
Since γ + β ∈ Φ, β = εi − εj with 1 ≤ i < j. We have 3 possibilities for φ according to its
type.

Type 1: φ = εk − εl. Since β ≤ φ, we have k ≤ i < j ≤ l. Then

γ − φ = (ε1 − εk) + (εj + εl).

Moreover ε1 − εk ∈ Φ+ ∪ {0} and εj + εl ∈ Φ+ ∪ 2Φ+. While

φ− β = (εk − εi) + (εj − εl).

Here εk − εi ∈ Φ+ ∪ {0} and (εj − εl) ∈ Φ+ ∪ {0}.
In particular, F = ⟨β, ε1 − εk, εj + εl, εk − εi, εj − εl⟩ works.

Type 2: φ = εk. Since β < φ, we have 1 ≤ k ≤ i < j. Then

γ − φ = (ε1 − εk) + εj and φ− β = (εk − εi) + εj.

Hence F = ⟨β, ε1 − εk, εj, εk − εi⟩ works.
Type 3: φ = εk + εl with k < l. From β ≤ φ ≤ γ, it follows that k ≤ i < j ≤ l. Then

γ − φ = (ε1 − εk) + (εj − εl) and φ− β = (εk − εi) + (εj + εl).

Then F = ⟨β, ε1 − εk, εj − εl, εk − εi, εj + εl⟩ works.

8.4.2 Type B2

The only pair β < γ with β + γ ∈ Φ is β = α2 and γ = α1 + α2. Since ]β; γ[ is empty, there
is nothing to prove.

8.4.3 Type B3

Lemma 41. There are five irreducible triples β < φ < γ in B3 such that γ + β ∈ Φ.
They are β = α3, φ = α2 + α3 and γ = α1 + α2 + α3, and β = α2, γ = 1 1 2 and
φ ∈ {1 1 0, 1 1 1, 0 1 1, 0 1 2}.
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Proof. Since γ has full support and is not α0, γ = 1 1 1 or 1 1 2. In the last case β = α2 and
]β; γ[ is the set of 4 roots in the statement. One easily checks that they give 4 irreducible
triples.

Assume now γ = 1 1 1. Since γ + β is a root, β = α3 or α2 + α3. In the last case, ]β; γ[
is empty. So, set β = α3. Then φ = 0 1 1 is the only root in the open interval and gives the
last irreducible triple.

Lemma 42. Theorem 3 holds for the five triples (β, φ, γ) in Lemma 41.

Proof. Fix one of the five triples and assume by contradiction that φ ∈ Φ2.
Case A. β = 0 0 1, φ = 0 1 1 and γ = 1 1 1.

We have
φ = β + α2 7−→ α2 ∈ Φ2,
γ = 1 1 0 + β 7−→ 1 1 0 ̸∈ Φ3,
α0 = α2 + (γ + β) 7−→ α0 ∈ Φ3,
α0 = γ + φ 7−→ α0 ̸∈ Φ1,

hence α0 ∈ Φ2. Now
α0 = 0 1 2 + 1 1 0 7−→ 0 1 2 ∈ Φ2,
γ + β = 0 1 2 + α1 7−→ γ + β ̸∈ Φ1.

Contradiction.
Case B. β = 0 1 0 and γ = 1 1 2.

Case B-1. φ = 1 1 0 ∈ Φ2. We have:

φ = β + α1 7−→ α1 ∈ Φ2,
β + γ = 0 1 2 + φ 7−→ 0 1 2 ∈ Φ1.

Now γ = α1 + 0 1 2 contradicts the convexity of Φ3.
Case B-2. φ = 1 1 1 ∈ Φ2. We have:

γ = φ+ α3 7−→ α3 ̸∈ Φ2,
φ = α3 + 1 1 0 7−→ φ ̸∈ Φ2 by Case B-1.

Contradiction.
Case B-3. φ = 0 1 1 ∈ Φ2. We have:

γ + β = φ+ 1 1 1 7−→ 1 1 1 ∈ Φ1,
φ = β + α3 7−→ α3 ∈ Φ2,
γ = α3 + 1 1 1 7−→ γ ∈ Φ3.

Contradiction.
Case B-4. φ = 0 1 2 ∈ Φ2. We have:

φ = 0 1 1 + α3 7−→ α3 ∈ Φ2 by Case B-3.
γ + β = φ+ 1 1 0 7−→ 1 1 0 ∈ Φ1,
γ = 2α3 + 1 1 0 7−→ γ ∈ Φ3.

Contradiction.
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8.4.4 Type B4

Lemma 43. There are seven irreducible triples β < φ < γ in B4 such that γ+β ∈ Φ. They
are

1. β = α3, γ = 1 1 1 2 and φ in

{0 1 1 0, 0 1 1 1, 0 1 1 2},

2. β = α2, γ = 1 1 2 2 and φ in

{0 1 1 0, 0 1 1 2, 1 1 1 0, 1 1 1 2}.

Proof. Assume first that γ =
∑4

i=1 αi. Then γ + β ∈ Φ implies that there exists j > 1 such
that β =

∑4
i≥j αi. Any φ ∈]β; γ[ is equal to

∑5
i≥j′ αi for some 1 < j′ < j. In particular

whether ]β; γ[ is empty, or φ − β and γ − φ are roots and the triple β < φ < γ is not
irreducible.

There are three pairs β < γ such that β+γ ∈ Φ, γ ̸=
∑

i αi and ]β; γ[ nonempty. Namely

{(α2 + α3, 1 1 1 2), (α3, 1 1 1 2), (α2, 1 1 2 2)}.

The first pair gives 4 triples β < φ < γ. Considering the linear space F = ⟨β, α1, α4⟩, one
proves that these four triples are reducible.

For β = α3 and γ = 1 1 1 2, the interval ]β; γ[ contains 6 roots; 3 of them give reducible
triples and 3 of them are in the statement. For example, F = ⟨β, α1 + α2, α4⟩ shows that
φ = 1 1 1 1 gives a reducible triple.

For β = α2 and γ = 1 1 2 2, the interval ]β; γ[ contains 8 roots; 4 of them give reducible
triples. For example, F = ⟨β, α3+α4, α1⟩ shows that φ = 0 1 1 1 gives a reducible triple.

Lemma 44. Theorem 3 holds for the seven triples (β, φ, γ) in Lemma 43.

Proof. Fix one of the seven triples and assume by contradiction that φ ∈ Φ2.
Case A: β = α3 and γ = 1 1 1 2.

By reduction to lower rank we have that

Φ2 ∩ {0 0 1 1, 1 1 1 0, 1 1 1 1} = ∅. (19)

Case A-1: φ = 0 1 1 0. We have:

φ = β + α2 7−→ α2 ∈ Φ2,
α0 = (γ + β) + α2 7−→ α0 ∈ Φ3,
α0 = φ+ γ 7−→ α0 ̸∈ Φ1.

Hence α0 ∈ Φ2. Now

α0 = 0 1 1 2 + 1 1 1 0 7−→ 0 1 1 2 ∈ Φ2 by lower rank,
γ = 0 1 1 2 + α1 7−→ α1 ̸∈ Φ3,
γ + β = 0 1 2 2 + α1 7−→ 0 1 2 2 ∈ Φ1,
0 1 2 2 = φ+ 0 0 1 2 7−→ 0 0 1 2 ∈ Φ1,
α0 = 1 1 0 0 + 0 1 2 2 7−→ 1 1 0 0 ∈ Φ2,

36



Now γ = 1 1 0 0 + 0 0 1 2 contradicts the convexity of Φ3.
Case A-2: φ = 0 1 1 1. We have:

α0 = 0 1 1 0 + γ 7−→ α0 ̸∈ Φ2 Case A-1,
φ = α2 + 0 0 1 1 7−→ α2 ∈ Φ2 by lower rank,
φ = 0 1 1 0 + α4 7−→ α4 ∈ Φ2 Case A-1,
γ = α4 + 1 1 1 1 7−→ 1 1 1 1 ̸∈ Φ3

α0 = 1 1 1 1 + φ 7−→ α0 ̸∈ Φ1,
α0 = (γ + β) + α2 7−→ α0 ∈ Φ3.

Contradiction.
Case A-3: φ = 0 1 1 2. We have:

α0 = 1 1 1 1 + 0 1 1 1 7−→ α0 ̸∈ Φ2 Case A-2 and lower rank,
φ = α4 + 0 1 1 1 7−→ α4 ∈ Φ2,
γ = 2α4 + 1 1 1 0 7−→ 1 1 1 0 ̸∈ Φ3

α0 = 1 1 1 0 + φ 7−→ α0 ̸∈ Φ1,
γ = 1 1 1 0 + 2α4 7−→ 1 1 1 0 ̸∈ Φ3,
γ + β = 1 1 1 0 + 0 0 1 2 7−→ 0 0 1 2 ∈ Φ1,
φ = 0 0 1 2 + α2 7−→ α2 ∈ Φ2,
α0 = (γ + β) + α2 7−→ α0 ∈ Φ3.

Contradiction.

Case B. β = α2 and γ = 1 1 2 2.
by reduction to lower rank we have

Φ2 ∩ {0 1 2 2, 1 1 0 0, 1 1 1 1, 0 1 1 1} = ∅. (20)

Case B-1: φ = 0 1 1 0. We have:

φ = β + α3 7−→ α3 ∈ Φ2,
γ + β = 1 1 1 2 + φ 7−→ 1 1 1 2 ∈ Φ1.

Now, γ = α3 + 1 1 1 2 contradicts the convexity of Φ3.
Case B-2: φ = 0 1 1 2. We have:

φ = β + 0 0 1 2 7−→ 0 0 1 2 ∈ Φ2,
γ + β = 1 1 1 0 + φ 7−→ 1 1 1 0 ∈ Φ1.

Now, γ = 0 0 1 2 + 1 1 1 0 contradicts the convexity of Φ3.
Case B-3: φ = 1 1 1 0. We have:

φ = α1 + 0 1 1 0 7−→ α1 ∈ Φ2 by Case B-1,
φ = α3 + 1 1 0 0 7−→ α3 ∈ Φ2 by lower rank,
γ + β = 0 1 1 2 + φ 7−→ 0 1 1 2 ∈ Φ1.
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Now, γ = 0 1 1 2 + α1 + α3 contradicts the convexity of Φ3.
Case B-4: φ = 1 1 1 2. We have:

γ + β = 0 1 1 0 + φ 7−→ 0 1 1 0 ∈ Φ1,
φ = 1 1 0 0 + 0 0 1 2 7−→ 0 0 1 2 ∈ Φ2 by lower rank,
0 1 2 2 = 0 0 1 2 + 0 1 1 0 7−→ 0 1 2 2 ∈ Φ3

φ = α1 + 0 1 1 2 7−→ α1 ∈ Φ2 by Case B-2,

Now, γ = 0 1 2 2 + α1 contradicts the convexity of Φ3.

8.4.5 Type B5

Lemma 45. There are two irreducible triples β < φ < γ in B5 such that γ + β ∈ Φ. They
are β = α3, γ = 1 1 1 2 2 and φ = 0 1 1 1 0 or 0 1 1 1 2.

Proof. Like for B4, we easily prove that γ ̸=
∑5

i=1 αi.
Assume now that γ = 1 1 1 1 2. Then β =

∑
j≤i≤4 αi, for j = 4, 3 or 2. Moreover,

γ = aα5 +
∑

j′≤i≤4 αi for a ∈ {0, 1, 2} and j′ ≤ j. Set η =
∑

j′≤i<j αi (or 0 if j = j′) and
η′ =

∑
1≤i<j′ αi (or 0 if j′ = 1). Then F = ⟨η, η′, β, α5⟩ shows that the triple β < φ < γ is

not irreducible.
Assume now that γ = 1 1 2 2 2. Then β = α2. Set η1 =

∑5
i=3 ni(φ)αi and η2 =∑

i≥3, ni(φ)=1 αi. Then φ − β ∈ ⟨α1, η1⟩ and γ − φ = ⟨α1, η2⟩. Since η2 and η1 (or 1
2
η1) are

roots, the triple reduces to lower rank.
Assume now that γ = 1 1 1 2 2 and β = α2 + α3. As in the previous case, one can easily

find two roots η1 and η2 such that γ −φ and φ− β belong to ⟨α1, η1, η2⟩. The triple reduces
to the rank 4.

The last case to consider is γ = 1 1 1 2 2 and β = α3. If φ = 0 0 1 · · or 1 1 1 · ·, the
same argument as before proves that the triple is reducible. Hence φ = 0 1 1 · ·. One can
check that the triple is reducible if n4(φ) = n5(φ). Hence φ = 0 0 1 1 0 or 0 0 1 1 2, which
are the two cases of the statement.

Lemma 46. Theorem 3 holds for the two triples (β, φ, γ) in Lemma 45.

Proof. Fix one of the two triples and assume by contradiction that φ ∈ Φ2.
Case 1: φ = 0 1 1 1 2. We have

α0 = γ + 0 1 1 0 0 7−→ α0 ̸∈ Φ2 by lower rank,
φ = α2 + 0 0 1 1 2 7−→ α2 ∈ Φ2 by lower rank,
α0 = α2 + (γ + β) 7−→ α0 ∈ Φ3.

Hence α0 ∈ Φ1. Now

φ = 0 0 0 1 2 + 0 1 1 0 0 7−→ 0 0 0 1 2 ∈ Φ2 by lower rank,
γ = 0 0 0 1 2 + 1 1 1 1 0 7−→ 1 1 1 1 0 ̸∈ Φ3,
α0 = 1 1 1 1 0 + φ 7−→ α0 ̸∈ Φ1.
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Contradiction.

Case 2: φ = 0 1 1 1 0. We have

φ = α4 + 0 1 1 0 0 7−→ α4 ∈ Φ2 by lower rank,
γ = α4 + 1 1 1 1 2 7−→ 1 1 1 1 2 ̸∈ Φ3,
α0 = 1 1 1 1 2 + φ 7−→ α0 ̸∈ Φ1,
φ = α2 + 0 0 1 1 0 7−→ α2 ∈ Φ2 by lower rank,
α0 = (γ + β) + α2 7−→ α0 ∈ Φ3,
α0 = γ + 0 1 1 0 0 0 7−→ α0 ̸∈ Φ2 by lower rank.

Contradiction.

8.5 Type C

Cn
1 2 n− 2 n− 1 n

Again using the notation of [Bou68] we can distinguish 3 types of positive roots:

Type 1 εi − εj : 1 ≤ i < j ≤ n
0 . . . 0 1 . . . 1 0 . . . 0

i j − 1

Type 2 2εi : 1 ≤ i ≤ n
0 . . . 0 2 . . . 2 1

i n− 1 n

Type 3 εi + εj : 1 ≤ i < j ≤ n
0 . . . 0 1 . . . 1 2 . . . 2 1

i j − 1 j n− 1 n

8.5.1 Reduction

Lemma 47. There is no irreducible triple β < φ < γ such that β + γ ∈ Φ, in Cℓ, for any
ℓ ≥ 6.

Proof. Since Supp(γ) = ∆ and γ is not the longest root, γ = ε1 + εj for a certain 1 < j ≤ n.
Since β + γ ∈ Φ+, β = εi − εj with 1 ≤ i < j ≤ n. We have 3 possibilities for φ according
to the type.

Type 1: φ = εk − εl. Since β ≤ φ, we have k ≤ i < j ≤ l. Then

γ − φ = (ε1 − εk) + (εj + εl) and φ− β = (εk − εi) + (εj − εl).

Hence F = ⟨β, ε1 − εk, εj + εl, εk − εi, εj − εl⟩ works.
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Type 2: φ = 2εk. If φ ≤ γ, then j ≤ k, while if β ≤ φ, then k ≤ i. But i < j, so there is no
triple that satisfies the hypothesis in this case.

Type 3: φ = εk + εl with k < l. Since β ≤ φ and φ ≤ γ, we deduce that k ≤ i < j ≤ l.
Then

γ − φ = (ε1 − εk) + (εj − εl) and φ− β = (εk − εi) + (εl + εj)

Hence F = ⟨β, ε1 − εk, εj − εl, εk − εi, εl + εj⟩ works.

8.5.2 Type C2

The only pair β < γ with β + γ ∈ Φ is β = α1 and γ = α1 + α2. Since ]β; γ[ is empty, there
is nothing to prove.

8.5.3 Type C3

Lemma 48. There are four irreducible triples β < φ < γ in C3 such that γ + β ∈ Φ. They
are:

1. β = 1 0 0, γ = 1 2 1 and φ ∈ {1 1 0, 1 1 1};

2. β = 0 1 0, γ = 1 1 1 and φ ∈ {1 1 0, 0 1 1}.

Proof. There are three pairs β < γ such that the support of γ equals ∆ and β + γ ∈ Φ.
They are

1 0 0 < 1 2 1 0 1 0 < 1 1 1 1 1 0 < 1 1 1.

In the first two cases, the interval ]β; γ[ contains the two corresponding roots in the statement.
All the triples constructed in this way are easily verified to be irreducible. In the last case
]β; γ[ is empty.

Lemma 49. Theorem 3 holds for the four triples (β, φ, γ) in Lemma 48.

Proof. Fix one of the four triples (β, φ, γ). Assume by contradiction that φ ∈ Φ2.

Case A-1: β = 0 1 0, φ = 1 1 0 and γ = 1 1 1.
We have

φ = β + α1 7−→ α1 ∈ Φ2,
γ = 0 1 1 + α1 7−→ 0 1 1 ̸∈ Φ3,
β + γ = 0 1 1 + φ 7−→ β + γ ̸∈ Φ1,

contradiction.

Case A-2: β = 0 1 0, φ = 0 1 1 and γ = 1 1 1.
We have

φ = β + α3 7−→ α3 ∈ Φ2,
γ = 1 1 0 + α3 7−→ 1 1 0 ̸∈ Φ3,
β + γ = φ+ 1 1 0 7−→ β + γ ̸∈ Φ1,
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contradiction.

Case B-1: β = 1 0 0, φ = 1 1 0 and γ = 1 2 1.
We have

φ = β + α2 7−→ α2 ∈ Φ2,
γ = 0 1 1 + φ 7−→ 0 1 1 ̸∈ Φ3,
0 1 1 = β + α3 7−→ α3 ̸∈ Φ3,
β + γ = 1 1 1 + φ 7−→ 1 1 1 ∈ Φ1,
1 1 1 = φ+ α3 7−→ φ ∈ Φ1

contradiction.

Case B-2: β = 1 0 0, φ = 1 1 1 and γ = 1 2 1.
We have

φ = β + 0 1 1 7−→ 0 1 1 ∈ Φ2,
γ + β = 1 1 0 + φ 7−→ 1 1 0 ∈ Φ1,
γ = 0 1 1 + 1 1 0 7−→ γ ∈ Φ3

contradiction.

8.5.4 Type C4

Lemma 50. There are six irreducible triples β < φ < γ in C4 such that γ + β ∈ Φ. They
are

1. β = α3, γ = 1 1 1 1 and φ in

{0 1 1 0, 0 1 1 1},

2. β = α2, γ = 1 1 2 1 and φ in

{0 1 1 0, 1 1 1 0, 0 1 1 1, 1 1 1 1}.

Proof. Since the support of γ is ∆, and γ + β ∈ Φ,

γ ∈ {1 1 1 1, 1 1 2 1, 1 2 2 1}.

Case A: γ = 1 1 1 1.
Since β + γ ∈ Φ, then β ∈ {0 0 1 0, 0 1 1 0, 1 1 1 0}.
Case A-1: β = 0 0 1 0. Then ]β; γ[= {0 1 1 0, 0 0 1 1, 1 1 1 0, 0 1 1 1}. We easily check

that the first and the fourth φ of this list give an irreducible triple. For the second and the
third φ, the condition β < φ < γ still holds in the span of β, α1 + α2, α4.

Case A-2: β = 0 1 1 0.
Then for any φ ∈]β; γ[, β < φ < γ still holds in the span of β, α1, α4.
Case A-3: β = 1 1 1 0. Then ]β; γ[ is empty.
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Case B: γ = 1 1 2 1.
Then β ∈ {0 1 0 0, 1 1 0 0}.
Case B-1: β = 0 1 0 0.
We have 6 roots in ]β; γ[. Four of them correspond to the irreducible triples of the

statement. If φ is one of the remaining two roots in the interval, then β < φ < γ holds in
the span of β, α1, 0 0 2 1.

Case B-2: β = 1 1 0 0.
Then for any φ ∈]β; γ[, the condition β < φ < γ holds in the span of β, α3, α4.

Case C: γ = 1 2 2 1.
In this case β = α2 and for any φ ∈]β; γ[, γ −φ ∈ Φ+ and φ− β ∈ Φ+. Hence any triple

is reducible.

Lemma 51. Theorem 3 holds for the six triples (β, φ, γ) in Lemma 50.

Proof. Fix one of the six triples (β, φ, γ) and assume that φ ∈ Φ2.
Case A: β = α3, γ = 1 1 1 1.

Case A-1: φ = 0 1 1 1.
We have

φ = 0 0 1 1 + α2 7−→ α2 ∈ Φ2 by lower rank,
γ = φ+ α1 7−→ α1 ̸∈ Φ3,
0 1 1 0 = β + α2 7−→ 0 1 1 0 ∈ Φ3.

Now let β′ = 0 1 1 0, φ′ = φ and γ′ = γ. This is a reducible triple that satisfies the
hypothesis of Theorem 3 (up to switching Φ1 and Φ2). Since φ′ ∈ Φ2 we have that

β′ ∈ Φ2.

But β < β′ < γ is a reducible triple, hence β′ ̸∈ Φ2. Contradiction.
Case A-2: φ = 0 1 1 0.
We have

φ = β + α2 7−→ α2 ∈ Φ2,
1 2 2 1 = φ+ γ 7−→ 1 2 2 1 ̸∈ Φ1,
1 2 2 1 = (γ + β) + α2 7−→ 1 2 2 1 ∈ Φ3,

Hence 1 2 2 1 ∈ Φ2. Then

1 2 2 1 = 1 1 1 0 + 0 1 1 1 7−→ 0 1 1 1 ∈ Φ2 by lower rank

Contradiction by Case A-1.
Case B: β = α2, γ = 1 1 2 1.

Case B-1: φ = 0 1 1 0.
We have

φ = β + α3 7−→ α3 ∈ Φ2

γ = 1 1 1 1 + α3 7−→ 1 1 1 1 ̸∈ Φ3

γ + β = 1 1 1 1 + φ 7−→ 1 1 1 1 ∈ Φ1.
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Contradiction.
Case B-2: φ = 0 1 1 1.
Here

φ = β + 0 0 1 1 7−→ 0 0 1 1 ∈ Φ2

γ = 1 1 1 0 + 0 0 1 1 7−→ 1 1 1 0 ̸∈ Φ3

γ + β = 1 1 1 0 + φ 7−→ γ + β ̸∈ Φ1.

Contradiction.

Case B-3: φ = 1 1 1 0.
Here

φ = 1 1 0 0 + α3 7−→ α3 ∈ Φ2 by lower rank
0 1 1 0 = β + α3 7−→ 0 1 1 0 ∈ Φ3

γ = 1 1 1 1 + α3 7−→ 1 1 1 1 ̸∈ Φ3.

Then let β′ = 0 1 1 0, φ′ = φ and γ′ = 1 1 1 1. Since γ′ + β′ = γ + β ∈ Φ3, the previous
triple satisfies the hypothesis of Theorem 3 and is reducible. Since φ′ ∈ Φ2, β′ ∈ Φ2. But by
Lemma 29, γ′ + β′ ∈ Φ2. Contradiction.

Case B-4: φ = 1 1 1 1.
Here

γ + β = φ+ 0 1 1 0 7−→ 0 1 1 0 ∈ Φ1

φ = 1 1 0 0 + 0 0 1 1 7−→ 0 0 1 1 ∈ Φ2 by lower rank
φ = 0 1 1 1 + α1 7−→ α1 ∈ Φ2 by Case B-2
γ = 0 1 1 0 + α1 + 0 0 1 1 7−→ γ ∈ Φ3.

Contradiction.

8.5.5 Type C5

Lemma 52. There are two irreducible triples β < φ < γ in C5 such that γ + β ∈ Φ. They
are:

β = α3 γ = 1 1 1 2 1 and φ ∈ {0 1 1 1 0, 0 1 1 1 1}.

Proof. If ψ ∈ Φ and n ∈ {1, . . . , 5} we denote ψ≤n =
∑n

i=1 ni(ψ)αi and ψ≥n =
∑5

i=n ni(ψ)αi.
Note that ψ≥n is always a root or zero, while ψ≤n may not be a root. Since the support of
γ is ∆, and γ + β ∈ Φ, then

γ ∈ {1 1 1 1 1, 1 1 1 2 1, 1 1 2 2 1, 1 2 2 2 1}.

Case A: γ = 1 1 1 1 1.
Then β =

∑4
i=j αi for a certain j ∈ {1, . . . , 4}. If j = 1, then ]β; γ[ is empty. Otherwise,

for any φ ∈]β; γ[, (γ − φ)≤4 and (φ − β)≤4 are roots and β < γ < φ holds in the span of
β, α5, (φ− β)≤4, (γ − φ)≤4.

Case B: γ = 1 1 2 2 1.
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Here β ∈ {α2, α1 + α2}. For both possible choices of β, for any φ ∈]β; γ[, β < φ < γ
holds in the span of β, α1, (φ− β)≥3(γ − φ)≥3.

Case C: γ = 1 2 2 2 1.
Then β = α1 and for any φ ∈]β; γ[, β < φ < γ holds in the span of β, (φ−β)≥2(γ−φ)≥2.

Case D: γ = 1 1 1 2 1.
Then β ∈ {α3, α2 + α3, α1 + α2 + α3}. For the last two possible choices of β, we easily

see, as in Case A, that there is no φ ∈]β; γ[ whose corresponding root is irreducible. If
β = α3, then there are 10 roots φ ∈]β; γ[. Two of them correspond to the irreducible triples
of the statement. Five of them satisfy n2(φ) = 0 or n1(φ) = 1 = n2(φ). In these cases
β < φ < γ holds in the span of β, α1 + α2, α4, α5. The last three φ in the interval satisfy
n4(φ) ∈ {0, 2}. For the corresponding triples, the condition β < φ < γ holds in the span of
α1, α2, β, 0 0 0 2 1.

Lemma 53. Theorem 3 holds for the two triples (β, φ, γ) in Lemma 52.

Proof. Case A: φ = 0 1 1 1 0.
We have

φ = 0 1 1 0 0 + α4 7−→ α4 ∈ Φ2 by lower rank,
γ = 1 1 1 1 1 + α4 7−→ 1 1 1 1 1 ̸∈ Φ3,
0 0 1 1 0 = β + α4 7−→ 0 0 1 1 0 ∈ Φ3.

We can apply Theorem 3 to the reducible triple β′ = 0 0 1 1 0, φ′ = φ, γ′ = 1 1 1 1 1. Since
φ′ ∈ Φ2 we deduce that β′ ∈ Φ2. Then by Lemma 29 we have that β′ + γ′ = β + γ ∈ Φ2.
Contradiction.
Case B: φ = 0 1 1 1 1.

We have
φ = 0 1 1 1 0 + α5 7−→ α5 ∈ Φ2 by Case A,
φ = 0 0 1 1 1 + α2 7−→ α2 ∈ Φ2 by lower rank
φ = 0 1 1 0 0 + 0 0 0 1 1 7−→ 0 0 0 1 1 ∈ Φ2 by lower rank
0 0 1 1 1 = β + 0 0 0 1 1 7−→ 0 0 1 1 1 ∈ Φ3.

Hence 0 0 1 1 1 ∈ Φ1 by lower rank. Then

0 0 1 1 1 = 0 0 1 1 0 + α5 7−→ 0 0 1 1 0 ∈ Φ1,
0 0 1 2 1 = 0 0 1 1 0 + 0 0 0 1 1 7−→ 0 0 1 2 1 ∈ Φ3,
0 1 1 2 1 = α2 + 0 0 1 2 1 7−→ 0 1 1 2 1 ∈ Φ3.

Hence 0 1 1 2 1 ∈ Φ1 by lower rank. Then

0 1 1 2 1 = α4 + φ 7−→ α4 ∈ Φ1,
γ = 1 1 1 1 1 + α4 7−→ 1 1 1 1 1 ̸∈ Φ3.

Then applying Theorem 3 to the reducible triple β′ = 0 0 1 1 0, φ′ = φ and γ′ = 1 1 1 1 1
we deduce that β′ ∈ Φ2. Contradiction.
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8.6 Type G2

G2

1 2

The highest root is α0 = 3 2.

Lemma 54. The irreducible triples β < φ < γ in G2 are:

β = α1 φ = α1 + α2 γ = 2α1 + α2

β = α2 φ = α1 + α2 γ = 3α1 + α2

β = α2 φ = 2α1 + α2 γ = 3α1 + α2

Proof. Easy. Left to the reader.

Lemma 55. Theorem 3 holds for the three triples (β, φ, γ) in Lemma 54.

Proof. In the first case,
φ = β + α2 7−→ α2 ∈ Φ2.

Hence α1, α2 ∈ Φ3. By convexity Φ+ = Φ3. Contradiction.

The second case is similar: φ = β + α1 implies α1 ∈ Φ2, and Φ3 = Φ+. Contradiction.

In the last case,
γ = φ+ α1 7−→ α1 ̸∈ Φ3.

Hence α1 and α2 = β do not belong to Φ2. But any biconvex nonempty subset of Φ+ contains
a simple root. Contradiction.

8.7 Type F4

In this case, there are 85 irreducible triples. We checked the theorem with a computer in
this case and also wrote a proof (more than 26 pages). See [Res23] for details.

9 A determinant
Fix a poset {φ0, . . . , φk} numbered in such a way that φi ≤ φj only if i ≤ j. Let M be a
(k×k)-matrix whose rows are labeled by (φ0, . . . , φk−1) and columns by (φ1, . . . , φk). Denote
by mij the entry at row φi and column φj. We assume that

1. for any i = 1, . . . , k − 1, mii = 1; and

2. mij ̸= 0 implies φi ≤ φj.

45



Proposition 56. With above notation, the determinant of M is

detM = (−1)k+1
∑

0 ≤ s ≤ k − 1
0 < j0 < · · · < js < k

φ0 < φj0 < · · · < φjs < φk

(−1)sm0 j0mj0 j1 · · ·mjs k.

Proof. Start with the expression

det(M) =
∑
σ

ε(σ)mσ(1) 1 . . .mσ(k) k, (21)

where the sum runs over all the bijections σ : [1; k]−→[0; k− 1]. Here, ε(σ) is the signature
of the bijection σ̃ of [1; k] on itself that maps j to σ(j) + 1.

Since M is “almost upper triangular”, in the sum (21), we can keep only the bijections
σ satisfying: σ(j) ≤ j for any j ∈ [1; k]. Define j0 by σ(j0) = 0. Then, for any 1 ≤ j < j0,
we have σ(j) = j. In other words, the bijection σ̃ stabilizes [1; j0] and acts on it as the cycle
(1, 2, . . . , j0). Moreover,

mσ(1) 1 . . .mσ(j0) j0 = m0 j0 ,

since all the other factors are of the form mjj = 1.
Now, an immediate induction shows that the expression of σ̃ as a product of disjoint

cycles can be obtained by bracketing the word 1 2 . . . k. Write

σ̃ = (1, 2, . . . , j0)(j0 + 1, . . . , j1) · · · (js + 1, . . . , k)

allowing cycles of length 1. Then the product, associated to σ in (21), is

m0 j0mj0 j1 . . .mjs−1jsmjs k,

and, the signature ε(σ) is (−1)(j0−1)+(j1−j0−1)+···+(k−js−1) = (−1)k+s+1. The proposition fol-
lows.

Remark. A determinantal expression of the Möbius function for finite posets. Let (P,≤) be
a finite poset and [φ0;φk] = {φ0, . . . , φk} be an interval of P . Let M be the (k × k)-matrix
whose rows are labeled by [0, k − 1] and columns by [1, k] defined by

mij =

{
1 if φi ≤ φj,
0 otherwise.

The proof of Proposition 56 shows that

µ([φ0;φk]) = (−1)k detM.

The authors do not know if this formula was known before.
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